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COMPARISON OF THE DEPTHS ON BOTH SIDES OF THE

LOCAL LANGLANDS CORRESPONDENCE FOR

WEIL-RESTRICTED GROUPS

ANNE-MARIE AUBERT AND ROGER PLYMEN,
WITH AN APPENDIX BY JESSICA FINTZEN

Abstract. Let E/F be a finite and Galois extension of non-archimedean local
fields. Let G be a connected reductive group defined over E and let M := RE/F G
be the reductive group over F obtained by Weil restriction of scalars. We inves-
tigate depth, and the enhanced local Langlands correspondence, in the transition
from G(E) to M(F ). We obtain a depth-comparison formula for Weil-restricted
groups.
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1. Introduction

Let E/F be a finite Galois extension of non-archimedean local fields. Let G be a
connected reductive group defined over E and let M := RE/F G be the reductive
group over F obtained by Weil restriction of scalars fromG. We have an isomorphism
of locally compact totally disconnected topological groups ι : G(E)→M(F ) between
the E-points of G and the F -points of M .
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correspondence.
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2 A.-M. AUBERT AND R. PLYMEN

We denote by Π(G,E) the smooth dual of G(E), the set of equivalence classes of
irreducible smooth representations of G(E) and by Φ(G,E) the set of G∨-conjugacy
classes of Langlands parameters for G(E), where G∨ is the complex dual group of
G. Similarly for Π(M,F ) and Φ(M,F ).

A local Langlands correspondence (LLC) for (G,E) is a surjective map

λG : Π(G,E)→ Φ(G,E)

which satisfies the conditions (desiderata) laid down in [Bor, §10]. If such a map
λG exists then the map λM is defined to be the unique map for which the following
diagram commutes

(1.1)

Π(M,F )
λM−−−−→ Φ(M,F )

ι∗
y ySh

Π(G,E)
λG−−−−→ Φ(G,E)

where Sh is the restriction to Φ(M,F ) of the Shapiro isomorphism, as in [Bor, 8.4].

An enhanced local Langlands correspondence for (G,E) includes additional (refined)
data that pin down the smooth irreducible representations of G(E), i.e. divide each
L-packet into singletons. It is a bijection

λe
G : Π(G,E) → Φe(G,E)

π 7→ (φπ, ρπ)
,

such that φπ = λG(π), and where Φe(G,E) is the set of G∨-conjugacy classes of
enhanced L-parameters (see Definition 3.7), which satisfies several stringent condi-
tions. These extra conditions, which are made precise in Definition 3.24, comprise
Whittaker data, the HII conjecture for square-integrable modulo center representa-
tions, extended endoscopic triples, transfer properties.

This leads to our first main result:

Theorem 1.2. Consider a local Langlands correspondence for (G,E)

λG : Π(G,E) −→ Φ(G,E).

Then the map λM defined above induces an enhanced LLC for (M,F ) if and only if
λG induces an enhanced LLC for (G,E).

Each side of the LLC admits a numerical invariant, namely the depth, that is defined
in quite different ways on each side and, a priori, there is no reason to expect that this
numerical invariant will be preserved by the LLC. The depth dep(π) of π ∈ Π(G,E),
that is due to Moy and Prasad, will be recalled in Definition 1.9.

The map λM is the composition of three maps, and there are therefore three separate
opportunities for a change of depth. In this article, for each of these maps, we record
how the depth can change.

In section 2, we forge a new definition of depth for L-parameters of G(E), Defini-
tion 2.11, based on the Galois cohomology group H1(WE , G

∨). We show that this
definition is consistent with the existing definitions and prove the following depth-
comparison result (Theorem 2.16) for the right vertical map Sh:

(1.3) dep(φ) = ϕE/F (dep(Sh(φ)) for any φ ∈ Φ(M,F ),



LOCAL LANGLANDS CORRESPONDENCE AND WEIL-RESTRICTED GROUPS 3

where ϕE/F is the classical Herbrand function.

In the bottom horizontal map, the depth change varies from group to group:

• for GLn(E) and its inner forms, we do have preservation of depth under the
LLC for any representation, see [ABPS1];
• for SLn(E) and its inner forms, we have preservation of depth under the

LLC for any essentially tame representation, see [ABPS1, Theorem 3.8];
• in large residual characteristic, we have preservation of depth under the LLC

for quasi-split classical groups and for arbitrary unitary groups, [Oi1], [Oi2];
• for tamely ramified tori, we have preservation of depth under the LLC for

any character, see Yu [Yu1];
• for SL2(E) and its inner form, the depth changes under the LLC for any

representation πE of G(E) of positive depth that is not essentially tame in
the following way: dep(λG(πE)) < dep(πE), see [AMPS].

The Appendix, due to Jessica Fintzen, is devoted to a depth-comparison result
(Corollary A.13) for the left vertical map ι∗. The depth change will depend on the
ramification index e = e(E/F ).

These results are summarized in the following.

Theorem 1.4. Consider a local Langlands correspondence

λG : Π(G,E) −→ Φ(G,E).

Let π ∈ Π(M,F ). If dep(λG(ι∗π)) = κπ · dep(ι∗π) then we have

dep(λM (π)) = ϕE/F (κπ · e · dep(π)),

where e = e(E/F ) is the ramification index of E/F and ϕE/F is the classical Her-
brand function.

As a special case, we have

Theorem 1.5. If λG is depth-preserving, then, for all π ∈ Π(M,F ), we have

dep(λM (π)) = ϕE/F (e · dep(π)).

In particular, we have

• dep(λM (π))/dep(π)→ 1 as dep(π)→∞
• λM is depth-preserving if E/F is tamely ramified,

• if E/F is wildly ramified then, for each π such dep(π) 6= 0, we have

dep(λM (π)) > dep(π).

When G(E) = GL1(E), Theorem 1.5 strengthens the main result of [MiPa] for
induced tori. For tamely ramified induced tori, we recover the depth-preservation
theorem of Yu [Yu1].

Theorem 1.5 provides numerous new instances of non-preservation of depth by the
LLC:
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Corollary 1.6. Let p denote the residual characteristic of F . If E/F is wildly
ramified, and G is either an inner form of GLn(E) (with no restriction on p) or
a quasi-split classical group or a unitary groups (with p large), then the depth of
a representation π of M(F ) with M = RE/F (G) such that dep(π) 6= 0 is never
preserved by the LLC.

Section 4 contains some applications to automorphic induction and the Asai lift.

We would like to thank Masao Oi for several valuable emails which enabled us to
improve sections 2 and 4. We would also like to express our gratitude to Jessica
Fintzen for providing the appendix. We would also like to thank Maarten Solleveld
for his valuable comments on a previous version of this article.

Notation and conventions.

Let E/F be a finite Galois extension of non-archimedean local fields, with ramifi-
cation index denoted by e = e(E|F ) and residual index f = f(E|F ). Let NE/F be
the norm map. We fix a separable closure F sep = Esep of both F and E. From now
on all field extensions will be assumed to be contained in F sep. Let F ur denote the
maximal unramified extension of F .

Let K/F be any Galois extension of F and let vK denote the unique extension to
F sep of a normalized valuation on K (i.e. such that vK(K×) = Z). Let ΓK be the
absolute Galois group of K, let WK be the absolute Weil group of K, and let W ′K
denote the Weil-Deligne group WK × SL2(C).

Let H be a connected reductive group defined over K and let Π(H,K) denote the set
of isomorphism classes of irreducible admissible representations of H(K). Let H∨ be
the Langlands dual of H. Write LH := H∨ oWK . Homomorphisms φ : W ′K → LH
which are admissible as defined in [Bor, 8.2] are called L-parameters for (H,K). We
denote by Φ(H,K) the set of H∨-conjugacy classes of (resp. bounded) L-parameters
for (H,K).

Let B(H,K) be the reduced Bruhat–Tits building of H over K. We denote by
H(K)x,r the Moy–Prasad filtration group of [MP1], [MP2], defined with respect
to the valuation vK , where x ∈ B(H,K) and r ∈ R≥0, and write H(K)x,r+ :=⋃
s>rH(K)x,s.

Example 1.7. The Moy-Prasad filtration of GL1(K) = K× is

(1.8) GL1(K)MP
r = K×r ,

in particular, GL1(K)MP
n = UnK for any non-negative integer n.

Definition 1.9. Let (π, Vπ) be an irreducible smooth representation of H(K). The
depth dep(π) of π the smallest nonnegative real number r for which there exists an

x ∈ B(H,K) such that V
H(K)x,r+
π 6= 0.

The definition of depth given in Definition 1.9 makes sense, see [DeB, Lemma 5.2.1].

Let G be a connected reductive algebraic group defined over E and let M := RE/F G
be the reductive group over F obtained by Weil restriction of scalars from G. Let
G(E) denote the group of E-points of G, and M(F ) the F -points of M .

The set M(F ) has the structure of a variety defined over F , and the set G(E)
has the structure of a variety defined over E. The sets M(F ) and G(E) are in
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bijective correspondence. They are homeomorphic as topological spaces. Once the
group structure on G(E) is transported to M(F ), we have an isomorphism of locally
compact totally disconnected topological groups:

ι : G(E)→M(F ).(1.10)

Therefore, G(E) and M(F ) have the same representation theory. Let

ι∗ : Π(G,M)→ Π(G,E)(1.11)

be the canonical bijection.

Given F ⊂ E ⊂ F sep. Denote by v = vF the unique extension to F sep of a normalized
valuation on F . Let vE denote the unique extension from E to F sep of the normalized
valuation e · v|E , where e = e(E/F ) is the ramification index of E/F . So we have

(1.12) vE(x) = e · v(x)

for all x ∈ E.

Definition 1.13. Let w be a valuation on E. Define

E×w,r := {x ∈ E× : w(x− 1) ≥ r}.

The Moy-Prasad filtration of GL1(E) is given by

GL1(E)MP
r = E×

vE ,r
.

Example 1.14. Let T (F ) be an induced torus of the form RE/F (Gm). The Moy-
Prasad filtration of T (F ) is given, for r > 0, by

T (F )MP
r := E×v,r

as in [Yu2, §4.2].

We then have

T (F )MP
r = E×v,r by definition

= E×
vE ,er

by (1.12)

= GL1(E)MP
er .

Let π ∈ Π(T, F ). Therefore, we have

dep(ι∗π) = e · dep(π)

as in [MiPa, 7.2].

2. Depth-comparison under the Shapiro isomorphism

Let IF be the inertia subgroup of WF and PF the wild inertia subgroup. Attached
to a real number r ≥ −1 is the ramification subgroup W r

F of WF . We use the

upper numbering convention of [Ser, Chap. IV], so that W−1
F = WF . We have the

semi-continuity property

W r
F =

⋂
s<r

W s
F

for all r > 0.
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One also forms the subgroup
⋃
s>rW

s
F and its closure

W r+
F = cl(

⋃
s>r

W s
F )

in WF . One says that r is a jump of F/F if W r+
F 6= W r

F . In particular,

W 0
F = IF , W 0+

F = PF .

Each of the groups W r
F ,W

r+
F with r ≥ 0 is profinite, closed and normal in WF .

The classical convex Herbrand function. Let e = e(E/F ). Let Γ denote the
Galois group Gal(E/F ) and consider the ramification groups in the upper numbering
Γ0 ⊃ Γ1 ⊃ · · · ⊃ Γn = Γn+1 = · · · = {1}, where Γ0 is the inertia subgroup of Γ.
Let ψ = ψE/F denote the classical convex Herbrand function [Ser, IV §3]. We recall
that ψE/F is the inverse of ϕE/F . We record the following elementary lemma.

Lemma 2.1. Let x ≥ 0. We have ψE/F (x) ≤ ex with equality if and only if E/F
is tamely ramified. Moreover, ψE/F (x)/x→ e as x→∞.

Proof. We have

ψE/F (x) :=

∫ x

0
(Γ0 : Γt)dt.

Let ej = (Γ0 : Γj) with 1 ≤ j ≤ n. We then have e1 < e2 < · · · < en = e(E/F ). The
graph of y = ψE/F (x) is piecewise linear, with successive gradients

e1 < e2 < . . . < en = e.

It is then immediate that ψ(x) ≤ ex with equality if and only if n = 1 if and only if
E/F is tamely ramified. If j is the largest jump of Γ then we have

x ≥ j =⇒ ψ(x) = ψ(j) + (x− j)e
as required.

�

Lemma 2.2. The comparison lemma. If r ≥ 0, then

W r+
F ∩WE = W

ψE/F (r)+

E .

Proof. If r > 0 then this is the second statement in [BH, Proposition, §1.4]. To deal
with the case r = 0, we proceed as follows. Let X be a topological space, let A be
an open and closed subset of X. Then, for every subset B of X, according to [Bou,
§1.6 prop. 5] we have

B ∩A = B ∩A
where the overline denotes closure in X. If r > 0 then, by the first statement in
[BH, Proposition, §1.4], we have

W r
F ∩WE = W

ψE/F (r)

E .

Now let X = WF , A = WE , B =
⋃
r>0W

r
F . We obtain

W 0+
F ∩WE = W 0+

E .

�
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Induction. We require the continuous noncommutative cohomology as developed
in Borel-Serre [BS]. So, let g denote a topological group. A g-set is a discrete
topological space X on which g operates on the left in a continuous fashion (i.e.
the isotropy subgroup of each point of X is open in g). A g-group A is a group in
the category of g-sets, as in [BS, §1.2]. The cohomology set H1(g, A) is defined in
[BS, §1.2]: it is constructed from continuous cocycles of g with values in A. Then
H1(g, A) is a pointed set - the distinguished point is the class of the unit cocycle.

If h is a subgroup of g and A is a g-group, then the induced group A∗ is defined in
[BS, §1.28]:

A∗ := Indg
h(A)

It comprises all continuous h-equivariant maps from g to A which are constant on
left cosets modulo an open subgroup of g. Then A∗ becomes a g-group via

(gf)(x) = f(xg)

for all f ∈ A∗ and g, x ∈ g.

Theorem 2.3. [BS, Proposition 1.29]. Let h be a subgroup of g, let A be an h-
group, and let A∗ be the corresponding induced g-group. Suppose that the open
normal subgroups of g form a fundamental system of neighbourhoods of 1 ∈ g. Then
we have a canonical isomorphism of pointed sets:

H1(g, A∗) ' H1(h, A).(2.4)

This is the Shapiro isomorphism, denoted Sh.

Here is an important application of the Shapiro isomorphism. Let G∨ (resp. M∨)
denote the complex Langlands dual of G (resp. M). Let g = WF ,h = WE , A = G∨.

Then M∨ is the induced group IndWF
WE

(G∨). The Weil groups WE and WF are

locally profinite topological groups. The inertia subgroup IE (resp. IF ) contains
open normal subgroups forming a fundamental system of neighbourhoods of the
identity in WE (resp. WF ).

We will take G∨ in its discrete topology, so that G∨ becomes a WE-group; and
M∨ in its discrete topology, so that M∨ becomes a WF -group. We can now apply
Theorem 2.3, and obtain the canonical isomorphism of pointed sets

H1(WF ,M
∨) ' H1(WE , G

∨).(2.5)

Here is a much more specialized application, which we will need in the proof of
Theorem 2.15. Let

h = WE/W
ψ(r)+
E , g = WF /W

r+
F , A = (G∨)W

ψ(r)+
E

To simplify notation, set G1 = WE , G2 = WF , H1 = W
ψ(r)+
E , H2 = W r+

F , so that
G1 ⊂ G2, H1 ⊂ H2, H1 = H2 ∩G1 by the comparison lemma 2.2. We need to show
that the map

η : h→ g, xH1 7→ xH2

is injective. To prove this, note that, for all x ∈ G1 we have

xH2 = H2 =⇒ x ∈ H2 =⇒ x ∈ H2 ∩G1 =⇒ x ∈ H1 =⇒ xH1 = H1.

Setting x = z−1y with y, z ∈ G1 we infer that yH2 = zH2 =⇒ yH1 = zH1 as
required. We identify h with its image η(h) ⊂ g, and view h as a subgroup of g.
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We can therefore apply Theorem 2.3 and obtain the canonical isomorphism

(2.6) H1

(
WF /W

r+
F , Ind

WF /W
r+
F

WE/W
ψ(r)+
E

(G∨)W
ψ(r)+
E

)
' H1

(
WE/W

ψ(r)+
E , (G∨)W

ψ(r)+
E

)
.

The following lemma is observed in [MiPa, Lemma 3].

Lemma 2.7. The submodule lemma. Let J be a group, H and A subgroups of J
with A being normal in J . Let B = H ∩A, let M be an H-module. Then there is a
canonical isomorphism of J/A-modules:

(IndJHM)A ' Ind
J/A
H/BM

B.

We shall need this lemma in the proof of Theorem 2.15.

Lemma 2.8. We have a canonical isomorphism of pointed sets:

H1(WF ,M
∨) =

⋃
r∈R≥0

H1(WF /W
r+
F , (M∨)W

r+
F ).

Proof. The group W r+
F is a normal subgroup of WF for r ≥ 0. According to [BS,

Proposition 1.27], we have a canonical injective map

(2.9) lim−→
r∈R≥0

H1(WF /W
r+
F , (M∨)W

r+
F )→ H1(WF ,M

∨).

We check the surjectivity of this map.

The ramification filtration {W r
F }r≥0 is descending and satisfies

(2.10)
⋂
r≥0

W r
F = {1}

The dual group M∨ is equipped with the discrete topology, and is an W 0
F -group

in the terminology of [BS]. That is, there is a continuous action of W 0
F on M∨,

i.e. we have a continuous homomorphism ρ : W 0
F → Aut(M∨). Since Aut(M∨)

is also discrete, the kernel of ρ is an open normal subgroup U ⊂ W 0
F . By (2.10),

we will have W r+
F ⊂ U for sufficiently large r, say r ≥ r0. In other words, given

α ∈ Z1(WF ,M
∨), the image of α is contained in M∨ = (M∨)W

r+
F for r ≥ r0.

By the continuity (smoothness) of α, α is trivial on some open subgroup H of
W 0
F , thus H is of finite index in W 0

F . Again by (2.10), W r+
F is contained in H

for sufficiently large r, say r ≥ r1. Therefore, for r ≥ max(r0, r1), α belongs to

Z1(WF /W
r+
F , (M∨)W

r+
F ).

To complete the proof, we combine this data with the injective map (2.9).

�

Lemma 2.8 allows us to present a new definition of depth. Our definition of depth
of an L-parameter φ will depend only on the restriction φ|WF

. With this in mind,
we have

w ∈WF =⇒ φ(w) = (αφ(w), w) ∈M∨ oWF

where αφ is a cocycle in Z1(WF ,M
∨). The cohomology class of the 1-cocycle αφ

will be denoted [αφ]. If we denote by Φ1(M,F ) the subset of M∨-conjugacy classes
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of L-parameters which are trivial on SL2(C) then we obtain an injective map of
pointed sets:

Φ1(M,F ) ↪→ H1(WF ,M
∨), φ 7→ αφ

Definition 2.11. For φ ∈ Φ(M,F ), we define the depth of φ as

dep(φ) := inf{r ∈ R≥0 : [αφ] ∈ H1(WF /W
r+

F , (M∨)W
r+
F )}.

If M(F ) is tamely ramified, then the wild inertia group PF = W 0+
F acts trivially

on M∨. In particular, we may regard the restriction αφ|W 0+
F

of αφ to W 0+
F as a

continuous homomorphism from W 0+
F to M∨.

For tamely ramified groups, the customary definition is as follows.

Definition 2.12. For tamely ramified groups, the usual depth of φ is defined as
follows:

dep(φ) := inf{r ≥ 0 : αφ(W r+
F ) has trivial image in M∨}.

Note that this is well-defined, i.e. independent of the choice of the representative αφ
of [αφ]. Write α = αφ and choose another cocycle β representing [αφ]. Then, since
α and β are cohomologous in Z1(WF ,M

∨), there exists m ∈M∨ such that

β(w) = m−1 · α(w) · wm

for all w ∈WF . By the triviality of the action of W 0+
F on M∨, we have

β(w) = m−1 · α(w) ·m

for all w ∈W 0+
F . Therefore, for r ≥ 0, α(W r+

F ) has trivial image in M∨ if and only

if so does β(W r+
F ).

We need to reconcile these two definitions of depth.

Lemma 2.13. For tamely ramified groups, these two definitions are equivalent:

Proof. It suffices to check that the following are equivalent for r ≥ 0:

• αφ(W r+
F ) has trivial image in M∨,

• [αφ] belongs to H1(WF /W
r+
F , (M∨)W

r+
F ).

Since M(F ) is tamely ramified, the wild inertia group PF acts trivially on M∨ and so

the fixed set (M∨)W
r+
F equals M∨ for any r ≥ 0. Therefore H1(WF /W

r+
F , (M∨)W

r+
F )

is nothing but H1(WF /W
r+
F ,M∨) which is the subset of H1(WF ,M

∨) consisting of
cohomology classes which can be represented by a 1-cocycle whose restriction to
W r+
F is trivial. Thus the above two conditions are equivalent. �

We note that definition 2.11 is well-adapted to the proofs in [MiPa].

Lemma 2.13 shows that we now have a consistent definition of depth.

Remark 2.14. In the special case when M is F -split, the group WF acts trivially on
M∨, and αφ is a homomorphism, which, by definition, coincides with the restriction
of φ to WF . Hence Lemma 2.13 shows that dep(φ) coincides with the definition of
the depth of φ, as defined for instance in [ABPS1, §2.3].
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Our next result is a refinement of the isomorphism (2.5).

Theorem 2.15. If r ≥ 0, then we have a canonical isomorphism

H1
(
WF /W

r+
F , (M∨)W

r+
F

)
∼= H1

(
WE/W

ψ(r)+
E , (G∨)W

ψ(r)+
E

)
where ψ = ψE/F .

Proof. We have the following isomorphisms of complex reductive groups:

(M∨)W
r+
F ∼= (IndWF

WE
G∨)W

r+
F

∼= Ind
WF /W

r+
F

WE/WE∩W r+
F

(G∨)W
r+
F ∩WE

∼= Ind
WF /W

r+
F

WE/W
ψ(r)+
E

(G∨)W
ψ(r)+
E .

In this proof, we have used, successively

• the construction of M∨ as an induced group,
• the submodule lemma 2.7 with H = WE , J = WF , M = G∨, A = W r+

F ,
• the comparison lemma 2.2.

Now apply the canonical isomorphism (2.6). �

Theorem 2.16. We have dep(Sh(φ)) = ψE/F (dep(φ)). In particular, φ has depth
0 if and only if Sh(φ) has depth 0.

Proof. This follows immediately from Theorem 2.15 and definition 2.11. �

3. Depth-comparison under the local Langlands correspondence for
Weil-restricted groups

We assume that the K-group H is quasi-split. Let Z(H) and Z(H∨) denote the
center of H and H∨, respectively.

Definition 3.1. A local Langlands correspondence (or LLC) for (H,K) is a surjec-
tive map

λH : Π(H,K)→ Φ(H,K),

which satisfies the conditions laid down by Langlands in [Lan, §3].

These conditions are the desiderata of Borel [Bor]. We will recall them now. The
parameter φ determines a character χφ as in [Lan]. Given π ∈ Π(H,K), an element
α ∈ H1(WK ,Z(H∨)) determines an element πα ∈ Π(H,K), see [Lan, p.20].

To every φ in Φ(H,K), the pre-image of φ via λH is a finite but nonempty set Πφ

in Π(H,K) such that the following conditions are satisfied.

(i) If φ 6= φ′ then Πφ and Πφ′ are disjoint.

(ii) If π ∈ Πφ then
π(z) = χφ(z)I, z ∈ ZH(K).

(iii) If φ′ = αφ with α ∈ H1(WK ,Z(H∨), then

Πφ′ = {πα ⊗ π|π ∈ Πφ}.
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(iv) If η : H ′ → H has abelian kernel and cokernel, if φ ∈ Φ(H,K) and φ′ =
η∗(φ) then the pullback of any π ∈ Πφ to G′(K) is the direct sum of finitely many
irreducible, quasi-simple representations, all of which lie in Πφ′ .

(v) If φ ∈ Φ(H,K) and one element of Πφ is square integrable modulo (Z(H))(K)
then all elements are.

(vi) If φ ∈ Φ(H,K) and one element of Πφ is tempered then all elements are. With
respect to a distinguished splitting, write φ(w) = (a(w), w). The elements of Πφ are
tempered if and only if {a(w) : w ∈WK} is relatively compact in H∨.

Remark 3.2. Note that, although Langlands in [Lan] is working primarily with the
extension C/R, he explicitly writes that many of his results hold more generally for
finite extensions E/F of local fields, see [Lan, p.7]. In this generality, he proves that
the map φ 7→ χφ respects restriction of scalars, see [Lan, Lemma 2.11]. The map
α 7→ πα also respects restriction of scalars, see [Lan, Lemma 2.12].

Definition 3.3. Let E/F be a finite and Galois extension. Let G be a connected
reductive group defined over E which admits a LLC, say λG. Then the map λM is
defined to be the unique map for which the following diagram commutes

Π(M,F )
λM−−−−→ Φ(M,F )

ι∗
y ySh

Π(G,E)
λG−−−−→ Φ(G,E)

(3.4)

where Sh is the restriction to Φ(M,F ) under the injection (??) of the Shapiro iso-
morphism, as in [Bor, 8.4].

The pre-image via λM of Sh−1(φ) will be denoted ΠSh−1φ. Since the two vertical
maps are bijective, it is clear that we have equality of cardinalities:

card(ΠSh−1φ) = card(Πφ).

The map λM satisfies all the above conditions, and hence it qualifies as a local
Langlands correspondence.

A LLC for (H,K) can be enhanced in the following way. Let H∨sc be the simply
connected covering of the derived group of H∨, and Z(H∨sc) be the center of H∨sc.
Let H∨ad be the adjoint group of H∨. Let φ ∈ Φ(H,K). We denote by ZH∨(φ)

denote the centralizer of φ(W ′K) in H∨. Since ZH∨(φ) ∩ Z(H∨) = Z(H∨)WK , we
get ZH∨(φ)/Z(H∨)WK ∼= ZH∨(φ)Z(H∨)/Z(H∨). The latter can be considered as
a subgroup of the adjoint group H∨ad. Let Z1

H∨sc
(φ) be its inverse image under the

quotient map H∨sc → H∨ad.

Following Arthur [Ar, (3.2)], we consider the component group of Z1
H∨(φ):

(3.5) Sφ := π0

(
Z1
H∨sc

(φ)
)
.

An enhancement of φ is an irreducible representation ρ of Sφ. Via the canonical
map Z(H∨sc)→ Z(Sφ), every enhancement ρ determines a character ζρ of Z(H∨sc).

On the other hand, the group H is an inner twist of a unique quasi-split K-group
H∗. The parametrization of equivalence classes of inner twists of H∗ by

(3.6) H1
c(WK , Had) ' Irr

(
Z(H∨ad)WK

)
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provides a character ζH of Z(H∨ad)WK . We choose an extension to a character ζH of
Z(H∨sc). (Such an extension is determined by an explicit construction of H is inner
twist of H∗.) Then we say that (φ, ρ) (or ρ) is H(K)-relevant if ζρ = ζ+

H .

Definition 3.7. A pair (φ, ρ), where φ is a Langlands parameter for H(K) and
ρ is an H(K)-relevant irreducible representation of the group Sφ defined in (3.5),
is called an enhanced L-parameter for (H,K). We denote by Φe(H,K) the set of
H∨-orbits of enhanced L-parameters for (H,K) for the following action of H∨:

h · (φ, ρ) = (hφh−1, ρ ◦Ad(h−1)) for h ∈ H∨.

Remark 3.8. A notion of cuspidality for enhanced L-parameters was defined in
[AMS, Definition 6.9]. Cuspidal H(K)-relevant enhanced L-parameters are expected
to parametrize the supercuspidal smooth irreducible representations of H(K) (see
[AMS, Conjecture 6.10]).

It is natural to request that a LLC

λ : Π(H,K) → Φ(H,K)
π 7→ φπ

,

may be enhanced so that we obtain a bijection

(3.9)
λe : Π(H,K) → Φe(H,K)

π 7→ (φπ, ρπ)
.

For any φ ∈ Φ(H,K), the elements in the L-packet Πφ will then be parametrized by
the set of isomorphism classes of H(K)-relevant irreducible representations of the
finite group Sφ.

Feng, Opdam and Solleveld proved that the map Sh: Φ(M,F ) → Φ(G,E) extends
naturally to a bijection

(3.10) She : Φe(M,F )→ Φe(G,E),

and that She preserves cuspidality (see [FOS, Lemma A4]).

Definition 3.11. If there exists a bijection λe
G : Π(G,E)→ Φe(G,E), then the map

λe
M is defined to be the unique map for which the following diagram commutes

Π(M,F )
λeM−−−−→ Φe(M,F )

ι∗
y yShe

Π(G,E)
λeG−−−−→ Φe(G,E).

(3.12)

By construction λe
M is a bijection and enhances the map λM defined in Definition 3.3.

We assume that G(E) is quasi-split, that is, there is a Borel subgroup of G defined
over E. Recall that a Whittaker datum for G(E) is a G(E)-conjugacy class of pairs
(B, θ), where B is a Borel subgroup of G defined over E with unipotent radical U ,
and θ is a non-degenerate character U(E)→ C×. Whittaker datum w = (B, θ), an
admissible representation π ∈ Π(G(E)) is called w-generic if HomU(E)(π, θ) 6= 0.

We attempt to lift w from G(E) to M(F ). Note first that the Weil-restricted group
(RE/FB) is a Borel subgroup of M , see [Bor, §5.2]. Thus M is a quasi-split F -group.
We know that B(E) and (RE/FB)(F ) are isomorphic topological groups.
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We have an exact sequence 1→ U → B → T → 1, with T a maximal torus. It gives
an exact sequence

1→ RE/FU → RE/FB → RE/FT → 1,

as checked for instance in [Oes, A.3.2]. Since RE/FT is maximal torus of RE/FB,
we have an exact sequence

1→ V → RE/FB → RE/FT → 1,

where V denotes the unipotent radical of RE/FB. It follows that

(3.13) V = RE/FU,

and hence we have V (F ) = U(E).

Let Φ(G,T ) denote the root system of G with respect to T , and let Φ(G,T )+ be the
set of positive roots corresponding to the choice of B. Non-trivial minimal closed
unipotent subgroups of G normalized by T are isomorphic to Ga; the conjugation
action by T is mapped by this isomorphism to an action of T on Ga of the form
x 7→ α(t)x, where α ∈ X∗(T ). Then α ∈ Φ(G,T ), see [DM, Theorem 0.31]. Such
unipotent subgroups are called root subgroups.

Let Uα be a root subgroup of G. Let Pα be the unique parabolic subgroup containing
Uα and no other root group [DM, §1.11, 1.20]. Let Lα denote the Levi subgroup of
Pα. The unipotent radical of Pα equals

(3.14)
∏

β∈Φ(G,T )+\Φ(Lα,T )

Uβ.

On the other hand, we have

Lα = 〈T,Uβ, U−β : for all β ∈ ∆− {α}〉,
where ∆ is the set of simple roots in Φ(G,T ). Hence the unipotent radical of Pα is
Uα.

Under the identification of X∗(T ) with X∗(RE/FT ) the relative root system Φ(G,T )
gets identified with the relative root system Φ(M,RE/FT ). Note that RE/FPα is a
parabolic subgroup of RE/FG by [Bor, §5.2]. Denote by Vα its unipotent radical.
The group Lα can also be described as the centralizer in G of the identity component
of ⋂

β∈∆−{α}⊂Φ(G,T )

kerβ.

It follows from the functorial properties of RE/F that RE/FLα is the centralizer in
RE/FG of the identity component of ⋂

β∈∆−{α}⊂Φ(RE/FG,RE/FT )

kerβ

hence is a Levi subgroup of RE/FPα.

Then, a parallel argument as for proving (3.13), with U replaced by Uα, B replaced
by Pα and T replaced by Lα demonstrates that

Vα = RE/FUα

and hence we have Vα(F ) = Uα(E).
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Similarly as above, the root systems Φ(Lα, T ) and Φ(RE/FLα,RE/FT ) can be iden-
tified. Then the analog of (3.14) for the description of the unipotent radical of
RE/FPα shows that Vα is the root subgroup of M associated with α.

Suppose given a character θ : U(E) → C×. This character, with domain V (F )
instead of U(E), will be denoted θE/F . We have

θE/F (Vα(F )) = θ(Uα(E)),

so that θ is non-trivial on root subgroups of G(E) if and only if θE/F is non-trivial
on root subgroups of M(F ). Therefore θ is non-degenerate if and only if θE/F is
non-degenerate. This leads to the following definition:

wE/F := (RE/FB, θE/F ).

Then wE/F is a Whittaker datum for the Weil-restricted group M(F ).

Since G(E) and M(F ) are isomorphic as topological groups, we have

HomV (F )(π, θE/F ) = HomU(E)(ι
∗π, θ).

Therefore, π is wE/F -generic if and only if ι∗π is w-generic. In particular, the set
Πφ contains a unique w-generic constituent if and only if the set ΠSh−1(φ) contains

a unique wE/F -generic constituent, in conformity with Conjecture C in Kaletha’s
article [Kal].

We write Rφ := π0

(
ZH∨(φ)/Z(H∨)WK

)
. The map H∨sc → H∨ad induces a homomor-

phism Sφ → Rφ and Sφ is a central extension of Rφ by Z(H∨sc)/Z(H∨sc) ∩ ZH∨sc(φ)◦

(see [ABPS2, Lemma 1.7]).

From now on we assume that G(E) is quasi-split, and that a Whittaker datum w =
(B, θ) for G(E) is fixed. Then the expected parametrization reduces to bijections

(3.15)
Lφ : Πφ → Irr(Rφ)

π 7→ ρπ
,

for all φ ∈ Φ(H,K), where Irr(Rφ) denotes the set irreducible characters of Rφ.

Then we can form for any φ ∈ Φbd(H,K) and r ∈ Rφ the virtual character

(3.16) Θr
φ :=

∑
π∈Πφ

(Lφ(π))(r) Θπ,

where Θπ is the Harish-Chandra distribution character of π.

As observed in [FOS, (A.22)], for any φ ∈ Φ(M,F ), we have a canonical isomorphism

(3.17) Lι : RSh(φ)
∼−−→ Rφ.

We define a bijection

(3.18) Lι∗ : Irr(Rφ)
∼−−→ Irr(RSh(φ)),

by setting

(3.19) (Lι∗(ρ))(r′) := ρ(Lι(r′)), for any ρ ∈ Irr(Rφ) and any r′ ∈ RSh(φ).
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Proposition 3.20. Let φ ∈ Φ(M,F ). We assume that there exists a bijection Lφ

as in (3.15). Then, for any f ∈ C∞c (M(F )), we have

Θr
φ(f) = Θ

Lι(r)
Sh(φ)(ι

∗f), for any r ∈ Rφ,

where ι∗f : G(E)→ C is the function defined by (ι∗f)(g) := f(ι(g)) for g ∈ G(E).

Proof. Let LSh(φ) : ΠSh(φ) → Irr(RSh(φ)) denote the unique map which makes the
following diagram commutative:

Πφ
Lφ−−−−→ Irr(Rφ)

ι∗
y yLι∗

ΠSh(φ)

LSh(φ)−−−−→ Irr(RSh(φ))

.(3.21)

Let r ∈ Rφ. We write r′ := Lι−1(r). Then we obtain that

Θr′

Sh(φ) =
∑

π′∈ΠSh(φ)

(LSh(φ)(π
′))(r′) Θπ′ =

∑
π∈Πφ

(LSh(φ)(ι
∗π))(r′) Θι∗π.

We observe that, for any π ∈ Π(M,F ), we have, for any f ∈ C∞c (M(F )):

(3.22) Θπ(f) = Θι∗π(ι∗f).

Using the commutativity of the diagram (3.21), we get

Θr′

Sh(φ)(ι
∗f) =

∑
π∈Πφ

(Lι∗(Lφ(π)))(r′) Θι∗π(ι∗f).

By using (3.19) and (3.22), we finally get that Θ
Lι(r)
Sh(φ)(ι

∗f) = Θr
φ(f), for any r ∈

Rφ. �

The Hiraga Ichino Ikeda conjecture [HII]. We fix an additive character
ψ : K → C× which is trivial on the ring of integers oK and endow K with the Haar
measure that gives its ring of integers volume 1.

Definition 3.23. A LLC correspondence λH satisfies the HII conjecture for ψ if for
any square-integrable modulo centre representation ω of L(K), the formal degree of
ω is

fdeg(ω) = dim(ρω) |Rφω |−1 γ(0,AdH∨,L∨ ◦ φω, ψ),

where λe
H(ω) = (φω, ρω) ∈ Φe(L,K), and where AdH∨,L∨ is the adjoint representa-

tion of the group LL on the quotient of the Lie algebra of H∨ by that of Z(L∨)WK

and γ(0,AdH∨,L∨ ◦ φω, ψ) is the corresponding adjoint γ-factor.

Transfer. We assume from now that H is a quasi-split K-group and that K has
characteristic zero. A semisimple element in H(K) is called strongly regular if its
centralizer is a torus. We denote by H(K)sr the open subvariety of H(K) fsting of
the strongly regular semisimple elements.

Let γ ∈ H(K)sr and let H(K)γ denote its centralizer in H(K). Let f ∈ C∞c (H(K)).

The orbital integral Oγ(f) of (f, γ) is

Oγ(f) :=

∫
Hγ(K)\H(K)

f(x−1γx)dẋ,
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where dẋ is an invariant measure on the quotient H(K)γ\H(K).

The stable orbital integral SOγ(f) of (f, γ) is

SOγ(f) :=
∑

γ′∈S(γ)

Oγ′(f),

where S(γ) is a set of representatives for the H(K)-conjugacy classes of γ in its
H(Ksep)-conjugacy class (so-called the stable conjugacy class of γ).

We recall from [Kal, Def. 2] that an extended endoscopic triple for (H,K) is a triple
e = (He, s,

Lη), where:

• He is a quasi-split connected reductive K-group,
• s is a semisimple element in H∨,
• Lη : LHe → LH is an L-homomorphism of L-groups (as in [Bor, §15.1]) that

restricts to an isomorphism of complex reductive groups H∨e
∼−−→ ZH∨(s)◦,

such that Lη(h) commutes with s, for any h ∈ LHe.

Let e = (He, s,
Lη) be an extended endoscopic triple for (H,K). We have φ(W ′K) ⊂

Lη(W ′K), since Lη : LHe → LH. It follows that s ∈ ZH∨(φ). We denote by s the
image of s in Rφ.

Let w be a Whittaker datum for H(K). We recall that fe ∈ C∞c (He(K)) is called a
transfer of f ∈ C∞c (H(K)) if for all γ ∈ He(K)sr we have

SOγ(fe) =
∑
δ

∆[w, e](γ, δ) Oδ(f),

where δ runs over the set of conjugacy classes in H(K)sr, and where

∆(w, e) : He(K)sr ×H(K)sr → C

is the Langlands-Shelstad transfer factor associated to w.

Definition 3.24. An enhanced LLC for (H,K) is a bijection

λe
H : Π(H,K) → Φe(H,K)

π 7→ (φπ, ρπ)

such that the map λH : π 7→ φπ is a LLC, and the following extra properties hold:

(1) λH satisfies the HII conjecture for square integrable modulo center represen-
tations.

(2) For any Whittaker datum w for (H,K), and all φ ∈ Φbd(H,K) the L-packet
Πφ := λ−1

H (φ) contains a unique w-generic constituent.
(3) λe

H restricts to a bijection from the set of isomorphism classes of supercusp-
idal irreducible representations of H(K) to the set of H∨-conjugacy classes
of cuspidal enhanced L-parameters.

(4) For any φ ∈ Φ(H,K), the map

Lφ : Πφ → Irr(Sφ)
π 7→ ρπ

is a bijection,
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(5) When H is quasi-split over K, for any extended endoscopic triple e = (He, s,
Lη)

for (H,K), there exists a bijection

λe
He

: Π(He,K)→ Φe(He,K)

which satisfies the analogs of (1)–(4) for (He,K), and a Whittaker datum we

for (He,K), such that
(a) for φe ∈ Φbd(He,K), the character ρπg

e
is trivial if πg

e is the we-generic
constituent of Πφe,

(b) for any pair (fe, f) ∈ C∞c (He(K))× C∞c (H(K)) of functions such that
fe is a transfer of f , we have the equality

Θ1
φe(fe) = Θs

Lη◦φe(f).

Theorem 3.25. Consider a bijection

λe
G : Π(G,E) −→ Φe(G,E).

Then

(i) The map λe
M defined in (3.11) is an enhanced LLC for (M,F ) if and only if

λe
G is an enhanced LLC for (G,E).

(ii) Furthermore, if π ∈ Π(M,F ) and dep(λG(ι∗π)) = κπ ·dep(ι∗π) then we have

dep(λM (π)) = ϕE/F (κπ · e · dep(π)),

where ϕE/F is the Hasse-Herbrand function.

Proof. It is proved in [FOS, Proposition A.7] that, for any finite separable field
extension E/F , the HII conjecture holds for ω a square-integrable modulo center
irreducible representation of M(F ) if and only if its holds for ι∗(ω): it shows that
λG satisfies Definition 3.24 (1) if and only if λM satisfies it.

We have already seen that Definition 3.24 (2) is satisfied by λG if and only if it is
satisfied by λM . Since She preserves the cuspidality, Definition 3.24 (3) is satisfied
by λe

G if and only if it is satisfied by λe
M .

We write λe
M (π) = (φπ, ρπ) for π ∈ Π(M,F ) and Lφ(π) = ρπ for φ = φπ. Then

Definition 3.24 (4) is satisfied by Lφ if and only if it is satisfied by LSh(φ), where

LSh(φ)(ι
∗π) := Lι∗(ρπ),

and Lι∗ is the natural bijection between Irr(Sφ) and Irr(SSh(φ)).

When G is quasi-split over E, let w be a Whittaker datum for (G,E), and let wE/F

be its lift to (M,F ) as in (??). Let φ ∈ Φbd(M,F ). Then the diagram (3.21) shows
that the existence of a bijection Lφ : Πφ → Irr(Rφ) satisfying Definition 3.24 (5).a
is equivalent to the existence of a bijection LSh(φ) : ΠSh(φ) → Irr(RSh(φ)) satisfying
Definition 3.24 (5).a. Indeed, as already observed, πg ∈ Πφ is wE/F -generic if
and only if ι∗πg is w-generic. On the other hand, the diagram (3.21) implies that
Lφ(πg) is the trivial character of Rφ if an only if LSh(φ)(ι

∗πg) is the trivial character

of RSh(φ), since (3.19) shows that Lι∗ maps the trivial character of Rφ to that of
RSh(φ).

We fix a ΓE-stable Borel pair (B∨, T∨) in G∨ and an extended endoscopic triple
e = (Ge, s,

Lη) for (G,E) such that s′ ∈ T∨. The following construction is based

on [LW, § 1.2]. Every Borel pair in M∨ can be written as (IΓF
ΓE

(B∨), IΓF
ΓE

(T∨)) for
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a well-determined Borel pair (B∨, T∨) in G∨. It is ΓF -stable if and only if the pair
(B∨, T∨) is ΓE-stable. Setting W∨ := NG∨(T∨)/T∨, we have

NM∨(RE/F (T∨))/RE/F (T∨) = IΓF
ΓE

(W∨).

We denote by τ 7→ τG the natural action of ΓE on G∨ and we set B∨e := B∨ ∩G∨e .
Then (B∨e , T

∨) is a Borel pair in Ge. Let τ ∈ ΓE . For each v′ ∈ WE in the inverse
image of τ under the natural map WE → ΓE , we choose an element (g(v′), v′)
of G∨e oWE = LGe such that the automorphism Intg(v′) ◦ τG preserves the Borel
pair (B∨e , T

∨). The coset T∨g(v′) being well-determined, there is a well-determined
element wGe(τ) ofW∨ such that the conjugacy action of (g(v′), v′) on T∨ is given by
wGe(τ)τG, where we identify wGe(τ) with the automorphism IntwGe (τ) of T∨. The

map τ 7→ wGe(τ) is a 1-cocycle. Let α ∈ H1(ΓE ,W∨) denote its cohomology class,
and let Sh−1(α) be the inverse image of α under the Shapiro isomorphism

Sh: H1(ΓF , I
ΓF
ΓE

(W∨))→ H1(ΓE ,W∨).

We choose a 1-cocycle wGe,M of ΓF with values in IΓF
ΓE

(W∨) which belongs to the
cohomology class of α. Up to replacing wGe,M by a cohomologous 1-cocycle, we may,
and do, assume that

(3.26) (wGe,M (τ))(1) = wGe(τ) for any τ ∈ ΓE .

Let σ 7→ σGe,M be the action of ΓF on the torus IΓF
ΓE

(T∨) of M∨ defined by

(3.27) σGe,M := wGe,M (σ)σM ,

where σ 7→ σM is the natural action of ΓF on M∨. It allows to define an application
sE/F from ΓF to T∨ by sending σ to

(3.28) sE/F (σ) := wGe,M (σ)(1)−1 (s).

In particular, sE/F belongs to IΓF
ΓE

(T∨), is fixed by the action σ 7→ σGe,M and we

have sE/F (1) = s. We set

(3.29) M∨e := ZM∨(sE/F )◦.

Then M∨e ∩ I
ΓF
ΓE

(B∨) is a Borel subgroup of M∨e . For each v ∈WF with image σ in

ΓF , we choose a representative w̃Ge,M (v) = w̃Ge,M (σ) of wGe,M (σ) in NM∨(IΓF
ΓE

(T∨)).

The automorphism Intw̃Ge,M (σ)◦τM preserves the Borel pair (M∨e ∩I
ΓF
ΓE

(B∨), IΓF
ΓE

(T∨))

of M∨e . We define

(3.30) Me :=
{

(mw̃Ge,M (σ)(v), v) : m ∈M∨e , v ∈WF

}
⊂ LM.

The set Me is a group which normalizes M∨e . Thus we can deduce an L-action of
ΓF on M∨e , and hence form the semidirect product M∨e oWF . Then let Me be a
quasi-split connected reductive F -group which has M∨e oWF as L-group. We have
Me = RE/F (Ge). Let λGe be a LLC for (Ge, E). Then the arguments above, applied
to (Ge, E), show that λGe satisfies the properties (1), (2) and (3).
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Let LηE/F : LMe → LM be an L-homomorphism of L-groups such that eE/F =

(Me, sE/F ,
LηE/F ) is an extended endoscopic triple for (M,F ), then the diagram

(3.31)

Φ(Me, F )
Φ(LηE/F )
−−−−−−→ Φ(M,F )

Sh

y ySh

Φ(Ge, E)
Φ(Lη)−−−−→ Φ(G,E)

where

Φ(Lη) : φe 7→ Lη ◦ φe and Φ(LηE/F ) : φ′e 7→ LηE/F ◦ φ′e,
is commutative, that is, we have LηE/F ◦Sh(φe) = Sh(Lη◦φe) for any φe ∈ Φ(Me, F ).

Let ιe : Ge(E)
∼−−→ Me(F ). The maps ι and ιe induce bijections G(E)sr

∼−−→ M(F )sr

and Ge(E)sr
∼−−→Me(F )sr, respectively. Let δ ∈ G(E)sr and γ ∈ Ge(E)sr. We have

ι(G(E)δ) 'M(F )ι(δ) and ιe(Ge(E)γ) 'Me(F )ιe(γ).

Let (f, fe) ∈ C∞c (M(F )) × C∞c (Me(F )) such that fe is a transfer of f . We denote
by ι∗f : G(E)→ C and ι∗efe : Ge(E)→ C the functions defined by

(ι∗f)(g) := f(ι(g)) and (ι∗efe)(g) := fe(ιe(ge)) for g ∈ G(E) and ge ∈ Ge(E).

We have ι∗f ∈ C∞c (G(E)) and ι∗efe ∈ C∞c (Ge(E)). The transfer factors

∆(w, e) : Ge(E)sr ×G(E)sr → C and ∆(wE/F , eE/F ) : Me(F )sr ×M(F )sr → C

coincide (it was observed in [Wal, Lemme 5.4] in the Lie algebras case). It follows
that fe is a transfer of f if and only if ι∗efe is a transfer of ι∗f .

Let φe ∈ Φ(Me, F ). Then the combination of Proposition 3.20 with the commutative
diagram (3.31) implies that

Θ1
φe(fe) = Θ

sE/F
LηE/F ◦φe

(f) if and only if Θ1
Sh(φe)

(ι∗efe) = Θs
Lη◦Sh(φe)

(ι∗f),

that is, λM satisfies Definition 3.24 (5).b if and only if λG satisfies it.

The assertion (ii) follows from Corollary A.13, Theorem 2.16 and the commutativity
of the diagram (3.12). �

As a special case of Theorem 3.25, we have

Theorem 3.32. If λG is depth-preserving, then, for all π ∈ Π(M,F ), we have

dep(λM (π)) = ϕE/F (e · dep(π))

In particular, we have

• dep(λM (π))/dep(π)→ 1 as dep(π)→∞
• λM is depth-preserving if and only if E/F is tamely ramified,

• if E/F is wildly ramified then, for each π with dep(π) > 0, we have

dep(λM (π)) > dep(π).

Proof. This follows from Theorem 3.25 and Lemma 2.1. �
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When G(E) = GL1(E), Theorem 3.32 strengthens the main result of [MiPa] for
induced tori. For tamely ramified induced tori, we recover the depth-preservation
theorem of Yu [Yu1].

4. Applications

4.1. An inequality between depths.

Lemma 4.1. Let M and M̃ be two reductive F -groups such that M̃ is F -split and

there exist an L-embedding u : LM → LM̃ which satisfies the following property: if
v ∈WF acts trivially on M∨, then we have u(1, v) = (1, v).

Then, for a given element (m, v) ∈ LM : if u(m, v) = (1, v), then we have m = 1.

In particular, for any φ ∈ Φ(M,F ), we have u ◦ φ ∈ Φ(M̃, F ) and

dep(u ◦ φ) ≤ dep(φ).

Proof. The conjugation isomorphism Int(1, v) of LM̃ = M∨ oWF is trivial on the
first factor M∨. On the other hand, since we have u(m, v) = (1, v), it should restricts
to Int(m, v) on M∨. This implies that the isomorphism Int(m) ◦ [v] of M∨ is the
identity, where [v] denotes the action of v ∈ WF on M∨. Here we recall that the
action of WF on M∨ is defined by using a fixed pinning. More precisely, we have a
canonical exact sequence

1→ Int(M∨)→ Aut(M∨)→ Out(M∨)→ 1.

As M is defined over F , we get an action of WF on its root data, hence we have
a homomorphism WF → Out(M∨). (Out(M∨) is nothing but the automorphisms
of the root data). As we also have a splitting Out(M∨) → Aut(M∨) coming from
a fixed pinning, we can get a homomorphism WF → Out(M∨) → Aut(M∨) by
sending v to [v]. This was nothing but the definition of the action of WF on M∨.
Therefore the equality Int(m)◦ [v] = IdM∨ says that [v] = Int(m)−1 = IdM∨ . Hence,
by our assumption, we get u(1, v) = (1, v). As we have u(m, v) = u(m, 1) · u(1, v),
the equality u(m, v) = (1, v)(and the injectivity of the restriction of u to M∨)
implies m = 1. Then the inequality between the depths of φ and u ◦ φ follows from
Definition 2.11. �

4.2. Automorphic induction. Let n ≥ 1 be an integer and d = [E : F ]. Let G be

the E-group GLn and let M̃ be the F -group GLnd. Both groups G and M̃ admits
a local Langlands correspondence (see [HT], [He1] or [Sch]), and the corresponding
maps λG and λ

M̃
are bijective.

Let πE ∈ Π(G,E). We will denote by φE ∈ Φ(G,E) the L-parameter of πE , that is,

φE := λG(πE). It is proved in [He2, §7.3, Proposition 2] that the L-parameter φ̃ of

the representation π̃ of M̃ obtained from πE by automorphic induction (when the
latter exists, see [HH]) satisfies

(4.2) φ̃ = Ind
W ′F
W ′E

(φE).

Lemma 4.3. Let φE ∈ Φ(GLn, E). We have

dep(Ind
W ′F
W ′E

(φE)) = ϕE/F (dep(φE)).
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Proof. The restriction to WE of the L-parameter φE : W ′E → GLn(C) is a repre-
sentation of WE of space V with GL(V ) = GLn(C). By using Lemma 2.7 and
Lemma 2.2, we obtain

(IndWF
WE

(V ))W
r+
F ' Ind

WF /W
r+
F

WE/WE∩W r+
F

(V WE∩W r+
F ) ' Ind

WF /W
r+
F

WE/W
ψE/F (r)+

E

(V W
ψE/F (r)+

E ).

It follows that

(IndWF
WE

(V ))W
r+
F 6= {0} ⇐⇒ V W

ψE/F (r)+

E 6= {0}.
Then the result follows from Remark 2.14. �

Theorem 4.4. We have

dep(π̃) = ϕE/F (dep(πE)).

Proof. Since λ
M̃

and λG are depth preserving (see [ABPS1, Theorem 2.9]), using
Lemma 4.3, we get

dep(π̃) = dep(φ̃) = dep(Ind
W ′F
W ′E

(φE)) = ϕE/F (dep(φE)) = ϕE/F (dep(πE)).

�

4.3. Asai lift. We take for G the group GLn and M = RE/F (G). We assume

that [E : F ] = 2. We denote by V the 2-dimensional C-vector space C2. Hence
we have LG = G∨ × WF , with G∨ = GL2(C) = GL(V ), and LM = M∨ o WF ,
where M∨ = GLn(C)×GLn(C), and WF permutes the two factors GL2(C) among

themselves. Let G̃ denote the group GLn2 . We have G̃∨ = GLn2(C) = GL(V ⊗2)

and LG̃ = G̃∨ ×WF .

Let rA : LM → LG̃ denote the map defined by

(4.5) rA(g1, g2, b) :=

{
(g1 ⊗ g2, b) if b ∈WE ,

(g2 ⊗ g1, b) if b /∈WE ,

where g1, g2 ∈ GLn(C) and a ∈WF . If φ ∈ Φ(M,F ), then rA ◦ φ ∈ Φ(GLn2 , F ).

Lemma 4.6. We have
dep(rA ◦ φ) = dep(φ),

for any φ ∈ Φ(M,F ).

Proof. Let φ = (aφ, ν) ∈ Φ(M,F ). From (4.5) we get

(rA ◦ φ)(w) =

{
(g1(w)⊗ g2(w), ν(w)) if ν(w) ∈WE ,

(g2(w)⊗ g1(w), ν(w)) if ν(w) /∈WE .

Since H1(WF /W
r+
F ,M∨) are the cohomology classes which can be represented by a

1-cocycle whose restriction to W r+ is trivial, we have αφ ∈ H1(WF /W
r+
F ,M∨)W

r+
F

if and only if

(4.7) g1(w)⊗ g2(w) = In ⊗ In for every w ∈W r+
F ,

where In denotes the identity matrix in GLn(C).

But (4.7) is satisfied if and only if we have W r+
F ⊂ ker(rA ◦ φ). Then the result

follows by Definition 2.11 . �
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The Asai lift of πE ∈ Π(GLn, E) is the representation As(πE) ∈ Π(GLn2 , F ) with
L-parameter rA ◦ φ, where φ = (λM ◦ ι−1)(πE), that is,

(4.8) As(πE) := λ−1

G̃
(rA◦φ) = (λ−1

G̃
◦rA◦λM ◦ι−1)(πE) = (λ−1

G̃
◦rA◦Sh−1◦λG)(πE).

Theorem 4.9. Let πE ∈ Π(GLn, E). We have

dep(As(πE)) = ϕE/F (dep(πE)).

Proof. Since λ
G̃

is depth preserving [ABPS1, Theorem 2.9], it follows from (4.8),
that

dep(As(πE)) = dep(rA ◦ Sh−1 ◦ λG)(πE).

By combining Theorem 2.15 and Lemma 4.6, we obtain

dep(As(πE)) = dep((Sh−1 ◦ λG)(πE)) = ϕE/F (dep(λG(πE))).

Since λG is depth preserving [ABPS1, Theorem 2.9], we have

dep(As(πE)) = ϕE/F (dep(πE)).

�

Let oE denote the ring of integers of E, let pE be the maximal ideal of oE , and let
qE be the order of oE/pE . Let ψE be a continuous nontrivial additive character of
E and let c(ψE) denote the largest integer c such that ψ is trivial on p−cE . Let πE an
essentially square-integrable irreducible representation of GLn, E). Its Godement-
Jacquet local constant ε(s, πE , ψE) takes the form

ε(s, πE , ψE) = ε(0, πE , ψE) · q−f(πE ,ψE)s
E ,

where s ∈ C and ε(0, πE , ψE) ∈ C×. The integer f(πE) := f(πE , ψE) − nc(ψE) is
called the conductor of πE . We recall that f(πE) − n is the Swan conductor of πE
(see for instance [Bus, § 4.3.2]). We write (as in [Bus, § 5.3.2]):

(4.10) ς(πE) :=
f(πE)− n

n
.

Corollary 4.11. We assume n ≥ 2. For any essentially square-integrable irreducible
representation of GLn, E), we have

ς(As(πE)) = ϕE/F (ς(πE)).

Proof. From [ABPS1, Theorem 2.7], we have (since n ≥ 2)

f(πE) = n dep(πE)) + n.

It gives

ς(πE) = dep(πE).

Similarly, we have

ς(As(πE)) = dep(As(πE)).

Then the result follows from Theorem 4.9. �
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Appendix A. Moy–Prasad filtration of Weil–restricted groups

by Jessica Fintzen

Let E/F be a finite Galois extension of non-archimedean local fields with rami-
fication index e. Let G be a connected reductive group defined over E and set
M := RE/F G the Weil restriction of scalars of G for the field extension E/F . We

denote by ι : G(E)
'−→ M(F ) the isomorphism arising from the defining adjunction

property of M .

In this appendix we are going to prove (Proposition A.12) that for every x ∈ B(G,E)
and r ∈ R≥0, we have

(A.1) ι(G(E)x,er) = M(F )iB(x),r,

where iB : B(G,E)
'−→ B(M,F ) is an identification of the (reduced) Bruhat–Tits

building B(G,E) of G over E with the (reduced) Bruhat–Tits building B(M,F ) of
M over F that we will define in Definition A.11.

We are using the notation from the main part of the paper “Comparison of the depths
on both sides of the local Langlands correspondence for Weil-restricted groups”,
i.e. if H is a (connected) reductive group over a non-archimedean local field K,
x a point in the (reduced) Bruhat–Tits building B(H,K) of H over K, and r ∈
R≥0, then we denote by H(K)x,r the corresponding Moy–Prasad filtration subgroup
([MP1, MP2]), and we write H(K)x,r+ for the subgroup

⋃
s>rH(K)x,s of H(K).

We also fix a separable closure F sep of F and view all separable field extensions of F
inside F sep. For any finite separable extension K of F , we write Kur for its maximal
unramified extension (contained in F sep).

In order to define and prove (A.1), we will first work over maximal unramified
extensions and then combine the results with étale descent. We write G := GEur and
define M := REur/FurG. Note that if E/F is not totally ramified, then M 6'MFur .

For a torus T defined over F ur, we denote by T ft the ft-Néron model of T ([CY], see
also [Bra]) and by T ft,0 the connected component of T ft that contains the identity.

Lemma A.2. Let T be a torus defined over F ur. Then we have (REur/FurT )ft,0 '
REur/Fur(T ft,0).

Proof. By [Bra, 3.1.4 Satz] we have (REur/FurT )ft ' REur/Fur(T ft). Since T ft is

smooth and affine, we have by [CGP, Proposition A.5.2(4)] that REur/Fur(T ft,0) is

an open subgroup scheme of REur/Fur(T ft) ' (REur/FurT )ft, and by [CGP, Propo-

sition A.5.11(3)] the open subgroup scheme REur/Fur(T ft,0) has geometrically con-

nected fibers, hence it is the identity component of (REur/FurT )ft. �

Let TG be a maximally split, maximal torus of G = GEur defined over Eur, and
let TM := REur/FurTG. Then TM is a maximally split, maximal torus of M =
REur/FurG, and by [CGP, Proposition A.5.15] all maximally split, maximal tori of
M arise in this way.

Let SG be the maximal split subtorus of TG and SM the maximal split subtorus
of TM. Then SM is contained in REur/FurSG ⊂ REur/FurTG = TM. We obtain a
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map
iS : X∗(SG)→ X∗(SM)

by sending f ∈ HomEur(SG,Gm) = X∗(SG) to the element iS(f) ∈ HomFur(SM,Gm) =
X∗(SM) whose composition with Gm ↪→ REur/FurGm yields REur/Fur(f)|SM . Note

that the map iS is an isomorphism. We use this isomorphism iS to identify X∗(SG)
and X∗(SM). Under this identification the restricted root system Φ(G,SG) of G
with respect to SG gets identified with the restricted root system Φ(M,SM) of M
with respect to SM .

Let a ∈ Φ(G,SG) = Φ(M,SM), and let UG
a be the corresponding root subgroup of

G, i.e., the connected unipotent (closed) subgroup of G normalized by SG whose
Lie algebra is the sum of the root spaces corresponding to the roots that are a
positive integral multiple of a. Similarly, we denote by UM

a the root subgroup of M
corresponding to a. Then we have

(A.3) UM
a = REur/FurUG

a ⊂ REur/FurG.

Let K be a finite Galois extension of F ur containing Eur and such that TG ×Eur K
is split. We fix a Chevalley–Steinberg system

{xKα : Ga → UK
α }α∈Φ

of G with respect to TG, where we write Φ := Φ(GK ,T
G×Eur K) and UK

α denotes
the root subgroup of GK corresponding to α, see [Fin, §2.1] for the notion of a
Chevalley–Steinberg system, which is based on [BT]. Recall that if we write Kα for
the fixed subfield of K of the stabilizer StabGal(K/Eur)(α) of α in Gal(K/Eur) (for

α ∈ Φ), then xKα is by definition of a Chevalley–Steinberg system defined over Kα.

We will now show how this Chevalley–Steinberg system of G with respect to TG

yields a Chevalley–Steinberg system of M with respect to TM.

First, note that

M×Fur K '
∏

f∈HomFur (Eur,K)

G×Eur,f K,

which contains the split torus

TM ×Fur K '
∏

f∈HomFur (Eur,K)

TG ×Eur,f K.

For later use, we fix for every f ∈ HomFur(Eur,K) an element f̃ ∈ Gal(K/F ur)

such that f̃ |Eur = f . We write id : Eur ↪→ K for the inclusion of Eur into K
arising from our convention to view both fields within the same fixed separable

closure, and we choose ĩd to be the identity element in Gal(K/F ur). Let α ∈ Φ =
Φ(GK ,T

G ×Eur K) and f ∈ HomFur(Eur,K). Then we write αf for the root in

ΦM := Φ(M×Fur K,TM ×Fur K) obtained by composing the projection

TM ×Fur K '
∏

f ′∈HomFur (Eur,K)

TG ×Eur,f ′ K � TG ×Eur,f K

that sends TG ×Eur,f ′ K to the identity for f ′ 6= f , with the composition of the
following K-group scheme homomorphisms

TG ×Eur,f K ' TG
K ×K,f̃ K

α×id−−−→ Gm ×K,f̃ K
'−→ Gm.
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Note that

ΦM = Φ(M×Fur K,TM ×Fur K) = {αf |α ∈ Φ, f ∈ HomFur(Eur,K)}.

For f ∈ HomFur(Eur,K), we write

if : G×Eur,f K ↪→
∏

f ′∈HomFur (Eur,K)

G×Eur,f ′ K 'MK

for the inclusion whose image is the factor corresponding to f , and we define the
K-group scheme homomorphism

xKαf : Ga ' Ga ×K,f̃ K
xα×id−−−−→ UK

α ×K,f̃ K ⊂ G×Eur,f K

if−→
∏

HomFur (Eur,K)

G×Eur,f ′ K 'MK .

Note that the image of UK
α ×K,f̃ K via if in MK is the root subgroup UK

αf
of MK

attached to the root αf . Thus xKαf factors through the root subgroup UK
αf

.

Lemma A.4. The set {xKαf : Ga → UK
αf
}αf∈ΦM forms a Chevalley–Steinberg system

of M with respect to TM.

Proof. Let αf ∈ ΦM, i.e. α ∈ Φ and f ∈ HomFur(Eur,K). For γ ∈ Gal(K/F ur),

we can write γf̃ = f̃ ′γ0 for some f ′ ∈ HomFur(Eur,K) and γ0 ∈ Gal(K/Eur).
Then we have γ(αf ) = (γ0(α))f ′ . Hence the fixed field Kαf of the stabilizer

StabGal(K/Fur)(αf ) of αf is f̃Kαf̃
−1. Since xα is defined over Kα, we deduce from

the construction of xKαf that xKαf is defined over Kαf . We distinguish two cases.

Case 1: The restriction of αf to Φ(M,SM) is not divisible. In this case it remains

to check that for all γ ∈ Gal(K/F ur), we have xKγ(αf ) = γ ◦ xKαf ◦ γ
−1. Write

γ = f̃ ′γ0 ◦ f̃−1 for some f ′ ∈ HomFur(Eur,K) and γ0 ∈ Gal(K/Eur). Note that the
restriction of α to Φ(G,SG) agrees with the restriction of αf to Φ(M,SM) under

the above identification of Φ(G,SG) with Φ(M,SM). Thus the restriction of α to
Φ(G,SG) is non-divisible, and since {xKα }α∈Φ form a Chevalley–Steinberg system,
we have xKγ0(α) = γ0 ◦ xKα ◦ γ−1

0 . Thus we obtain

γ ◦ xKαf ◦ γ
−1 = f̃ ′ ◦ γ0 ◦ xKαid ◦ γ

−1
0 (̃f ′)−1 = f̃ ′ ◦ xKγ0(α)id

◦ (f ′)−1 = xKγ0(α)f ′
= xKγ(αf ).

Case 2: The restriction of αf to Φ(M,SM) is divisible. Hence the restriction of α

to Φ(G,SG) is divisible and there exist β and β′ with α = β + β′, β|SG = β′|SG ,
and Kβ = Kβ′ is a quadratic extension of Kα. Hence αf = βf + β′f and Kβf =

f̃Kβ f̃
−1 is a quadratic extension of Kαf = f̃Kαf̃

−1. It remains to show that for
γ ∈ Gal(K/Kαf ), we have

(A.5) xKγ(αf ) = γ ◦ xKαf ◦ γ
−1 ◦ ε,

where ε ∈ {±1} is 1 if and only if γ induces the identity on Kβf . Note that if we write

γ = f̃γ0f̃
−1 with γ0 ∈ Gal(K/Kα), then γ induces the identity on Kβf if and only

if γ0 induces the identity on Kβ. Hence the desired identify (A.5) follows from the

property xKγ0(α) = γ0 ◦ xKα ◦ γ−1
0 ◦ ε of the Chevalley–Steinberg system {xKα }α∈Φ. �



26 J. Fintzen

Recall that following [BT] we obtain a parametrization of root groups from our
Chevalley–Steinberg systems. More precisely, let a ∈ Φ(G,SG) and fix α ∈ Φ such
that α|SG = a. Recall that xα is defined over Kα by the properties of a Chevalley–
Steinberg system. If a is not multipliable, then

xa := RKα/EurxKα : RKα/EurGa
'−→ UG

a

is the parametrization of UG
a corresponding to the Chevalley–Steinberg system. If a

is multipliable, then let α̃ ∈ Φ such that α̃|SG = a and α+ α̃ ∈ Φ. Using xFα , x
F
α̃ and

xFα+α̃, following [BT, 4.1.9] (see also [Fin, Section 2.2] for an exposition) we obtain
a parametrization

xa : RKα+α̃/EurH0(Kα,Kα+α̃)
'−→ UG

a

of UG
a , where H0(Kα,Kα+α̃) is as defined in [BT, 4.1.9] (see also [Fin, Section 2.2]).

Composing the inverse of xa with the valuation on (RKα/EurGa)(E
ur) = Kα or with

a scaling of the valuation on the second factor of Kα×Kα ⊃ (H0(Kα,Kα+α̃))(Kα+α̃)
= (RKα+α̃/EurH0(Kα,Kα+α̃))(Eur) as described in [BT, 4.2.2] (see also [Fin, Sec-

tion 2.2]), we obtain a valuation

ϕa : UG
a (Eur)→ 1

2[Kα : Eur]
Z ∪ {∞}

of UG
a (Eur). These valuations {ϕa}a∈Φ(G,SG) determine a point xϕ in the apartment

A (SG, Eur) corresponding to SG, and all other points in the apartment correspond
to valuations of the form (ϕ̃a : UG

a (Eur) → R ∪ {∞})a∈Φ(G,SG) with ϕ̃a(u) =

ϕa(u) + a(v) for some v ∈ X∗(SG)⊗ R and for all u ∈ UG
a (Eur), a ∈ Φ(G,SG) .

Similarly, the Chevalley–Steinberg system {xKαf }αf∈ΦM yields valuations {ϕM
a }a∈Φ(M,SM)

that determine a point xϕM in the apartment A (SM, F ur) corresponding to SM,

and all other points in the apartment correspond to valuations of the form (ϕ̃M
a :

UM
a (F ur)→ R∪{∞})a∈Φ(M,SM) with ϕ̃M

a (u) = ϕM
a (u)+a(v) for some v ∈ X∗(SM)⊗

R and for all u ∈ UM
a (F ur), a ∈ Φ(M,SM).

Using the identification of X∗(SG) with X∗(SM) via iS and the resulting identifica-
tion of X∗(S

G) with X∗(S
M), we obtain a bijection

iA : A (SG, Eur)
'−→ A (SM, F ur)

by sending ϕa + a(v) to ϕM
a + 1

e · a(v), where e = [Eur : F ur].

Let ιur : G(Eur)
'−→ M(F ur) denote the isomorphism arising from the defining

adjunction property of M.

Lemma A.6. Let x ∈ A (SG, Eur) and r ∈ R≥0. Then

ιur(G(Eur)x,er) = M(F ur)iA (x),r.

Proof. Let a ∈ Φ(M,SM), and let xMa denote the parametrization of UM
a attached to

the Chevalley–Steinberg system {xKαf }αf∈ΦM . If a is non-multipliable, let αid ∈ ΦM

such that αid|SM = a. Then

xMa = RKαid/F
urxKαid = RKα/FurxKαid = REur/Fur(RKα/EurxKαid)
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and using (A.3) and the definition of xKαid we obtain that

(A.7) xMa = REur/Furxa.

Similarly we observe that equation (A.7) also holds if a is non-multipliable. Hence

ϕM
a ◦ ιur|UG

a (Eur) =
1

e
· ϕa.

This implies that the bijection iA of apartments induces a bijection e · i∗A between

the set of affine roots ΨM
Fur of A (SM, F ur) and the affine roots ΨG

Eur of A (SG, Eur).
Hence we have

ιur
(〈

UG
ψ , |ψ ∈ ΨG

Eur , ψ(x) ≥ er
〉)

=
〈
UM
ψ |ψ ∈ ΨM

Fur , ψ(iA (x)) ≥ r
〉
,

where UG
ψ = {u ∈ UG

ψ̇
(Eur) |ϕψ̇(u) ≥ ψ(xϕ)} with ψ̇ denoting the gradient of ψ,

and similarly for UM
ψ .

By Lemma A.2 we have ιur(TG
0 ) = TM

0 , and hence ιur(TG
er) = TM

r for r ∈ R≥0.
Thus we obtain

ιur(G(Eur)x,er) = ιur
(〈

TG
er,U

G
ψ , |ψ ∈ ΨG

Eur , ψ(x) ≥ er
〉)

=
〈
TM
r ,U

M
ψ |ψ ∈ ΨM

Fur , ψ(iA (x)) ≥ r
〉

= M(F ur)iA (x),r

�

Corollary A.8. The bijection iA extends to a bijection iur
B : B(G, Eur)

'−→ B(M, F ur)

that is compatible with the action of G(Eur)
ιur'−−−→ M(F ur) and such that for x ∈

B(G, Eur) and r ∈ R≥0 we have

ιur(G(Eur)x,er) = M(F ur)iurB(x),r.

It was pointed out to us that the isomorphisms between the buildings B(G, Eur)
and B(M, F ur) has already been observed by [HR, Proposition 4.6] without the
statement about the comparison of the Moy–Prasad filtration subgroups.

Proof of Corollary A.8. We have a bijection ιur × iA : G(Eur) × A (SG, Eur) →
M(F ur)×A (SM, F ur) and we will show that it descends to a bijection iur

B : B(G, Eur)
'−→

B(M, F ur). Recall that the equivalence relation on G(Eur) × A (SG, Eur) that
defines B(G, Eur) is given by (g1, x1) ∼ (g2, x2) if and only if there exists n ∈
NG(SG)(Eur) such that x2 = n.x1 and g−1

1 g2n ∈ G(Eur)x1,0, where NG(SG) de-
notes the normalizer of SG in G. We have analogous relations defining B(M, F ur).
Note that iur(NG(SG)(Eur)) = NM(SM)(F ur) and ιur(G(Eur)x,0) = M(F ur)iA (x),0

for x ∈ A (SG, Eur) by Lemma A.6. Thus iA is equivariant under the action

of (NG(SG)(Eur))
'−→ NM(SM)(F ur), and the equivalence relation on G(Eur) ×

A (SG, Eur) defining B(G, Eur) corresponds under ιur× iA to the equivalence rela-
tion on M(F ur)×A (SM, F ur) defining B(M, F ur). The corollary follows. �

This concludes our study of the Moy–Prasad filtration subgroups over maximal
unramified extensions. We will now employ étale descent to obtain the desired results
over our local fields E and F . We write Eur for the maximal unramified extension of
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F contained in E. Then we have E ⊗Eur F
ur = Eur and every f ∈ HomF (Eur, F

ur)
yields an element of HomF (E,Eur) that we also denote by f . Thus we obtain

(A.9) M ×F F ur = RE/FG×F F ur '
∏

f∈HomF (Eur,Fur)

REur/Fur(G×E,f Eur).

Hence

B(M,F ) = B(M ×F F ur, F )Gal(Fur/F )

with

B(M ×F F ur, F ) =
∏

f∈HomF (Eur,Fur)

B(REur/Fur(G×E,f Eur), F ur).

By composing the latter product with the projection onto the factor corresponding
to f = 1, we obtain a bijection

iB,M,M : B(M,F )
'−→ B(REur/Fur(G×E Eur), F ur)Gal(Fur/Eur) = B(M, F ur)Gal(Fur/Eur).

Similarly, composing Equation (A.9) with the projection onto the factor correspond-
ing to f = 1, we obtain an isomorphism

ιM,M : M(F )
'−→M(F ur)Gal(Fur/Eur)

such that for x ∈ B(M,F ) and r ∈ R≥0 we have
(A.10)

M(F )x,r = ((M×FF ur)(F ur)x,r)
Gal(Fur/F ) = ι−1

M,M

(
(M(F ur)iB,M,M(x),r)

Gal(Fur/Eur)
)
.

Definition A.11. We let

iB : B(G,E)
'−→ B(M,F )

denote the bijection obtained as the composition of the restriction of iur
B to B(G,E):

iur
B : B(G,E) = B(G, Eur)Gal(Eur/E) '−→ B(M, F ur)Gal(Fur/Eur)

with i−1
B,M,M .

Recall that ι : G(E)
'−→ M(F ) denotes the isomorphism arising from the defining

adjunction property of M = RE/F G. Then we obtain the following result.

Proposition A.12. Let x ∈ B(G,E) and r ∈ R≥0. Then

ι(G(E)x,er) = M(F )iB(x),r.

Proof. Combining Corollary A.8 and Equation (A.10) we obtain

ι(G(E)x,er) = ι
(

(G(Eur)x,er)
Gal(Eur/E)

)
= ι−1

M,Mι
ur
(

(G(Eur)x,er)
Gal(Eur/E)

)
= ι−1

M,M

(
(M(F ur)iurB(x),r)

Gal(Fur/Eur)
)

= M(F )i−1
B,M,M(iurB(x)),r

= M(F )iB(x),r

�

As an immediate corollary we deduce the following result.
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Corollary A.13. Let (π, Vπ) be an irreducible smooth complex representation of
M(F ). Then

dep(ι∗π) = e(dep(π)),(A.14)

where ι∗π denotes the composition of ι with π and dep(·) denotes the depth of the
corresponding representation.

Proof. This follows from Proposition A.12 and the fact that iB is a bijection between
B(G,E) and B(M,F ). �
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