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Abstract 

 

The hippocampus plays a critical role in episodic memory: the sequential representation of 

visited places and experienced events. This function is mirrored by hippocampal activity that 

self organizes into sequences of neuronal activation that integrate spatio-temporal 

information. What are the underlying mechanisms of such integration is still unknown. Single 

cell activity was recently shown to combine time and distance information; however, it 

remains unknown whether a degree of tuning between space and time can be defined at the 

network level. Here, combining daily calcium imaging of CA1 sequence dynamics in running 

head-fixed mice and network modeling, we show that CA1 network activity tends to represent 

a specific combination of space and time at any given moment, and that the degree of tuning 

can shift within a continuum from one day to the next. Our computational model shows that 

this shift in tuning can happen under the control of the external drive power. We propose that 

extrinsic global inputs shape the nature of spatio-temporal integration in the hippocampus at 

the population level depending on the task at hand, a hypothesis which may guide future 

experimental studies. 

 

Significance Statement 
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The hippocampus organizes experience in sequences of events that form episodic memory. 

How are time and space internally computed in the hippocampus in the absence of 

sequential external inputs? Here we show that time and space are integrated together within 

the hippocampal network with different degrees of tuning across days. This was found by 

recording the activity of hundreds of pyramidal cells for several days. We also propose a 

mechanism supporting such spatio-temporal integration based on a ring attractor network 

model: the degree of tuning between space and time can be adjusted by modulating the 

power of a non-sequential external excitatory drive. In this way, the hippocampus is able to 

generate a spatio-temporal representation tuned to the task at hand.  
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Introduction 
 

Episodic memory holds information about spatial (where), non-spatial (what) and temporal 

(when) components of life experiences [1]. While spatial and non-spatial information is 

available in the environment (proximity to a wall, presence of a given object), temporal 

information is an abstract concept anchored in the dynamics of the brain. In rodents, both 

distance and duration have been found to be represented in the hippocampal formation, a 

brain area critically involved in episodic memory. This was reported in CA1 [1-5], CA3 [6-7] 

and the medial entorhinal cortex [8-9]. Specifically, it was shown that when rodents run in 

place on a wheel or a treadmill (in the absence of movement in the laboratory reference 

frame), hippocampal neurons fire in a sequence whose dynamics can be driven by elapsed 

time [2] or traveled distance [4]. While information about distance is provided by speed and 

self-motion cues primarily, the sequential firing of neurons in this paradigm is most likely self-

organized locally at circuit-level as it occurs without any ordered arrangement of external 

inputs. Such internal sequences representing information relative to the past (elapsed time, 

traveled distance), have to be generated by an integration in time (in the mathematical 

sense) of spatio-temporal information. Thus, it may not be coincidence that duration and 

distance internal representations were observed in the same networks [4].  While 

mathematical models were able to reproduce the integration of time and space in different 

experimental paradigms [10], it remains unknown whether the same network structure can 

switch from encoding distance to duration.  

 

A particularly relevant model of network structure in this background are Continuous Attractor 

Neural Networks (CANNs, [11-12]), which were found to generate sequences of neuronal 

activation from non-sequential external inputs [13-15]. In such networks, neighboring 

neurons within a sequence are synaptically linked, forming a circular network (or ring 

attractor network). They also require the presence of global feedback inhibition that allows for 

the firing of a few neighboring neurons at a given time (activity bump, [16]). Such type of 

network structure accurately describes the structure of the pyramidal layer where excitatory 

neurons display recurrent connections [17-18], which can in principle lead to a circular 

network, and interneurons provide strong feedback inhibition [19]. The main input driving 

sequence generation in such network models is a theta oscillation, i.e. a 6-10Hz signal 

present in local field potential (LFP) recordings in the hippocampus when rodents are running 

[20]. Wang et al 2015 [13] showed that a reduction in the power of the theta oscillation 

induced by silencing the medial septum led to the interruption of internal sequence 

generation. Therefore CANNs appear as a good candidate model to ask whether the same 

network organization can ground sequences encoding elapsed time and/or distance. 
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Here, combining data analysis of long-term sequence dynamics across days and network 

modeling, we asked whether the same circuit can combine and/or alternate between traveled 

distance and elapsed time (duration) representations and we provide a candidate 

mechanism by which such switching could occur. To this aim, we quantified the components 

of duration and distance dimensions in sequences of neuronal activation occurring in mice 

spontaneously running on a self-paced treadmill. Neuronal activity was sampled in CA1 

using two-photon calcium imaging as previously described [5]. We found that the same 

network could alternate between states, sometimes combining information about duration 

and distance. As suggested in [6] where duration and distance related activities were 

equivalently found among CA1 and CA3 cells, we made the assumption that CA1 activity 

reflects activity in CA3 in the absence of movement in the laboratory reference frame: we 

thus modeled a recurrent network with feedback inhibition (CANN) driven by theta oscillation. 

The speed of the mouse was fed into the network through the modulation of theta oscillation 

power. We found that such network displays dynamics that are suitable for a dual 

representation of both duration and distance. Finally, by fitting experimental data, we 

demonstrate that the same circuit can switch between representations, under the influence of 

a global external signal. 

 

 

Results 

 

We recently showed that in the absence of external constraints (no task, no reward), CA1 

activity self-organizes into sequences of neuronal activation (‘run sequences’) representing 

distance or duration during spontaneous run episodes in head-fixed mice running on a non-

motorized, uncued treadmill [5]. After expanding this dataset with additional calcium imaging 

experiments, we further analyzed the spatio-temporal representation in run sequences from 

34 imaging sessions (n = 7 mice). In these experiments, mice were head-fixed under the 

objective of a microscope. Expression of calcium indicator GCaMP5, 6m or 6f was virally 

induced and a surgery was performed to provide a chronic optical access to the pyramidal 

cell layer of dorsal CA1 [5], [21]. During 20 to 30 minutes imaging sessions, 140+/-47 

neurons were detected as being active within the 400x400µm² field-of-view, 39+/-11% of 

them were activated in run sequences (Fig 1A&B, 28+/-14 run sequences per imaging 

session). 

 

We first applied our previously described method [5] for quantifying distance/duration 

representation by looking at correlations between running speed and sequence slopes in the 
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temporal/spatial domain respectively. The network was considered as representing distance 

if there was a significant correlation between temporal slopes and running speeds (spatial 

test), while it was classified as representing duration if spatial slopes and running speeds 

were significantly correlated (temporal test); a network could be classified as representing 

both time and distance as partial correlations could be found in both tests [5]. The strength of 

distance/duration representation was defined as the value of the Spearman rank correlation. 

Imaging sessions were scattered in this 2D space (Fig. 1C), with sessions where both 

representations were significantly present. These results suggest that distance-only and 

duration-only representations are the two extreme cases of a more global, mixed spatio-

temporal representation (a continuum). We next derived a new method that tests for the 

presence of a combination of duration and distance representations in the dynamics of run 

sequences (see methods and SI Appendix, Fig. S1). The basic principle is to combine the 

spatial and the temporal slope into a single value and test the dependence of this value with 

an adequate parameter that depends on speed (spatio-temporal test). This new test has the 

advantage to be less sensitive to measurement noise inherent to large-scale and fast 

calcium imaging. It can thus detect spatio-temporal representation where the two 

independent tests for distance and duration representation would not (see SI Appendix, Fig. 

S1D). From the results of the temporal, spatio-temporal and spatial tests, we could define 

five categories of representations (Fig. 1D, SI Appendix, Fig. S1) ranging from “duration-only” 

(case 1) to mixed forms (cases 2-4) to “distance-only” (case 5). We found that the imaging 

sessions that displayed a significant representation (31 out of 34 sessions) were distributed 

across these five categories (Fig. 1E) which confirms the capability of CA1 neurons to 

combine information about duration and distance [4]. 

 

We next analyzed the evolution of this representation in time, using repeated imaging 

sessions from the same network for two consecutive days. In 6 pairs of imaging sessions (n 

= 3 mice), we found that 60+/-12% of the cells participating in run sequences on the first day 

were recruited again in run sequences on the next day (Fig 1A&B) and that the ordered 

activation of these sequence-stable cells was significantly preserved (8+/-1% change in 

relative order, 99.9999th percentile after reshuffling). Focusing on sequence-stable cells 

only, we computed again the different tests for spatio-temporal representations: in 4 out of 6 

paired sessions, the same set of neurons changed their dynamics with respect to speed (Fig 

1F), indicating that the same network could adjust its relative representation of duration and 

distance. 

 
We next designed a numerical model of the neural network to study which properties are 

required to enable a change in spatio-temporal integration. As discussed in the introduction, 
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we chose a continuous attractor neural network (CANN). In order to best model a CANN 

grounding both duration and distance representations, we searched for specific network 

properties in our experimental data. As shown in Villette et al 2015, run sequences could 

restart where they stopped after an immobility period if the pause was shorter than 2s. In 

addition, run sequences could repeat one after another within continuous long run episodes. 

The former property suggests that there is some kind of short-term memory within the 

network that holds information about the last active neuron. The latter indicates the existence 

of functional links between first and last neurons in run sequences and supports the 

hypothesis of periodic boundaries in the CANN.  

 

We designed a recurrent neural network with global feedback inhibition (CANN, Fig 2A, 

methods) that, when excited by a global external input, allows for the formation of a localized 

subgroup of firing neurons (activity bump, [11-12]). The connectivity matrix of the network 

integrates both local excitatory connections and a global feedback inhibition (Fig. 2B, 

methods). The local excitatory connections were spatially asymmetric [11], biasing the 

propagation of the activity bump towards one direction (Fig. 2B, methods), as observed in 

experimental data in which run sequences are always played in the same order. We 

simulated the neural activity of the network by using the following firing rate model [22]:  

τ
d���, ��

��
�  ����, �� 	 
�����, �� 	 ������ 

where ���, � is the firing rate of neuron � at time �, τ is the relaxation time constant (τ = 

10ms), 
 is a threshold linear function, �� the recurrent inputs from local excitation and global 

inhibition, and �� the global external input. To account for the experimental observation that 

the same neurons are always recruited at the start of the run sequence, we added a bias on 

neurons excitability with respect to their position in the ring network (methods). A time-

constant external input to all cells ���� � �� leads to a repetitive (circular) sequential 

activation of cells (Fig 2C top) that mimics experimental data. In this simplified framework, 

the asymmetry in the connections determines the speed of activity flow which is thus 

independent from the amplitude of the constant external input to the system. 

 

Following the demonstration that theta oscillations are required to generate internal 

sequences, the model proposed in Wang et al [13] used a similar CANN driven by an 

oscillatory input mimicking theta oscillation. It modulates the network activity so that at each 

rising phase, the most excitable cells become active, this activity bump propagates until the 

input power sets below threshold, at the trough, all cells are silent (Fig. 2C bottom). The 

group of cells active during a cycle shifts from cycle to cycle producing an overall sequence. 

In order to allow for the network to keep track of past activity from one cycle to the next, 
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Wang et al.’s model [13] included synaptic facilitation and depression, which are well-known 

mechanisms for short-term memory in the hippocampus [23-25]. Facilitation hereby mimics 

the effect of residual calcium levels at presynaptic terminals that increase with firing and 

boost excitability, thereby creating a memory effect. Depression represents the available 

resources of calcium which decreases with the amount of firing and reduces excitability. We 

thus included theta oscillation ���� � �� sin �2�
�� and synaptic facilitation and depression 

in our model (see methods). Their time constants were heuristically chosen to be 300ms (SI 

Appendix, Fig. S2). With such values, neurons reduce their firing within theta cycle bursts 

and active neurons remain more excitable from one cycle to the next. 

 

In this more comprehensive model (short-term plasticity and theta input), the cycle-to-cycle 

velocity of bump propagation is no longer constant over different input powers but instead 

shows a nonlinear relationship and displays a minimum velocity (Fig. 2D). This nonlinear 

relationship appears both for increasing theta-modulated input or time-constant input (see 

Supplementary Figure 5). This is a counter-intuitive result where within a given amplitude 

range, increasing the amplitude of the input decreases the propagation velocity of the activity 

bump. Synaptic plasticities modulate the connectivity of the network and act on the 

propagation of the activity bump: the effective asymmetry (defined as the shift between the 

center of the activity bump and the center of the source term �� 	 ��, see methods) has a 

similar nonlinear relationship with theta input power (Fig. 2E). Thus, the presence of short-

term synaptic plasticity makes the network dynamics sensitive to external input power. This 

nonlinear feature is therefore a possible mechanism for the different sequence slope versus 

speed relationships observed in experimental data which lead to the different spatio-temporal 

representations (Fig 1B-D), provided that mouse speed is encoded in the amplitude of the 

global input and the range of amplitudes remain within a narrow window where the 

dependence can be assumed as linear. 

 

To test this last hypothesis, we finally designed a speed-dependent input. Theta amplitude 

has been shown to increase with the running speed of an animal [26]. We thus assumed a 

linear relationship between theta amplitude and the speed of the mouse: 

����� 	  �� � ����� � �� 

where �� is the mean theta power, � the gain applied to speed and � the median speed. The 

oscillatory input to the network carries speed information that will then be integrated by the 

CANN (Fig. 3A). Therefore, the nonlinear relationship between slope velocity and input 

amplitude provides a candidate mechanism for integrating time or distance in a continuous 

fashion through a change in input average strength. We next show that this qualitative 
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behavior can be used to quantitatively reproduce experimental data. Firstly, we heuristically 

identified the span of the two-dimensional parameter space consisting of theta power �� and 

asymmetry in connectivity �, where values of experimental slopes could be obtained. From 

this phase diagram (Fig. 3B) we see that the asymmetry parameter � sets the average value 

over which the slopes change, while the theta power parameter �� explores the different 

spatio-temporal representations. 

 

A data fitting procedure was then carried out to assess the capability of the proposed model 

to describe real data. Indeed, the diversity of mice behavior and the range of run sequence 

slopes across experiments required the neural network to be robust to changes in timescale. 

Furthermore, as previously shown, neural sequences are not very stable from one day to the 

next in terms of cell participation but the cell order is mostly preserved (see above and [27]). 

This indicates that functional links between consecutive cells in the sequence are preserved 

across days. Thus, the goal was to obtain quantitative fits of the slope versus speed behavior 

across all data without any arbitrary adjustment of the network’s parameters. To do so, for 

each session we extracted the triplet of values (�, ��, �) that minimized the sum of squared 

errors between the model slopes (Fig. 3B) and the slopes of all recorded sequences during 

the session, as a function of the animal’s speed (see methods). To quantify the goodness of 

the fit, we used the Root Mean of Normalized Squared Error (RMNSE) that quantifies the 

mean relative deviation between data and model fit (see methods). Across 34 sessions, the 

fitting procedure reproduced the experimental data within an error smaller than 20%, (median 

RMNSE = 0.19), which is a fairly good approximation considering the purely deterministic 

nature of the model compared to the highly noisy data. Two example fits for a distance and 

duration representation are shown in Fig. 3C. 

 

We then analyzed the relation between � and median speed � in a given session. An 

expected anti-correlation could be observed (Pearson rho = -0.55, p-value < 0.01, Fig. 3D). 

This reveals the homeostatic role of the modulatory parameter �, which upon acting on the 

mouse’s speed, avoids the uncontrolled increase of the input to the CANN and allows for the 

existence of the different spatio-temporal representations in a reduced parameter space. We 

finally studied whether such parameters revealed any particular feature with respect to the 

spatio-temporal representation as defined in Fig. 1C. �� presented a correlation with the 

extent to which distance was represented (Spearman test, p<1e-5, Fig. 3E). This result was 

also expected, since “duration-only” sequences (case 1) occur when theta power is 

distributed around the minimum of the U-shaped function in Fig. 2D (at small inputs), while 

“distance-only” (case 5) are expected to occur in the right part of the U-shaped function 

(large inputs). Taking advantage of this correlation we quantified how the distributions of Iθ 
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changed from one recording session to the next (inter-session) and compared to the 

changes from one half of a recording session to the other (intra-session). In Fig. 3F we show 

that the distribution of Iθ shows larger inter-session changes than intra-session changes 

(81% of the cases inter-session vs 52% intra-session, χ2 test, p-value < 0.05). These results 

suggest that the space-time representation is more likely to change on longer time scales 

(see SI). To conclude, we showed that a CANN with short-term synaptic plasticity has an 

effective asymmetry in its connectivity that nonlinearly depends on the input power (Fig 2E), 

it is first anti-correlated with input power for low powers, and then correlated with input power 

for high powers. This leads to a nonlinear dependence of the neural sequence dynamics with 

input power (Fig 3G). These observations demonstrate that a network integrating speed 

information can be externally tuned to represent any combination of space and time, and that 

the changes in such representation are likely to happen over long time scales.  

 

Discussion 

 

The hippocampus is able to represent the diverse spatio-temporal components of 

experience, either mainly based on environmental inputs or on self-generated and internally 

computed information. Based on empirical data, we show that two internally computed 

information components, namely duration and distance, are embedded in the sequences of 

neuronal activation that occur in CA1 when a mouse is running in place on a treadmill. 

Instead of recruiting two distinct networks of cells that would separately integrate the 

temporal or spatial dimensions, we demonstrate experimentally and theoretically that the 

same functional circuit organization can ground both representations. This conclusion was 

largely enabled by our experimental paradigm that provides a wide enough temporal window 

on hippocampal dynamics and mouse spontaneous run behavior to cover a large enough 

spectrum of spatio-temporal representations. 

 

Those representations can be generated by a continuous attractor neural network (CANN) 

that mimics a CA3 recurrent network. A theta oscillation modulated in amplitude by speed 

was used as an external input in our model so that the network could integrate speed 

through the propagation of an activity bump. Theta oscillations carrying speed information 

have been previously reported experimentally [26]; they are generated in the medial septum 

and directly modulate the activity of CA1 cells [28]. It has also been shown previously that 

when neural activity in the medial septum is pharmacologically-impaired, both theta 

oscillations and internal sequence generation in the hippocampus are affected [13]. This 

result was supported by a model of sequence generation that was the basis of our modeling 

work. We extended this existing framework to our experimental results by adding 
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dependence between mouse speed and the amplitude of theta oscillation. We found that 

depending on the range of theta amplitude, the propagation velocity of the activity bump was 

either constant or linearly dependent on the speed of the mouse. Data fitting showed that 

these qualitative properties could be used to quantitatively reproduce experimental data.  

This result is explained by the presence of short-term synaptic plasticity, which dynamically 

influences the connectivity of the neural network. In the CANN considered here, this dynamic 

effect led to a nonlinear dependence of the bump propagation velocity on external input 

power. Even though we only considered a linear dependence between mouse speed and 

theta amplituden, our results can be extended to a wide set of nonlinear functions as long as 

a rank correlation between I0 and the animal’s speed v is maintained. This can be easily 

verified by the fact that mean theta power is the key correlate with the type of representation, 

therefore any function that maps the speed into I0 in a monotonic fashion can span the whole 

range of mean theta power where time-distance representation information lies. 

 

Quantitative analysis of the data fitting showed that the type of representation (e.g. duration 

vs. distance) is set by adjusting the mean power of the global excitatory drive to the network. 

The possibility that the modulation of an external oscillatory input can change the mode of 

information processing in CA1 has been previously reported experimentally for gamma 

oscillations. Indeed, during slow gamma oscillations, CA1 activity is modulated by CA3 inputs 

and involved in memory processes whereas during fast gamma oscillations, CA1 is rather 

functionally connected to the medial entorhinal cortex, a region that transmits current spatial 

information [29]. Our study identifies a change in mean theta power as a possible way of 

shifting between spatio-temporal representations, but any global increase in excitability of the 

network would lead to the same effect (SI Appendix, Fig. S3). Thus, a neuromodulatory 

influence that changes the excitability of CA1 [30] could be another mechanism that sets the 

degree of distance and duration representations. Increases in theta power or in the 

excitability should manifest as increases in the neuronal firing rate. Future experiments, 

combining calcium imaging with electrophysiological measurements at the single neuron 

level, could test if a change in representation would be bound to a change in the firing rate, 

following our predictions. We also observed that the gain of the linear relationship between 

speed and oscillation power was inversely proportional to the median speed. This suggests a 

form of homeostasis that normalizes the input, a process that is expected in the hippocampal 

network [31] and that could be explained by the presence of feed-forward inhibition [19]. An 

important aspect of the fitting procedure is that it allowed us to assess the potential 

representation shift ability within a session, an analysis that was not possible to perform with 

the space-time test with experimental data due to downsampling. 
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Individual CA1 principal cells have been previously shown to represent both distance or 

duration with different degrees of tuning at single-cell level within a given recording session 

[4]. Here we took a different perspective by looking at the mean population dynamics (run 

sequence slope) of a recording session. We showed that in a given imaging session, 

sequential neuronal activations followed a rule for integrating space and time and that this 

rule could change across imaging sessions. Across all our data, the rule spanned the whole 

time-distance continuum, from pure time to mix to pure spatial representations. This can be 

explained by a model of internally generated sequences that is able to shift its coding 

scheme while preserving its network organization (i.e. the identity and order of cell activation 

in the sequence). Another relevant model of time, distance and space has been proposed by 

Howard et al in which a hidden layer of leaky-integrate and fire neurons with different decay 

time constants keep a trace of a stimuli. This first layer connects a second layer of neurons 

with adequate synaptic strengths in order to retrieve past events by performing a Laplace-like 

transform. This model nicely reproduced goal-motivated behavior. However, the model 

predicts scale-invariant representations (the longer the memory, the less accurate the 

representation). In our experimental paradigm there were no discrete stimuli: mice were 

running spontaneously on an empty treadmill, and we did not observe the widening of firing 

fields at the end of the sequence (SI Appendix, Fig. S4), the signature of scale-invariance. In 

the previous model, a modulation of inputs proportional to speed was used to implement path 

integration but this modulation was removed for simulating time representation. With our 

model, any type of spatio-temporal representation could be generated without the need of 

removing the speed-modulated input. Further work is required to combine our model of 

spatio-temporal representations for spontaneous behavior with the previous model for 

constrained behavior.   

 

In a more general framework, CANN models for internal sequences generation can 

reproduce one-dimensional representations but when it comes to place cells in an open 

environment, it lacks a second dimension. It may be possible to extend this model to 2D 

using a toroidal manifold [22]. It is also possible that place cell formation goes through a 

different pathway that computes allocentric information [32], independent from distance and 

duration integration that we assume to occur in CA3. The convergence of these internal and 

external representations in CA1 could lead to the emergence of episodic memory: spatio-

temporally ordered representation of experienced events. We indeed show that hippocampal 

run sequences can actually represent any type of spatio-temporal information. If an animal is 

trained for a given task, the hippocampus can readily adapt its integration of external inputs 

to represent the relevant information. For example, when a mouse is required to run for a 

fixed amount of time, as happens during the delay period of a spatial memory task, CA1 
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sequences will stretch to span and represent the entire task duration and alternatively be re-

used to represent the different locations the mouse will explore in a maze [2]. This embedded 

sequential activity could serve as a template to temporally organize external inputs such as 

sensory cues or emotional events to form a memory [33]. The template has to be flexible 

enough in order to represent different scales and different dimensions of the ongoing 

experience [32]. Here we show that a recurrent network can both represent time and space, 

and can scale without rewiring. Future experimental work should explore this possibility. 
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Materials and Methods 
 

More details in the SI Appendix. Indicated values in the main text are mean +/- standard deviation 

unless otherwise stated. 

All protocols were performed under the guidelines of the French National Ethics Committee for 

Sciences and Health report on ‘‘Ethical Principles for Animal Experimentation’’ in agreement with the 

European Community Directive 86/609/EEC. The experimental protocols were approved by the 

French National Ethics Committee under agreement #01413.03. 

 

Mice: Male adult wild type Swiss mice (n = 7, 30-50 g body weight) were used for experiments. 

Active cell detection: A custom-made algorithm based on PCA/ICA was used and combined to 

morphological identification. 

Detection of recurring activity patterns: Principal component analysis was performed on the 

fluorescence traces of active cells (see [5]). In order to keep a high statistical power, imaging sessions 

with less than 20 recurring activities (ie run sequences) were removed from analysis. 

Spatio-temporal tests: Correlations between sequence slopes in different spatio-temporal domains and 

mouse speed were used to test for spatio-temporal representation. In the temporal test, sequence 

slopes were measured in the spatial domain, in the spatial test, they were measured in the temporal 

domain and in the spatio-temporal test, sequence slopes were measured in a spatio-temporal domain 

(see more details in the SI Appendix). 

Effective asymmetry: It is defined as the shift between the bump center and the center of the source 
term in the neuron space. 
Firing field calculation: For each cell involved in a run sequence, we detected the onset and offset of 

its mean fluorescence transient over all sequences. This gave an estimate of the firing duration for 

each cell. 

Data sharing: Data samples can be downloaded on Figshare: 

https://figshare.com/s/84e04b686150c4203e67. All data and code used in analysis and for the model 

will be shared upon request. 
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Figure Legends 

 

Figure 1: Mixed distance and duration representation in CA1. A. Calcium fluorescence (heatmap) 

of CA1 neurons participating to run sequences in consecutive imaging sessions; cells have been 

selected and ordered with respect to their activity in the first imaging session (top); black line: speed of 

the mouse. B. Example field-of-view in CA1 pyramidal cell layer and contours of active cells across 

two consecutive sessions (left) and color-coded map of cell participating in run sequences (right), red 

and yellow: participation on the first or second day only (respectively), orange: participation on both 

days. Scale bar 50µm. C. Spatio-temporal representation of the 34 imaging sessions in the 

distance/duration 2D space, x-axis (y-axis): Spearman correlation value between temporal (spatial) 

sequence slopes and running speed. D. Rule and drawing that define the five categories of spatio-

temporal representation from the results of the temporal, spatio-temporal and spatial tests, Y/N (Yes or 

No) indicate significance (p<0.05). E. Distribution of the 34 imaging sessions across spatio-temporal 

representation. F. Schematics of the change in spatio-temporal representation on two consecutive 

days for 6 imaging session pairs. 

 

Figure 2: Nonlinear neural sequence dynamics in CANNs. A. Schematics of the continuous 

attractor network (CANNs): a ring excitatory network with global feedback inhibition. B. Total 

(excitatory+inhibitory) connectivity strength of neuron #50, note the asymmetry of the profile. C. 

Simulated neuronal sequences triggered by transient constant inputs (top) and theta input (bottom). D. 

Propagation velocity of the bump (or sequence slope) with respect to input power for the model with 

short-term plasticity and oscillatory input. E. Effective asymmetry of the network connectivity with 

respect to input power in the model with short-term plasticity and oscillatory input. 

 

Figure 3: Spatio-temporal representation in CANNs. A. Realistic sequence generation: actual 

speed of the mouse (top, dark green: immobility period, light green: run episode), artificial theta 

oscillation modulated in amplitude (top middle), sequences of neuronal activation generated by the 

CANN (bottom middle) and actual neuronal activity recorded in CA1 (bottom). B. Phase diagram in the 

(I0, δ) space with color coded slope velocities in rad/s. C. Sequence slope versus speed for duration 

(left) and distance (right) representation, experimental (red dots) and fitted (black crosses and lines) 

data. D. Scatter plot of the fitted gain parameter β and the corresponding median speed of the mouse 

for the 34 sessions. A linear regression shows a linear dependence between these two quantities 

(Pearson). E. Distribution of the mean theta power I0 according to the amount of distance 

representation showing a clear correlation (Spearman rho = 0.73, p-value = 5e-6). F. Probability for a 

transition in coding across sessions (inter) and within sessions (intra). A higher probability for a shift in 

coding is expected on a longer time scale (χ2 test, p-value < 0.05). G. Schematics of the spatio-
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temporal representation mechanism: for three different input powers, the network effective asymmetry 

and the sequence dynamics (bump velocity) change non-linearly. 
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