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Abstract. We propose to use a quality estimator and evolutionary
methods to search the latent space of generative adversarial networks
trained on small, difficult datasets, or both. The new method leads to
the generation of significantly higher quality images while preserving the
original generator’s diversity. Human raters preferred an image from the
new version with frequency 83.7% for Cats, 74% for FashionGen, 70.4%
for Horses, and 69.2% for Artworks - minor improvements for the already
excellent GANs for faces. This approach applies to any quality scorer and
GAN generator.

1 Introduction

Generative adversarial networks (GAN) are the state-of-the-art generative mod-
els in many domains. However, they need quite a lot of training data to reach
a decent performance. Using off-the-shelf image quality estimators, we propose
a novel but simple evolutionary modification for making them more reliable for
small, difficult, or multimodal datasets. Contrarily to previous approaches using
evolutionary methods for image generation, we do not modify the training phase.
We use a generator G mapping a latent vector z to an image G(z) built as in
a classical GAN. The difference lies in the method used for choosing a latent
vector z. Instead of randomly generating a latent vector z, we perform an evo-
lutionary optimization, with z as decision variables and the estimated quality of
G(z) — based on a state-of-the-art quality estimation method— as an objective
function. We show that:

• The quality of generated images is better, both for the proxy used for esti-
mating the quality, i.e., the objective function, as well as for human raters.
For example, the modified images are preferred by human raters more than
80% of the time for images of cats and around 70% of the time for horses
and artworks.

• The diversity of the original GAN is preserved: the new images are preferred
by humans and still similar.

⋆ Equal contribution
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• The computational overhead introduced by the evolutionary optimization
is moderate, compared to the computational requirement for training the
original GAN.

The approach is simple, generic, easy to implement , and fast. It can be used as a
drop-in replacement for classical GAN provided that we have a quality estimator
for the outputs of the GAN. Besides the training of the original GAN, many ex-
periments were performed on a laptop without any GPU. Fig. 1 shows examples

StyleGAN2 EvolGAN

Fig. 1. For illustration , random images generated using StyleGAN2 (left) and Evol-
GAN (right). Horses were typically harder than cats. The images generated by Evol-
GAN are generally more realistic. The top-left example of a generated cat by Style-
GAN2 has blood-like artifacts on its throat and the other is blurry. Three of the four
StyleGAN2 horses are clearly unrealistic: on the bottom right of the StyleGan2 results,
the human and the horse are mixed, the bottom left shows an incoherent mix of sev-
eral horses, the top left looks like the ghost, and only the top right is realistic. Overall,
both cats, and 3 of the 4 horses generated by EvolGAN look realistic. We show more
examples of horses, as they are more difficult to model.

of generations of EvolGANStyleGAN2 compared to generations by StyleGAN2.
Fig. 2 presents our general approach, detailed in the Section 3.
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Fig. 2. General EvolGAN approach (left) and optimization loop (right). Our method
improves upon a pre-trained generator model G, which maps a latent vector z to an
image G(z). In classical models, the images are generated by sampling a latent vector z
randomly. We modify that randomly chosen z into a better z∗(z0) evolved to improve
the quality of the image, typically estimated by Koncept512. For preserving diversity,
we ensure that z∗(z0) is close to the original z0. The original image is generated using
PokeGan (Pokemon dataset) and the improved one is generated using EvolGAN (su-
perposed on top of PokeGan): we see an elephant-style Pokemon, hardly visible in the
top version.

2 Related Works

2.1 Generative Adversarial Networks

Generative Adversarial Networks [1] (GANs) are widely used in machine learning
[2,3,4,5,6,7,8,9] for generative modeling. Generative Adversarial Networks are
made up of two neural networks: a Generator G, mapping a latent vector z to
an image G(z) and a Discriminator D mapping an image I to a realism value
D(I). Given a dataset D, GANs are trained using two training steps operating
concurrently:

(i) Given a randomly generated z, the generator G tries to foolD into classifying
its output G(z) as a real image, e.g. by maximizing logD(G(z)). For this
part of the training, only the weights of G are modified.

(ii) Given a minibatch containing both random fake images F =
{G(z1), . . . , G(zk)} and real images R = {I1, . . . , Ik} randomly drawn in
D, the discriminator learns to distinguish R and F , e.g. by optimizing the
cross-entropy.

The ability of GANs to synthesize faces [10] is particularly impressive and of
wide interest. However, such results are possible only with huge datasets for
each modality and/or after careful cropping, which restricts their applicability.
Here we consider the problem of improving GANs trained on small or diffi-
cult datasets. Classical tools for making GANs compatible with small datasets
include:
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• Data augmentation, by translation, rotation, symmetries, or other transfor-
mations.

• Transfer from an existing GAN trained on another dataset to a new dataset
[11].

• Modification of the distribution in order to match a specific request as done
in several papers. [12] modifies the training, using quality assessement as
we do; however they modify the training whereas we modify inference. In
the same vein, [13] works on scale disentanglement: it also works at training
time. These works could actually be combined with ours. [14] optimizes the
injected noise in a super resolution GAN using a criterion combining the
Koncept512 and the discriminator of the GAN. However, their method is
only applied to super resolution and their method cannot be applied directly
to any generative model. [15] generates images conditionally to a classifier
output or conditionally to a captioning network output. [16] and [17] condi-
tion the generation to a playability criterion (estimated by an agent using
the GAN output) or some high-level constraints. [18] uses a variational au-
toencoder (VAE), so that constraints can be added to the generation: they
can add an attribute (e.g. black hair) and still take into account a realism
criterion extracted from the VAE: this uses labels from the dataset. [19] uses
disentanglement of the latent space for semantic face editing: the user can
modify a specific latent variable. [20] allows image editing and manipulation:
it uses projections onto the output domain.

• Biasing the dataset. [21] augments the dataset by generating images with a
distribution skewed towards the minority classes.

• Learning a specific probability distribution, rather than using a predefined,
for example Gaussian, distribution. Such a method is advocated in [22].

The latter is the closest to the present work in the sense that we stay close to
the goal of the original GAN, i.e. modeling some outputs without trying to bias
the construction towards some subset. However, whereas [22] learn a probability
distribution on the fly while training the GAN, our approach learns a classical
GAN and modifies, a posteriori, the probability distribution by considering a
subdomain of the space of the latent variables in which images have better qual-
ity. We could work on an arbitrary generative model based on latent variables,
not only GANs. As opposed to all previously mentioned works, we improve the
generation, without modifying the target distribution and without using any
side-information or handcrafted criterion - our ingredient is a quality estima-
tor. Other combinations of deep learning and evolutionary algorithms have been
published around GANs. For instance, [23] evolves a population of generators,
whereas our evolutionary algorithm evolves individuals in the latent space. [24]
also evolves individuals in the latent space, but using human feedback rather
than the quality estimators that we are using. [25] evolves individuals in the
latent space, but either guided by human feedback or by using similarity to a
target image.
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2.2 Quality estimators: Koncept512 and AVA

Quality estimation is a long-standing research topic [26,27] recently improved by
deep learning [28]. In the present work, we focus on such quality estimation tools
based on supervised convolutional networks. The KonIQ-10k dataset is a large
publicly available image quality assessment dataset with 10,073 images rated by
humans. Each image is annotated by 120 human raters. The Koncept512 image
quality scorer [28] is based on an InceptionResNet-v2 architecture and trained
on KonIQ-10k for predicting the mean opinion scores of the annotators. It takes
as input an image I and outputs a quality estimate K(I) ∈ R. Koncept512 is the
state of the art in technical quality estimation [28], and is freely available. We use
the release without any modification. [29] provides a tool similar to Koncept512,
termed AVA, but dedicated to aesthetics rather than technical quality. It was
easy to apply it as a drop-in replacement of Koncept512 in our experiments.

3 Methods

3.1 Our algorithm: EvolGAN

We do not modify the training of the GAN. We use a generator G created by a
GAN. G takes as input a random latent vector z, and outputs an image G(z).
While the latent vector is generally chosen randomly (e.g., z ← N (0, Id)), we
treat it as a free parameter to be optimized according to a quality criterion Q.
More formally, we obtain z∗(z0):

z∗(z0) = argmax
z

Q(G(z)) in the neighborhood of a random z0. (1)

In this paper, Q is either Koncept512 or AVA. Our algorithm computes an
approximate solution of problem 1 and outputs G(z∗(z0)). Importantly, we do
not want a global optimum of Eq. 1. We want a local optimum, in order to have
essentially the same image – z∗(z0) must be close to z0, which would not happen
without this condition. The optimization algorithm used to obtain z∗ in Eq. 1 is
a simple (1 + 1)-Evolution Strategy with random mutation rates [30], adapted
as detailed in Section 3.2 (see Alg. 1). We keep the budget of our algorithm low,
and the mutation strength parameter α can be used to ensure that the image
generated by EvolGAN is similar to the initial image. For instance, with α = 0,
the expected number of mutated variables is, by construction (see Section 3.1),
bounded by b. We sometimes use the aesthetic quality estimator AVA rather than
the technical quality estimator Koncept512 for quality estimation. We consider
a coordinate-wise mutation rate: we mutate or do not mutate each coordinate,
independently with some probability.

3.2 Optimization algorithms

After a few preliminary trials we decided to use the (1 + 1)-Evolution Strategy
with uniform mixing of mutation rates [30], with a modification as described
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Algorithm 1: The EvolGANG,b,α algorithm

Parameters:
• A probability distribution P on R

d.
• A quality estimator Q, providing an estimate Q(I) of the quality of some I ∈ E.

We use Q = Koncept512 or Q = AV A.
• A generator G, building G(z) ∈ E for z ∈ R

d.
• A budget b.
• A mutation strength 0 ≤ α ≤ ∞.
• A randomly generated z ← random(P). I = G(z) is the baseline image we are

trying to improve.

1 for i ∈ {1, . . . , b} do
2 r := Clip(1/d, 1, α× uniform([0, 1]))
3 z′ := z
4 for j ∈ {1, . . . , d} do

5 with probability r, z′i ← random(P)i (i
th marginal of P).

6 end
7 if Q(G(z)) < Q(G(z′)) then
8 z ← z′

9 end

10 end
Output : Optimized image I ′ = G(z)

in algorithm 1. This modification is designed for tuning the compromise be-
tween quality and diversity as discussed in Table 1. We used Clip(a, b, c) =
max(a,min(b, c)). Optionally, z0 can be provided as an argument, leading to
EvolGANG,b,α,z0 . The difference with the standard uniform mixing of mutation
rates is that α 6= 1. With α = 0, the resulting image I ′ is close to the original
image I, whereas with α =∞ the outcome I ′ is not similar to I. Choosing α = 1
(or α = 1

2 , closely related to FastGA[31]) leads to faster convergence rates but
also to less diversity (see Alg.1, line 2). We will show that overall, α = 0 is the
best choice for EvolGAN. We therefore get algorithms as presented in Table 1.

3.3 Open source codes

We use the GAN publicly available at https://github.com/moxiegushi/

pokeGAN, which is an implementation of Wasserstein GAN [32], the StyleGAN2
[10] available at thispersondoesnotexist.com, and PGAN on FashionGen
from Pytorch GAN zoo [33]. Koncept512 is available at https://github.com/
subpic/koniq. Our combination of Koncept512 and PGAN is available at DOU-
BLEBLIND. We use the evolutionary programming platform Nevergrad [34].

https://github.com/moxiegushi/pokeGAN
https://github.com/moxiegushi/pokeGAN
thispersondoesnotexist.com
https://github.com/subpic/koniq
https://github.com/subpic/koniq
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0 ≤ α ≤ ∞ behavior of EvolGANG,b,α E||z∗(z0)− z||0 with budget b

0 ≤ α ≤ 1

d
standard (1 + 1) evol. alg.
with mutation rate r = 1

d
. ≤ b

α = 1 uniform mixing of mutation rates
[30] (also related to [31]).

α =∞ all variables mutated: equivalent
to random search

intermediate values α intermediate behavior ≤ min(max(α, 1/d)bd, d)

Table 1. Optimization algorithms used in the present paper. The last setting is new
compared to [30]. We modified the maximum mutation rate α for doing a local or
global search depending on α, so that the diversity of the outputs is maintained when
α is small (Sect. 4.3). ||x||0 denotes the number of non-zero components of x.

4 Experiments

We present applications of EvolGAN on three different GAN models: (i) Style-
GAN2 for faces, cats, horses and artworks (ii) PokeGAN for mountains and
Pokemons (iii) PGAN from Pytorch GAN zoo for FashionGen.

4.1 Quality improvement on StyleGAN2

The experiments are based on open source codes [34,33,35,28,29]. We use the
StyleGAN2 [10] trained on a horse dataset, a face dataset, an artwork dataset,
and a cat dataset5. Faces. We conducted a human study to assess the quality of
EvolGAN compared to StyleGAN, by asking to 10 subject their preferred gener-
ations (pairwise comparisons, double-blind, random positioning). There were 11
human raters in total, including both experts with a strong photography back-
ground and beginners. 70% of the ratings came from experts. Results appear in
Table 2. Faces are the most famous result of StyleGAN2. Although the results
are positive as the images generated by EvolGAN are preferred significantly
more than 50% of the time, the difference between StyleGAN2 and EvolGAN is
quite small on this essentially solved problem compared to wild photos of cats
or horses or small datasets. Harder settings. Animals and artworks are a
much more difficult setting (Fig. 3) - StyleGAN2 sometimes fails to propose a
high quality image. Fig. 3 presents examples of generations of StyleGAN2 and
EvolGANStyleGAN2,b,α in such cases. Here, EvolGAN has more headroom for
providing improvements than for faces: results are presented in Table 3. The
case of horses or cats is particularly interesting: the failed generations often con-
tain globally unrealistic elements, such as random hair balls flying in the air or
unusual positioning of limbs, which are removed by EvolGAN. For illustration

5 https://www.thishorsedoesnotexist.com/,https://www.
thispersondoesnotexist.com/,https://www.thisartworkdoesnotexist.
com/,https://www.thiscatdoesnotexist.com/

https://www.thishorsedoesnotexist.com/
https://www.thispersondoesnotexist.com/
https://www.thispersondoesnotexist.com/
https://www.thisartworkdoesnotexist.com/
https://www.thisartworkdoesnotexist.com/
https://www.thiscatdoesnotexist.com/
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EvolGAN1,∞ = G EvolGAN10,∞ EvolGAN20,∞ EvolGAN40,∞

EvolGAN10,∞ 60.0
EvolGAN20,∞ 50.0 57.1
EvolGAN40,∞ 75.0 44.4 66.7
EvolGAN80,∞ 53.8 53.8 40.0 46.2

10-80 ag-
gregated 60.4% ± 3.4% (208 ratings)

Table 2. Human study on faces dataset. α = ∞, quality estimator q = Koncept512.
Row X, col. Y : frequency at which human raters preferred EvolGANX,∞ to
EvolGANY,∞. By construction, for all α, EvolGAN1,α is equal to the original GAN.
The fifth row aggregates all results of the first four rows for more significance.

Dataset Budget b Quality estimator score

Cats 300 Koncept512 83.71 ±1.75% (446 ratings)
Horses 300 Koncept512 70.43 ± 4.27% (115 ratings)

Artworks 300 Koncept512 69.19 ± 3.09% (224 ratings)

Table 3. Difficult test beds. α = ∞; same protocol as in Tables 2 i.e. we check
with which probability human raters prefer an image generated by EvolGANG,b,α

to an image generated by the original Gan G. By definition of EvolGAN, ∀α,G =
EvolGANG,1,α. Number are above 50%: using EvolGAN for modifying the latent vector
z improves the original StyleGAN2.

purpose, in Fig. 3 we present a few examples of generations which go wrong for
the original StyleGan2 and for EvolGANStyleGan2,b=100,α=0; the bad examples
in the case of the original StyleGan2 are much worse.

4.2 Small difficult datasets and α = 0

In this section we focus on the use of EvolGAN for small datasets. We use the
original pokemon dataset in PokeGAN [35] and an additional dataset created
from copyright-free images of mountains. The previous section was quite suc-
cessful, using α = ∞ (i.e. random search). The drawback is that the obtained
images are not necessarily related to the original ones, and we might lose diver-
sity (though Section 4.3 shows that this is not always the case, see discussion
later). We will see that α =∞ fails in the present case. In this section, we use α
small, and check if the obtained images EvolGANG,b,α,z are better than G(z0)
(see Table 5) and close to the original image G(z0) (see Fig.4). Fig. 4 presents a
Pokemon generated by the default GAN and its improved counterpart obtained
by EvolGAN with α = 0. Table 5 presents our experimental setting and the
results of our human study conducted on PokeGAN. We see a significant im-
provement when using Koncept512 on real-world data (as opposed to drawings
such as Pokemons, for which Koncept512 fails), whereas we fail with AVA as in
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Context LPIPS score

PGAN 0.306 ± 0.0003
EvolGANPGAN,b=40,α=0 0.303 ± 0.0003
EvolGANPGAN,b=40,α=1 0.286 ± 0.0003
EvolGANPGAN,b=40,α=∞ 0.283 ± 0.0002

Table 4. LPIPS scores on FashionGen. As expected, α = 0 mostly preserves the
diversity of the generated images, while higher values of α can lead to less diversity for
the output of EvolGAN. The LPIPS was computed on samples of 50, 000 images for
each setting.

(a) Cherry-picked (b) Random (c) Cherry-picked (d) Cherry-picked
poor StyleGAN2 EvolGAN poor EvolGAN poor StyleGAN2
generation generation generation generation

Fig. 3. For illustration, bad generations by StyleGAN2 and by EvolGAN. (a) Gen-
eration of a cat by StyleGAN2: we looked for a bad generation and found that one.
Such bad cases completely disappear in the EvolGAN counterpart. (b) example of cat
generation by EvolGAN: we failed to find a really bad EvolGAN generated image. (c)
Example of bad horse generation by EvolGAN: the shape is unusual (looks like the
muzzle of a pork) but we still recognize a horse. (d) Bad generation of a horse by
StyleGAN2: some hair balls are randomly flying in the air.

previous experiments (see Table 2). We succeed on drawings with Koncept512
only with α = 0: on this dataset of drawings (poorly adapted to Koncept512),
α large leads to a pure black image.

4.3 Quality improvement

Pytorch Gan Zoo [33] is an implementation of progressive GANs (PGAN[36]),
applied here with FashionGen [37] as a dataset. The dimension of the latent
space is 256. In Table 6, we present the results of our human study compar-
ing EvolGANPGAN,b,α to EvolGANPGAN,1,α = PGAN . With α = 0, humans
prefer EvolGAN to the baseline in more than 73% of cases, even after only 40
iterations. α = 0 also ensures that the images stay close to the original images
when the budget is low enough (see Table 1). Fig. 5 shows some examples of
generations using EvolGAN and the original PGAN.
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Type Number of Number of Budget Quality α Frequency
of of training b estimator of image

images images epochs preferred to original
Real world scenes

Mountains 84 4900 500 Koncept512 0 73.3% ± 4.5% (98 ratings)
Artificial scenes

Pokemons 1840 4900 500 Koncept512 0 55%
Pokemons 1840 4900 2000 Koncept512 0 52%
Pokemons 1840 4900 6000 Koncept512 0 56.3 ± 5.2% (92 ratings)

Artificial scenes, higher mutation rates
Pokemons 1840 4900 500 Koncept512 1/7 36.8%
Pokemons 1840 4900 20 Koncept512 ∞ 0%

Table 5. Experimental results with EvolGANPokeGAN,b,α=0. Reading guide: the last
column shows the probability that an image EvolGANPokeGAN,b,α=0,z = G(z∗(z0))
was prefered to the starting point PokeGAN(z0). The dimension of the latent space
is d = 256 except for mountains (d = 100). Koncept512 performs well on real world
scenes but not on artificial scenes. For Pokemon with α =∞, the 0% (0 success out of
24 tests!) is interesting: the code starts to generate almost uniform images even with
a budget b = 20, showing that Koncept512 fails on drawings. On mountains (the same
GAN, but trained on real world images instead of Pokemons), and to a lesser extent
on Pokemons for small α, the images generated using EvolGAN are preferred more
than 50% of the time: using EvolGAN for modifying the latent vector z improves the
original PokeGan network.

Fig. 4. In both cases, a Pokemon generated by the default GAN (left) and after im-
provement by Koncept512 (right). For the left pair, after improvement, we see eyes and
ears for a small elephant-style pokemon sitting on his back. A similar transformation
appears for the more rabbit-style pokemon on the right hand side. These cherry-picked
examples (cherry-picked, i.e. we selected specific cases for illustration purpose) are,
however, less convincing than the randomly generated examples in Fig. 5 - Pokemons
are the least successful applications, as Koncept512, with α large or big budgets, tends
to push those artificial images towards dark almost uniform images.

4.4 Consistency: preservation of diversity.

Here we show that the generated image is close to the one before the optimiza-
tion. More precisely, given z 7→ G(z), the following two methods provide related
outputs: method 1 (classical GAN) outputs G(z0), and method 2 (EvolGAN)
outputs EvolGANG,b,α,z = G(z∗(z0)), where z∗(z0) is obtained by our evolu-
tionary algorithms starting at z with budget b and parameter α (Sect. 3.2). Fig.
5 shows some example generated images using PGAN and EvolGAN. For most
examples, G(z∗(z0)) is very similar to G(z0) so the diversity of the original GAN
is preserved well. Following [38,39], we measure numerically the diversity of the
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G(z0) G(z∗40(z0)) G(z∗320(z0)) G(z0) G(z∗40(z0)) G(z∗320(z0))

Fig. 5. Preservation of diversity, in particular with budget 40, when α = 0.
We present triplets PGAN(z), PGAN(z∗40(z)) = EvolGAN(PGAN, b = 40, α =
0, z), PGAN(z∗320(z)) = EvolGAN(PGAN, b = 320, α = 0, z), i.e. in each case the
output of PGAN and its optimized counterpart with budgets 40 and 320 respectively
(images 1, 4, 7, 10, 13, 16, 19, 22 are the G(z) and images 2, 5, 8, 11, 14, 17, 20,
23 are their counterparts G(z∗40(z)) for budget 40; indices +1 for budget 320). With
α = 1 (unpresented) PGAN(z) and EvolGANPGAN,b,α,z are quite different, so that
we can not guarantee that diversity is preserved. With α = 0 diversity is preserved
with b = 40: for each of these 8 cases, the second image (b = 40) is quite close to the
original image, just technically better — except the 8th one for which G(z) is quite
buggy and EvolGAN can rightly move farther from the original image. Diversity is less
preserved with b = 320: e.g. on the top right we see that the dress becomes shorter at
b = 320.
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b Frequency

α = 0

40 73.33 ± 8.21% (30 ratings))
320 75.00 ± 8.33% (28 ratings))

40 and 320 aggreg. 74.13 ± 5.79% (58 ratings))

α = 1

40 48.27 ± 9.44% (29 ratings)
320 67.74 ± 8.53% (31 ratings)

40 and 320 aggreg. 58.33 ± 6.41% (60 ratings)

α =∞

40 56.66 ± 9.20% (30 ratings)
320 66.66 ± 9.24% (27 ratings)

40 and 320 aggreg. 61.40 ± 6.50% (57 ratings)

All α aggregated

40 59.55 ± 5.23% (89 ratings)
320 69.76 ± 4.98% (86 ratings)

40 and 320 aggreg. 64.57 ± 3.62% (175 ratings)

Table 6. Frequency (a.k.a score) at which various versions of EvolGANPGAN,b,α,z =
PGAN(z∗(z0)) were preferred to their starting point PGAN(z) on the FashionGen
dataset. This experiment is performed with Koncept512 as a quality estimator. In
most experiments we get the best results with α = 0 and do not need more than a
budget b = 40. The values are greater than 50%, meaning that EvolGAN improves the
original PGAN network on FashionGen according to human preferences.

generated images from the PGAN model, and from EvolGAN models based on it,
using the LPIPS score. The scores were computed on samples of 50, 000 images
generated with each method. For each sample, we computed the LPIPS with
another randomly-chosen generated image. The results are presented in Table 4.
Higher values correspond to higher diversity of samples. EvolGAN preserves the
diversity of the images generated when used with α = 0.

4.5 Using AVA rather than Koncept512

In Table 7 we show that AVA is less suited than Koncept512 as a quality assessor
in EvolGAN. The human annotators do not find the images generated using
EvolGAN with AVA to be better than those generated without EvolGAN. We
hypothesize that this is due to the subjectivity of what AVA estimates: aesthetic
quality. While humans generally agree on the factors accounting for the technical
quality of an image (sharp edges, absence of blur, right brightness), annotators
often disagree on aesthetic quality. Another factor may be that aesthetics are
inherently harder to evaluate than technical quality.
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EvolGAN1,∞ = G EvolGAN10,∞ EvolGAN20,∞ EvolGAN40,∞

EvolGAN10,∞ 34.8
EvolGAN20,∞ 52.0 42.8
EvolGAN40,∞ 39.1 32.0 36.4
EvolGAN80,∞ 52.2 52.2 40.9 56.0%

EvolGAN10−80,∞ 44.5% ± 5.0%
(aggregated)

500 50.55 ± 3.05 %

(a) Faces with StyleGAN2: reproducing Table 2 with AVA in lieu of Koncept512.

Dataset Budget b Quality estimator score

Cats 300 AVA 47.05 ±7.05%
Artworks 300 AVA 55.71 ± 5.97 %

(b) Reproducing Table 3 with AVA in lieu of Koncept512.

Type Number of Number of Budget Quality α Frequency
of of training b estimator of image

images images epochs preferred to original

Mountains 84 4900 500 AVA 0 42.5%
Pokemons 1840 4900 500 AVA 0 52.6%
Pokemons 1840 4900 500 AVA 1/13 52.6%

(c) Reproducing Table 5 with AVA rather than Koncept512.

Table 7. Testing AVA rather than Koncept512 as a quality estimator. With AVA,
EvolGAN fails to beat the baseline according to human annotators.

5 Conclusion

We have shown that, given a generative model z 7→ G(z), optimizing z by an
evolutionary algorithm using Koncept512 as a criterion and preferably with α =
0 (i.e. the classical (1 + 1)-Evolution Strategy), leads to

• The generated images are preferred by humans as shown on Table 3 for
StyleGAN2, Table 5 for PokeGan and Table 6 for PGAN on FashionGen

• The diversity is preserved, as shown on Fig. 5 and Table 4, when using a
small value for α (see Section 3.2).

Choosing α. α small, i.e., the classical (1 + 1)-Evolution Strategy with
mutation rate 1/d, is usually the best choice: we preserve the diversity (with
provably a small number of mutated variables, and experimentally a resulting
image differing from the original one mainly in terms of quality), and the im-
provement compared to the original GAN is clearer as we can directly compare
EvolGANG,b=d,α=0,z to G(z) — a budget b ≃ d/5 was usually enough. Im-
portantly, evolutionary algorithms clearly outperformed random search and not
only in terms of speed: we completely lose the diversity with random search,
as well as the ability to improve a given point. Our application of evolution
is a case in which we provably preserve diversity — with a mutation rate
bounded by max(α, 1/d), and a budget b = d/5, and a dimension d, we get
an expected ratio of mutated variables at most b ×max(α, 1/d). In our setting
b = 40, d = 256, α = 0 so the maximum expected ratio of mutated variables is



14 B. Roziere et al.

at most 40/256 in Fig. 5. A tighter, run-dependent bound, can be obtained by
comparing z0 and z∗(z0) and could be a stopping criterion.

Successes. We get an improved GAN without modifying the training. The
results are positive in all cases in particular difficult real-world data (Table 3),
though the gap is moderate when the original model is already excellent (faces,
Table 2) or when data are not real-world (Pokemons, Table 5.EvolGAN with
Koncept512 is particularly successful on several difficult cases with real-world
data—Mountains with Pokegan, Cats, Horses and Artworks with StyleGAN2
and FashionGen with Pytorch Gan Zoo.

Remark on quality assessement. Koncept512 can be used on a wide range
of applications. As far as our framework can tell, it outperforms AVA as a tool
for EvolGAN (Table 7). However, it fails on artificial scenes such as Pokemons,
unless, we use a small α for staying local.

Computational cost. All the experiments with PokeGAN presented here
could be run on a laptop without using any GPU. The experiments with Style-
GAN2 and PGAN use at most 500 (and often just 40) calls to the original GAN,
without any specific retraining: we just repeat the inference with various latent
vectors z chosen by our evolutionary algorithm as detailed in Section 3.1.
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