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A Short and Simple Proof of the Riemann’s
Hypothesis and its generalized version

Charaf ECH-CHATBI *
Tuesday 26 January 2021

Abstract

We present a short proof of the Riemann’s Hypothesis (RH) and
the Generalized Riemann’s Hypothesis (GRH) where only undergradu-
ate mathematics is needed.

Keywords: (Generalized) Riemann Hypothesis; Zeta function; Dirich-
let L-functions; Prime Numbers; Millennium Problems.

1 The Riemann Hypothesis
1.1 The importance of the Riemann Hypothesis

The prime number theorem gives us the average distribution of the primes.
The Riemann hypothesis tells us about the deviation from the average.
Formulated in Riemann’s 1859 paper[1], it asserts that all the 'non-trivial’
zeros of the zeta function are complex numbers with real part 1/2.

1.2 Riemann Zeta Function

For a complex number s where $(s) > 1, the Zeta function is defined as
the sum of the following series:

+o0 1
()= - (1)
n=1
In his 1859 paper[1], Riemann went further and extended the zeta function
¢(s), by analytical continuation, to an absolutely convergent function in
the half plane 3(s) > 0, minus a simple pole at s = 1:

s oo g
C(s):—l—s/1 :;{H}ldm (2)
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Where {2} = z—[z] and [z] is the integer part of z. Riemann also obtained
the analytic continuation of the zeta function to the whole complex plane.
Riemann[1] has shown that Zeta has a functional equatio

C(s) = 2S7r8*1sm(§)r(1 —8)C(1—s) (4)
Where I'(s) is the Gamma function. Using the above functional equa-
tion, Riemann has shown that the non-trivial zeros of { are located sym-
metrically with respect to the line R(s) = 1/2, inside the critical strip
0 < R(s) < 1. Riemann has conjectured that all the non trivial-zeros are
located on the critical line R(s) = 1/2. In 1921, Hardy & Littlewood|3]
showed that there are infinitely many zeros on the critical line. In 1896,
Hadamard[3] and De la Vallée Poussin[3] independently proved that {(s)
has no zeros of the form s = 1+ 4t for ¢ € R. Some of the known results[3]
of {(s) are as follows:

e ((s) has no zero for R(s) > 1.
¢
LS
e ((s) has all the trivial zeros at the negative even integers s = —2k,
ke N*.

The non-trivial zeros are inside the critical strip: i.e. 0 < R(s) < 1.
If ((s) =0, then 1 — s, § and 1 — § are also zeros of (: ie. {(s) =
(1 —s5)=((5) =¢(1-35)=0.

Therefore, to prove the “Riemann Hypothesis” (RH), it is sufficient to

prove that ¢ has no zero on the right hand side 1/2 < R(s) < 1 of the
critical strip.

(
(s) has no zero of the form s =1+ 47. i.e. {(1+47)#0, V.
(
(

)
s) has a simple pole at s = 1 with residue 1.
)

1.3 Proof of the Riemann Hypothesis

Let’s take a complex number s such that s = o 4 ¢7. Unless we explicitly
mention otherwise, let’s suppose that 0 < o < 1, 7 > 0 and ((s) = 0.

We have from the Riemann’s integral above:

s too Ly
=t [T 5)

s—1

We have s # 1, s # 0 and ((s) = 0, therefore:

! :/1+°o {2} 4o (6)

s—1 rstl

IThis is slightly different from the functional equation presented in Riemann’s paper[l].
This is a variation that is found everywhere in the litterature[2,3,4]. Another variant using
the cos:

C(1—s) =275 cos (?)F(S)C(s) (3)



Therefore:

1 /:oo S S 7)

ctir—1 gotiT+1

And

(;:11)2_j77_—2 _ /1+oo (COS(T In (x)) —x:jlln(r In (:p))){x} i -

The integral is absolutely convergent. We take the real part and the
imaginary part of both sides of the above equation and define the functions
F and G as following:

Fon) = )
e,

And
Gor) = e (1)
[y,

We also have 1 —§ =1 — o + it = 01 + i71 a zero for { with a real
part o1 such that 0 < 01 =1 — 0 < 1 and an imaginary part 7 such that
71 = 7. Therefore

0’1—1

F(l—o,1) = m (13)

= i (14)

L prleee)e,

And

Gl —o,1) = m (16)

= o (a7)

L o),

Therefore:

s - Lenra (19)



And

G(o, ) G(l—-o,71)
= 2
02+ 712 (I1-0)24712 (20)
By combining the equations (19) and (20) we get:
l—J:F(UJ)G(l—mT) (21)
o G(o,7) F(1 —0,7)

We also, note that the expression of G corresponds to the Laplace
transform of the function Sinus and we write the following;:

T

Glo,7) = CES s (22)
—+oo
= / sin(rz)e” 1" %dg (23)
0
And
-
G(l — 0, 7') = m (24)
—+oo
= / sin(rz)e”7"dx (25)
0
And after a change of variables we get the new expression of G:
+oo
Glo,7) = / sin(rz)e” "7 dx (26)
0
+oo s
_ / Sln(Tzlil (z)) e 27)
1 =7
And
“+ o0
G(l-o,1) = / sin(rz)e”7"dx (28)
0
+° gin(7In (x))
= /1 wa (29)

Also, the expression of F' corresponds to the Laplace transform of the
function C'osinus and we write the following:

~(1-0)

F(o,7) = CEE s (30)
—+oo
= —/ cos(ra)e” 1 dy (31)
0
And
-0
Fl-o,1) = P (32)
—+oo
= —/ cos(tz)e” 7“dx (33)
0



And after a change of variables we get the new expression of F":

F(o,T)

And

F(l—-o,

—+ o0
= —/0 cos(ra)e” 1" dy (34)
— _/+°O Mdm (35)
+oo
T) = —/O cos(tz)e ““dx (36)
oo cos(rIn (x
_ /1 %dz (37)

We do another change of variables and get the new expression of F'
and G. Also we define new functions f and g for each A > 0 and g > 0 as

follows:

F(o,7) =
And

F(l—o,71)
And
G(o,7) =

And

G(l—o,7)

o0 cos(T1In (z/N))

_,\H’/ .z (38)
A1 —0) (39)
= /+o<> Mdm (40)
I $0+1
= —uf(p, o) (41)
\I-o /‘“’o sin(r lni(m/)\))dm (42)
M7\ 1 —0) (43)
_ /+°° sin(7 In (:c/,u))dx (44)
H $0+1
= ug(p o) (45)

And we inject these new expressions into the equation (21) to get for

each A > 0 and p > 0:

|(1=0)g(\ 1= 0)f(p,0) = o f (A1 = 0)g(p,0) |

(46)

The functions A — f(A,0) (res. A = f(A\,1—0)) and A — g(\,0)

(resp. A = g(A\, 1 —0)),

thanks to the fact that 1 + 0 > 1 and 2 — o > 1,



are continuous and infinitely differentiable, and of class C°°. Their first
derivatives are as follows:

_ 1 T % sin(7In (z))
f/()\,a) = —W =+ m / le’ (47)
1
=~ + )\(1+0)G(1 0,T) (48)
cos(7ln (z
g'Ao) = )\(1+o) / pot1 ))dx (49)
= )\(1+0) F(l—o,7) (50)
And
1 T
f/()\,l—o) = —m—FmG(U,T) (51)
T
g/()\71—0') = WF((LT) (52)

And we calculate the derivatives of both sides of the equation (46) in
regard to A and p to get:

| (1= 0)gr(\ 1 = )1, 0) = o f1(\1 = 0)gl(p,0) | (53)

And we inject the first derivatives of f and g into the last equation:

(1-o0) <ﬁF(a7 7)> <— ﬁ + ﬁc:u —o0, 7)> (54)

1 T T
= O’<—m+mG(U7T)> <WF(1—O’77)> (55)

Thanks to the equation (21) we can simplify the last equation and get
the following:

(1—-o0)F(o,7) = oF(1-o,71) (56)

We use the expressions of F'(1 — o,7) and F(o,7) from the equations
(9) and (14) to get that:

(1-0)2 _ o’ (57)
(1-0)2+72  o2472
Therefore
- % (58)
Hence, the Riemann’s Hypothesis is true. |

Remark. The main idea here was to not work with the original defintions
of F and G that come from the Zeta function definition. But instead work
with their simpler versions from the Laplace transform of the functions
Sinus and Consinus.



1.4 Conclusion
We saw that if s is a zeta zero, then real part R(s) can only be 2. Therefore

the Riemann’s Hypothesis is true: The non-trivial zeros of ((s) have real

part equal to % In the next section, we will apply the same method to

prove the Generalized Riemann Hypothesis (GRH).

2 The Generalized Riemann Hypothesis
2.1 Dirichlet L—functions

Let’s (zn)n>1 be a sequence of complex numbers. A Dirichlet series[3] is a

oo
series of the form E —, where s = o +i7 is complex. The zeta function
n

n=1
is a Dirichlet series. Let’s define the function L(s) of the complex s:
(e o)
Zn
L(s) = —.
(5) =3
n=1

e If (zn)n>1 is a bounded, then the corresponding Dirichlet series con-
verges absolutely on the open half-plane where R(s) > 1.

o If the set of sums z, + zn41 + ... + 2n+x for each n and k& > 0 is
bounded, then the corresponding Dirichlet series converges on the
open half-plane where R(s) > 0.

e In general, if z, = O(nk)7 the corresponding Dirichlet series con-
verges absolutely in the half plane where R(s) > k + 1.

The function L(s) is analytic on the corresponding open half plane[2-3].

To define Dirichlet L—functions we need to define Dirichlet characters.
A function x : Z —— C is a Dirichlet character modulo q if it satisfies
the following criteria:

o (i) x(n) #0if (n,q) = 1.

e (ii) x(n) =0if (n,q) > 1.

e (iii)  is periodic with period ¢ :x(n + ¢) = x(n) for all n.

e (iv) x is multiplicative :x(mn) = x(m)x(n) for all integers m and n.
The trivial character is the one with xo(n) = 1 whenever (n,q) = 1.

Here are some known results for a Dirichlet character modulo g. For
any integer n we have x(1) = 1. Also if (n,q) = 1, we have (x(n))*? =
1 with ¢ is Euler’s totient function. x(n) is a ¢(q)—th root of unity.
Therefore, |x(n)| =11if (n,q) =1, and |x(n)| =0 if (n,q) > 1.
Also, we recall the cancellation property for Dirichlet characters modulo
q: For any n integer

2 , ifx= the trivial character
D xi+n) = {‘M e (59)
i=1

0, if otherwise, x # xo

The Dirichlet L—functions are simply the sum of the Dirichlet se-
ries. Let’s x be a Dirichlet character modulo ¢, The Dirichlet L—function



L(s,x) is defined for R(s) > 1 as the following:

_ )
Lisx) =Y A (60)

n=1

They are a natural generalization of the Riemann zeta-function ((s) to
an arithmetic progression and are a powerful tool in analytic number
theory. The Dirichlet series, converges absolutely and uniformly in any
bounded domain in the complex s-plane for which R(s) > 1+ ~, v > 0.
In the particular case of the trivial character xo, L(s,xo0) extends to a
meromorphic function[5-8] in R(s) > 0 with the only pole at s = 1.

If x is a non-trivial character, we have

+o00 n<x
=1 x(n)
L(s,x)=s : %dw (61)
Since the sum in the integrand is bounded, this formula gives an
analytic continuation of L(s,x) to a regular function in the half-plane
R(s) > 0. Also, like the zeta function, the Dirichlet L—functions have

their Euler product[2,5, 9, 10]. For R(s) > 1:

Lis0 = ] (1—%)71 (62)

p Prime

Therefore, if x = xo is a trivial character mod ¢, we have, for ¢ = 1,
L(s, x0) = ¢(s) (63)
And for ¢ > 1, we have,

Lsx0) = ¢ T (1-52) (64)
r/q
For this reason the properties of L(s, xo) in the entire complex plane are
determined by the properties of ((s).

Let’s now ¢/ be the smallest divisor (prime) of ¢q. Let’s x/ be the
Dirichlet character x/ mod ¢/. For any integer n such that (n,q) =1, we
have also (n,q/) =1 and x(n) = x/(n). x/ is called primitive and L(s, x)
and L(s, x/) are related analytically such that if x # xo:

L(s,x) = Lso) TT (1 - X420) (65)

p/a p

L(s,x) and L(s, x/) have the same zeros in the critical strip 0 < R(s) < 1.
Also, for a primitive character x, (i.e.x = x/) L(s, x) has the following
functional equation:

TIPS L= 5,00 = VA TS L) (60)

Where I' is the Gamma function and a = 0 if x(~1) =1 and a = 1 if
x(=1) = —1, and 7(x) = >{_, x(k) exp(?Z%).

When R(s) > 1 there is no zero for L(s,x). When R(s) < 0, for a
primitive character x, we have the trivial zeros of L(s,x): s = a — 2k,

where k is a positive integer and a is defined above. For more details,
please refer to the references[2-11].

s+ a




2.2 The GRH Statement

The Generalized Riemann Hypothesis states that the Dirichlet L—functions

have all their non-trivial zeros on the critical line R(s) = 3.

We know that for any character x modulo ¢, all non-trivial zeros of
L(s,x) lies in the critical strip {s € C : 0 < R(s) < 1}. From the
functional equation above we have that if:

e 5o is a non-trivial zero of L(s, x), then 1 — s¢ is a zero of L(s,X).

e 5o is a non-trivial zero of L(s,%), then 1 — s¢ is a zero of L(s, x).
Therefore, we just need to prove that for any character x modulo g, there

is no non-trivial zeros of L(s, x) in the right hand side of the critical strip
{seC: 3 <R(s) <1}

2.3 Proof of the GRH

2.3.1 Case of y non-trivial

Let’s take a complex number s such that s = o + i7. Unless we explicitly
mention otherwise, let’s suppose that 0 < o < 1, 7 > 0 and L(s,x) = 0
where L(s,x) = ZI: % and x is a non-trivial Dirichlet character x

modulo g. When ¢ = 2 there is only one Dirichlet character and it is
trivial. So here we are going to assume that ¢ > 3.

We have from the integral equation (59) above:

s X

Lisx)=s [ =2t (67)
We first develop the integral above as following:
D= PV DR AV WD vir= PY(0 B
. o T = . v T+ o1 x (68)

We have x(1) =1, s # 0 and L(s, x) = 0, therefore:

/+°0 Ldar: = " Z”<” x(n )dm (69)

s+1 1
x-5+ 1 x-5+

Let’s define the function H(x) as following:

n<x

= = x(n) = h(z)e o (70)

Where the function h(z) being the function norm of the function H(x). i.e
h(z) = ||H(z)|]. The functions H(z) and o, are piecewise constant as for
each integer n > 1, for each real € (n,n+ 1), we have H(z) = H(n) =
h(n) e " and @y = an € [0, 27]. Also, the function H is bounded thanks

2In fact, we just need to prove it for the primitive characters.



to the cancellation property of the Dirichlet chararcters (5). Let’s denote
M such that

M = sup h(z) (71)
x>1
Therefore:
1 oo H(x)
L /1 i (72)
Therefore:
1 T H(x)
= —2d
o+t /; potittl v (73)
And

o—ir /+oo (COS(TIH () + az) — isin(r1In (z) + az))h(w) g (1)

o2+ 72 o+l

The integral is absolutely convergent. We take the real part of both sides
of the above equation and define the functions F' and G as following:

g

F(o,7) = o (75)
e,

And
Glo,r) = UZLHQ (77)
= /:OO(Sin(ﬂn(;ji%))h(x)dx (78)

We also have 1 —s =1 — 0 — it = 01 + i11 a zero for L(s, x) with a
real part o1 such that 0 < 01 =1 — 0 < 1 and an imaginary part 71 such
that 1 = —7. Therefore

o1

Fl—o0,—71) = ) (79)
- (1 —10;204- T2 (80)
_ /+oo (COS(—Tl;ll(mz; ch))h(:c) - (81)
_ /+oo ( cos(7In (;2)7—(17— ch))h(:c) - (82)

10



And

T1

G(l—o,—1) = g (83)
= T (&4
oo | sin(—7In(z) — az) | h(x
_ /+ (s ;230 ) R
Therefore:
Fl—o,—1)  1-—0 o2 + 12
F(o,T) o c (1—o0)2+72 (86)
And
_G(l—o, —7) _ o2+ 72
G(o,T) 1-0)2472 (87)

By combining the equations (84) and (85) we get an equation similar
to the equation (21) of the case of Riemann Hypothesis:

1—0__F(1—U,—T)G(U,T)
o G(l-o0,-7)F(o,7) (88)

Once here, we use exactly the same Laplace transform technique and
we follow the same steps as in the section of the proof of the Riemann
Hypothesis above to finish off. Everything else stays the same.

Therefore

o = = (89)

Hence, the Generalized Riemann’s Hypothesis is true. ]

2.3.2 Case of y trivial

For the trivial character xo modulus ¢ we have:

)=Lx) I (=) (90)

p Prime,p/q

Where ( is the zeta function.

pS
0). s is a zero for L(s, xo0), then thanks to (73), it is also a zero for the

zeta ((s). We proved in the first section, that Riemann’s Hypothesis is

true, therefore o = %

-1
The product Hp Prime,p/q (1 — i) is finite, bounded and nonzero (s #

2.4 Conclusion

We saw that if s is a zero of L(s, x), then the real part R(s) can only be 1.
Therefore the Generalized Riemann Hypothesis is true: The non-trivial
zeros of L(s, x) have their real part equal to %

11
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