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Abstract
Space-filling designs such as Low Discrepancy
Sequence (LDS), Latin Hypercube Sampling
(LHS) and Jittered Sampling (JS) were proposed
for fully parallel hyperparameter search, and were
shown to be more effective than random and grid
search. We prove that LHS and JS outperform
random search only by a constant factor. Conse-
quently, we introduce a new sampling approach
based on the reshaping of the search distribu-
tion, and we show both theoretically and numeri-
cally that it leads to significant gains over random
search. Two methods are proposed for the re-
shaping: Recentering (when the distribution of
the optimum is known), and Cauchy transforma-
tion (when the distribution of the optimum is un-
known). The proposed methods are first validated
on artificial experiments and simple real-world
tests on clustering and Salmon mappings. Then
we demonstrate that they bring performance im-
provement in a wide range of expensive artifi-
cial intelligence tasks, namely attend/infer/repeat,
video next frame segmentation forecasting and
progressive generative adversarial networks.

1. Introduction
One-shot optimization is a critical component of parallel
hyperparameter search (Bergstra and Bengio, 2012; Bous-
quet et al., 2017). It consists in approximating the minimum
of a function f by its minimum minx∈X f(x) over a finite
subset X = {x1, . . . , xn} of points provided by a sampler,
i.e., a generator of points sets. A straightforward sampler
generates points sets independently and randomly. Despite
its simplicity, Bergstra and Bengio (2012) pointed out that
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such random sampling is robust and outperforms grid sam-
pling. However space-filling designs such as Low Discrep-
ancy Sequences (LDS), Latin Hypercube Sampling (LHS)
or Jittered Sampling (JS) are good candidates because they
aim at distributing the points more diversely than indepen-
dent random sampling. In particular, Bousquet et al. (2017)
advocated a specific variant of LDS, namely scrambled-
Hammersley (Hammersley, 1960; Atanassov, 2004). While
LDS performance is well known for numerical integration
(Koksma, 1942), their use for one-shot optimization - and a
fortiori for hyperparameter tuning - is far less explored. We
quantify the benefit of LDS, LHS and JS approaches and,
looking for more headroom, propose the concept of distri-
bution reshaping, i.e., using a search distribution different
from the prior distribution of the optimum.

Space-filling vs reshaping: the two components of one-
shot optimization. Let us distinguish two probability dis-
tributions: the prior probability distribution P0 of the op-
timum and the search probability distribution Ps. When
P0 is known, random sampling boils down to choosing the
search distribution Ps = P0 and applying independent sam-
pling. The aforementioned space-filling designs (LDS, LHS,
JS), compared to random sampling, relax the assumptions
that the samples are independently drawn according to Ps.
The state of the art already contains many results in this
field: we add some mathematical proofs, and propose a new
paradigm, namely Reshaping, which goes one step further
and relax the condition Ps = P0. This modification origi-
nates from Theorem 1 which shows that, surprisingly, even
if the optimum is randomly drawn as a standard normal dis-
tribution in an artificial problem (e.g. we know a priori that
the optimum x∗ is randomly drawn as a standard Gaussian
and the objective function is x 7→ ‖x− x∗‖2), the optimal
search distribution is not that Gaussian distribution. Hence,
inspired by Rahnamayan and Wang (2009); Rahnamayan
et al. (2007), we propose reshaped versions using Ps spikier
than P0 around the center: addition of a middle point and,
by extension, our Recentering reshaping. On the other hand,
the Cauchy reshaping is driven by distinct considerations: it
compensates the corner avoidance property characterizing
some space-filling designs (Owen, 2006; Hartinger et al.,
2005) and counterbalances the risk of expert errors on the
correct hyperparameter’s range, i.e., unknown P0.

Contributions. We first study the case Ps = P0 in Sec-
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Table 1: Comparison between non-reshaped sampling methods. Red boxed results are contributions of the
paper. The sequences of samples are of size n in dimension d. Cd is a dim-dependent known constant.
Results are O(.) unless stated otherwise. Constant factors depend on the d unless d is mentioned.

Sequence Discrepancy + Incrementality Randomized, Stochastic Stochastic dispersion
(see SM) PDF> 0† dispersion‡ preserved by projection∗

LHS Θ(
√
d/n) 2n, optimal yes 1/n1/d yes

(Doerr et al., 2018) (SM) (Prop. 2) (straightforward)
Grid 1/n1/d no no 1/n1/d no

(straightforward) (straightforward)

Jittered
√
d logn/n1/2+1/2d 2dn, optimal yes 1/n1/d yes

(Pausinger et al, 2016) (SM) (Prop. 3) (Prop. 3)

Random log log(n)
1
2 /
√
n +1 yes 1/n1/d yes

(Kiefer, 1961) (straightforward) (straightforward)
Halton (1 + o(1))× +1 no 1/n1/d # yes but #

Cd(logn)d/n different constant

Hammersley (1 + o(1))Cd× not n+ k log(n)d−ε no 1/n1/d # yes but#

(logn)d−1/n (SM) ε ≤ 1, k ≤ n− 1 different constant
Scrambled as Halton, +1 no 1/n1/d # yes but #

Halton better constant different constant

Scrambled as Hammersley, not n+ k log(n)d−ε no 1/n1/d # yes but #

Hammersley better constant (SM) ε ≤ 1, k ≤ n− 1 different constant
Sobol as Halton +1 no log(n)/n1/d yes but dif. const. |

Random as original LDS (up to as original LDS yes as original LDS (up to
-Shift LDS dim-dependent factor) dim-dependent factor)

+ The discrepancy of a projection Π(S) of a sequence S, when Π is a projection to a subset of indices, is less or equal to the discrepancy of S.
Therefore we do not discuss the stability of the sequence in terms of discrepancy of the projection to a subspace, contrarily to what we do for
dispersion (for which significant differences can occur, between S and Π(S)).
† ”randomized, PDF> 0” means that the sampling is randomized with a probability distribution function (averaged over the sample) strictly positive

over all the domain.
‡ Optimal rate isO(1/n1/d) (Sukharev, 1971). We do get the dependency in d, namelyO(

√
d/n1/d), for random, LHS and JS.

∗We consider subspaces parallel to axes, i.e. switching to a subset of d′ indices. We request that the dependency in d dimension becomes d′.
| The bound on the distance to the optimum is an application of the discrepancy, and low discrepancy is preserved by switching to a subspace, hence

this positive result.
# Constants depend on which variables are in the subspace - first hyperparameters are “more” uniform (Bousquet et al., 2017).

tion 3. We focus on the measure called stochastic dispersion
(see Section 2) which was identified as a good indicator of
the performance of a space-filling design in the context of
one-shot optimization methods (Bousquet et al., 2017). We
prove some bounds for LHS and JS in terms of stochastic
dispersion and additionally we analyze the case of limited
number of critical variables (see Section 2). Critical vari-
ables appear when some of the variables have a strong im-
pact on the objective function whereas the others have a
negligible impact. This is evaluated in terms of stochastic
dispersion preserved by projection. New results are pre-
sented together with the state of the art in a more general
framework, including 8 other space-filling strategies and 3
other performance indicators, in Table 1. It turns out that
these new bounds are actually close to those of random
search.

Given this limited headroom, we propose reshaping in Sec-
tion 4, i.e., changing the search distribution, in two distinct
variants. First, even if the prior probability distribution of
the optimum is known, we use a search distribution tight-
ened closer to the center of the domain, in a dimension-
dependent and budget-dependent manner (Section 4, Recen-
tering). Second - and possibly simultaneously, in spite of the

apparent contradiction - we use Cauchy counterparts, which
has a heavier tail, for searching closer to the boundaries (for
bounded hyperparameters) or farther from the center (for
unbounded hyperparameters). We show that Ps different
from P0 is theoretically better in Section 4. Experiments in
which the prior P0 is known (Section 5.1), and then with
an unknown prior (Section 5.2), validate this reshaping ap-
proach.

2. Samplers: Definition and Evaluation
For simplicity, we always considerD = [0, 1]d as the search
domain and n the number of points in the sequence.

2.1. Space-filling designs

We consider the following sampling strategies (space-filling
designs), aimed at being “more uniform” than independent
random search.

Grid picks up the middle of each of kd hypercubes covering
the unit hypercube, with k maximum such that kd ≤ n. We
then sample n− kd additional random points uniformly in
the domain.
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Table 2: Artificial objective functions from Nevergrad (see text) with P0 known: for each combination (dimension
d ∈ {3, . . . , 600}, budget n ∈ {30, . . . , 30000}), we mention the name of the method which had the best frequency of
outperforming other methods, for that combination, over all objective functions. In this context, Cauchy distributions do not
help much. We emphasize in bold the method that most often, over all cells, performed best. O, QO, Rescale, Recentering,
etc: see terminology in Section 5.1.2.

30 100 300 1000 3000 10000 30000 100000 300000
3 Scr Halton Scr Halton

Plus Middle
Point

O Rctg1.2
Scr Halton

O Scr Ham-
mersley

Cauchy
Rctg.55 Scr
Hammers-
ley

Cauchy
Rctg.55 Scr
Hammers-
ley

Scr Ham-
mersley

O Rctg.7
Scr Halton

Random

18 Scr Halton
Plus Middle
Point

Scr Halton
Plus Middle
Point

O Rctg.7
Scr Halton

Scr Halton Rctg1.2 Scr
Hammers-
ley

O Rctg.4
Scr Ham-
mersley

Meta Rctg Cauchy
Rctg.55 Scr
Hammers-
ley

O Rctg.7
Scr Halton

25 Meta Rctg Rctg.4 Scr
Halton

O Rctg.4
Scr Halton

Meta Rctg Rctg.7 Scr
Hammers-
ley

Rctg.7 Scr
Hammers-
ley

O Rctg.7
Scr Halton

O Rctg.7
Scr Ham-
mersley

Rctg.7 Scr
Halton

100
Q O Rctg.4
Scr Ham-
mersley

Meta Rctg Rctg.4 Scr
Halton

Meta Rctg Rctg.4 Scr
Hammers-
ley

O Rctg.7
Scr Halton

Rctg.4 Scr
Halton

O Rctg.4
Scr Halton

Rctg.4 Scr
Hammers-
ley

150
O Rctg.4
Scr Ham-
mersley

Q O Rctg.4
Scr Ham-
mersley

Meta Rctg O Rctg.4
Scr Ham-
mersley

Q O Rctg.7
Scr Ham-
mersley

Rctg.4 Scr
Halton

O Rctg.7
Scr Ham-
mersley

Meta Rctg Meta Rctg

600
Rctg.4 Scr
Halton

Rctg.4 Scr
Hammers-
ley

O Rctg.4
Scr Ham-
mersley

Meta Rctg Meta Rctg Rctg.4 Scr
Halton

Rctg.4 Scr
Hammers-
ley

Meta Rctg Rctg.4 Scr
Halton

Latin Hypercube Sampling (LHS) Eglajs and Audze
(1977); McKay et al. (1979) defines σ1, . . . , σd, random
independent permutations of {0, . . . , n} and then for 0 ≤
i ≤ n, the jth coordinate of the ith point of the sequence is
given by (xi)j = (σj(i) + ri,j)/(n+ 1) where the ri,j are
independent identically distributed, uniformly in [0, 1].

Jittered sampling consists in splitting D into n = kd (as-
suming that such a k exists) hypercubes of volume 1/kd and
drawing one random point uniformly in each of these hy-
percubes (Pausinger and Steinerberger, 2016). Other forms
of jittered sampling exist, e.g., with different numbers of
points per axis.

Low Discrepancy Sequences (LDS) are also called
quasi-random sequences. This is the case for Hal-
ton, Hammersley and Sobol sequences. Halton (Hal-
ton, 1960) defines the jth coordinate of the ith point
of the sequence as (xi)j = radixInverse(i, pj) where:
(1) p0, . . . , pd−1 are coprime numbers. Typically, but
not necessarily, pi is the (i + 1)th prime number. (2)
radixInverse(k, p) =

∑
j≥0 ajp

−j with (aj)j≥0 being
the writing of k in basis p, i.e., k =

∑
j≥0 ajp

j . Hammers-
ley’s sequence is given by (xi)j = radixInverse(i, pj−1)

when j > 0 and (xi)0 =
i+ 1

2

n , see (Hammersley, 1960).
Sobol’s sequence (Sobol, 1967) is another advanced quasi-
random sequence.

We use various modifiers of the samplers, detailed in supple-
mentary material (SM). Random shift consists in adding a
random vector in the unit hypercube and applying modulo
1 (Tuffin, 1996). It is applicable to all samplers. Scram-
bling (Owen, 1995; Tuffin, 1998; Atanassov, 2004) affects

only Halton and Hammersley sequences. Other modifica-
tions are based on reshaping (Section 4).

2.2. Performance measures and proxies.

Given a domain D, the stochastic dispersion (Bousquet
et al., 2017) of a random variable X = (x1, . . . , xn) in Dn
is defined as

sdisp(X) = sup
x∗∈D

EX inf
1≤i≤n

‖xi − x∗‖,

where ‖ · ‖ is the Euclidean norm.

The stochastic dispersion is related to an optimization crite-
rion, namely the simple regret (Bubeck et al., 2009). More
precisely, it corresponds to the simple regret, for the worst
case over x∗ ∈ [0, 1]d, of the one-shot optimization of a
function equal to x 7→ ‖x − x∗‖ with a given sampling
method.

Critical vs useless variables. We consider the case in
which there are d′ unknown variables (termed critical vari-
ables) with an impact on the objective function whereas
d− d′ variables (the useless variables) have no impact.

3. Are Space-Filling Designs All Equal ?
In this section, we work within the framework of a search
distribution Ps equal to the prior distribution P0. We show
that LHS and JS can only improve results by a constant
factor, even in the case of critical variables: this is the
key reason for introducing reshaping in Section 4. See the
supplementary material for proofs.

Let us first mention Property 1, a known property of random
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search that enables us to compare the stochastic dispersion
of random search with the one of LHS and JS.
Property 1. Consider x∗ an arbitrary point in [0, 1]d. Con-
sider x1, . . . , xn a sequence generated by random search.
Then, for any δ ∈]0, 1[,

P
(
min
i
‖xi − x∗‖ ≤ εd,n,δ

)
≥ 1− δ

where εd,n,δ = O
(

log(1/δ)1/d

(nVd)1/d

)
and Vd is the volume of

{x ∈ Rd; ‖x‖ ≤ 1}.

3.1. Stochastic dispersion of LHS and JS

We now establish a similar bound for LHS and JS in Proper-
ties 2 and 3.

Property 2. Consider x∗ an arbitrary point in [0, 1]d and
x1, . . . , xn a sample generated via LHS. Then for any
δ ∈]0, 1[,

P
(
min
i
‖xi − x∗‖ ≤ εd,n,δ

)
≥ 1− δ

where εd,n,δ = O
(√

d log(1/δ)1/d/n1/d
)

.

This shows that the stochastic dispersion of LHS is opti-
mal, i.e., it decreases at the optimal rate O(

√
d/n1/d) also

guaranteed by Sukharev grids (Sukharev, 1971). This is the
same as random search.
Property 3 (Jittered sampling has optimal dispersion after
projection on a subset of axes). Consider x∗ an arbitrary
point in [0, 1]d

′
. Consider jittered sampling with n = kd

points. Consider its projection on the d′ ≤ d first coordi-
nates1. Let x1, . . . , xn be these projected points. Then, for
any δ ∈]0, 1[,

P

(
min
i
‖xi − x∗‖ ≤ 21+1/d′ log(1/δ)

1/d′

(Vd′n)1/d
′

)
≥ 1− δ

where Vd is as defined in Property 1.

Hence Jittered Sampling benefits from the same stochas-
tic dispersion bounds as random search and LHS, namely

O

(√
d′ log(1/δ)1/d

′

n1/d′

)
- and for all those methods, this is

valid for a restriction to d′ variables as, contrarily to low-
discrepancy sequences, the restriction to a subset does not
penalize the stochastic dispersion.
Corollary 1. Prop. 1, 2 and 3 give the following bounds
on the stochastic dispersion of LHS, JS and random search
for a restriction to d′ variables of a sampling in [0, 1]d:

O

(√
d′

d′
√

log(1/δ)

n1/d′

)
.

1Without loss of generality; we might consider a projection to
d′ arbitrarily chosen coordinates.

3.2. Space-filling designs: state of the art

These results are to be compared with the state of the art
presented in Table 1. In particular, every sampler but one
(Sobol) is known optimal in terms of stochastic dispersion.
Furthermore, LHS and JS are entirely preserved by pro-
jection to any subspace - as opposed to low discrepancy
sequences, for which only segments of initial variables keep
the same constants in discrepancy or dispersion bounds. We
note that Table 1 also present bounds on discrepancy and
incrementality results: these performance criteria are not di-
rectly related to our experimental framework. Nonetheless,
they are suitable in other contexts, so we present them for
the sake of exhaustive comparison between these samplers
(see SM, Section 2).

4. Theory of Reshaping: Middle Point &
Recentering

Interestingly, in the context of the initialization of differ-
ential evolution (Storn and Price, 1997), Rahnamayan and
Wang (2009) proposed a sampling focusing on the middle.
Their method consists in adding, for each point x sampled
in the domain [−1, 1]d, a point −r × x for r uniformly
drawn in [0, 1]. This combines opposite sampling (which
corresponds to the−1 factor, also used for population-based
optimization in Teytaud et al. (2006)) and focus to the cen-
ter (multiplication by a constant < 1): their method is
termed quasiopposite sampling. Consider dimension d and
x∗ randomly normally distributed with unit variance in Rd.
Consider x1, . . . , xn, independently randomly normally dis-
tributed with unit variance in Rd. The median of ‖x∗‖2
is denoted m0 and the median of mini≤n ‖xi − x∗‖2 is
denoted mn. We first note Lemmas 1 and 2.
Lemma 1. m0 is equivalent to d as d→∞.
Lemma 2. P (‖x1 − x∗‖2 ≤ mn) ≥ 1

2n .

We now note that
∥∥∥ 1√

2
(x1 − x∗)

∥∥∥2

follows a χ2 distribution
with d degrees of freedom.
Lemma 3. By Chernoff’s bound for the χ2

distribution, P
(
‖x1 − x∗‖2 ≤ d(1 + o(1))

)
≤(

(1 + o(1)) 1
2 exp( 1

2 )
)d/2

.
Theorem 1. Consider n > 0. There exists d0 such that
for all d > d0, if X is a random sample of n indepen-
dent standard normal points in dimension d, if x∗ is a ran-
dom independent normal point in dimension d, then, unless
n ≥ 1

2

(
(1 + o(1)) 1

2 exp( 1
2 )
)−d/2

, the median of the mini-
mum distance minx∈X ‖x− x∗‖ is greater than the median
of the distance ‖x∗ − (0, . . . , 0)‖.

This shows the surprising fact that a single point, in the
middle, outperforms the best of n randomly drawn points.
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Figure 1: Cauchy vs Gauss on the Attend/Infer/Repeat
model. For each setting in {random, LHS, ScrambledHam-
mersley}, we reach better loss values when switching to the
Cauchy counterpart. The P-value 0.05 validates Cauchy vs
Normal. See SM, Section 3.4, for validation in terms of
counting objects.

If we consider a fixed budget n, having n points equal to 0
is pointless. So we can consider n− 1 standard independent
normal points, plus a single middle point: this is our mod-
ification “plus middle point”. Later, we will also propose
another related reshaping, namely tightening the distribution
closer to the center: the Recentering method. Then we will
see a distinct reshaping, namely switching to the Cauchy
distribution.

Recentering (Rctg for short) reshaping. Consider opti-
mization in [0, 1]d. Given a sample S, and using g the
cumulative distribution function of the standard Gaussian,
the Rctg reshaping consists in concentrating the distribution
towards (0.5, . . . , 0.5): it considers {c(s) | s ∈ S} rather
than S, with

c(s) = g(λ× g−1(s1)), . . . , g(λ× g−1(sd)). (1)

λ = 0 sets all points to the middle of the unit hypercube.
λ = 1 means no reshaping. With MetaRecentering, we
consider specific values of λ. Preliminary experimental
results lead to the specification of MetaRctg, using the
dimension and the budget for choosing the parameter λ
of the Recentering reshaping as follows. MetaRctg uses
Scrambled-Hammersley and Rctg reshaping with

λ =
1 + log(n)

4 log(d)
. (2)

Cauchy. When using the Cauchy distribution, we get
c(s) = g(λ × C−1(s1)), . . . , g(λ × C−1(sd)) with C the
Cauchy cumulative distribution function. Extension to un-
bounded hyperparameters. g(.) can be removed from
those equations when we consider sampling in Rd rather
than in [0, 1]d: we then get c(s) = λ × g−1(s1), . . . , λ ×
g−1(sd) in the normal case. g can also be applied selec-
tively on some variables and not on others when we have
both bounded and unbounded hyperparameters.

5. Experiments
See SM for reproduction of all our artificial experiments
with one-liners in the Nevergrad platform (Rapin and Tey-
taud, 2018), for the Nevergrad “oneshot” experiment (SM,
Section 4, or the website (Rapin and Teytaud, 2018)) which
shows a clear success of MetaRecentering, and for addi-
tional deep learning experiments with F2F5 (Luc et al., 2018)
(SM, Section 3.5). We first test our baselines in an artificial
setting with P0 known and without any reshaping (Section
5.1.1). We then check that Recentering works in such a
context of P0 known (Section 5.1.2). Then we switch to P0

unknown (Section 5.2). We evaluate the impact of Cauchy
(Section 5.2.1). We then combine Recentering and Cauchy
(Section 5.2.2 and 5.2.3). We conclude that Cauchy is vali-
dated for unknown P0 and that Recentering works if P0 is
known or, to some extent, if the underlying data are prop-
erly rescaled (Table 3, as opposed to the wildly unscaled
problems in Table 4).

5.1. When the prior P0 is known

There are real world cases in which P0 is known, typically
when many optimization runs are performed in a row:

• in maximum likelihood maximization for item re-
sponse theory repeated for estimating the parameters
of many questions (Jia et al., 2019),

• in the ELO evaluation of many gamers from their
records,

• in repeated hyperparametrization of cloud-based ma-
chine learning (Allaire, 2018),

• in repeated optimization of industrial oven parame-
ters (Cavazzuti et al., 2013) for distinct scope state-
ments.

Another case is when the objective function is the worst
outcome over a family of scenarios, to be approximated by a
finite sample corresponding to ranges of independent exoge-
nous variables (dozens of annual weather parameters and
financial parameters), as usually done in network expansion
planning (Escobar et al., 2008; Li et al., 2016).

5.1.1. P0 KNOWN AND Ps = P0: CONFIRMING THE
STATE OF THE ART

While we use mainly real-world experiments in the present
paper, we draw the following conclusions from synthetic
experiments with controlled P0 and without reshaping, us-
ing classical objective functions from the derivative-free
literature, various budgets and all samplers defined above.
The detailed setup and results are reported in SM, Section
3.2; they confirm results in Bergstra and Bengio (2012);
Bousquet et al. (2017) as follows:

• Many low discrepancy methods (e.g. Halton, Hammer-
sley and their scrambled counterparts) depend on the
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Table 3: Experiments on the Nevergrad real-world rescaled testbed with d ∈ {10, . . . , 120} and n ∈ {25, . . . , 12800}. This
experiment termed “oneshotscaledrealworld” corresponds to real-world test cases in which a reasonable effort for rescaling
problems according to human expertise has been done; P0 is not known, but an effort has been made for rescaling problems
as far as it is easily possible. Dimension from 10 to 120, budget from 25 to 12800. There is no prior knowledge on the
position of the optimum in this setting; MetaRctg did not perform bad overall but Cauchy variants dominate many cases, as
well as rescaled versions which sample close to boundaries. Hmsley stands for Hammersley, Cchy for Cauchy, Rctg for
Recentering. We emphasize in bold the method performing best overall; variants of CauchyRctg often performed best - most
often with a constant < 1, i.e. with a recentering peaked towards the center. All samplers are tested in both variants, normal
and Cauchy. This validates both Recentering and Cauchy, but Eq. 2 (“Meta” choice of λ) was moderately confirmed here.
O, QO, Rescale, Recentering, etc: see terminology in Section 5.1.2.

25 50 100 200 400 800 1600 3200 6400 12800
10 Hmsley

Plus Middle
Point

Scr Hmsley
Plus Middle
Point

Scr Hmsley Rctg.7 Scr
Halton

Halton Meta Rctg Random
Plus Middle
Point

L H S Halton Halton Plus
Middle
Point

20 Scr Hmsley Scr Halton
Plus Middle
Point

Scr Halton Scr Halton Halton Plus
Middle
Point

L H S O Random L H S Hmsley Hmsley

30 Rescale Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Meta Cchy
Rctg

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.4 Scr
Hmsley

40 Scr Hmsley Scr Hmsley
Plus Middle
Point

Scr Halton
Plus Middle
Point

Scr Hmsley
Plus Middle
Point

Scr Halton
Plus Middle
Point

Random Scr Hmsley L H S Random
Plus Middle
Point

Scr Hmsley
Plus Middle
Point

60 Rescale Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.7 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.7 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Meta Cchy
Rctg

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.4 Scr
Hmsley

120
Rescale Scr
Hmsley

Cchy
Rctg.7 Scr
Hmsley

Cchy
Rctg.7 Scr
Hmsley

Cchy
Rctg.7 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

Cchy
Rctg.55 Scr
Hmsley

order of hyperparameters - intuitively there is “more”
low discrepancy for the first variables: our experiments
in optimization confirm that low discrepancy meth-
ods are better when variables with greater impact on
the objective function are first. With scrambled low-
discrepancy methods, results are less penalized (but
still penalized) when important variables are last.

• LHS is robust to the order of variables and, therefore,
performs well for a small number of randomly posi-
tioned critical variables.

Besides confirming the state of the art, these experiments
also confirm that adding a single middle point helps, in
particular in high dimension. Among methods using Ps =
P0, Scrambled-Hammersley plus middle point is one of the
best methods in this simplified setting (though one can point
out that adding a middle point is not exactly Ps = P0, so
this is a first step towards reshaping).

5.1.2. RESHAPED SPACE-FILLING DESIGN:
RECENTERING WORKS

We present an experiment on objective functions Sphere,
Rastrigin and Cigar, with 100% or 16.67% of critical vari-
ables (i.e. in the latter case we add 5 randomly positioned
useless variables for each critical variable), with budget in
{30, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000},
with 3, 25 or 100 critical variables. We compare Rctg reshap-
ing with constant λ ∈ {0.01, 0.1, 0.4, 0.55, 1.0, 1.2, 2.0},

the same Rctg reshaping plus opposite sampling or
quasi-opposite sampling, on top of LHS, Scrambled-Halton,
Scrambled-Hammersley or pure random sampling; we
consider the inverse cumulative distribution functions of
Gauss or Cauchy as conversion tools from [0, 1]d to Rdas
discussed above. Given the different contexts regarding the
number of critical/useless variables previously mentioned,
we get dimension 3, 18, 25, 100, 150, 600. The context
is still P0 perfectly known (standard Gaussian). This is
reproducible with a one-liner “oneshotcalais” in Nevergrad
(see SM). Results are presented in Table 2 and validate
Recentering, in particular in its Meta version (Eq. 2), as
soon as P0 is known. We have here 7400 replicas per
run. We use several modifiers for the “original” sampling
methods (original in the sense before consider Ps 6= P0):
(i) O refers to opposite; (ii) QO refers to quasiopposite;
(iii) Rescale refers to linearly rescaling to the boundaries:
given points x1, . . . , xi, . . . , xn in Rd with coordinates
xi,1, . . . , xi,j , . . . , xi,d, we define a Rescale counterpart
by x′i,j = (x′i,j −mj)/(Mj −mj) with mj = mini xi,j
and Mj = maxj xi,j ; (iv) Plus Middle Point refers to
sampling n − 1 points instead of n and adding a middle
point; (v) Recentering (Rctg) refers to Eq. 1 (Eq. 2 for
MetaRecentering). They can all be applied on top of other
methods. Recentering has a parameter λ: RctgX refers to
λ = X . For example, Rctg1.2-ScrHammersley refers to
Hammersley, equipped with scrambling and recentering
with parameter λ = 1.2. MetaRctg refers to Scrambled
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Table 4: Counterpart of Table 3 with the experiment termed “oneshotunscaledrealworld” in Nevergrad, which contains more
problems, including many for which no rescaling effort has been made, with d ∈ {10, . . . , 675} and n ∈ {25, . . . , 12800}.
Rctg does not make sense in this “totally unknown P0” setting, but we still see a lot of Cauchy counterparts or Rescaled
versions, showing that focusing close to boundaries (for bounded hyperparameters) or on large values (for unbounded
hyperparameters) makes sense. The contrast with Table 3 in which CauchyMetaRctg and close variants such as CauchyRctg
with λ = .55 perform well suggest the unsurprising fact that scaling parameters and data is a good idea for generic methods,
such as MetaRctng, to be effective. In bold, the two methods performing best most often in the present totally unscaled
setting.

25 50 100 200 400 800 1600 3200 6400 12800
10 Scr Halton

Plus Middle
Point

Rescale Scr
Hmsly

Scr Hmsly Rescale Scr
Hmsly

Meta Rctg Rescale Scr
Hmsly

Rescale Scr
Hmsly

Scr Hmsly L H S Scr Hmsly
Plus Middle
Point

15 Cchy Scr
Hmsly

Cchy Ran-
dom

Cchy LHS Cchy LHS Rctg20 Scr
Halton

Cchy Scr
Hmsly

Cchy Scr
Hmsly

Cchy Rct-
g12 Scr
Hmsly

Cchy Scr
Hmsly

Cchy Rct-
g12 Scr
Hmsly

20 L H S Random Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Hmsly Plus
Middle
Point

30 Cchy Ran-
dom

Cchy LHS Cchy LHS Cchy Ran-
dom

Cchy Ran-
dom

Cchy LHS Cchy Ran-
dom

Cchy LHS Cchy Ran-
dom

Cchy Ran-
dom

40 Rctg12 Scr
Halton

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

Rescale Scr
Hmsly

O Random Rescale Scr
Hmsly

Random

60 Cchy LHS Cchy Ran-
dom

Cchy LHS Cchy Rctg7
Scr Hmsly

Cchy LHS Cchy Rctg7
Scr Hmsly

Cchy Ran-
dom

Cchy LHS Cchy LHS Cchy Ran-
dom

120
Cchy LHS Cchy LHS Cchy LHS Cchy Ran-

dom
Cchy LHS Cchy Ran-

dom
Cchy Ran-
dom

Cchy Ran-
dom

Cchy Ran-
dom

Cchy LHS

675
Cchy Rct-
g12 Scr
Hmsly

Cchy Rctg4
Scr Hmsly

Cchy Scr
Hmsly

Cchy Ran-
dom

Cchy Rctg7
Scr Hmsly

Cchy Rctg4
Scr Hmsly

Cchy Rctg4
Scr Hmsly

O Rctg20
Scr Halton

Cchy Scr
Hmsly

Meta Cchy
Rctg

Hammersley, equipped with recentering with λ chosen
by Eq. 2. We note that QO, with the multiplication by
a random constant < 1, can be seen as further reducing
the constant. Overall the Rctg reshaping outperforms its
ancestor the quasiopposite sampling (Rahnamayan and
Wang, 2009). MetaRctg turns out to be one of the best
methods overall (see also SM, Section 4), performing
close to the best for each budget/dimension in the present
context of P0 known. These experiments use the artificial
Nevergrad oneshot experiment, for which the distribution
of the optimum is a standardized multivariate normal
distribution. They also show that in such a context (P0

perfectly known) Cauchy is not useful. The next section
will investigate the case of P0 unknown.

5.2. Cauchy-reshaping with P0 unknown

5.2.1. NO P0: CAUCHY FOR ATTEND/INFER/REPEAT

Previous results have validated Recentering (our first pro-
posed reshaping) in the case of P0 known. The second form
of reshaping consists in using the Cauchy distribution when
P0 is unknown: we here validate it. As detailed in Section
4, Cauchy makes sense also without recentering and for
bounded hyperparameters (in that case, it increases the den-
sity close to the boundaries). Fig. 1 presents results on the
Attend, Infer, Repeat (AIR) image generation testbed (Es-
lami et al., 2016). AIR is a special kind of variational au-
toencoder, which uses a recurrent inference network to infer
both the number of objects and a latent representation for

each object in the scene. We use a variant that additionally
models background and occlusions: details are provided in
SM (Section 3.4). We have 12 parameters (initially tuned
by a human expert), namely the learning rates of the main
network and of the baseline network, the value used for gra-
dient clipping, the number of feature maps, the dimension
of each latent representation, the variance of the likelihood,
the variance of the prior distribution on the scale of objects,
and the initial and final probability parameter of the prior
distribution on the number of objects present. The loss
function is the Variational Lower Bound, expressed in bits
per dimension. The dataset consists in 50000 images from
Cifar10 (Krizhevsky et al., 2010) and 50000 object-free
patches from COCO (Lin et al., 2014), split into balanced
training (80% of the samples) and validation sets. For each
space-filling method, the Cauchy counterpart outperforms
the original one.

5.2.2. GENERATIVE ADVERSARIAL NETWORKS
(GANS).

We use Pytorch GAN Zoo (Riviere, 2019) for progressive
GANs (Karras et al., 2018), with a short 10 minutes training
on a single GPU. We optimize 3 continuous hyperparam-
eters, namely leakiness of Relu units in [1e − 2, 0.6], the
discriminator ε parameter in [1e− 5, 1e− 1], and the base
learning rate in [1e−5, 1e−1]. MetaCauchyRctg performed
best (Fig. 2), in spite of the fact that it was designed just
by adding Cauchy to MetaRctg which was designed on
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Figure 2: Experiments on progressive GANs(Karras et al.,
2018; Riviere, 2019); see a discussion of criteria in Borji
(2018). MetaCauchyRctg dominates. All Cauchy variants
(full lines) perform well compared to normal ones (dashed).
The “Meta” choice of the recentering constant (Eq. 2) seem-
ingly performs well though without Cauchy and low budgets
this was not that clear. X-axis = budget. Y-axis = opposite
of inception score, the lower the better (we use opposite
for consistency with other plots in the present paper, which
consider losses to be minimized).

independent distinct artificial experiments in Tab. 2.

5.2.3. NEVERGRAD REAL WORLD EXPERIMENTS
WITHOUT CONTROL OF P0

Nevergrad provides a real world family of experiments,
built on top of the MLDA testbed (Gallagher and Saleem,
2018). This family uses Salmon mappings, clustering, the
tuning of game policies, a few traveling salesman problems,
some electricity production scheduling problems, and oth-
ers: these experiments are cheaper and fully reproducible.
We run all our samplers with 7400 repetitions. We then
check, for each budget/dimension, which method performed
best (Tab. 3): in this real-world context, we can not assume
a standard deviation of 1 for the uncertainty over the op-
timum. The Cauchy sampling with Rctg reshaping 0.55
performs well. It is sometimes outperformed by rescaled
Scrambled-Hammersley, which takes care of pushing points
to the frontier: each variable is rescaled so that the min and
the max of each variable, over the sample, hit the boundaries.
This means that the two best methods can both sample far
from the center: either heavy tail for Cauchy, or sample
rescaled for matching the boundaries. The exact optimal
constant λ does not always match the MetaRecentering scal-
ing proposed in Eq. 2, but is clearly < 1. This setting
does not have a known P0 (just a rough rescaling of un-
derlying data). Still, we now switch to a more challenging
setting in Table 4: we consider the “oneshotunscaledreal-
world” experiment in Nevergrad for a case in which no
rescaling effort was made; we still get a quite good behav-
ior of Cauchy or rescaled variants, but (consistently with
intuition) Recentering does not make sense anymore. As
requested by reviewers, we provide results showing the gap

Context Recommendation XPs
P0 perfectly known MetaRctg Table 2

SM Sec. 4
P0 approx. known (rescaled MetaCchyRctg Table 3

data, normalized params) or CchyRctg.55 Fig 2.
P0 wildly unknown Cchy-LHS Table 4,

(avoid this!) or Rsc-Scr-Hmsly Fig. 1, 3.

Table 5: Practical recommendations.

between methods (as opposed to only frequencies of method
A outperforming method B):

• In Fig. 4, the case Ps = P0, namely budget
∈ {30, 100, 3000, 10000, 30000, 100000}, with func-
tion in {cigar, sphere, rastrigin} and in dimension
∈ {2000, 20000}: we see that MetaCentering performs
quite well in this context.

• In Fig. 3, the gap between methods in the unscaled real-
world cases: we see that Cauchy or Rescale (rescaling
to the boundaries) is the key component explaining the
success of a method.

6. Conclusion
Theoretical results. We showed that LHS and jittered sam-
pling have, up to a constant factor, the same stochastic
dispersion rate as random sampling (Sections 3), including
when restricted to a subset of variables. Low-discrepancy
sequences have good stochastic dispersion rates as well.
However, their performance for a subset of variables de-
pends on the location of those variables - the earlier the
better. Typically they are outperformed by LHS when there
is a single randomly positioned critical variable. Overall,
the benefit of sophisticated space-filling designs turn out to
be moderate, compared to random search or LHS, hence
the motivation for alternative fully parallel hyperparame-
ter search ideas such as reshaping. We then showed that
adding a middle point helps in many high-dimensional cases
(Section 4). This element inspired the design of search dis-
tributions different from the Gaussian one, such as Cauchy
and/or reshaping as in Rctg methods (Section 4) - which
provide substantial improvements.

Practical recommendations. Table 5 surveys our practical
conclusions. Our experiments suggest to use MetaRctg
(Scrambled-Hammersley + Rctg reshaping with λ as in
Eq. 2) when we have a prior on the probability distribu-
tion of the optimum (Tab. 2 and SM, Section 4). Precisely,
with a standard normal prior P0 (use copulas, i.e. mul-
tidimensional cumulative distribution functions, for other
probability distributions), use

xi,j = g

(
1 + log(n)

4 log(d)
g−1(ScrHi,j)

)
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Figure 3: Representation of the Nevergrad experiment “oneshotunscaledrealworld”. For each algorithm, each budget,
each context (the context includes all information representing the test case, i.e. including dimension and objective
function) we consider the average loss. Then, this loss is replaced by its rank (between 0 and 1) among all losses for all
optimizers and all budget values of the experiment, for this same context. Then we plot, for each optimization algorithm
and each budget, the average rank over all contexts. This is therefore a regret, averaged (after representation by rank)
over all test cases. All methods which performed well use either “Rescale” or Cauchy. Methods: all methods here are
publicly available in the Nevergrad platform: Zero just returns (0, . . . , 0), methods with Avg in the name use sophisticated
recommendation methods (i.e. they might recommend a point which was not in the sample). Rescale Scrambled Hammersley
and MetaCauchyRecentering are the two best overall (though for the maximum budget a method using a recommendation
not in the sample x1, . . . , xn performed slightly better).

Figure 4: Representation by rank / averaging of the DOE
experiment in Nevergrad (same method of quantiles/ranks
and averaging as in Fig. 3): in the present context with
known P0, our MetaRecentering performed best for the
maximum budget and among the best for various levels of
the budget. We acknowledge that the mathematically de-
rived MetaTuneRecentering, similar to MetaRecentering but
with better parametrization, does perform better in particular
for large budgets and moderate dimension(Meunier et al.,
2020).

for searching in [0, 1]d with budget n, where ScrHi,j is the
jth coordinate of the ith point in the Scrambled Hammer-
sley sequence and g the Gaussian cumulative distribution
function. In many cases, however, we do not have such a
prior on the position of the optimum: experts provide a cor-
rect range of values for most variables, but miss a few ones.
For those missed ones, the best xi,j values are extreme.
Unfortunately, low-discrepancy methods are weak, by a
dimension-dependent factor, for searching close to bound-
aries - this is known as the corner avoidance effect (Owen,
2006; Hartinger et al., 2005). Therefore low-discrepancy
methods can then perform worse than random. In such a
case, Cauchy helps. A second suggestion is therefore to use
Cauchy in real world cases: we got in Tabs 3 and 4 or for
AIR (Fig. 1) or Pytorch-GAN-zoo (Fig. 2), i.e. all our real-
world experiments, better performances with Cauchy. More
specifically, for real-world problems, rescaling data and
parameters and using CauchyMetaRctg looks like the
best solution - with a minimum of standardization, we got
good results for CauchyMetaRctg in Fig. 2 (just using
human expertise for rescaling) and Tab. 3 (just based on
standardizing underlying data, so no real known prior P0).
When a proper scaling is impossible, we still get good per-
formance for Cauchy variables but λ is impossible to guess
so that the best method varies from one case to another (Ta-
ble 4) - Cauchy-LHS and Rescale-Scr-Hammersley being
the most stable.
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