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Introduction

One-shot optimization is a critical component of parallel hyperparameter search [START_REF] Bergstra | Random search for hyperparameter optimization[END_REF][START_REF] Bousquet | Critical hyper-parameters: No random, no cry[END_REF]. It consists in approximating the minimum of a function f by its minimum min x∈X f (x) over a finite subset X = {x 1 , . . . , x n } of points provided by a sampler, i.e., a generator of points sets. A straightforward sampler generates points sets independently and randomly. Despite its simplicity, [START_REF] Bergstra | Random search for hyperparameter optimization[END_REF] pointed out that Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s). such random sampling is robust and outperforms grid sampling. However space-filling designs such as Low Discrepancy Sequences (LDS), Latin Hypercube Sampling (LHS) or Jittered Sampling (JS) are good candidates because they aim at distributing the points more diversely than independent random sampling. In particular, [START_REF] Bousquet | Critical hyper-parameters: No random, no cry[END_REF] advocated a specific variant of LDS, namely scrambled-Hammersley [START_REF] Hammersley | Monte Carlo methods for solving multivariate problems[END_REF][START_REF] Allaire | Tensorflow for R: R interface to Google CloudML[END_REF]. While LDS performance is well known for numerical integration [START_REF] Koksma | Een algemeene stelling inuit de theorie der gelijkmatige verdeeling modulo 1[END_REF], their use for one-shot optimization -and a fortiori for hyperparameter tuning -is far less explored. We quantify the benefit of LDS, LHS and JS approaches and, looking for more headroom, propose the concept of distribution reshaping, i.e., using a search distribution different from the prior distribution of the optimum.

Space-filling vs reshaping: the two components of oneshot optimization. Let us distinguish two probability distributions: the prior probability distribution P 0 of the optimum and the search probability distribution P s . When P 0 is known, random sampling boils down to choosing the search distribution P s = P 0 and applying independent sampling. The aforementioned space-filling designs (LDS, LHS, JS), compared to random sampling, relax the assumptions that the samples are independently drawn according to P s . The state of the art already contains many results in this field: we add some mathematical proofs, and propose a new paradigm, namely Reshaping, which goes one step further and relax the condition P s = P 0 . This modification originates from Theorem 1 which shows that, surprisingly, even if the optimum is randomly drawn as a standard normal distribution in an artificial problem (e.g. we know a priori that the optimum x * is randomly drawn as a standard Gaussian and the objective function is x → x -x * 2 ), the optimal search distribution is not that Gaussian distribution. Hence, inspired by [START_REF] Rahnamayan | Center-based sampling for population-based algorithms[END_REF]; [START_REF] Rahnamayan | Quasi-oppositional differential evolution[END_REF], we propose reshaped versions using P s spikier than P 0 around the center: addition of a middle point and, by extension, our Recentering reshaping. On the other hand, the Cauchy reshaping is driven by distinct considerations: it compensates the corner avoidance property characterizing some space-filling designs [START_REF] Owen | Halton sequences avoid the origin[END_REF][START_REF] Hartinger | On the corner avoidance properties of various low-discrepancy sequences[END_REF] and counterbalances the risk of expert errors on the correct hyperparameter's range, i.e., unknown P 0 .

Contributions. We first study the case P s = P 0 in Sec- 
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as original LDS (up to as original LDS yes as original LDS (up to -Shift LDS dim-dependent factor) dim-dependent factor) + The discrepancy of a projection Π(S) of a sequence S, when Π is a projection to a subset of indices, is less or equal to the discrepancy of S.

Therefore we do not discuss the stability of the sequence in terms of discrepancy of the projection to a subspace, contrarily to what we do for dispersion (for which significant differences can occur, between S and Π(S)). † "randomized, PDF> 0" means that the sampling is randomized with a probability distribution function (averaged over the sample) strictly positive over all the domain. [START_REF] Sukharev | Optimal strategies of the search for an extremum[END_REF]. We do get the dependency in d, namely O( √ d/n 1/d ), for random, LHS and JS. * We consider subspaces parallel to axes, i.e. switching to a subset of d indices. We request that the dependency in d dimension becomes d . | The bound on the distance to the optimum is an application of the discrepancy, and low discrepancy is preserved by switching to a subspace, hence this positive result.

‡ Optimal rate is O(1/n 1/d )
# Constants depend on which variables are in the subspace -first hyperparameters are "more" uniform [START_REF] Bousquet | Critical hyper-parameters: No random, no cry[END_REF].

tion 3. We focus on the measure called stochastic dispersion (see Section 2) which was identified as a good indicator of the performance of a space-filling design in the context of one-shot optimization methods [START_REF] Bousquet | Critical hyper-parameters: No random, no cry[END_REF]. We prove some bounds for LHS and JS in terms of stochastic dispersion and additionally we analyze the case of limited number of critical variables (see Section 2). Critical variables appear when some of the variables have a strong impact on the objective function whereas the others have a negligible impact. This is evaluated in terms of stochastic dispersion preserved by projection. New results are presented together with the state of the art in a more general framework, including 8 other space-filling strategies and 3 other performance indicators, in Table 1. It turns out that these new bounds are actually close to those of random search.

Given this limited headroom, we propose reshaping in Section 4, i.e., changing the search distribution, in two distinct variants. First, even if the prior probability distribution of the optimum is known, we use a search distribution tightened closer to the center of the domain, in a dimensiondependent and budget-dependent manner (Section 4, Recentering). Second -and possibly simultaneously, in spite of the apparent contradiction -we use Cauchy counterparts, which has a heavier tail, for searching closer to the boundaries (for bounded hyperparameters) or farther from the center (for unbounded hyperparameters). We show that P s different from P 0 is theoretically better in Section 4. Experiments in which the prior P 0 is known (Section 5.1), and then with an unknown prior (Section 5.2), validate this reshaping approach.

Samplers: Definition and Evaluation

For simplicity, we always consider D = [0, 1] d as the search domain and n the number of points in the sequence.

Space-filling designs

We consider the following sampling strategies (space-filling designs), aimed at being "more uniform" than independent random search.

Grid picks up the middle of each of k d hypercubes covering the unit hypercube, with k maximum such that k d ≤ n. We then sample n -k d additional random points uniformly in the domain. Latin Hypercube Sampling (LHS) [START_REF] Eglajs | New approach to the design of multifactor experiments[END_REF]; [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] defines σ 1 , . . . , σ d , random independent permutations of {0, . . . , n} and then for 0 ≤ i ≤ n, the j th coordinate of the i th point of the sequence is given by (x i ) j = (σ j (i) + r i,j )/(n + 1) where the r i,j are independent identically distributed, uniformly in [0, 1].

Jittered sampling consists in splitting D into n = k d (assuming that such a k exists) hypercubes of volume 1/k d and drawing one random point uniformly in each of these hypercubes [START_REF] Pausinger | On the discrepancy of jittered sampling[END_REF]. Other forms of jittered sampling exist, e.g., with different numbers of points per axis.

Low Discrepancy Sequences (LDS) are also called quasi-random sequences. This is the case for Halton, Hammersley and Sobol sequences. [START_REF] Halton | On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals[END_REF] defines the j th coordinate of the i th point of the sequence as (x i ) j = radixInverse(i, p j ) where:

(1) p 0 , . . . , p d-1 are coprime numbers. Typically, but not necessarily, p i is the (i + 1) th prime number. ( 2) radixInverse(k, p) = j≥0 a j p -j with (a j ) j≥0 being the writing of k in basis p, i.e., k = j≥0 a j p j . Hammersley's sequence is given by (x i ) j = radixInverse(i, p j-1 ) [START_REF] Hammersley | Monte Carlo methods for solving multivariate problems[END_REF]). Sobol's sequence [START_REF] Sobol | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF] is another advanced quasirandom sequence.

when j > 0 and (x i ) 0 = i+ 1 2 n , see
We use various modifiers of the samplers, detailed in supplementary material (SM). Random shift consists in adding a random vector in the unit hypercube and applying modulo 1 [START_REF] Tuffin | On the use of low discrepancy sequences in monte carlo methods[END_REF]. It is applicable to all samplers. Scrambling [START_REF] Owen | Randomly permuted (t, m, s)-nets and (t, s)-sequences[END_REF][START_REF] Tuffin | A new permutation choice in halton sequences[END_REF][START_REF] Allaire | Tensorflow for R: R interface to Google CloudML[END_REF] affects only Halton and Hammersley sequences. Other modifications are based on reshaping (Section 4).

Performance measures and proxies.

Given a domain D, the stochastic dispersion [START_REF] Bousquet | Critical hyper-parameters: No random, no cry[END_REF] of a random variable X = (x 1 , . . . , x n ) in D n is defined as

sdisp(X) = sup x * ∈D E X inf 1≤i≤n x i -x * ,
where • is the Euclidean norm.

The stochastic dispersion is related to an optimization criterion, namely the simple regret [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF]. More precisely, it corresponds to the simple regret, for the worst case over x * ∈ [0, 1] d , of the one-shot optimization of a function equal to x → x -x * with a given sampling method.

Critical vs useless variables. We consider the case in which there are d unknown variables (termed critical variables) with an impact on the objective function whereas d -d variables (the useless variables) have no impact.

Are Space-Filling Designs All Equal ?

In this section, we work within the framework of a search distribution P s equal to the prior distribution P 0 . We show that LHS and JS can only improve results by a constant factor, even in the case of critical variables: this is the key reason for introducing reshaping in Section 4. See the supplementary material for proofs.

Let us first mention Property 1, a known property of random search that enables us to compare the stochastic dispersion of random search with the one of LHS and JS. Property 1. Consider x * an arbitrary point in [0, 1] d . Consider x 1 , . . . , x n a sequence generated by random search. Then, for any δ ∈]0, 1[,

P min i x i -x * ≤ d,n,δ ≥ 1 -δ where d,n,δ = O log(1/δ) 1/d (nV d ) 1/d and V d is the volume of {x ∈ R d ; x ≤ 1}.

Stochastic dispersion of LHS and JS

We now establish a similar bound for LHS and JS in Properties 2 and 3. Property 2. Consider x * an arbitrary point in [0, 1] d and x 1 , . . . , x n a sample generated via LHS. Then for any δ ∈]0, 1[,

P min i xi -x * ≤ d,n,δ ≥ 1 -δ where d,n,δ = O √ d log(1/δ) 1/d /n 1/d .
This shows that the stochastic dispersion of LHS is optimal, i.e., it decreases at the optimal rate O(

√ d/n 1/d
) also guaranteed by Sukharev grids [START_REF] Sukharev | Optimal strategies of the search for an extremum[END_REF]. This is the same as random search. Property 3 (Jittered sampling has optimal dispersion after projection on a subset of axes). Consider x * an arbitrary point in [0, 1] d . Consider jittered sampling with n = k d points. Consider its projection on the d ≤ d first coordinates 1 . Let x 1 , . . . , x n be these projected points. Then, for any δ ∈]0, 1[,

P min i x i -x * ≤ 2 1+1/d log(1/δ) 1/d (V d n) 1/d ≥ 1 -δ
where V d is as defined in Property 1.

Hence Jittered Sampling benefits from the same stochastic dispersion bounds as random search and LHS, namely

O √ d log(1/δ) 1/d n 1/d
-and for all those methods, this is valid for a restriction to d variables as, contrarily to lowdiscrepancy sequences, the restriction to a subset does not penalize the stochastic dispersion. Corollary 1. Prop. 1, 2 and 3 give the following bounds on the stochastic dispersion of LHS, JS and random search for a restriction to d variables of a sampling in [0, 1] d :

O √ d d √ log(1/δ) n 1/d
.

1 Without loss of generality; we might consider a projection to d arbitrarily chosen coordinates.

Space-filling designs: state of the art

These results are to be compared with the state of the art presented in Table 1. In particular, every sampler but one (Sobol) is known optimal in terms of stochastic dispersion. Furthermore, LHS and JS are entirely preserved by projection to any subspace -as opposed to low discrepancy sequences, for which only segments of initial variables keep the same constants in discrepancy or dispersion bounds. We note that Table 1 also present bounds on discrepancy and incrementality results: these performance criteria are not directly related to our experimental framework. Nonetheless, they are suitable in other contexts, so we present them for the sake of exhaustive comparison between these samplers (see SM, Section 2).

Theory of Reshaping: Middle Point & Recentering

Interestingly, in the context of the initialization of differential evolution [START_REF] Storn | Differential evolution &ndash; a simple and efficient heuristic for global optimization over continuous spaces[END_REF], [START_REF] Rahnamayan | Center-based sampling for population-based algorithms[END_REF] proposed a sampling focusing on the middle. Their method consists in adding, for each point x sampled in the domain [-1, 1] d , a point -r × x for r uniformly drawn in [0, 1]. This combines opposite sampling (which corresponds to the -1 factor, also used for population-based optimization in [START_REF] Teytaud | On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy[END_REF]) and focus to the center (multiplication by a constant < 1): their method is termed quasiopposite sampling. Consider dimension d and x * randomly normally distributed with unit variance in R d . Consider x 1 , . . . , x n , independently randomly normally distributed with unit variance in R d . The median of x * 2 is denoted m 0 and the median of min i≤n x i -x * 2 is denoted m n . We first note Lemmas 1 and 2. Lemma 1. m 0 is equivalent to

d as d → ∞. Lemma 2. P ( x 1 -x * 2 ≤ m n ) ≥ 1 2n .
We now note that 1

√ 2 (x 1 -x * )
2 follows a χ 2 distribution with d degrees of freedom. Lemma 3. By Chernoff's bound for the χ 2 distribution,

P x 1 -x * 2 ≤ d(1 + o(1)) ≤ (1 + o(1)) 1 2 exp( 1 2 ) d/2 . Theorem 1. Consider n > 0. There exists d 0 such that for all d > d 0 , if X is a random sample of n indepen- dent standard normal points in dimension d, if x * is a ran- dom independent normal point in dimension d, then, unless n ≥ 1 2 (1 + o(1)) 1 2 exp( 1 2 ) -d/2
, the median of the minimum distance min x∈X x -x * is greater than the median of the distance x * -(0, . . . , 0) .

This shows the surprising fact that a single point, in the middle, outperforms the best of n randomly drawn points. If we consider a fixed budget n, having n points equal to 0 is pointless. So we can consider n -1 standard independent normal points, plus a single middle point: this is our modification "plus middle point". Later, we will also propose another related reshaping, namely tightening the distribution closer to the center: the Recentering method. Then we will see a distinct reshaping, namely switching to the Cauchy distribution.

Recentering (Rctg for short) reshaping. Consider optimization in [0, 1] d . Given a sample S, and using g the cumulative distribution function of the standard Gaussian, the Rctg reshaping consists in concentrating the distribution towards (0.5, . . . , 0.5): it considers {c(s) | s ∈ S} rather than S, with c(s) = g(λ × g -1 (s 1 )), . . . , g(λ × g -1 (s d )).

(1) λ = 0 sets all points to the middle of the unit hypercube. λ = 1 means no reshaping. With MetaRecentering, we consider specific values of λ. Preliminary experimental results lead to the specification of MetaRctg, using the dimension and the budget for choosing the parameter λ of the Recentering reshaping as follows. MetaRctg uses Scrambled-Hammersley and Rctg reshaping with

λ = 1 + log(n) 4 log(d) . ( 2 
)
Cauchy. When using the Cauchy distribution, we get c(s) = g(λ × C -1 (s 1 )), . . . , g(λ × C -1 (s d )) with C the Cauchy cumulative distribution function. Extension to unbounded hyperparameters. g(.) can be removed from those equations when we consider sampling in R d rather than in [0, 1] d : we then get c(s) = λ × g -1 (s 1 ), . . . , λ × g -1 (s d ) in the normal case. g can also be applied selectively on some variables and not on others when we have both bounded and unbounded hyperparameters.

Experiments

See SM for reproduction of all our artificial experiments with one-liners in the Nevergrad platform [START_REF] Rapin | Nevergrad -A gradientfree optimization platform[END_REF], for the Nevergrad "oneshot" experiment (SM, Section 4, or the website [START_REF] Rapin | Nevergrad -A gradientfree optimization platform[END_REF]) which shows a clear success of MetaRecentering, and for additional deep learning experiments with F 2 F 5 [START_REF] Luc | Predicting future instance segmentation by forecasting convolutional features[END_REF] (SM, Section 3.5). We first test our baselines in an artificial setting with P 0 known and without any reshaping (Section 5.1.1). We then check that Recentering works in such a context of P 0 known (Section 5.1.2). Then we switch to P 0 unknown (Section 5.2). We evaluate the impact of Cauchy (Section 5.2.1). We then combine Recentering and Cauchy (Section 5.2.2 and 5.2.3). We conclude that Cauchy is validated for unknown P 0 and that Recentering works if P 0 is known or, to some extent, if the underlying data are properly rescaled (Table 3, as opposed to the wildly unscaled problems in Table 4).

When the prior P 0 is known

There are real world cases in which P 0 is known, typically when many optimization runs are performed in a row:

• in maximum likelihood maximization for item response theory repeated for estimating the parameters of many questions [START_REF] Jia | A short note on aberrant responses bias in item response theory[END_REF], • in the ELO evaluation of many gamers from their records, • in repeated hyperparametrization of cloud-based machine learning [START_REF] Allaire | Tensorflow for R: R interface to Google CloudML[END_REF], • in repeated optimization of industrial oven parameters [START_REF] Cavazzuti | Cfd analysis of a syngas-fired burner for ceramic industrial roller kiln[END_REF] for distinct scope statements.

Another case is when the objective function is the worst outcome over a family of scenarios, to be approximated by a finite sample corresponding to ranges of independent exogenous variables (dozens of annual weather parameters and financial parameters), as usually done in network expansion planning [START_REF] Escobar | Transmission network expansion planning considering multiple generation scenarios[END_REF][START_REF] Li | A scenariobased robust transmission network expansion planning method for consideration of wind power uncertainties[END_REF].

5.1.1. P 0 KNOWN AND P s = P 0 : CONFIRMING THE STATE OF THE ART While we use mainly real-world experiments in the present paper, we draw the following conclusions from synthetic experiments with controlled P 0 and without reshaping, using classical objective functions from the derivative-free literature, various budgets and all samplers defined above.

The detailed setup and results are reported in SM, Section 3.2; they confirm results in [START_REF] Bergstra | Random search for hyperparameter optimization[END_REF]; [START_REF] Bousquet | Critical hyper-parameters: No random, no cry[END_REF] as follows:

• Many low discrepancy methods (e.g. Halton, Hammersley and their scrambled counterparts) depend on the Hammersley, equipped with recentering with λ chosen by Eq. 2. We note that QO, with the multiplication by a random constant < 1, can be seen as further reducing the constant. Overall the Rctg reshaping outperforms its ancestor the quasiopposite sampling [START_REF] Rahnamayan | Center-based sampling for population-based algorithms[END_REF]. MetaRctg turns out to be one of the best methods overall (see also SM, Section 4), performing close to the best for each budget/dimension in the present context of P 0 known. These experiments use the artificial Nevergrad oneshot experiment, for which the distribution of the optimum is a standardized multivariate normal distribution. They also show that in such a context (P 0 perfectly known) Cauchy is not useful. The next section will investigate the case of P 0 unknown.

Cauchy-reshaping with

P 0 unknown 5.2.1. NO P 0 : CAUCHY FOR ATTEND/INFER/REPEAT
Previous results have validated Recentering (our first proposed reshaping) in the case of P 0 known. The second form of reshaping consists in using the Cauchy distribution when P 0 is unknown: we here validate it. As detailed in Section 4, Cauchy makes sense also without recentering and for bounded hyperparameters (in that case, it increases the density close to the boundaries). Fig. 1 presents results on the Attend, Infer, Repeat (AIR) image generation testbed [START_REF] Eslami | Attend, infer, repeat: Fast scene understanding with generative models[END_REF]. AIR is a special kind of variational autoencoder, which uses a recurrent inference network to infer both the number of objects and a latent representation for each object in the scene. We use a variant that additionally models background and occlusions: details are provided in SM (Section 3.4). We have 12 parameters (initially tuned by a human expert), namely the learning rates of the main network and of the baseline network, the value used for gradient clipping, the number of feature maps, the dimension of each latent representation, the variance of the likelihood, the variance of the prior distribution on the scale of objects, and the initial and final probability parameter of the prior distribution on the number of objects present. The loss function is the Variational Lower Bound, expressed in bits per dimension. The dataset consists in 50000 images from Cifar10 [START_REF] Krizhevsky | Cifar-10 (canadian institute for advanced research)[END_REF] and 50000 object-free patches from COCO [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF], split into balanced training (80% of the samples) and validation sets. For each space-filling method, the Cauchy counterpart outperforms the original one.

GENERATIVE ADVERSARIAL NETWORKS (GANS).

We use Pytorch GAN Zoo [START_REF] Riviere | Pytorch GAN Zoo[END_REF] for progressive GANs [START_REF] Karras | Progressive growing of gans for improved quality, stability, and variation[END_REF], with a short 10 minutes training on a single GPU. We optimize 3 continuous hyperparameters, namely leakiness of Relu units in [1e -2, 0.6], the discriminator parameter in [1e -5, 1e -1], and the base learning rate in [1e-5, 1e-1]. MetaCauchyRctg performed best (Fig. 2), in spite of the fact that it was designed just by adding Cauchy to MetaRctg which was designed on Figure 2: Experiments on progressive GANs [START_REF] Karras | Progressive growing of gans for improved quality, stability, and variation[END_REF][START_REF] Riviere | Pytorch GAN Zoo[END_REF]; see a discussion of criteria in [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF]. MetaCauchyRctg dominates. All Cauchy variants (full lines) perform well compared to normal ones (dashed).

The "Meta" choice of the recentering constant (Eq. 2) seemingly performs well though without Cauchy and low budgets this was not that clear. X-axis = budget. Y-axis = opposite of inception score, the lower the better (we use opposite for consistency with other plots in the present paper, which consider losses to be minimized).

independent distinct artificial experiments in Tab. 2.

NEVERGRAD REAL WORLD EXPERIMENTS WITHOUT CONTROL OF P 0

Nevergrad provides a real world family of experiments, built on top of the MLDA testbed [START_REF] Gallagher | Exploratory landscape analysis of the mlda problem set[END_REF]. This family uses Salmon mappings, clustering, the tuning of game policies, a few traveling salesman problems, some electricity production scheduling problems, and others: these experiments are cheaper and fully reproducible.

We run all our samplers with 7400 repetitions. We then check, for each budget/dimension, which method performed best (Tab. 3): in this real-world context, we can not assume a standard deviation of 1 for the uncertainty over the optimum. The Cauchy sampling with Rctg reshaping 0.55 performs well. It is sometimes outperformed by rescaled Scrambled-Hammersley, which takes care of pushing points to the frontier: each variable is rescaled so that the min and the max of each variable, over the sample, hit the boundaries. This means that the two best methods can both sample far from the center: either heavy tail for Cauchy, or sample rescaled for matching the boundaries. The exact optimal constant λ does not always match the MetaRecentering scaling proposed in Eq. 2, but is clearly < 1. This setting does not have a known P 0 (just a rough rescaling of underlying data). Still, we now switch to a more challenging setting in between methods (as opposed to only frequencies of method A outperforming method B):

• In Fig. 4, the case P s = P 0 , namely budget ∈ {30, 100, 3000, 10000, 30000, 100000}, with function in {cigar, sphere, rastrigin} and in dimension ∈ {2000, 20000}: we see that MetaCentering performs quite well in this context.

• In Fig. 3, the gap between methods in the unscaled realworld cases: we see that Cauchy or Rescale (rescaling to the boundaries) is the key component explaining the success of a method.

Conclusion

Theoretical results. We showed that LHS and jittered sampling have, up to a constant factor, the same stochastic dispersion rate as random sampling (Sections 3), including when restricted to a subset of variables. Low-discrepancy sequences have good stochastic dispersion rates as well. However, their performance for a subset of variables depends on the location of those variables -the earlier the better. Typically they are outperformed by LHS when there is a single randomly positioned critical variable. Overall, the benefit of sophisticated space-filling designs turn out to be moderate, compared to random search or LHS, hence the motivation for alternative fully parallel hyperparameter search ideas such as reshaping. We then showed that adding a middle point helps in many high-dimensional cases (Section 4). This element inspired the design of search distributions different from the Gaussian one, such as Cauchy and/or reshaping as in Rctg methods (Section 4) -which provide substantial improvements.

Practical recommendations. 2) when we have a prior on the probability distribution of the optimum (Tab. 2 and SM, Section 4). Precisely, with a standard normal prior P 0 (use copulas, i.e. multidimensional cumulative distribution functions, for other probability distributions), use

x i,j = g 1 + log(n) 4 log(d) g -1 (ScrH i,j )
Figure 3: Representation of the Nevergrad experiment "oneshotunscaledrealworld". For each algorithm, each budget, each context (the context includes all information representing the test case, i.e. including dimension and objective function) we consider the average loss. Then, this loss is replaced by its rank (between 0 and 1) among all losses for all optimizers and all budget values of the experiment, for this same context. Then we plot, for each optimization algorithm and each budget, the average rank over all contexts. This is therefore a regret, averaged (after representation by rank) over all test cases. All methods which performed well use either "Rescale" or Cauchy. Methods: all methods here are publicly available in the Nevergrad platform: Zero just returns (0, . . . , 0), methods with Avg in the name use sophisticated recommendation methods (i.e. they might recommend a point which was not in the sample). Rescale Scrambled Hammersley and MetaCauchyRecentering are the two best overall (though for the maximum budget a method using a recommendation not in the sample x 1 , . . . , x n performed slightly better).

Figure 4: Representation by rank / averaging of the DOE experiment in Nevergrad (same method of quantiles/ranks and averaging as in Fig. 3): in the present context with known P 0 , our MetaRecentering performed best for the maximum budget and among the best for various levels of the budget. We acknowledge that the mathematically derived MetaTuneRecentering, similar to MetaRecentering but with better parametrization, does perform better in particular for large budgets and moderate dimension [START_REF] Meunier | Variance reduction for better sampling in continuous domains[END_REF].

for searching in [0, 1] d with budget n, where ScrH i,j is the j th coordinate of the i th point in the Scrambled Hammersley sequence and g the Gaussian cumulative distribution function. In many cases, however, we do not have such a prior on the position of the optimum: experts provide a correct range of values for most variables, but miss a few ones.

For those missed ones, the best x i,j values are extreme.

Unfortunately, low-discrepancy methods are weak, by a dimension-dependent factor, for searching close to boundaries -this is known as the corner avoidance effect [START_REF] Owen | Halton sequences avoid the origin[END_REF][START_REF] Hartinger | On the corner avoidance properties of various low-discrepancy sequences[END_REF]. Therefore low-discrepancy methods can then perform worse than random. In such a case, Cauchy helps. A second suggestion is therefore to use Cauchy in real world cases: we got in Tabs 3 and 4 or for AIR (Fig. 1) or Pytorch-GAN-zoo (Fig. 2), i.e. all our realworld experiments, better performances with Cauchy. More specifically, for real-world problems, rescaling data and parameters and using CauchyMetaRctg looks like the best solution -with a minimum of standardization, we got good results for CauchyMetaRctg in Fig. 2 (just using human expertise for rescaling) and Tab. 3 (just based on standardizing underlying data, so no real known prior P 0 ). When a proper scaling is impossible, we still get good performance for Cauchy variables but λ is impossible to guess so that the best method varies from one case to another (Table 4) -Cauchy-LHS and Rescale-Scr-Hammersley being the most stable.

Figure 1 :

 1 Figure 1: Cauchy vs Gauss on the Attend/Infer/Repeat model. For each setting in {random, LHS, ScrambledHam-mersley}, we reach better loss values when switching to the Cauchy counterpart. The P-value 0.05 validates Cauchy vs Normal. See SM, Section 3.4, for validation in terms of counting objects.

  

Table 1 :

 1 Comparison between non-reshaped sampling methods. Red boxed results are contributions of the paper. The sequences of samples are of size n in dimension d. C d is a dim-dependent known constant. Results are O(.) unless stated otherwise. Constant factors depend on the d unless d is mentioned.

	Sequence		Discrepancy +	Incrementality	Randomized,	Stochastic	Stochastic dispersion
				(see SM)	PDF> 0 †	dispersion ‡	preserved by projection *
	LHS		Θ( d/n)	2n, optimal	yes	1/n 1/d	yes
			(Doerr et al., 2018)	(SM)		(Prop. 2)	(straightforward)
	Grid		1/n 1/d	no	no	1/n 1/d	no
						(straightforward)	(straightforward)
	Jittered	√	d log n/n 1/2+1/2d	2 d n, optimal	yes	1/n 1/d	yes
		(Pausinger et al, 2016)	(SM)		(Prop. 3)	(Prop. 3)

Table 2 :

 2 Artificial objective functions from Nevergrad (see text) with P 0 known: for each combination (dimension d ∈ {3, . . . , 600}, budget n ∈ {30, . . . , 30000}), we mention the name of the method which had the best frequency of outperforming other methods, for that combination, over all objective functions. In this context, Cauchy distributions do not help much. We emphasize in bold the method that most often, over all cells, performed best. O, QO, Rescale, Recentering, etc: see terminology in Section 5.1.2.

		30		100	300		1000		3000	10000	30000	100000	300000
	3	Scr Halton	Scr Halton	O Rctg1.2	O Scr Ham-	Cauchy	Cauchy	Scr Ham-	O	Rctg.7	Random
				Plus Middle	Scr Halton	mersley	Rctg.55 Scr	Rctg.55 Scr	mersley	Scr Halton
				Point					Hammers-	Hammers-		
									ley	ley			
	18	Scr Halton	Scr Halton	O	Rctg.7	Scr Halton	Rctg1.2 Scr	O	Rctg.4	Meta Rctg	Cauchy	O	Rctg.7
		Plus Middle	Plus Middle	Scr Halton			Hammers-	Scr Ham-			Rctg.55 Scr	Scr Halton
		Point		Point					ley	mersley			Hammers-
														ley
	25	Meta Rctg	Rctg.4 Scr	O	Rctg.4	Meta Rctg	Rctg.7 Scr	Rctg.7 Scr	O	Rctg.7	O	Rctg.7	Rctg.7 Scr
				Halton	Scr Halton			Hammers-	Hammers-	Scr Halton	Scr Ham-	Halton
									ley	ley				mersley
		Q O Rctg.4	Meta Rctg	Rctg.4 Scr	Meta Rctg	Rctg.4 Scr	O	Rctg.7	Rctg.4 Scr	O	Rctg.4	Rctg.4 Scr
	100	Scr Ham-		Halton			Hammers-	Scr Halton	Halton	Scr Halton	Hammers-
		mersley						ley					ley
		O	Rctg.4	Q O Rctg.4	Meta Rctg	O	Rctg.4	Q O Rctg.7	Rctg.4 Scr	O	Rctg.7	Meta Rctg	Meta Rctg
	150	Scr Ham-	Scr Ham-			Scr Ham-	Scr Ham-	Halton	Scr Ham-
		mersley	mersley			mersley	mersley			mersley
		Rctg.4 Scr	Rctg.4 Scr	O	Rctg.4	Meta Rctg	Meta Rctg	Rctg.4 Scr	Rctg.4 Scr	Meta Rctg	Rctg.4 Scr
	600	Halton	Hammers-	Scr Ham-				Halton	Hammers-	Halton
				ley	mersley						ley	

Table 4 :

 4 Counterpart of Table3with the experiment termed "oneshotunscaledrealworld" in Nevergrad, which contains more problems, including many for which no rescaling effort has been made, with d ∈ {10, . . . , 675} and n ∈ {25, . . . , 12800}. Rctg does not make sense in this "totally unknown P 0 " setting, but we still see a lot of Cauchy counterparts or Rescaled versions, showing that focusing close to boundaries (for bounded hyperparameters) or on large values (for unbounded hyperparameters) makes sense. The contrast with Table3in which CauchyMetaRctg and close variants such as CauchyRctg with λ = .55 perform well suggest the unsurprising fact that scaling parameters and data is a good idea for generic methods, such as MetaRctng, to be effective. In bold, the two methods performing best most often in the present totally unscaled setting.

		25		50	100	200	400	800	1600	3200		6400	12800
	10	Scr Halton	Rescale Scr	Scr Hmsly	Rescale Scr	Meta Rctg	Rescale Scr	Rescale Scr	Scr Hmsly	L H S	Scr Hmsly
		Plus Middle	Hmsly		Hmsly		Hmsly	Hmsly				Plus Middle
		Point											Point
	15	Cchy Scr	Cchy Ran-	Cchy LHS	Cchy LHS	Rctg20 Scr	Cchy Scr	Cchy Scr	Cchy Rct-	Cchy Scr	Cchy Rct-
		Hmsly		dom			Halton	Hmsly	Hmsly	g12	Scr	Hmsly	g12	Scr
										Hmsly			Hmsly
	20	L H S		Random	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	Hmsly Plus
					Hmsly	Hmsly	Hmsly	Hmsly	Hmsly	Hmsly		Hmsly	Middle
													Point
	30	Cchy Ran-	Cchy LHS	Cchy LHS	Cchy Ran-	Cchy Ran-	Cchy LHS	Cchy Ran-	Cchy LHS	Cchy Ran-	Cchy Ran-
		dom				dom	dom		dom			dom	dom
	40	Rctg12 Scr	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	Rescale Scr	O Random	Rescale Scr	Random
		Halton		Hmsly	Hmsly	Hmsly	Hmsly	Hmsly	Hmsly			Hmsly
	60	Cchy LHS	Cchy Ran-	Cchy LHS	Cchy Rctg7	Cchy LHS	Cchy Rctg7	Cchy Ran-	Cchy LHS	Cchy LHS	Cchy Ran-
				dom		Scr Hmsly		Scr Hmsly	dom				dom
		Cchy LHS	Cchy LHS	Cchy LHS	Cchy Ran-	Cchy LHS	Cchy Ran-	Cchy Ran-	Cchy Ran-	Cchy Ran-	Cchy LHS
	120					dom		dom	dom	dom		dom
		Cchy Rct-	Cchy Rctg4	Cchy Scr	Cchy Ran-	Cchy Rctg7	Cchy Rctg4	Cchy Rctg4	O Rctg20	Cchy Scr	Meta Cchy
	675	g12	Scr	Scr Hmsly	Hmsly	dom	Scr Hmsly	Scr Hmsly	Scr Hmsly	Scr Halton	Hmsly	Rctg
		Hmsly										

Table 4

 4 

	Context	Recommendation	XPs
	P0 perfectly known	MetaRctg	Table 2
			SM Sec. 4
	P0 approx. known (rescaled	MetaCchyRctg	Table 3
	data, normalized params)	or CchyRctg.55	Fig 2.
	P0 wildly unknown	Cchy-LHS	Table 4,
	(avoid this!)	or Rsc-Scr-Hmsly	Fig. 1, 3.

: we consider the "oneshotunscaledrealworld" experiment in Nevergrad for a case in which no rescaling effort was made; we still get a quite good behavior of Cauchy or rescaled variants, but (consistently with intuition) Recentering does not make sense anymore. As requested by reviewers, we provide results showing the gap

Table 5 :

 5 Practical recommendations.

Table 5

 5 

	surveys our practical

Table 3: Experiments on the Nevergrad real-world rescaled testbed with d ∈ {10, . . . , 120} and n ∈ {25, . . . , 12800}. This experiment termed "oneshotscaledrealworld" corresponds to real-world test cases in which a reasonable effort for rescaling problems according to human expertise has been done; P 0 is not known, but an effort has been made for rescaling problems as far as it is easily possible. Dimension from 10 to 120, budget from 25 to 12800. There is no prior knowledge on the position of the optimum in this setting; MetaRctg did not perform bad overall but Cauchy variants dominate many cases, as well as rescaled versions which sample close to boundaries. Hmsley stands for Hammersley, Cchy for Cauchy, Rctg for Recentering. We emphasize in bold the method performing best overall; variants of CauchyRctg often performed best -most often with a constant < 1, i.e. with a recentering peaked towards the center. All samplers are tested in both variants, normal and Cauchy. This validates both Recentering and Cauchy, but Eq. 2 ("Meta" choice of λ) was moderately confirmed here. O, QO, Rescale, Recentering, etc: see terminology in Section 5.1.2. order of hyperparameters -intuitively there is "more" low discrepancy for the first variables: our experiments in optimization confirm that low discrepancy methods are better when variables with greater impact on the objective function are first. With scrambled lowdiscrepancy methods, results are less penalized (but still penalized) when important variables are last. • LHS is robust to the order of variables and, therefore, performs well for a small number of randomly positioned critical variables.

Besides confirming the state of the art, these experiments also confirm that adding a single middle point helps, in particular in high dimension. Among methods using P s = P 0 , Scrambled-Hammersley plus middle point is one of the best methods in this simplified setting (though one can point out that adding a middle point is not exactly P s = P 0 , so this is a first step towards reshaping).

RESHAPED SPACE-FILLING DESIGN: RECENTERING WORKS

We present an experiment on objective functions Sphere, Rastrigin and Cigar, with 100% or 16.67% of critical variables (i.e. in the latter case we add 5 randomly positioned useless variables for each critical variable), with budget in {30, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000}, with 3, 25 or 100 critical variables. We compare Rctg reshaping with constant λ ∈ {0.01, 0.1, 0.4, 0.55, 1.0, 1.2, 2.0}, the same Rctg reshaping plus opposite sampling or quasi-opposite sampling, on top of LHS, Scrambled-Halton, Scrambled-Hammersley or pure random sampling; we consider the inverse cumulative distribution functions of Gauss or Cauchy as conversion tools from [0, 1] d to R d as discussed above. Given the different contexts regarding the number of critical/useless variables previously mentioned, we get dimension 3, 18, 25, 100, 150, 600. The context is still P 0 perfectly known (standard Gaussian). This is reproducible with a one-liner "oneshotcalais" in Nevergrad (see SM). Results are presented in Table 2 and validate Recentering, in particular in its Meta version (Eq. 2), as soon as P 0 is known. We have here 7400 replicas per run. We use several modifiers for the "original" sampling methods (original in the sense before consider P s = P 0 ): (i) O refers to opposite; (ii) QO refers to quasiopposite;

(iii) Rescale refers to linearly rescaling to the boundaries: given points x 1 , . . . , x i , . . . , x n in R d with coordinates x i,1 , . . . , x i,j , . . . , x i,d , we define a Rescale counterpart by x i,j = (x i,j -m j )/(M j -m j ) with m j = min i x i,j and M j = max j x i,j ; (iv) Plus Middle Point refers to sampling n -1 points instead of n and adding a middle point; (v) Recentering (Rctg) refers to Eq. 1 (Eq. 2 for MetaRecentering). They can all be applied on top of other methods. Recentering has a parameter λ: RctgX refers to λ = X. For example, Rctg1.2-ScrHammersley refers to Hammersley, equipped with scrambling and recentering with parameter λ = 1.2. MetaRctg refers to Scrambled