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ABSTRACT
This paper considers the problem of estimating the information
leakage of a system in the black-box scenario, i.e. when the system’s
internals are unknown to the learner, or too complicated to analyze,
and the only available information are pairs of input-output data
samples, obtained by submitting queries to the system or provided
by a third party. The frequentist approach relies on counting the
frequencies to estimate the input-output conditional probabilities,
however this method is not accurate when the domain of possi-
ble outputs is large. To overcome this di�culty, the estimation of
the Bayes error of the ideal classi�er was recently investigated
using Machine Learning (ML) models, and it has been shown to
be more accurate thanks to the ability of those models to learn the
input-output correspondence. However, the Bayes vulnerability
is only suitable to describe one-try attacks. A more general and
�exible measure of leakage is the 6-vulnerability, which encom-
passes several di�erent types of adversaries, with di�erent goals
and capabilities. We propose a novel approach to perform black-box
estimation of the 6-vulnerability using ML which does not require
to estimate the conditional probabilities and is suitable for a large
class of ML algorithms. First, we formally show the learnability for
all data distributions. Then, we evaluate the performance via vari-
ous experiments using k-Nearest Neighbors and Neural Networks.
Our approach outperform the frequentist one when the observables
domain is large.

CCS CONCEPTS
• Security and privacy Ñ Formal security models; Formal
methods and theory of security; Information �ow control;
• Computing methodologies Ñ Neural networks; Machine
learning.

KEYWORDS
6-vulnerability estimation; machine learning; neural networks

1 INTRODUCTION
The information leakage of a system is a fundamental concern of
computer security, and measuring the amount of sensitive informa-
tion that an adversary can obtain by observing the outputs of a given
system is of the utmost importance to understand whether such
leakage can be tolerated or must be considered a major security �aw.
Much research e�ort has been dedicated to studying and proposing
solutions to this problem, see for instance [2, 4, 7, 10, 11, 20, 30, 38].

So far, this area of research, known as quantitative information �ow
(QIF), has mainly focused on the so-called white-box scenario, i.e.
assuming that the channel of the system is known, or can be com-
puted by analyzing the system’s internals. This channel consists
of the conditional probabilities of the outputs (observables) given
the inputs (secrets).

The white-box assumption, however, is not always realistic:
sometimes the system is unknown, or anyway it is too complex,
so that an analytic computation becomes hard if not impossible to
be performed. Therefore, it is important to consider also black-box
approaches where we only assume the availability of a �nite set
of input-output pairs generated by the system. A further speci�ca-
tion of a black box model is the “degree of inaccessibility”, namely
whether or not we are allowed to interact with the system to obtain
these pairs, or they are just provided by a third party. Both scenarios
are realistic, and in our paper we consider the two cases.

The estimation of the internal probabilities of a system’s channel
have been investigated in [17] and [19] via a frequentist paradigm,
i.e., relying on the computation of the frequencies of the outputs
given some inputs. However, this approach does not scale to appli-
cations for which the output space is very large since a prohibitively
large number of samples would be necessary to achieve good results
and fails on continuous alphabets unless some strong assumption
on the distributions are made. In order to overcome this limitation,
the authors of [14] exploited the fact that Machine Learning (ML)
algorithms provide a better scalability to black-box measurements.
Intuitively, the advantage of the ML approach over the frequen-
tist one is its generalization power: while the frequentist method
can only draw conclusions based on counts on the available sam-
ples, ML is able to extrapolate from the samples and provide better
prediction (generalization) for the rest of the universe.

In particular, [14] proposed to use k-Nearest Neighbors (k-NN) to
measure the basic QIF metrics, the Bayes vulnerability [38]. This is
the expected probability of success of an adversary that has exactly
one attempt at his disposal (one-try), and tries to maximize the
chance of guessing the right secret. The Bayes vulnerability corre-
sponds to the converse of the error of the ideal Bayes classi�er that,
given any sample (observable), tries to predict its corresponding
class (secret). Hence the idea is to build a model that approximates
such classi�er, and estimate its expected error. The main takeaway
is that any ML rule which is universally consistent (i.e., approxi-
mates the ideal Bayes classi�er) has a guarantee on the accuracy of
the estimation, i.e., the error in the estimation of the leakage tends
to vanish as the number of training samples grows large.
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Themethod of [14], however, is limited to the Bayes vulnerability,
which models only one particular kind of adversary. As argued
in [4], there are many other realistic ones. For instance, adversaries
whose aim is to guess only a part of the secret, or a property of the
secret, or that have multiple tries at their disposal. To represent a
larger class of attacks, [4] introduced the so-called 6-vulnerability.
This metric is very general, and in particular it encompasses the
Bayes vulnerability.

Symbol Description
G P X a secret
F P W a guess
~ P Y an observable output by the system
- random var. for secrets taking values x P X
, random var. for guesses taking values w P W
. random var. for observables taking values y P Y

|S| size of a set S
PpSq Distribution over a set of symbols S
H class of learning functions 5

c , %- prior distribution over the secret space
ĉ , p%- empirical prior distribution over the secret space
⇠ Channel matrix
cõ⇠ joint distribution from prior c and channel ⇠
%-. joint probability distribution
p%-. empirical joint probability distribution
%. |- conditional probability of . given -
p%. |- empirical conditional probabilities
P probability measure
Er¨s expected value

6pF , Gq gain function: guessF and secret G as inputs
⌧ gain matrix of size |W| ˆ |X| for a speci�c 6
+6 6-vulnerability
+ p5 q 6-vulnerability functional
p+=p5 q empirical 6-vuln. functional evaluated on = samples

Table 1: Table of symbols.

In this paper, we propose an approach to the black-box estima-
tion of 6-vulnerability via ML. The idea is to reduce the problem to
that of approximating the Bayes classi�er, so that any universally
consistent ML algorithm can be used for the purpose. This reduction
essentially takes into account the impact of the gain function in
the generation of the training data, and we propose two methods
to obtain this e�ect, which we call channel pre-processing and data
pre-processing, respectively. We evaluate our approach via experi-
ments on various channels and gain functions. In order to show the
generality of our approach, we use two di�erent ML algorithms,
namely k-NN and Arti�cial Neural Networks (ANN), and we com-
pare their performances. The experimental results show that our
approach provides accurate estimations, and that it outperforms by
far the frequentist approach when the observables domain is large.

1.1 Our contribution
‚ We propose a novel approach to the black-box estimation of
6-vulnerability based on ML. To the best of our knowledge,

this is the �rst time that a method to estimate 6-vulnerability
in a black-box fashion is introduced.

‚ We provide statistical guarantees showing the learnability
of the 6-vulnerability for all distributions and we derive
distribution-free bounds on the accuracy of its estimation.

‚ We validate the performance of our method via several exper-
iments using k-NN and ANN models. The code is available
at the URL https://github.com/LEAVESrepo/leaves.

1.2 Related work
One important aspect to keep in mind when measuring leakage is
the kind of attack that we want to model. In [30], Köpf and Basin
identi�ed various kinds of adversaries and showed that they can be
captured by known entropy measures. In particular it focussed on
the adversaries corresponding to Shannon and Guessing entropy.
In [38] Smith proposed another notion, the Rényi min-entropy, to
measure the system’s leakage when the attacker has only one try
at its disposal and attempts to make its best guess. The Rényi min-
entropy is the logarithm of the Bayes vulnerability, which is the
expected probability of the adversary to guess the secret correctly.
The Bayes vulnerability is the converse of the Bayes error, which
was already proposed as a measure of leakage in [12].

Alvim et al. [4] generalized the notion of Bayes vulnerability to
that of 6-vulnerability, by introducing a parameter (the gain func-
tion 6) that describes the adversary’s payo�. The 6-vulnerability is
the expected gain of the adversary in a one-try attack.

The idea of estimating the 6-vulnerability in the using ML tech-
niques is inspired by the seminal work [14], which used k-NN
algorithms to estimate the Bayes vulnerability, a paradigm shift
with respect to the previous frequentist approaches [9, 17, 19]. No-
tably, [14] showed that universally consistent learning rules allow
to achieve much more precise estimations than the frequentist ap-
proach when considering large or even continuous output domains
which would be intractable otherwise. However, [14] was limited to
the Bayes adversary. In contrast, our approach handles any adver-
sary that can be modeled by a gain function6. Another novelty w.r.t.
[14] is that we consider also ANN algorithms, which in various
experiments appear to perform better than the k-NN ones.

Bordenabe and Smith [6] investigated the indirect leakage in-
duced by a channel (i.e., leakage on sensitive information not in
the domain of the channel), and proved a fundamental equivalence
between Dalenius min-entropy leakage under arbitrary correlations
and g-leakage under arbitrary gain functions. This result is similar
to our Theorem 4.2, and it opens the way to the possible extension
of our approach to this more general leakage scenario.

2 PRELIMINARIES
In this section, we recall some useful notions from QIF and ML.

2.1 Quantitative information �ow
Let X be a set of secrets and Y a set of observations. The adver-
sary’s initial knowledge about the secrets is modeled by a prior
distribution PpXq (namely %- ). A system is modeled as a proba-
bilistic channel from X to Y, described by a stochastic matrix ⇠ ,
whose elements ⇠G~ give the probability to observe ~ P Y when



the input is G P X (namely %. |- ). Running ⇠ with input c induces
a joint distribution on X ˆ Y denoted by cõ⇠ .

In the 6-leakage framework [4] an adversary is described by a
set W of guesses (or actions) that it can make about the secret, and
by a gain function 6pF , Gq expressing the gain of selecting the guess
F when the real secret is G . The prior 6-vulnerability is the expected
gain of an optimal guess, given a prior distribution on secrets:

Vgpcq def“ max
wPW

ÿ

xPX
cx ¨ gpw, xq . (1)

In the posterior case, the adversary observes the output of the
system which allows to improve its guess. Its expected gain is given
by the posterior 6-vulnerability, according to

Vgpc,Cq def“
ÿ

yPY
max
wPW

ÿ

xPX
cx ¨ Cxy ¨ gpw, xq . (2)

Finally, the multiplicative1 and additive 6-leakage quantify how
much a speci�c channel ⇠ increases the vulnerability of the system:

LM
g pc,Cq def“ Vgpc,Cq

Vgpcq , LA
g pc,Cq def“ Vgpc,Cq ´ Vgpcq . (3)

The choice of the gain function 6 allows to model a variety of
di�erent adversarial scenarios. The simplest case is the identity
gain function, given by W “ X, 6idpF , Gq “ 1 i� G “ F and 0
otherwise. This gain function models an adversary that tries to
guess the secret exactly in one try; +6id is the Bayes-vulnerability,
which corresponds to the complement of the Bayes error (cfr. [4]).

However, the interest in 6-vulnerability lies in the fact that many
more adversarial scenarios can be captured by a proper choice of
6. For instance, taking W “ X: with 6pF , Gq “ 1 i� G P F and 0
otherwise, models an adversary that tries to guess the secret cor-
rectly in : tries. Moreover, guessing the secret approximately can
be easily expressed by constructing 6 from a metric 3 on X; this is
a standard approach in the area of location privacy [36, 37] where
6pF , Gq is taken to be inversely proportional to the Euclidean dis-
tance betweenF and G . Several other gain functions are discussed
in [4], while [3] shows that any vulnerability function satisfying
basic axioms can be expressed as +6 for a properly constructed 6.

Themain focus of this paper is estimating the posterior6-vulnera-
bility of the system from such samples. Note that, given +6pc,⇠q,
estimating LM

g pc,Cq and LA
g pc,Cq is straightforward, since+6pcq

only depends on the prior (not on the system) and it can be either
computed analytically or estimated from the samples.

2.2 Arti�cial Neural Networks
We provide a short review of the aspects of ANN that are relevant
for this work. For further details, we refer to [5, 28, 29]. Neural net-
works are usually modeled as directed graphs with weights on the
connections and nodes that forward information through “activa-
tion functions”, often introducing non-linearity (such as sigmoids or
soft-max). In particular, we consider an instance of learning known
as supervised learning, where input samples are provided to the
network model together with target labels (supervision). From the
provided data and by means of iterative updates of the connection
1Originally the multiplicative version of 6-leakage was de�ned as the log of the
de�nition given here. In recent literature the log is not used anymore. Anyway, the
two de�nitions are equivalent for system comparison, since log is monotonic.

weights, the network learns how the data and respective labels are
distributed. The training procedure, known as back-propagation, is
an optimization process aimed at minimizing a loss function that
quanti�es the quality of the network’s prediction w.r.t. the data.

Classi�cation problems are a typical example of tasks for which
supervised learning works well. Samples are provided together with
target labels which represent the classes they belong to. A model
can be trained using these samples and, later on, it can be used to
predict the class of new samples.

According to the No Free Lunch theorem (NFL) [40], in gen-
eral, it cannot be said that ANN are better than other ML methods.
However, it is well known that the NFL can be broken by addi-
tional information on the data or the particular problem we want
to tackle, and, nowadays, for most applications and available data,
especially in multidimensional domains, ANN models outperform
other methods therefore representing the state-of-the-art.

2.3 k-Nearest Neighbors
The k-NN algorithm is one of the simplest algorithms used to clas-
sify a new sample given a training set of samples labelled as be-
longing to speci�c classes. This algorithm assumes that the space
of the features is equipped with a notion of distance. The basic idea
is the following: every time we need to classify a new sample, we
�nd the : samples whose features are closest to those of the new
one (nearest neighbors). Once the : nearest neighbors are selected,
a majority vote over their class labels is performed to decide which
class should be assigned to the new sample. For further details,
as well as for an extensive analysis of the topic, we refer to the
chapters about k-NN in [29, 35].

3 LEARNING 6-VULNERABILITY:
STATISTICAL BOUNDS

This section introduces the mathematical problem of learning 6-
vulnerability, characterizing universal learnability in the present
framework. We derive distribution-free bounds on the accuracy of
the estimation, implying the estimator’s statistical consistence.

3.1 Main de�nitions
We consider the problem of estimating the 6-vulnerability from
samples via ML models, and we show that the analysis of this
estimation can be conducted in the general statistical framework
of maximizing an expected functional using observed samples. The
idea can be described using three components:

‚ A generator of random secrets G P X with |X| † 8, drawn
independently from a �xed but unknown distribution %- pGq;

‚ a channel that returns an observable ~ P Y with |Y| † 8
for every input G , according to a conditional distribution
%. |- p~|Gq, also �xed and unknown;

‚ a learning machine capable of implementing a set of rules
5 P H , whereH denotes the class of functions 5 : Y Ñ W
andW is the �nite set of guesses.

Moreover let us note that

6 : W ˆ X Ñ r0,1s (4)

where 0 and 1 are �nite real values, and X and W are �nite sets.
The problem of learning the 6-vulnerability is that of choosing



the function 5 : Y Ñ W which maximizes the functional + p5 q,
representing the expected gain, de�ned as:

+ p5 q def“
ÿ

pG,~qPXˆY
6

`
5 p~q, G

˘
%-. pG,~q. (5)

Note that 5 p~q corresponds to the “guess”F , for the given ~, in (2).
The maximum of + p5 q is the 6-vulnerability, namely:

+6
def“ max

5 PH
+ p5 q. (6)

3.2 Principle of the empirical 6-vulnerability
maximization

Since we are in the black box scenario, the joint probability distribu-
tion %-. ” cõ⇠ is unknown. We assume, however, the availability
of< independent and identically distributed (i.i.d.) samples drawn
according to %-. that can be used as a training set D< to solve
the maximization of 5 overH and additionally = i.i.d. samples are
available to be used as a validation2 set T= to estimate the average
in (5). Let us denote these sets as: D<

def“
 

pG1,~1q, . . . , pG<,~<q
(

and T= def“
 

pG<`1,~<`1q, . . . , pG<`=,~<`=q
(
, respectively.

In order to maximize the 6-vulnerability functional (5) for an un-
known probability measure %-. , the following principle is usually
applied. The expected 6-vulnerability functional + p5 q is replaced
by the empirical 6-vulnerability functional:

p+=p5 q def“ 1
=

ÿ

pG,~qPT=
6

`
5 p~q, G

˘
, (7)

which is evaluated on T= rather than %-. . This estimator is clearly
unbiased in the sense that E

“p+=p5 q
‰

“ + p5 q.
Let 5 ‹

< denote the empirical optimal rule given by

5 ‹
<

def“ argmax
5 PH

p+<p5 q, p+<p5 q def“ 1
<

ÿ

pG,~qPD<

6
`
5 p~q, G

˘
, (8)

which is evaluated on D< rather than %-. . The function 5 ‹
< is

the optimizer according to D< , namely the best way among the
functions 5 : Y Ñ W to approximate +6 by maximizing p+<p5 q
over the class of functions H . This principle is known in statistics
as the Empirical Risk Maximization (ERM).

Intuitively, we would like 5 ‹
< to give a good approximation of

the 6-vulnerability, in the sense that its expected gain

+ p5 ‹
<q “

ÿ

pG,~qPXˆY
6

`
5 ‹
<p~q, G

˘
%-. pG,~q (9)

should be close to +6 . Note that the di�erence

+6 ´+ p5 ‹
<q “ max

5 PH
+ p5 q ´+ p5 ‹

<q (10)

is always non negative and represents the gap by selecting a possible
suboptimal function 5 ‹

< . Unfortunately, we are not able to compute
+ p5 ‹

<q either, since %-. is unknown. In its place, we have to use its
estimation p+=p5 ‹

<q Hence, the real estimation error is |+6 ´ p+=p5 ‹
<q|.

Note that:

|+6 ´ p+=p5 ‹
<q| § p+6 ´+ p5 ‹

<qq ` |p+=p5 ‹
<q ´+ p5 ‹

<q|, (11)

2We call T= validation set rather than test set, since we use it to estimate the 6-
vulnerability with the learned 5 ‹

< , rather than to measure the quality of 5 ‹
< .

where the �rst term in the right end side represents the error in-
duced by using the trained model 5 ‹

< and the second represents the
error induced by estimating the 6-vulnerability over the = samples
in the validation set.

By using basics principles from statistical learning theory, we
study two main questions:

‚ When does the estimator p+=p5 ‹
<q work? What are the condi-

tions for its statistical consistency?
‚ How well does p+=p5 ‹

<q approximate+6? In other words, how
fast does the sequence of largest empirical g-leakage values
converge to the largest g-leakage function? This is related
to the so called rate of generalization of a learning machine
that implements the ERM principle.

3.3 Bounds on the estimation accuracy
In the following we use the notation f25 “ Varp6p5 p. q,- qq, where
Varp/q stands for the variance of the random variable / . Namely,
f25 is the variance of the gain for a given function 5 . We also use P
to represent the probability induced by sampling the training and
validation sets over the distribution %-. .

Next proposition, proved in Appendix B.1, states that we can
probabilistically delimit the two parts of the bound in (11) in terms
of the sizes< and = of the training and validation sets.

P���������� 3.1 (U������ ����������). For all Y ° 0,

P
´ˇ̌p+=p5 ‹

<q ´+ p5 ‹
<q

ˇ̌
• Y

¯
§ 2E exp

¨

˝´ = Y2

2f2
5 ‹
<

` 2 p1´0qY{3

˛

‚,

(12)

where the expectation is taken w.r.t. the random training set, and

P
`
+6 ´+ p5 ‹

<q • Y
˘

§ 2
ÿ

5 PH
exp

¨

˝´ < Y2

8f2
5

` 4p1´0qY{3

˛

‚. (13)

Inequality (12) shows that the estimation error due to the use
of a validation set in p+=p5 ‹

<q instead of the true expected gain
+ p5 ‹

<q vanishes with the number of validation samples. On the
other hand, expression (13) implies ‘learnability’ of an optimal 5 ,
i.e., the suboptimality of 5 ‹

< learned using the training set p+<p5 ‹
<q

vanishes with the number of training samples.
On the other hand the bound in eq. (13) depends on the un-

derlying distribution and the structural properties of the classH
through the variance. However, it does not explicitly depend on
the optimization algorithm (e.g., stochastic gradient descent) used
to learn the function 5 ‹

< from the training set, which just comes
from assuming the worst-case upper bound over all optimization
procedures. The selection of a “good” subset of candidate functions,
having a high probability of containing an almost optimal clas-
si�er, is a very active area of research in ML [16], and hopefully
there will be some result available soon, which together with our
results will provide a practical method to estimate the bound on
the errors. In appendix F we discuss heuristics to choose a “good”
model, together with a new set of experiments showing the impact
of di�erent architectures.



T������ 3.2. The averaged estimation error of the6-vulnerability
can be bounded as follows:

E
ˇ̌
+6 ´ p+=p5 ‹

<q
ˇ̌

§ +6 ´ E
“
+ p5 ‹

<q
‰

` E
ˇ̌
+ p5 ‹

<q ´ p+=p5 ‹
<q

ˇ̌
, (14)

where the expectations are understood over all possible training and
validation sets drawn according to %-. . Furthermore,
let f2 “<0G 5 PHVar

`
6p5 p. q,- q

˘
, then :

E
ˇ̌
+ p5 ‹

<q ´ p+=p5 ‹
<q

ˇ̌
§ 4[

=
exp

ˆ
´=f2

2[

˙

`
c

2f2[c
=

erf

˜
f2{

gffe2f2[c
=

¸

, (15)

where [ “ p1 ` p1´0q{3q for f2 § Y, and, otherwise,

+6 ´ E
“
+ p5 ‹

<q
‰

§ |H |8p1 ` [q
<

exp
ˆ

´ <f2

4p1 ` [q

˙
`

|H |
c

4f2p1 ` [qc
<

erf

˜
f2{

c
4f2p1 ` [qc

<

¸

, (16)

with erfp\q def“ 2?
c

ª \

0
expp´`2q3`.

Interestingly, the term +6 ´ E
“
+ p5 ‹

<q
‰
is the average error in-

duced when estimating the function 5 ‹
< using< samples from the

training set while E
ˇ̌
+ p5 ‹

<q ´ p+=p5 ‹
<q

ˇ̌
indicates the average error

incurred when estimating the 6-vulnerability using = samples from
the validation set. Clearly, in eq. (15), the scaling of these bounds
with the number of samples are very di�erent which can be made
evident by using the order notation:

sup
%-.

E
ˇ̌
+ p5 ‹

<q ´ p+=p5 ‹
<q

ˇ̌
P O

ˆ
1?
=

˙
, (17)

sup
%-.

 
+6 ´ E

“
+ p5 ‹

<q
‰(

P O
ˆ |H |?

<

˙
. (18)

These bounds indicate that the error in (17) vanishes much faster
than the error in (18) and thus, the size of the training set, in general,
should be kept larger than the size of the validation set, i.e., = !<.

3.4 Sample complexity
We now study how large the validation set should be in order to
get a good estimation. For Y, X ° 0, we de�ne the sample complex-
ity as the set of smallest integers"pY, Xq and # pY, Xq su�cient to
guarantee that the gap between the true 6-vulnerability and the
estimated p+=p5 ‹

<q is at most Y with at least 1 ´ X probability:

De�nition 3.3. For Y, X ° 0, let all pairs
`
"pY, Xq,# pY, Xq

˘
be the

set of smallest p<,=q sizes of training and validation sets such that:

sup
%-.

P
”
|+6 ´ p+=p5 ‹

<q| ° Y
ı

§ X . (19)

Next result says that we can bound the sample complexity in
terms of Y, X,f , and |1 ´ 0| (see Appendix B.3 for the proof).

C�������� 3.4. The sample complexity of the ERM algorithm
6-vulnerability is bounded from above by the set of values satisfying:

"pY, Xq § 8f2 ` 4 p1´0qY{3
Y2

ln
ˆ
2 |H |
X ´ �

˙
, (20)

# pY, Xq § 2f2 ` 2 p1´0qY{3
Y2

ln
ˆ
2
�

˙
, (21)

for all � such that 0 † � † X .

The theoretical results of this section are very general and can-
not take full advantage of the speci�c properties of a particular
model or data distribution. In particular, it is important to emphasize
that the upper bound in (11) is independent of the learned func-
tion 5 ‹

< because |p+=p5 ‹
<q ´+ p5 ‹

<q| § max5 PH |p+=p5 q ´+ p5 q| and
because of (39), and thus these bounds are independent of the spe-
ci�c algorithm and training sets in used to solve the optimization
in (8). Furthermore, the 5 maximizing |+ p5 q ´ p+=p5 q| in those
in-equations is not necessarily what the algorithm would choose.
Hence the bounds given in Theorem 3.2 and Corollary 3.4 in gen-
eral are not tight. However, these theoretical bounds provide a
worst-case measure from which learnability holds for all data sets.

In the next section, we will propose an approach for selecting
5 ‹
< and estimating +6 . The experiments in Section 5 suggest that
our method usually estimates +6 much more accurately than what
is indicated by Theorem 3.2.

4 FROM 6-VULNERABILITY TO BAYES
VULNERABILITY VIA PRE-PROCESSING

This is the core section of the paper, which describes our approach
to select the 5 ‹

< to estimate +6 .
In principle one could train a neural network to learn 5 ‹

< by
using ´p+<p5 q as the loss function, and minimizing it over the<
training samples (cfr. Equation 8). However, this would require
p+<p5 q to be a di�erentiable function of the weights of the neural
network, so that its gradient can be computed during the back-
propagation. Now, the problem is that the 6 component of p+<p5 q
is essentially a non-di�erentiable function, so it would need to be
approximated by a suitable di�erentiable (surrogate) function, (e.g.,
as it is the case of the Bayes error via the cross-entropy). Finding an
adequate di�erentiable function to replace each possible 6 may be a
challenging task in practice. If this surrogate does not preserve the
original dynamic of the gradient of 6 with respect to 5 , the learned
5 will be far from being optimal.

In order to circumvent this issue, we propose a di�erent approach,
which presents two main advantages:

(1) it reduces the problem of learning 5 ‹
< to a standard classi�-

cation problem, therefore it does not require a di�erent loss
function to be implemented for each adversarial scenario;

(2) it can be implemented by using any universally consistent
learning algorithm (i.e., any ML algorithm approximating
the ideal Bayes classi�er).

The reduction described in the above list (item 1) is based on
the idea that, in the 6-leakage framework, the adversary’s goal is
not to directly infer the actual secret G , but rather to select the
optimal guessF about the secret. As a consequence, the training
of the ML classi�er to produce 5 ‹

< should not be done on pairs of



type pG,~q, but rather of type pF ,~q, expressing the fact that the
best guess, in the particular run which produced ~, isF . This shift
from pG,~q to pF ,~q is via a pre-processing and we propose two
distinct and systematic ways to perform this transformation, called
data and channel pre-processing, respectively. The two methods are
illustrated in the following sections.

We remind that, according to section 3, we restrict, wlog, to non-
negative 6’s. If 6 takes negative values, then it can be shifted by
adding ´minF,G 6pF , Gq, without consequences for the 6-leakage
value (cfr. [2, 4]). Furthermore we assume that there exists at least
a pair pG,Fq such that cG ¨ 6pF , Gq ° 0. Otherwise +6 would be 0
and the problem of estimating it will be trivial.

4.1 Data pre-processing
The data pre-processing technique is completely black-box in the
sense that it does not need access to the channel. We only assume
the availability of a set of pairs of type pG,~q, sampled according to
cõ⇠ , the input-output distribution of the channel. This set could
be provided by a third party, for example. We divide the set in D<
(training) and T= (validation), containing< and= pairs, respectively.

For the sake of simplicity, to describe this technique we assume
that 6 takes only integer values, in addition to being non-negative.
The construction for the general case is discussed in Appendix C.3.

Algorithm 1: Algorithm for data pre-processing
Input: D< ; Output: D1

<1 ;
1. D1

<1 :“ H;
2. For each G, ~, let DG~ be the number of copies of pG, ~q in D< ;
3. For each G, ~,F, add DG~ ¨ 6pF,Gq copies of pF, ~q to D1

<1 .

The idea behind the data pre-processing technique is that the
e�ect of the gain function can be represented in the transformed
dataset by amplifying the impact of the guesses in proportion to
their reward. For example, consider a pair pG,~q inD< , and assume
that the reward for the guess F is 6pF , Gq “ 5, while for another
guess F 1 is 6pF 1, Gq “ 1. Then in the transformed dataset D1

<1
this pair will contribute with 5 copies of pF ,~q and only 1 copy of
pF 1,~q. The transformation is described in Algorithm 1. Note that
in general it causes an expansion of the original dataset.

Estimation of +6 . Given D< , we construct the set D1
<1 of pairs

pF ,~q according to Algorithm 1. Then, we use D1
<1 to train a clas-

si�er 5 ‹
<1 , using an algorithm that approximates the ideal Bayes

classi�er. As proved below, 5 ‹
<1 gives the same mapping Y Ñ W

as the optimal empirical rule 5 ‹
< onD< (cfr. subsection 3.2). Finally,

we use 5 ‹
< and T= to compute the estimation of +6pc,⇠q as in (7),

with 5 replaced by 5 ‹
< .

Correctness. We �rst need some notation. For each pF ,~q, de�ne:

* pF ,~q def“
ÿ

G
cG ¨⇠G~ ¨ 6pF , Gq , (22)

which represents the “ideal” proportion of copies of pF ,~q thatD1
<1

should contain. From * pF ,~q we can now derive the ideal joint

distribution onW ˆ Y and the marginal onW:

%,. pF ,~q def“ * pF ,~q
U

, where U
def“

ÿ

~,F
* pF ,~q , (23)

(note that U ° 0 because of the assumption on c and 6),

bF
def“

ÿ

~
%,. pF ,~q. (24)

The channel of the conditional probabilities of ~ givenF is:

⇢F~
def“ %,. pF ,~q

bF
. (25)

Note that %,. “ bõ⇢. By construction, it is clear that the D1
<1

generated by Algorithm 1 could have been generated, with the same
probability, by sampling bõ⇢. The following theorem, whose proof
is in Appendix C.1, establishes that the 6-vulnerability of cõ⇠ is
equivalent to the Bayes vulnerability of bõ⇢, and hence it is correct
to estimate 5 ‹

< as an empirical Bayes classi�er 5 ‹
<1 trained on D1

<1 .

T������ 4.1 (C���������� �� ���� ��������������). Given a
prior c , a channel ⇠ , and a gain function 6, we have

+6pc,⇠q “ U ¨+6idpb, ⇢q ,
where U, b and ⇢ are those de�ned in (23), (24) and (25), respectively,
and 6id is the identity function (cfr. section 2), i.e., the gain function
corresponding to the Bayesian adversary.

Estimation error. To reason about the error we need to consider the
optimal empirical classi�ers. Assuming that we can perfectly match
the * pF ,~q above with the DG~ of Algorithm 1, we can repeat the
same reasoning as above, thus obtaining p+<p5 q “ U ¨ p+<1 p5 q, where
+<p5 q is the empirical functional de�ned in (8), and p+<1 p5 q is the
corresponding empirical functional for 6id evaluated in D<1 :

p+<1 p5 q def“ 1
<1

ÿ

pF,~qPD<1

6id
`
5 p~q,F

˘
(26)

5 ‹
<1 is the maximizer of this functional, i.e. 5 ‹

<1
def“ argmax

5 PH
p+<1 p5 q.

Therefore we have:
5 ‹
< “ argmax

5 PH
p+<p5 q “ argmax

5 PH
pU ¨ p+<1 p5 qq “ argmax

5 PH
p+<1 p5 q “ 5 ‹

<1 .

A bound on the estimation error of this method can therefore be
obtained by using the theory developed in previous section, applied
to the Bayes classi�cation problem. Remember that the estimation
error is 5 ‹

< is |+6 ´ p+=p5 ‹
<q|. With respect to the estimation error

of the corresponding Bayes classi�er, we have a magni�cation of a
factor U as shown by the following formula, where p+=1 represents
the empirical functional for the Bayes classi�er:

|+6 ´ p+=p5 ‹
<q| “ |U ¨+6id ´ U ¨ p+=1 p5 ‹

<1 q| “ U ¨ |+6id ´ p+=1 p5 ‹
<1 q|.

However, the normalized estimation error (cfr. section 5) remains
the same because both numerator and denominator are magni�ed
by a factor U .

Concerning the probability that the error is above a certain
threshold Y, we have the same bound as those for the Bayes classi�er
in Proposition 3.1 and the other results of previous section, where
Y is replaced by UY, <,= by <1,=1, f2 by U2f2, and |1 ´ 0| “ 1



(because it’s a Bayes classi�er). It may sounds a bit surprising that
the error for the estimation of the 6-vulnerability is not much worse
than for the estimation of the Bayes error, but we recall that we
are essentially solving the same problem, only every quantity is
magni�ed by a factor U . Also, we are assuming that we can match
perfectly *G~ by DG~ . When 6 ranges in a large domain this may
not be possible, and we should rather resort to the channel pre-
processing method described in the next section.

4.2 Channel pre-processing
For this technique we assume black-box access to the system, i.e.,
that we can execute the system while controlling each input, and
collect the corresponding output.

The core idea behind this technique is to transform the input of
⇠ into entries of typeF , and to ensure that the distribution on the
F ’s re�ects the corresponding rewards expressed by 6.

More formally, let us de�ne a distribution g onW as follows:

gF
def“

∞
G cG ¨ 6pF , Gq

V
where V

def“
ÿ

G,F
cG ¨ 6pF , Gq , (27)

(note that V is strictly positive because of the assumptions on 6 and
c ), and let us de�ne the following matrix ' from W to X:

'FG
def“ 1

V
¨ 1
gF

¨ cG ¨ 6pF , Gq . (28)

It is easy to check that ' is a stochastic matrix, hence the composi-
tion '⇠ is a channel. It is important to emphasize the following:

R����� In the above de�nitions, V, g and ' depend solely on 6
and c , and not on ⇠ .

The above property is crucial to our goals, because in the black-
box approach we are not supposed to rely on the knowledge of
⇠’s internals. We now illustrate how we can estimate +6 using the
pre-processed channel '⇠ .

Estimation of +6 . Given '⇠ and g , we build a set D2
<2 consisting

of pairs of type pF ,~q sampled from gõ'⇠ . We also construct a set
T= of pairs of type pG,~q sampled from cõ⇠ . Then, we use D2

<2
to train a classi�er 5 ‹

< , using an algorithm that approximates the
ideal Bayes classi�er. Finally, we use 5 ‹

< and T= to compute the
estimation of +6pc,⇠q as in (7), with 5 replaced by 5 ‹

< .
Alternatively, we could estimate +6pc,⇠q by computing the em-

pirical Bayes error of 5 ‹
< on a validation set T= of type pF ,~q sam-

pled from gõ'⇠ , but the estimation would be less precise. Intuitively,
this is because '⇠ is more “noisy” than ⇠ .

Correctness. The correctness of the channel pre-processing method
is given by the following theorem, which shows that we can learn
5 ‹
< by training a Bayesian classi�er on a set sampled from gõ'⇠ .

T������ 4.2 (C���������� �� ������� ��������������). Given
a prior c and a gain function 6, we have that, for any channel ⇠ :

+6pc,⇠q “ V ¨+6idpg,'⇠q for all channels ⇠ .

where V , g and ' are those de�ned in (27) and (28).

Interestingly, a result similar to Theorem 4.2 is also given in [6],
although the context is completely di�erent from ours: the focus
of [6], indeed, is to study how the leakage of ⇠ on - may induce

also a leakage of other sensitive information / that has nothing to
do with ⇠ (in the sense that is not information manipulated by ⇠).
We intend to explore this connection in the context of a possible
extension of our approach to this more general scenario.

Estimation error. Concerning the estimation error, the results are
essentially the same as in previous section (with U replaced by V).
As for the bound on the probability of error, the results are worse,
because the original variance f2 is magni�ed by the channel pre-
processing, which introduces a further factor of randomness in the
sampling of training data in 12, which means that in practice this
bound is more di�cult to estimate.

4.3 Pros and cons of the two methods
The fundamental advantage of data pre-processing is that it allows
to estimate +6 from just samples of the system, without even black-
box access. In contrast to channel pre-processing, however, this
method is particularly sensitive to the values of the gain function 6.
Large gain values will increase the size ofD1

<1 , with consequent in-
crease of the computational cost for estimating the 6-vulnerability.
Moreover, if 6 takes real values then we need to apply the technique
described in Appendix C.3, which can lead to a large increase of the
dataset as well. In contrast, the channel pre-processing method has
the advantage of controlling the size of the training set, but it can be
applied only when it is possible to interact with the channel by pro-
viding input and collecting output. Finally, from the precision point
of view, we expect the estimation based on data pre-processing to
be more accurate when 6 consists of small integers, because the
channel pre-processing introduces some extra noise in the channel.

5 EVALUATION
In this section we evaluate our approach to the estimation of 6-
vulnerability. We consider four di�erent scenarios:

(1) X is a set of (synthetic) numeric data, the channel⇠ consists
of geometric noise, and 6 is themultiple guesses gain function,
representing an adversary that is allowed to make several
attempts to discover the secret.

(2) X is a set of locations from the Gowalla dataset [1], ⇠ is
the optimal noise of Shokri et al. [37], and 6 is one of the
functions used to evaluate the privacy loss in [37], namely a
function anti-monotonic on the distance, representing the
idea that the more the adversary’s guess is close to the target
(i.e., the real location), the more he gains.

(3) X is the Cleveland heart disease dataset [24], ⇠ is a di�eren-
tially private (DP) mechanism [25, 26], and 6 assigns higher
values to worse heart conditions, modeling an adversary that
aims at discovering whether a patient is at risk (for instance,
to deny his application for health insurance).

(4) X is a set of passwords of 128 bits and⇠ is a password checker
that leaks the time before the check fails, but mitigates the
timing attacks by applying some random delay and the buck-
eting technique (see, for example, [31]). The function 6 rep-
resents the part of the password under attack.

For each scenario, we proceed in the following way:



‚ We consider 3 di�erent samples sizes for the training sets
that are used to train the ML models and learn the Y Ñ
W remapping. This is to evaluate how the precision of the
estimate depends on the amount of data available, and on its
relation with the size of |Y|.

‚ In order to evaluate the variance of the precision, for each
training size we create 5 di�erent training sets, and

‚ for each trained model we estimate the 6-vulnerability using
50 di�erent validation sets.

5.1 Representation of the results and metrics
We graphically represent the results of the experiment as box plots,
using one box for each size. More precisely, given a speci�c size,
let p+ 8 9

= be the 6-vulnerability estimation on the 9-th validation set
computed with a model trained over the 8-th training set (where
8 P t1, . . . , 5u and 9 P t1, . . . , 50u). Let +6 be the real 6-vulnerability
of the system. We de�ne the normalized estimation error X8 9 and
the mean value X of the X8 9 ’s as follows:

X8 9
def“ |p+ 8 9

= ´+6|
+6

, with X
def“ 1

250

5ÿ

8“1

50ÿ

9“1
X8 9 . (29)

In the graphs, the X8 9 ’s are reported next to the box corresponding
to the size, and X is the black horizontal line inside the box.

Thanks to the normalization the X8 9 ’s allow to compare results
among di�erent scenario and di�erent levels of (real)6-vulnerability.
Also, we argue that the percentage of the error is more meaning-
ful than the absolute value. The interested reader, however, can
�nd in Appendix H also plots showing the estimations of the 6-
vulnerability and their distance from the real value.

We also consider the following typical measures of precision:

dispersion def“

gffe 1
250

5ÿ

8“1

50ÿ

9“1
pX8 9 ´ Xq2 , (30)

total error def“

gffe 1
250

5ÿ

8“1

50ÿ

9“1
X28 9 . (31)

The dispersion is an average measure of how far the normalized
estimation errors are from their mean value when using same-size
training and validation sets. On the other hand, the total error is an
average measure of the normalized estimation error, when using
same-size training and validation sets.

In order tomake a fair comparison between the two pre-processing
methods, intuitively we need to use training and validation sets of
“equivalent size”. For the validation part, since the “best” 5 function
has been already found and therefore we do not need any pre-
processing anymore, “equivalent size” just means same size. But
what does it mean, in the case of training sets built with di�erent
pre-processing methods? Assume that we have a set of data D<
coming from a third party collector (recall that< represents the
size of the set), and let D1

<1 be the result of the data pre-processing
on D< . Now, let D2

<2 be the dataset obtained drawing samples
according to the channel pre-processing method. Should we im-
pose<2 “ < or<2 “ <1? We argue that the right choice is the
�rst one, because the amount of “real” data collected is<. Indeed,

D1
<1 is generated synthetically from D< and cannot contain more

information about ⇠ than D< , despite its larger size.

5.2 Learning algorithms
We consider two ML algorithms in the experiments: k-Nearest
Neighbors (k-NN) and Arti�cial Neural Networks (ANN). We have
made however a slight modi�cation of k-NN algorithm, due to
the following reason: recall that, depending on the particular gain
function, the data pre-processing method might create many in-
stances where a certain observable ~ is repeated multiple times in
pair with di�erent F ’s. For the k-NN algorithm, a very common
choice is to consider a number of neighbors which is equivalent
to natural logarithm of the total number of training samples. In
particular, when the data pre-processing is applied, this means that
: “ logp<1q nearest neighbors will be considered for the classi�-
cation decision. Since logp<1q grows slowly with respect to<1, it
might happen that k-NN fails to �nd the subset of neighbors from
which the best remapping can be learned. To amend this problem,
we modify the k-NN algorithm in the following way: instead of
looking for neighbors among all the<1 samples, we only consider
a subset of ; §<1 samples, where each value ~ only appears once.
After the logp;q neighbors have been detected among the ; samples,
we selectF according to a majority vote over the<1 tuples pF ,~q
created through the remapping.

The distance on which the notion of neighbor is based depends
on the experiments. We have considered the standard distance
among numbers in the �rst and fourth experiments, the Euclidean
distance in the second one, and the Manhattan distance in the third
one, which is a stand choice for DP.

Concerning the ANN models, their speci�cs are in Appendix D.
Note that, for the sake of fairness, we use the same architecture for
both pre-processing methods, although we adapt number of epochs
and batch size to the particular dataset we are dealing with.

5.3 Frequentist approach
In the experiments, we will compare our method with the frequen-
tist one. This approach has been proposed originally in [9] for
estimating mutual information, and extended successively also to
min-entropy leakage [18]. Although not considered in the litera-
ture, the extension to the case of 6-vulnerability is straightforward.
The method consists in estimating the probabilities that consti-
tute the channel matrix ⇠ , and then calculating analytically the
6-vulnerability on ⇠ . The precise de�nition is in Appendix E.

In [14] it was observed that in the case of the Bayes error the fre-
quentist approach performs poorly when the size of the observable
domain |Y| is large with respect to the available data. We want to
study whether this is the case also for 6-vulnerability.

For the experiment on the multiple guesses the comparison is
illustrated in the next section. For the other experiments, because
of lack of space, we have reported it in the Appendix H.

5.4 Experiment 1: multiple guesses
We consider a system in which the secrets X are the integers be-
tween 0 and 9, and the observables Y are the integers between 0
and 15999. Hence |X| “ 10 and |Y| “ 16K. The rows of the channel



Figure 1: The channel of Experiment 1. The two curves rep-
resent the distributions %. |- p¨|Gq for two adjacent secrets:
G “ 5 and G “ 6.

⇠ are geometric distributions centered on the corresponding secret:

⇠G~ “ %. |- p~|Gq “ _ expp´a|ApGq ´ ~|q , (32)

where:
‚ a is a parameter that determines how concentrated around
~ “ G the distribution is. In this experiment we set a “ 0.002;

‚ A is an auxiliary function that reports X to the same scale of
Y, and centers X on Y. Here ApGq “ 1000G ` 3499.5;

‚ _ “ 4a´1{p4a`1q is a normalization factor
Figure 1 illustrates the shape of ⇠G~ , showing the distributions
%. |- p¨|Gq for two adjacent secrets G “ 5 and G “ 6. We consider
an adversary that canmake two attempts to discover the secret (two-
tries adversary), and we de�ne the corresponding gain function as
follows. A guessF P W is one of all the possible combinations of
2 di�erent secrets from X, i.e., F “ tG0, G1u with G0, G1 P X and
G0 ‰ G1. Therefore |W| “

`10
2

˘
“ 45. The gain function 6 is then

6pF , Gq “
#
1 if G P F
0 otherwise .

(33)

For this experiment we consider a uniform prior distribution c on
X. The true 6-vulnerability for these particular a and c , results to
be+6 “ 0.892. As training sets sizes we consider 10K, 30K and 50K,
and 50K for the validation sets.

5.4.1 Data pre-processing. (cfr. Section 4.1). The plot in Figure 3
shows the performances of the k-NN and ANN models in terms of
normalized estimation error, while Figure 2 shows the comparison
with the frequentist approach. As we can see, the precision of
the frequentist method is much lower, thus con�rming that the
trend observed in [14] for the Bayes vulnerability holds also for
6-vulnerability. It is worth noting that, in this experiment, the
pre-processing of each sample pG,~q creates 9 samples (matching
~ with each possible F P W such that F “ tG, G 1u with G 1 ‰ G).
This means that the sample size of the pre-processed sets is 9 times
the size of the original ones. For functions 6 representing more
than 2 tries this pre-processing method may create training sets too
large. In the next section we will see that the alternative channel
pre-processing method can be a good compromise.

5.4.2 Channel pre-processing. (cfr. Section 4.2) The results for han-
nel pre-processing are reported in Figure 4. As we can see, the
estimation is worse than with data pre-processing, especially for
the k-NN algorithm. This was to be expected, since the random

Figure 2: Multiple guesses scenario, comparison between
the frequentist and the ML estimations with data pre-
processing.

Figure 3: Multiple guesses scenario, magni�cation of the
part of Figure 2 on the k-NN and ANN estimations.

sampling to match the e�ect of 6 introduces a further level of con-
fusion, as explained in Section 4.2. Nevertheless, these results are
still much better than the frequentist case, so it is a good alterna-
tive method to apply when the use of data pre-processing would
generate validation sets that are too large, which could be the case
when the matrix representing6 contains large numbers with a small
common divider. Additional plots are provided in Appendix H.

Figure 4: Multiple guesses scenario, k-NN and ANN estima-
tion with channel pre-processing



5.5 Experiment 2: location privacy
In this section we estimate the 6-vulnerability of a typical system
for location privacy protection. We use data from the open Gowalla
dataset [1], which contains the coordinates of users’ check-ins.
In particular, we consider a square region in San Francisco, USA,
centered in (latitude, longitude) = (37.755, ´122.440), and with 5Km
long sides. In this area Gowalla contains 35162 check-ins.

We discretize the region in 400 cells of 250m long side, and we
assume that the adversary’s goal is to discover the cell of a check-in.
The frequency of the Gowalla check-ins per cell is represented by
the heat-map in Figure 5. From these frequencies we can directly
estimate the distribution representing the prior of the secrets [27].

Figure 5: Heat-map representing the Gowalla check-ins dis-
tribution in the area of interest; the density of check-ins in
each cell is reported in the color bar on the side

The channel ⇠ that we consider here is the optimal obfuscation
mechanism proposed in [37] to protect location privacy under a
utility constraint. We recall that the framework of [37] assumes
two loss functions, one for utility and one for privacy. The utility
loss of a mechanism, for a certain prior, is de�ned as the expected
utility loss of the noisy data generated according to the prior and
the mechanism. The privacy loss is de�ned in a similar way, except
that we allow the attacker to “remap” the noisy data so to maximize
the privacy loss. For our experiment, we use the Euclidean distance
as loss function for the utility, and the 6 function de�ned in the
next paragraph as loss function for the privacy. For further details
on the construction of the optimal mechanism we refer to [37].

We de�ne X,Y and W to be the set of the cells. Hence |X| “
|Y| “ |W| “ 400. We consider a 6 function representing the
precision of the guess in terms of Euclidean distance: the closer
the guess is to the real location, the higher is the attacker’s gain.
Speci�cally, our 6 is illustrated in Figure 6, where the central cell
represents the real location G . For a generic “guess” cell F , the
number written inF represent 6pF , Gq. 3

In this experiment we consider training set sizes of 100, 1k and
10K samples respectively. After applying the data pre-processing
transformation, the size of the resulting datasets is approximately
18 times that of the original one. This was to be expected, since the
sum of the values of 6 in Figure 6 is 20. Note that this sum and the
increase factor in the dataset do not necessarily coincide, because
the latter is also in�uenced by the prior and by the mechanism.
3Formally, 6 is de�ned as 6pF,Gq “ tpW expp´U3pF,Gq{;qqs, where W “ 4 is the
maximal gain, U “ 0.95 is a normalization coe�cient to control the skewness of the
exponential, 3 is the euclidean distance and ; “ 250 is the length of the cells’ side.
The symbol t¨s in this context represents the rounding to the closest integer operation.
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Figure 6: The “diamond” shape created by the gain func-
tion around the real secret; the values represent the gains
assigned to each guessed cellF when G is the central cell.

Figure 7 and Figure 8 show the performance of k-NN and ANN
for both data and channel pre-processing. As expected, the data pre-
processing method is more precise than the channel pre-processing
one, although only slightly. The ANN model is also slightly better
than the k-NN in most of the cases.

Figure 7: Location privacy scenario, k-NN and ANN estima-
tion with data pre-processing

Figure 8: Location privacy scenario, k-NN and ANN estima-
tion with channel pre-processing

5.6 Experiment 3: di�erential privacy
In this section we consider a popular application of DP: individual
data protection in medical datasets from which we wish to extract
some statistics via counting queries. It is well known that the release
of exact information from the database, even if it is only the result
of statistical computation on the aggregated data, can leak sensitive
information about the individuals. The solution proposed by DP is



to obfuscate the released information with carefully crafted noise
that obeys certain properties. The goal is to make it di�cult to
detect whether a certain individual is in the database or not. In
other words, two adjacent datasets (i.e., datasets that di�er only
for the presence of one individual) should have almost the same
likelihood to produce a certain observable result.

In our experiment, we consider the Cleveland heart disease
dataset [24] which consist of 303 records of patients with a medical
heart condition. Each condition is labeled by an integer number
indicating the severity: from 0, representing a healthy patient, to 4,
representing a patient whose life is at risk.

We assume that the hospital publishes the histogram of the pa-
tients’ records, i.e., the number of occurrences for each label. To
protect the patients’ privacy, the hospital sanitizes the histogram
by adding geometric noise (a typical DP mechanism) to each label’s
count. More precisely, if the count of a label is I1, the probability
that the corresponding published number is I2 is de�ned by the
distribution in (32), where G and ~ are replaced by I1 and I2 respec-
tively, and A is 1. Note that I1, the real count, is an integer between
0 and 303, while its noisy version I2 ranges on all integers. As for
the value of a , in this experiment we set it to 1.

The secrets space X is set to be a set of two elements: the full
dataset, and the dataset with one record less. These are adjacent in
the sense of DP, and, as customary in DP, we assume that the record
on which the two databases di�er is the target of the adversary.
The observables space Y is the set of the 5-tuples produces by the
noisy counts of the 5 labels.W is set to be the same as X.

We assume that the adversary is especially interested in �nding
out whether the patient has a serious condition. The function 6
re�ects this preference by assigning higher value to higher labels.
Speci�cally, we setW “ X and

6pF , Gq “

$
’&

’%

0, ifF ‰ G

1, ifF “ G ^ G P t0, 1, 2u
2, ifF “ G ^ G P t3, 4u,

(34)

For the estimation, we consider 10K, 30K and 50K samples for
the training sets, and 50K samples for the validation set. For the

Figure 9: Di�erential privacy scenario, k-NN and ANN esti-
mation with data pre-processing

experiments with k-NN we choose the Manhattan distance, which
is typical for DP4. In the case of data pre-processing the size of
4The Manhattan distance on histograms corresponds to the total variation distance on
the distributions resulting from the normalization of these histograms.

Figure 10: Di�erential privacy scenario, k-NN and ANN esti-
mation with channel pre-processing

the transformed training set D1
<1 is about 1.2 times the original

D< . The performances of the data and channel pre-processing are
shown in Figures 9 and Figure 10 respectively. Surprisingly, in this
case the data pre-processing method outperforms the channel pre-
processing one, although only slightly. Additional plots, including
the results for the frequentist approach, can be found in Appendix H.

5.7 Experiment 4: password checker
In this experiment we consider a password checker, namely a pro-
gram that tests whether a given string corresponds to the password
stored in the system. We assume that string and password are se-
quences of 128 bits, an that the program is “leaky”, in the sense
that it checks the two sequences bit by bit and it stops checking
as soon as it �nds a mismatch, reporting failure. It is well known
that this opens the way to a timing attack (a kind of side-channel
attack), so we assume that the system tries to mitigate the threat
by adding some random delay, sampled from a Laplace distribution
and then bucketing the reported time in 128 bins corresponding
to the positions in the sequence (or equivalently, by sampling the
delay from a Geometric distribution, cfr. Equation 32). Hence the
channel ⇠ is a 2128 ˆ 128 stochastic matrix.

The typical attacker is an interactive one, which �gures out
larger and larger pre�xes of the password by testing each bit at
a time. We assume that the attacker has already �gured out the
�rst 6 bits of the sequence and it is trying to �gure out the 7-th.
Thus the prior c is distributed (uniformly, we assume) only on the
sequences formed by the known 6-bits pre�x and all the possible
remaining 122 bits, while the 6 function assigns 1 to the sequences
whose 7-th bit agrees with the stored password, and 0 otherwise.
Thus 6 is a partition gain function [4], and its particularity is that
for such kind of functions data pre-processing and channel pre-
processing coincide. This is because 6pF , Gq is either 0 or 1, so in
both cases we generate exactly one pair pF ,~q for each pair pG,~q
for which6pF , Gq “ 1. Note that in this case the data pre-processing
transformation does not increase the training set, and the channel
pre-processing transformation does not introduce any additional
noise. The '⇠ matrix (cfr. Section 4.1) is a 2ˆ 128 stochastic matrix.
The experiments are done with training sets of 10K, 30K and 50K
samples. The results are reported in Figure 11. We note that the
estimation error is quite small, especially in the ANN case. This
is because the learning problem is particularly simple since, by



Figure 11: Password checker scenario, k-NN and ANN esti-
mation with data and channel pre-processing

considering the 6-leakage and the preprocessing, we have managed
to reduce the problem to learning a function of type Y Ñ W,
rather than Y Ñ X, and there is a huge di�erence in size between
W and X (the �rst is 2 and the latter is 2128). Also the frequentist
approach does quite well (cfr. Appendix H) , and this is because Y
is small. With a �ner bucketing (on top of the Laplace delay), or no
bucketing at all, we expect that the di�erence between the accuracy
of the frequentist and of the ML estimation would be much larger.

5.8 Discussion
In almost all the experiments, our method gives much better result
than the frequentist approach (see Figure 2 and the other plots in
the appendix Appendix H). The exception of the second experiment
can be explained by the fact that the observable space is not very
large, which is a scenario where the frequentist approach can be
successful because the available data is enough to estimate the real
distribution. In general, with the frequentist approach there is no
real learning, therefore, if |Y| is large and the training set contains
few samples, we cannot make a good guess with the observables
never seen before [14]. In ML, on the contrary, we can still make an
informed guess, as ML models are able to generalize from samples,
especially when the Bayes error is small.

We observe that ANN outperforms the k-NN in all experiments.
This is because usually ANN models are better at generalizing, and
hence provide better classi�ers. In particular, k-NN are not very
good when the distributions are not smooth with respect to the
metric with respect to which the neighbor relation is evaluated [14].
The data pre-processing method gives better results, than the
channel pre-processing in all experiments except the third one
(DP), in which the di�erence is very small. The main advantage of
using the channel pre-processing method is when the gain function
is such that the data pre-processing would generate a set too large,
as explained in Section 4.3.

The experiments show that our method is not too sensitive to the
size of |Y|. On the other hand, the size of |X| is important, because
the ML classi�ers are in general more precise (approximate better
the ideal Bayes classi�er) when the number of classes are small. This
a�ects the estimation error of both the Bayes vulnerability and the
6-vulnerability. However, for the latter there is also the additional
problem of the magni�cation due to the 6. To better understand this

point, consider a modi�cation of the last experiment, and assume
that the password checker is not leaky, i.e., the observables are
only fail or success. A pair pG, successq would have a negligible
probability of appearing in the training set, hence our method, most
likely, would estimate the vulnerability to be 0. This is �ne if we are
trying to estimate the Bayes vulnerability, which is also negligible.
But the 6-vulnerability may not be negligible, in particular if we
consider a 6 that gives an enormous gain for the success case.
If we can ensure that all the pairs pG,~q are represented in the
training set in proportion to their probability in %-. , then the
above "magni�cation" in 6-vulnerability is not a problem, because
our method will ensure the also the pairs pF ,~q would be magni�ed
(with respect to the the pairs pF ,~q) in the same proportion.

6 CONCLUSION AND FUTUREWORK
We have proposed an approach to estimate the 6-vulnerability of a
system under the black-box assumption, using machine learning.
The basic idea is to reduce the problem to learn the Bayes classi�er
on a set of pre-processed training data, and we have proposed two
techniques for this transformation, with di�erent advantages and
disadvantages. We have then evaluated our approach on various
scenarios, showing favorable results. We have compared our ap-
proach to the frequentist one, showing that the performances are
similar on small observable domains, while ours performs better
on large ones. This is in line with what already observed in [14] for
the estimation of the Bayes error.

As future work, we plan to test our framework on more real-life
scenarios such as the web �ngerprinting attacks [13, 15] and the
AES cryptographic algorithm [22]. We also would like to consider
the more general case, often considered in Information-�ow secu-
rity, of channels that have both “high” and “low” inputs, where
the �rst are the secrets and the latter are data visible to, or even
controlled by, the adversary. Finally, a more ambitious goal is to use
our approach to minimize the 6-vulnerability of complex systems,
using a GAN based approach, along the lines of [33].
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A AUXILIARY RESULTS
P���������� A.1 (B��������’� ��������� [8]). Let

/1, . . . ,/= „ / be i.i.d. random variables such that / P r0,1s al-
most surely and let (= “ 1

=

∞=
8“1 /8 ´ E r/ s and E “ Varp/q the

variance of / . Then, for any Y ° 0, we have:

P r(= • Ys § exp
ˆ

´ = Y2

2 E ` 2p1´0qY{3

˙
. (35)

Compared to the Hoe�ding’s inequality, it is easy to check that, for
regimes where Y is small, Bernstein’s inequality o�ers tighter bounds
for E ! p1 ´ 0q2.

L���� A.2. Let f2 “ Varp/q and let / be a real-valued random
variable such that for all 0 † C § f2,

Pp/ • Cq § 2@ exp
ˆ

´ C2

A2

˙
. (36)

Then,
ª f2

0
Pp/ • Cq3C § @A

?
c erf

ˆ
f2

A

˙
, (37)



where, for large G ,

erfpGq « 1 ´ expp´G2q
G

?
c

` O
`
G´1 expp´G2q

˘
. (38)

P����. ª f2

0
Pp/ • Cq3C §

ª f2

0
2@ exp

ˆ
´ C2

A2

˙
3C

“ @A
?
c erf

ˆ
f2

A

˙
,

and eq. (38) follows from the Taylor’s expansion of the erf function.
⇤

B PROOFS FOR THE STATISTICAL BOUNDS
The following lemma is a simple adaption of the uniform deviations
of relative frequencies from probabilities theorems in [23].

L���� B.1. The following inequality holds:

+6 ´+ p5 ‹
<q § 2max

5 PH
ˇ̌p+<p5 q ´+ p5 q

ˇ̌
. (39)

P����.
+6 ´+ p5 ‹

<q “ + p5 ‹q ´ p+<p5 ‹
<q ` p+<p5 ‹

<q ´+ p5 ‹
<q

§ + p5 ‹q ´ p+<p5 ‹
<q `

ˇ̌p+<p5 ‹
<q ´+ p5 ‹

<q
ˇ̌

(40)

§ + p5 ‹q ´ p+<p5 ‹q `
ˇ̌p+<p5 ‹

<q ´+ p5 ‹
<q

ˇ̌
(41)

§
ˇ̌
+ p5 ‹q ´ p+<p5 ‹q

ˇ̌
`

ˇ̌p+<p5 ‹
<q ´+ p5 ‹

<q
ˇ̌

(42)

§ max
5 PH

ˇ̌p+<p5 q ´+ p5 q
ˇ̌
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5 PH
ˇ̌p+<p5 q ´+ p5 q

ˇ̌
(43)

§ 2max
5 PH

ˇ̌p+<p5 q ´+ p5 q
ˇ̌
. (44)

⇤

B.1 Proof of Proposition 3.1
P���������� 3.1 (U������ ����������). For all Y ° 0,

P
´ˇ̌p+=p5 ‹

<q ´+ p5 ‹
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• Y

¯
§ 2E exp

¨
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‚,

(12)

where the expectation is taken w.r.t. the random training set, and

P
`
+6 ´+ p5 ‹

<q • Y
˘

§ 2
ÿ

5 PH
exp

¨
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8f2
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P����. We �rst prove (12). We have:
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where (45) follows from the de�nition of P: we consider the expec-
tation of the probability over all training sets D< sampled from

%-. , and then for each D< we take the probability over all possi-
ble validation sets T= sampled again from %-. . Consider the series
of p-8 ,.8q’s sampled from %-. that constitute the validation set,
and de�ne the random variables /8 “ 6p5 ‹

<p.8q,-8q. Note that D<
determines 5 ‹

< , hence, for a given D< the /8 are i.i.d.. The inequal-
ity (46) then follows by applying Proposition A.1. Indeed, since
the /8 ’s are i.i.d., they all have the same expectation and the same
variance, hence (= “ 1

=

∞=
8“1 /8 ´ E r/ s “ p+=p5 ‹

<q ´+ p5 ‹
<q, and

E “ Varp/q “ f25 ‹
<
. The factor 2 in front of the exp is because we

consider the absolute value of (= .
As for the bound (13), we have:
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where (47) follows from Lemma B.1, steps (48) and (49) are standard,
and (50) follows from the same reasoning that we have applied to
prove (12). Here we do not take the expectation on the training sets
because in each term of the summation the 5 is �xed. ⇤

B.2 Proof of Theorem 3.2
T������ 3.2. The averaged estimation error of the6-vulnerability

can be bounded as follows:
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where the expectations are understood over all possible training and
validation sets drawn according to %-. . Furthermore,
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˘
, then :

E
ˇ̌
+ p5 ‹

<q ´ p+=p5 ‹
<q

ˇ̌
§ 4[

=
exp

ˆ
´=f2

2[

˙

`
c

2f2[c
=

erf

˜
f2{

gffe2f2[c
=

¸

, (15)

where [ “ p1 ` p1´0q{3q for f2 § Y, and, otherwise,

+6 ´ E
“
+ p5 ‹

<q
‰

§ |H |8p1 ` [q
<

exp
ˆ

´ <f2

4p1 ` [q

˙
`

|H |
c

4f2p1 ` [qc
<

erf

˜
f2{

c
4f2p1 ` [qc

<

¸

, (16)

with erfp\q def“ 2?
c

ª \

0
expp´`2q3`.

P����. Observe that

E
ˇ̌
+6 ´ p+=p5 ‹

<q
ˇ̌

“ E
ˇ̌
+6 ´+ p5 ‹

<q `+ p5 ‹
<q ´ p+=p5 ‹

<q
ˇ̌

§ +6 ´ E
“
+ p5 ‹

<q
‰ˇ̌

` E
ˇ̌
+ p5 ‹

<q ´ p+=p5 ‹
<q

ˇ̌
,

which follows from the triangular inequality.



First, let us call f2 the worst case variance de�ned above which,
according to Popoviciu’s inequality is upper-bounded by p1´0q2{4.
Second, let us consider that one main advantage of deriving bounds
from Bernstein’s inequality is that it allows allow the upper-bound
in eq. (35) grows as expp´=Yq instead of expp´=Y2q if E § Y. More-
over eq. (46) is upper-bounded by 2 exp p´= Y2{2f2`2p1´0qY{3q. This
said we are going to consider two cases:

i) 22 § 9:

E|+ p5 ‹
<q ´ p+=p5 ‹

<q| §
ª 8

f2
2 exp

ˆ
´ =Y2

2f2 ` 2p1´0qY{3

˙
3Y (51)

§
ª 8

f2
2 exp

ˆ
´ =Y

2 ` 2p1´0q{3

˙
3Y (52)

“ 4p1 ` p1´0q{3q
=

exp
ˆ

´ =f2

2p1 ` p1´0q{3q

˙
, (53)

and then,

+6 ´ E
“
+ p5 ‹

<q
‰

§
ª 8

f2

ÿ

5 PH
2 exp

¨

˝´ < Y2

8f2
5

` 4p1´0qY{3

˛

‚3Y (54)

§
ÿ

5 PH

ª 8

f2
2 exp

ˆ
´ < Y2

8f2 ` 4p1´0qY{3

˙
3Y (55)

§
ÿ

5 PH

ª 8

f2
2 exp

ˆ
´ < Y

8 ` 4p1´0q{3

˙
3Y (56)

§ |H |8p2 ` p1´0q{3q
<

exp
ˆ

´ 3<f2

4p6 ` p1 ´ 0qq

˙
, (57)

ii) 22 ° 9:

E|+ p5 ‹
<q ´ p+=p5 ‹

<q| §
ª f2

0
2 exp

ˆ
´ =Y2

2f2 ` 2p1´0qY{3

˙
3Y (58)

§
ª f2

0
2 exp

ˆ
´ =Y2

2f2 ` 2p1´0qf2{3

˙
3Y (59)

“
c

2f2p1 ` p1´0q{3q
=

?
c erf

¨

˚̋ f2b
2f2p1`p1´0q{3q

=

˛

‹‚, (60)

considering A “
b

2f2p1`p1´0q{3q
= , @ “ 1 and applying lemma A.2.

And �nally,

+6 ´ E
“
+ p5 ‹

<q
‰

§
ÿ

5 PH

ª f2

0
2 exp

¨

˝´ < Y2

8f2
5

` 4p1´0qY{3

˛

‚3Y (61)

§ 2|H |
ª f2

0
exp

ˆ
´ < Y2

8f2 ` 4p1´0qY{3

˙
3Y (62)

§ 2|H |
ª f2

0
exp

ˆ
´ < Y2

8f2 ` 4p1´0qf2{3

˙
3Y (63)

“ |H |
d

8f2 ` 4f2p1´0q{3
<

?
c erf

¨

˚̋ f2b
8f2`4f2p1´0q{3

<

˛

‹‚, (64)

according to lemma A.2 with A “
b

8f2`4f2p1´0q{3
< and @ “ |H |.

⇤

B.3 Proof of Corollary 3.4
C�������� 3.4. The sample complexity of the ERM algorithm

6-vulnerability is bounded from above by the set of values satisfying:

"pY, Xq § 8f2 ` 4 p1´0qY{3
Y2

ln
ˆ
2 |H |
X ´ �

˙
, (20)

# pY, Xq § 2f2 ` 2 p1´0qY{3
Y2

ln
ˆ
2
�

˙
, (21)

for all � such that 0 † � † X .

P����. We �rst notice that

P
´

|+6 ´ p+=p5 ‹
<q| • Y

¯

§ P
`
+6 ´+ p5 ‹

<q • Y
˘

` P
´

|+ p5 ‹
<q ´ p+=p5 ‹

<q| • Y
¯
, (65)

and thus from (12), (13) in Proposition 3.1, we have:

P
´

|+6 ´ p+=p5 ‹
<q| • Y

¯

§ 2|H | exp
ˆ

´ < Y2

8f2 ` 4 p1´0qY{3

˙
` 2 exp

ˆ
´ = Y2

2f2 ` 2 p1´0qY{3

˙
.

(66)

Let us require:

2 |H | exp
ˆ

´ < Y2

8f2 ` 4 p1´0qY{3

˙
§ pX ´ �q, (67)

2 exp
ˆ

´ = Y2

2f2 ` 2 p1´0qY{3

˙
§ �, (68)

which satis�es the desired condition:

P
´

|+6 ´ p+=p5 ‹
<q| • Y

¯
§ X, (69)

for any 0 † � † X . Finally, from the previous inequality we can
derive lower bounds on = and<:

< • 8f2 ` 4 p1´0qY{3
Y2

ln
ˆ
2 |H |
X ´ �

˙
, (70)

= • 2f2 ` 2 p1´0qY{3
Y2

ln
ˆ
2
�

˙
, (71)

which by de�nition of sample complexity shows the corollary. ⇤

C PRE-PROCESSING
C.1 Data pre-processing

T������ 4.1 (C���������� �� ���� ��������������). Given a
prior c , a channel ⇠ , and a gain function 6, we have

+6pc,⇠q “ U ¨+6idpb, ⇢q ,

where U, b and ⇢ are those de�ned in (23), (24) and (25), respectively,
and 6id is the identity function (cfr. section 2), i.e., the gain function
corresponding to the Bayesian adversary.



P����.

+6idpb, ⇢q “
ÿ

~
max
F

ÿ

F1
bF 1 ¨ ⇢F1~ ¨ 6idpF ,F 1q “ (72)

ÿ

~
max
F

pbF⇢F~q “
ÿ

~
max
F

%,. pF ,~q “
ÿ

~
max
F

* pF ,~q
U

(73)

“ 1
U

¨
ÿ

~
max
F

ÿ

G
cG ¨⇠G~ ¨ 6pF , Gq “ 1{U ¨+6pc,⇠q (74)

⇤

C.2 Channel pre-processing
T������ 4.2 (C���������� �� ������� ��������������). Given

a prior c and a gain function 6, we have that, for any channel ⇠ :

+6pc,⇠q “ V ¨+6idpg,'⇠q for all channels ⇠ .

where V , g and ' are those de�ned in (27) and (28).

P����. In this proof we use a notation that highlights the struc-
ture of the preprocessing. We will denote by⌧ be the matrix form of
6, i.e.,⌧FG “ 6pF , Gq, and by  c the square matrix with c in its di-
agonal and 0 elsewhere.We have that V “ }⌧ c }1 “ ∞

F,G ⌧FGcG ,
which is strictly positive because of the assumptions on 6 and c .
Furthermore, we have

g) “ V´1⌧ c1 , ' “ V´1p g q´1⌧ c ,

where 1 is the vector of 1s and g) represents the transposition of
vector g . Note that p g q´1 is a diagonal matrix with entries g´1

F in
its diagonal. If gF “ 0 then the row 'F,¨ is not properly de�ned;
but its choice does not a�ect +6idpg,'⇠q since the corresponding
prior is 0; so we can choose 'F,¨ arbitrarily (or equivalently remove
the actionF , it can never be optimal since it gives 0 gain). It is easy
to check that g is a proper distribution and ' is a proper channel:

∞
F gF “ ∞

F V
´1∞

G ⌧FGcG “ V´1V “ 1 ,
∞

G 'F,G “ ∞
G

1
gF
V´1⌧FGcG “ gF

gF
“ 1 .

Moreover, it holds that:

V g' “ V gV´1 g´1⌧ c “ ⌧ c .

The main result follows from the trace-based formulation of poste-
rior 6-vulnerability [4], since for any channel ⇠ and strategy ( , the
above equation directly yields

+6pc,⇠q “ max
(

trp⌧ c⇠(q “ V ¨ max
(

trp g'⇠(q
“ V ¨+6idpg,'⇠q ,

where trp¨q is the matrix trace. ⇤

C.3 Data pre-processing when 6 is not integer
Approximating 6 so that it only takes values P Q•0 allows us to
represent each gain as a quotient of two integers, namely

Numeratorp⌧F,G q{Denominator p⌧F,G q.

Let us also de�ne

 
def“ lcmFG pDenominatorp⌧F,G qq, (75)

where lcmp¨q is the least common multiple. Multiplying ⌧ by  
gives the integer version of the gain matrix that can replace the

original one. It is clear that the calculation of the least common
multiplier, as well as the increase in the amount of data produced
during the dataset building using a gain matrix forced to be integer,
might constitute a relevant computational burden.

D ANN MODELS
We list here the speci�cs for the ANNs models used in the exper-
iments. All the models are simple feed-forward networks whose
layers are fully connected. The activation functions for the hidden
neurons are recti�er linear functions, while the output layer has
softmax activation function.

The loss function minimized during the training is the cross
entropy, a popular choice in classi�cation problems. The remapping
Y Ñ W can be in fact considered as a classi�cation problem such
that, given an observable, a model learns to make the best guess.

For each experiments, the models have been tuned by cross-
validating them using one randomly chosen training sets among
the available ones choosing among the largest in terms of samples.
The specs are listed experiment by experiment in table 2.

E FREQUENTIST APPROACH DESCRIPTION
In the frequentist approach the elements of the channel, namely the
conditional probabilities %. |- p~|Gq, are estimated directly in the
following way: the empirical prior probability of G , pcG , is computed
by counting the number of occurrences of G in the training set and
dividing the result by the total number of elements. Analogously,
the empirical joint probability p%-. pG,~q is computed by counting
the number of occurrences of the pair pG,~q and dividing the result
by the total number of elements in the set. The estimation p⇠G~ of
⇠G~ is then de�ned as

p⇠G~ “
p%-. pG,~q

pcpGq . (76)

In order to have a fair comparison with our approach, which
takes advantage of the fact that we have several training sets and
validation sets at our disposal, while preserving at the same time the
spirit of the frequentist approach, we proceed as follows: Let us con-
sider a training setD< , that we will use to learn the best remapping
Y Ñ W, and a validation set T= which is then used to actually esti-
mate the 6-vulnerability. We �rst compute pc using D< . For each ~
inY and for each G P X, the empirical probability p%- |. is computed
usingD< as well. In particular, p%- |. pG |~q is given by the number of
times G appears in pair with~ divided by the number of occurrences
of ~. In case a certain ~ is in T= but not in D< , it is assigned the
secret G 1 “ argmaxGPX pc so that p%- |. pG 1|~q “ 1 and p%- |. pGq “
0, @G ‰ G 1. It is now possible to �nd the best mapping for each
~ de�ned as Fp~q “ argmaxFPW

∞
GPX p%- |. pG |~q6pF , Gq. Now

we compute the empirical joint distribution for each pG,~q in T= ,
namely p&-. , as the number of occurrences of pG,~q divided by the
total number of samples in T= . We now estimate the 6-vulnerability
on the validation samples according to:

p+= “
ÿ

~PY

ÿ

GPX
p&-. pG,~q6pFp~q, Gq. (77)



Hyper-parameters
Experiment Pre-processing learning rate hidden layers epochs hidden units per layer batch size

Multiple guesses Data 10´3 3 700 r100, 100, 100s 1000
Channel 10´3 3 500 r100, 100, 100s 1000

Location Priv. Data 10´3 3 1000 r500, 500, 500s 200, 500, 1000
Channel 10´3 3 200, 500, 1000 r500, 500, 500s 20, 200, 500

Di�. Priv. Data 10´3 3 500 r100, 100, 100s 200
Channel 10´3 3 500 r100, 100, 100s 200

Psw SCA - 10´3 3 700 r100, 100, 100s 1000
Table 2: Table with the hyper-parameters setting for each one of the experiments above. When multiple values are provided
for the parameters of an experiment it is to be intended that each value corresponds to a speci�c size of the training set (sorted
from the smallest to the largest number of samples).

F ANN: MODEL SELECTION AND IMPACT ON
THE ESTIMATION

In this section we are going to:

‚ brie�y summarize the widely known background of the
model selection problem from the machine learning stand-
point;

‚ show, through a new set of experiments, how this problem
a�ects the leakage estimation;

‚ propose a heuristic which can help the practitioner in the
choice of the model on the same line as classical machine
learning techniques.

The problem of model selection in machine learning is still an
open one and, although a state-of-the art algorithm does not exists,
heuristics can be proposed to lead the practitioner in the hard task
of choosing a model over others. First, let us underline that the
choice of a speci�c model in the context of machine learning, and
speci�cally neural networks (and deep learning), must go through
the hyper-parameter optimization procedure. In fact, if nowadays
neural nets and especially deep models represent the state-of-the-
art solutions to most of the automatic decision problem, it is also
true that, with respect to other simpler methods, they introduce the
need for hyper-parameters optimization. Some techniques, such
as grid and random search as well as Bayesian optimization have
been suggested during the years, especially when not so many
parameters need to be tuned. Two aspects must be considered:

(1) the hyper-parameter optimization relies on try and error
strategy,

(2) the results are highly dependent on the data distribution and
how well the samples represent such distribution.

In particular, if we consider the typical classi�cation problem frame-
work in neural nets (which we build on to create our framework)
we expect the network to reproduce in output the distribution
%2;0BB|8=?DC from the observed data. In this context, the practitioner
should be careful to avoid two main problems which might a�ect
the models, namely under-�tting and over-�tting. Both problems
undermine the generalization capabilities of the models: the former
occurs when the model is too simple to correctly represent the
distribution; the latter occurs when the model is over-complicated,
especially for the given amount of samples, and it �ts the training

data “too well” but this does not translates into good performances
on other samples drawn from the same distribution.

In order to understand how these problems impact our frame-
work, we propose an analysis of the �rst experiment presented in
the paper, considering di�erent networks models and focusing on
the di�erent choice of number of hidden layers. In �g. 12 we com-
pare a model with no hidden layers, hl0, and the three hidden layers
model presented in the paper, hl3. Using neural networks without
hidden layers is not common. Indeed, theoretical results (cfr. [21])
state that the simplest universal approximator can be modeled as a
one hidden layered neural network. Although this holds in theory,
in practice it is well known that this might require layers with too
many neurons, and therefore, multiple hidden layers architectures
have been gaining ground in real world applications.

Therefore, we do not expect too much from the network with
no hidden layers and, indeed, the results represented in �g. 12a
and �g. 12b show that the estimation capabilities of this shallow
model are very far from the performance obtained with the three
layered model. The model with no hidden layer is too simple to
reproduce the input data distribution and therefore it does not
generalize well in the problem of predicting the best (i.e. most
probable)F when a certain ~ is input.

Let us now focus on the results in �g. 13, where we compare the
results of three di�erent models with one, two and three hidden
layers (respectively hl1, hl2, and hl3). With this speci�c experiment
we want to:

‚ analyze the behavior of di�erent models whenwe change the
number of hidden layer (maintaining the number of hidden
neurons per layer �xed to 100) and we consider di�erent
sizes for the learning set;

‚ introduce a possible heuristic to guide practitioners in the
model selection task.

As we can see, observing the box-plots in �g. 13a and �g. 13b from
left to right, when the amount of samples is relatively small, the
shallow model, i.e. hl1 performs slightly better than the other two
models. This is because, since the samples provided are not enough
to accurately describe the distribution, a shallow model would be
prone to under-�tting the training data, producing what seems to
be a more general decision. However, as the number of samples
increases, and consequently, we have a better representation of the
distribution through the the data samples, a deeper model is able



(a) Estimated vulnerability. (b) Normalized estimation error.

Figure 12: Multiple guesses scenario, comparison between a model with no hidden layers (hl0) and the three hidden layered
model present in the paper (hl3).

to reproduce the data distribution with increased accuracy. This
results in better performances when trying to predict the best F
for a given input ~. As one can see the three hidden layered model
keeps improving when the amount of samples available for the
training increases. The improvement is limited for the two hidden
layers model while for the shallowest model, i.e. hl1, there is not
meaningful improvement at all.

Therefore, provided the availability of enough samples, a good
heuristic for the practitioner would be to pick the model that max-
imizes the leakage, which represents the strongest adversary. In
practice, this boils down to trying several models increasing their
complexity as long as an increased complexity translates into a
higher leakage estimation. This also holds for models with di�erent
architecture: if switching from dense to convolutional layers results
in a higher leakage estimation, then the convolutional model should
be preferred. Even though this is still an open problem for the ma-
chine learning �eld, and we do not provide any no guarantees that,
eventually, the optimal model is going to be retrieved, this can be
considered a valid empirical approach. Indeed, the principle of no
free lunch in machine learning tells that no model can guarantee
convergence on its �nal sample performance. Therefore when a
�nite amount of sample is available, the practitioner should evalu-
ate several model and stick to a heuristic, as the one we suggest, in
order to select the best model.

In order to strengthen this point and also address the comment
on the use of di�erent architecture and their impact on the es-
timation, we produce yet another experimental result. Inspired
by [34], we consider the problem of estimating the Bayes error rate
(BER, aka Bayes risk or Bayes leakage) using the MNIST dataset
(a benchmark dataset for ML classi�cation problems). In [34], the
authors use an empirical method to estimate bounds for the BER
and, in order to do so, they need to perform dimensionality re-
duction (they try both principal component analysis, or PCA, and
auto-encoding via an auto-encoder neural network). Indeed MNIST,
being a 28px ˆ 28px images dataset, contains high dimensional-
ity samples and all the three applied methods (bounds estimation,
k-NN and random forest) bene�t from dimensionality reduction.
Given that the samples distribution for MNIST is unknown, in [34]
the authors aim at checking whether the three estimations con�rm
each other. And indeed they do. However, it is well known that in

many image classi�cation tasks, the state-of-the-art is represented
by deep learning and, for instance convolutional neural nets. While
in [34] the authors study how the addition of new layers to the
model a�ects the bound estimation, we focus on the comparison
between two network models, a dense and a convolutional one.

In particular, the dense network model we consider has one hid-
den layer with 128 hidden units and ReLu activation function. Such
an architecture corresponds to a model with 101700 training pa-
rameters (connection weights and bias weights). In order to reduce
the tendency to over-�t the training data, we consider improving
the model with two dropout layers, one before the hidden layer and
one after, with dropout rate of 20% and 50% respectively.

The convolutional neural network we consider is based on the
one proposed in [32], which goes by the name of LeNet. In partic-
ular, the implementation of this net only requires 38552 training
parameters, almost one third of those required by the dense model
which is shallower but has many hidden neurons. This convolu-
tional network consists of a couple of 2D convolutional layers with
3ˆ3 kernel, alternated with a couple of average pool layer. We then
have two dense layers with 60 and 42 hidden neurons respectively
and both preceded by dropout layers with dropout rate of 40% and
30% respectively.

Both the dense and the LeNet model have a soft max �nal layer
with 10 nodes, one for each class. We train both models on the
MNIST 50000 training samples. We split the remaining 10000 sam-
ples set into 10 subsets, each with 1000 samples. We use the trained
models to estimate the BER on these 10 subsets and we obtain the
results represented in �g. 14, where the estimated vulnerability is
the estimated BER. The average values, represented by the black
horizontal lines within the box-plots, are directly comparable to
the results in [34].

We notice that:

‚ considering the aforementioned paper, the dense network’s
performances are comparable to those of the random forest
and k-NN algorithms and the LeNet’s performances are com-
parable to those of the convolutional net considered by the
authors;

‚ the LeNetmodel’s estimate is lower, i.e. themodeled Bayesian
adversary is stronger than in the case of the dense net;



(a) Estimated vulnerability. (b) Normalized estimation error.

Figure 13: Multiple guesses scenario, comparison between a model with one hidden layers (hl1), a model with two hidden
layers (hl2), and the three hidden layered model presented in the paper (hl3).

Figure 14: MNIST experiment: dense network vs. LeNet
model estimation of the Bayes risk. A smaller risk corre-
sponds to a higher leakage and a more powerful adversary
able to take more advantage of the information revealed by
the data.

‚ according to the previously proposed heuristics, given that
we can only estimate the Bayes leakage from samples for
the MNIST case, the results of the LeNet model are of higher
interest, given that it is bigger than the leakage estimate
through the bound;

‚ it is therefore important, when only relying on data for leak-
age estimation, to compare di�erent models and always look
for the state-of-the-art to design the adversary which ex-
ploits the system’s leakage.

G MAJORITY VOTE
In this section we show an alternative procedure to perform leakage
estimation. Given a set of models, instead of using each one of them
to obtain an estimate, we derive a new model from them and we
use this new model to estimate the leakage. According to [39], we
obtain the new model by taking a majority vote on the predictions
of each model in the model set, i.e. when each one of the models
receives the input it outputs a class. The class eventually assigned to
the observable is the class most frequently predicted by the model
ensemble (or a random one in case of ties, since we are considering
the simplest way to aggregate models).

We consider the �rst experiment proposed in our paper, in par-
ticular the 5 models obtained by training on the 5 i.i.d. training sets
of size 10K samples.

As we can see in �g. 15, the box-plot corresponding to the esti-
mation not based on the majority vote is the same already reported
(cfr. section 5.4). Compared to it, the one based on majority vote
shows a higher (and therefore more precise) average estimation
and a lower dispersion.

However, it is important to notice that, when in this case we
consider a majority vote ensemble, since we are exploiting the
“expertise” of many models trained on i.i.d. training samples of
size 10K, we are actually exploiting the knowledge coming from
50K samples. We therefore analyze the case in which, according to
what has already been done in section 5.4, the same 50K samples,
obtained by merging the 5 datasets with 10K samples each, are used
to train a single model. The results are showed in �g. 16. In this
case, it is clear that having multiple weak classi�ers and taking the
majority vote according to the simple procedure described above,
gives worse results in terms of leakage estimation performances
than using all the samples to train a strong classi�er.

H SUPPLEMENTARY PLOTS
In the next pages, we show supplementary plots for each experiment
presented in section 5. In particular, we have included the plots
representing the comparison between the estimated vulnerability
and the real one, and the plots showing the comparison between
the frequentist approach and ours.

Figure 17 is related to the multiple guesses scenario, Figure 19
is related to the location privacy one, Figure 20 is related to the
di�erential privacy experiment, and Figure 18 to the password
checker one.



(a) Estimated vulnerability. (b) Normalized estimation error.

Figure 15: Comparison between our leakage estimate and the one obtained with a majority vote based model. In both cases
each model is trained on 10K samples.

(a) Estimated vulnerability. (b) Normalized estimation error.

Figure 16: Comparison between the majority vote model and a model trained on all the samples available to each model
involved in the majority vote.



(a) Vulnerability estimation for ANN and k-
NN with data pre-processing.

(b) Vulnerability estimation for ANN and k-
NN with channel pre-processing.

(c) Vulnerability estimation for the frequen-
tist approach.

(d) Vulnerability estimation for ANN and k-
NN with data pre-processing, and the fre-
quentist approach.

(e) Vulnerability estimation for ANN and
k-NN with channel pre-processing, and the
frequentist approach.

(f) Normalized estimation error for ANN
and k-NN with channel pre-processing, and
the frequentist approach.

Figure 17: Supplementary plots for the multiple-guesses experiment.

(a) Vulnerability estimation for ANN and k-
NN with data and channel pre-processing.

(b) Vulnerability estimation for the frequen-
tist approach.

(c) Normalized estimation error for the fre-
quentist approach.

(d) Vulnerability estimation for ANN and k-
NN with data and channel pre-processing,
and the frequentist approach.

(e) Normalized estimation error for ANN
and k-NN with data and channel pre-
processing, and the frequentist approach.

Figure 18: Supplementary plots for the password-checker experiment.



(a) Vulnerability estimation for ANN and k-NNwith data
pre-processing.

(b) Vulnerability estimation for ANN and k-NN with
channel pre-processing.

(c) Vulnerability estimation for the frequentist approach. (d) Normalized estimation error for the frequentist ap-
proach.

(e) Vulnerability estimation for ANN and k-NNwith data
pre-processing, and the frequentist approach.

(f) Normalized estimation error for ANN and k-NN with
data pre-processing, and the frequentist approach.

(g) Vulnerability estimation for ANN and k-NN with
channel pre-processing, and the frequentist approach.

(h) Normalized estimation error for ANN and k-NN with
channel pre-processing, and the frequentist approach.

Figure 19: Supplementary plots for the location-privacy experiment.



(a) Vulnerability estimation for ANN and k-NNwith data
pre-processing.

(b) Vulnerability estimation for ANN and k-NN with
channel pre-processing.

(c) Vulnerability estimation for the frequentist approach. (d) Normalized estimation error for the frequentist ap-
proach.

(e) Vulnerability estimation for ANN and k-NNwith data
pre-processing, and the frequentist approach.

(f) Normalized estimation error for ANN and k-NN with
data pre-processing, and the frequentist approach.

(g) Vulnerability estimation for ANN and k-NN with
channel pre-processing, and the frequentist approach.

(h) Normalized estimation error for ANN and k-NN with
channel pre-processing, and the frequentist approach.

Figure 20: Supplementary plots for the di�erential-privacy experiment.


