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Abstract

We present a short and simple proof of the Riemann’s Hypothesis
where only undergraduate mathematics is needed.
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1 The Riemann Hypothesis

The prime number theorem gives us the average distribution of the primes.
The Riemann hypothesis tells us about the deviation from the average.
Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’
zeros of the zeta function are complex numbers with real part 1/2.

2 Riemann Zeta Function

For a complex number s where ℜ(s) > 1, the Zeta function is defined as
the sum of the following series:

ζ(s) =

+∞
∑

n=1

1

ns
(1)

In his 1859 paper[1], Riemann went further and extended the zeta function
ζ(s), by analytical continuation, to an absolutely convergent function in
the half plane ℜ(s) > 0, minus a simple pole at s = 1:

ζ(s) =
s

s− 1
− s

∫ +∞

1

{x}

xs+1
dx (2)

Where {x} = x−[x] and [x] is the integer part of x. Riemann also obtained
the analytic continuation of the zeta function to the whole complex plane.
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Riemann[1] has shown that Zeta has a functional equation1

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1− s) (4)

Where Γ(s) is the Gamma function. Using the above functional equa-
tion, Riemann has shown that the non-trivial zeros of ζ are located sym-
metrically with respect to the line ℜ(s) = 1/2, inside the critical strip
0 < ℜ(s) < 1. Riemann has conjectured that all the non trivial-zeros are
located on the critical line ℜ(s) = 1/2. In 1921, Hardy & Littlewood[3]
showed that there are infinitely many zeros on the critical line. In 1896,
Hadamard[3] and De la Vallée Poussin[3] independently proved that ζ(s)
has no zeros of the form s = 1+ it for t ∈ R. Some of the known results[3]
of ζ(s) are as follows:

• ζ(s) has no zero for ℜ(s) > 1.

• ζ(s) has no zero of the form s = 1 + iτ . i.e. ζ(1 + iτ ) 6= 0, ∀ τ .

• ζ(s) has a simple pole at s = 1 with residue 1.

• ζ(s) has all the trivial zeros at the negative even integers s = −2k,
k ∈ N

∗.

• The non-trivial zeros are inside the critical strip: i.e. 0 < ℜ(s) < 1.

• If ζ(s) = 0, then 1 − s, s̄ and 1 − s̄ are also zeros of ζ: i.e. ζ(s) =
ζ(1− s) = ζ(s̄) = ζ(1− s̄) = 0.

Therefore, to prove the “Riemann Hypothesis” (RH), it is sufficient to
prove that ζ has no zero on the right hand side 1/2 < ℜ(s) < 1 of the
critical strip.

3 Proof of the Riemann Hypothesis

Let’s take a complex number s such that s = σ+ iτ . Unless we explicitly
mention otherwise, let’s suppose that 0 < σ < 1, τ > 0 and ζ(s) = 0.

We have from the Riemann’s integral above:

ζ(s) =
s

s− 1
− s

∫ +∞

1

{x}

xs+1
dx (5)

We have s 6= 1, s 6= 0 and ζ(s) = 0, therefore:

1

s− 1
=

∫ +∞

1

{x}

xs+1
dx (6)

Therefore:

1

σ + iτ − 1
=

∫ +∞

1

{x}

xσ+iτ+1
dx (7)

1This is slightly different from the functional equation presented in Riemann’s paper[1].
This is a variation that is found everywhere in the litterature[2,3,4]. Another variant using
the cos:

ζ(1− s) = 21−sπ−s cos
(πs

2

)

Γ(s)ζ(s) (3)
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And

σ − 1− iτ

(σ − 1)2 + τ 2
=

∫ +∞

1

(

cos(τ ln (x))− i sin(τ ln (x))
)

{x}

xσ+1
dx (8)

The integral is absolutely convergent. We take the real part of both sides
of the above equation and define the functions F and G as following:

F (σ, τ ) =
σ − 1

(σ − 1)2 + τ 2
(9)

=

∫ +∞

1

(

cos(τ ln (x))
)

{x}

xσ+1
dx (10)

And

G(σ, τ ) =
τ

(σ − 1)2 + τ 2
(11)

=

∫ +∞

1

(

sin(τ ln (x))
)

{x}

xσ+1
dx (12)

We also have 1 − s̄ = 1 − σ + iτ = σ1 + iτ1 a zero for ζ with a real
part σ1 such that 0 < σ1 = 1− σ < 1 and an imaginary part τ1 such that
τ1 = τ . Therefore

F (1− σ, τ ) =
σ1 − 1

(σ1 − 1)2 + τ 2
1

(13)

=
−σ

σ2 + τ 2
(14)

=

∫ +∞

1

(

cos(τ ln (x))
)

{x}

x2−σ
dx (15)

And

G(1− σ, τ ) =
τ1

(σ1 − 1)2 + τ 2
1

(16)

=
τ

σ2 + τ 2
(17)

=

∫ +∞

1

(

sin(τ ln (x))
)

{x}

x2−σ
dx (18)

Therefore:

F (σ, τ )

F (1− σ, τ )
=

1− σ

σ

σ2 + τ 2

(1− σ)2 + τ 2
(19)

And

G(σ, τ )

G(1− σ, τ )
=

σ2 + τ 2

(1− σ)2 + τ 2
(20)
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By combining the equations (19) and (20) we get:

1− σ

σ
=

F (σ, τ )

G(σ, τ )

G(1− σ, τ )

F (1− σ, τ )
(21)

We apply Fubini theorem to rewrite F (σ, τ )G(1−σ, τ ). The conditions
for Fubini theorem are present since the functions involved are peicewise
continuous and absolutely integrable (1 + σ > 1 and 2− σ > 1):

∫ +∞

1

∫ +∞

1

dxdy

∣

∣

∣

∣

∣

∣

(

cos(τ ln (x))
)

{x}

x1+σ

(

sin(τ ln (y))
)

{y}

y2−σ

∣

∣

∣

∣

∣

∣

≤

∫ +∞

1

∫ +∞

1

dx

x1+σ

dy

y2−σ
(22)

=
1

σ(1− σ)
(23)

< +∞ (24)

So we have:

F (σ, τ )G(1− σ, τ ) =

∫ +∞

1

(

cos(τ ln (x))
)

{x}

x1+σ
dx

∫ +∞

1

(

sin(τ ln (y))
)

{y}

y2−σ
dy (25)

=

∫ +∞

1

∫ +∞

1

dxdy

(

cos(τ ln (x))
)

{x}

x1+σ

(

sin(τ ln (y))
)

{y}

y2−σ
(26)

=

∫ +∞

1

∫ +∞

1

dxdy
cos(τ ln (x)) sin(τ ln (y))

x1+σy2−σ
{x}{y} (27)

=

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))− sin(τ ln (x/y))

2x1+σy2−σ
{x}{y} (28)

=

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))− sin(τ ln (x/y))

2 (xy)1+σy1−2σ
{x}{y} (29)

Therefore:

F (σ, τ )G(1− σ, τ ) =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))− sin(τ ln (x/y))

2 (xy)1+σy1−2σ
{x}{y} (30)

And the same for G(σ, τ )F (1− σ, τ ). So we have:

G(σ, τ )F (1− σ, τ ) =

∫ +∞

1

(

sin(τ ln (x))
)

{x}

x1+σ
dx

∫ +∞

1

(

cos(τ ln (y))
)

{y}

y2−σ
dy (31)

=

∫ +∞

1

∫ +∞

1

dxdy

(

sin(τ ln (x))
)

{x}

x1+σ

(

cos(τ ln (y))
)

{y}

y2−σ
(32)

=

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (x)) cos(τ ln (y))

x1+σy2−σ
{x}{y} (33)

=

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))− sin(τ ln (y/x))

2x1+σy2−σ
{x}{y} (34)
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We do a change of variables and we get:

G(σ, τ )F (1− σ, τ ) =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))− sin(τ ln (x/y))

2 (xy)1+σx1−2σ
{x}{y} (35)

By a change of variables we also have the following:

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))

2 (xy)1+σy1−2σ
{x}{y} =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (xy))

2 (xy)1+σx1−2σ
{x}{y} = C (36)

And we denote this last term as C.
Let’s now focus on the terms A and B where:

A =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (x/y))

2 (xy)1+σx1−2σ
{x}{y} (37)

B =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (x/y))

2 (xy)1+σy1−2σ
{x}{y} (38)

By a change of variables we have:

A = −B (39)

Let’s now summarize. We have so far the following relations:

F (σ, τ )G(1− σ, τ ) = C + A (40)

G(σ, τ )F (1− σ, τ ) = C − A (41)

Remark. At this point, one hopes that A = 0. Because if such is the

case, we will have 1−σ
σ

= 1 and then σ = 1
2
. Well it sounds too good to be

true but it is indeed true. And it is the subject of the following lemma.

Lemma 3.1. Let’s consider the function of two variables σ and τ that

corresponds to the term 2× A defined above:

u(σ, τ ) =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (x/y))

(xy)1+σx1−2σ
{x}{y} (42)

Therefore, the function u(σ, τ ) is a null function over (0, 1)× (0,+∞).
i.e u(σ, τ ) = 0, ∀ σ ∈ (0, 1), ∀ τ ∈ (0,+∞).
In the context of this lemma, the variables σ and τ are arbitrary and not

necessarily related to the zeros of the zeta function.

Proof. Without loss of generality, let’s consider 0 < σ < 1, τ > 0. We use

the Euler’s formula for the sinus
(

sin(x) = eix−e−ix

2

)

and Fubini, like in

the case above of F (σ, τ )G(1− σ, τ ), to write u(σ, τ ) as following:
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u(σ, τ ) =

∫ +∞

1

∫ +∞

1

dxdy
sin(τ ln (x/y))

(xy)1+σx1−2σ
{x}{y} (43)

=

∫ +∞

1

∫ +∞

1

dxdy
ei(τ ln (x/y)) − e−i(τ ln (x/y))

2 (xy)1+σx1−2σ
{x}{y} (44)

=

∫ +∞

1

∫ +∞

1

dxdy
ei(τ ln (x))e−i(τ ln (y)) − e−i(τ ln (x))ei(τ ln (y))

2 (xy)1+σx1−2σ
{x}{y} (45)

=

∫ +∞

1

∫ +∞

1

dxdy
ei(τ ln (x))e−i(τ ln (y))

2 (xy)1+σx1−2σ
{x}{y} −

∫ +∞

1

∫ +∞

1

dxdy
e−i(τ ln (x))ei(τ ln (y))

2 (xy)1+σx1−2σ
{x}{y} (46)

=
1

2

∫ +∞

1

dx
ei(τ ln (x))

x2−σ
{x}

∫ +∞

1

dy
e−i(τ ln (y))

y1+σ
{y} −

1

2

∫ +∞

1

dx
e−i(τ ln (x))

x2−σ
{x}

∫ +∞

1

dy
ei(τ ln (y))

y1+σ
{y} (47)

=
1

2
E(1− σ, τ )E(σ,−τ )−

1

2
E(1− σ,−τ )E(σ, τ ) (48)

Where the function E(σ, τ ) is defined as the following:

E(σ, τ ) =

∫ +∞

1

dx
ei(τ ln (x))

x1+σ
{x} (49)

We note that the function E(σ, τ ) is a complex function and the conplex
conjugate of E(σ, τ ) is actually E(σ,−τ ):

E(σ, τ ) = E(σ,−τ ) (50)

Therefore:

2u(σ, τ ) = E(1− σ, τ )E(σ,−τ )− E(1− σ,−τ )E(σ, τ ) (51)

= E(1− σ, τ )E(σ, τ )− E(1− σ, τ )E(σ, τ ) (52)

Let’s now calculate the complex conjugate of u(σ, τ ):

2u(σ, τ ) = E(1− σ, τ )E(σ, τ )− E(1− σ, τ )E(σ, τ ) (53)

= E(1− σ, τ )E(σ, τ )− E(1− σ, τ )E(σ, τ ) (54)

= −2u(σ, τ ) (55)

Therefore

ℜ(u(σ, τ )) =
u(σ, τ ) + u(σ, τ )

2
= 0 (56)

But the function u(σ, τ ) is a real function by its definition.
Therefore

u(σ, τ ) = ℜ(u(σ, τ )) = 0 (57)

�

Therefore u(σ, τ ) is a null function.
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Let’s now go back to finish our proof of the Riemann’s Hypothesis.
The variables σ and τ are here again the real part and the imaginary
part of a non-trivial zeta zero as stated in the begining of the proof. i.e
0 < σ < 1, τ > 0 and ζ(s) = 0.

From the lemma 3.1 above, we have that

A =
u(σ, τ )

2
= 0 (58)

Therefore from the equation (40) and (41) we have

F (σ, τ )G(1− σ, τ ) = C = G(σ, τ )F (1− σ, τ ) (59)

Since C 6= 0, from the equation (21) we conclude that:

1− σ

σ
=

F (σ, τ )

G(σ, τ )

G(1− σ, τ )

F (1− σ, τ )
(60)

= 1 (61)

Therefore

σ =
1

2
(62)

Hence, the Riemann’s Hypothesis is true. �

4 Conclusion

We saw that if s is a non-trivial zero of the zeta function, then real part
ℜ(s) can only be 1

2
. Therefore the Riemann’s Hypothesis is true: The

non-trivial zeros of ζ(s) have real part equal to 1
2
.

We also applied in [5] the same method used here to prove the Generalized
Riemann Hypothesis.
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