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Abstract

We present a short and simple proof of the Riemann’s Hypothesis (RH)
where only undergraduate mathematics is needed.
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1 The Riemann Hypothesis
1.1 The importance of the Riemann Hypothesis

The prime number theorem gives us the average distribution of the primes.
The Riemann hypothesis tells us about the deviation from the average.
Formulated in Riemann’s 1859 paper[1], it asserts that all the 'non-trivial’
zeros of the zeta function are complex numbers with real part 1/2.

1.2 Riemann Zeta Function

For a complex number s where $(s) > 1, the Zeta function is defined as
the sum of the following series:

+o0 1
()= - (1)
n=1
In his 1859 paper[1], Riemann went further and extended the zeta function
¢(s), by analytical continuation, to an absolutely convergent function in
the half plane 3(s) > 0, minus a simple pole at s = 1:

s oo g
C(s):—l—s/1 :;{H}ldm (2)
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Where {z} = = — [z] is the fractional part and [z] is the integer part of
z. There is another way [2] to analytically continue {(s) to the region
R(s) > 0. The idea is to observe that for R(s) > 1:

-3)X6 = Y=Y G 3)

Thus,

(4)

28 —= n
= (- 2)n(s) (%)

The Dirichlet eta function 7(s) converges conditionally when R(s) > 0
and s # 1+ ZlikTg) n(s) is used as analytical continuation of the Zeta
function on the domain where (s) > 0. Riemann also obtained the
analytic continuation of the zeta function to the whole complex plane.

Riemann[1] has shown that Zeta has a functional equatio
C(s) = 2°7° sin (g)m —5)C(1—s) (7)

Where I'(s) is the Gamma function. Using the above functional equa-
tion, Riemann has shown that the non-trivial zeros of { are located sym-
metrically with respect to the line R(s) = 1/2, inside the critical strip
0 < R(s) < 1. Riemann has conjectured that all the non trivial-zeros are
located on the critical line $(s) = 1/2. In 1921, Hardy & Littlewood[2,3,
6] showed that there are infinitely many zeros on the critical line. In 1896,
Hadamard and De la Vallée Poussin[2,3] independently proved that {(s)
has no zeros of the form s = 1+ 4t for ¢ € R. Some of the known results[2,
3] of ¢(s) are as follows:

e ((s) has no zero for (s) > 1.

(s)
e ((s) has no zero of the form s =1+ ir. i.e. {(1+1iT)#0, V.
(s)
(s)

* ¢

e ((s) has all the trivial zeros at the negative even integers s = —2k,
ke N*.

e The non-trivial zeros are inside the critical strip: i.e. 0 < R(s) < 1.

If ((s) =0, then 1 — s, § and 1 — § are also zeros of (: ie. {(s) =

(A —s)=¢(5) =¢1 -5 =0.

Therefore, to prove the “Riemann Hypothesis” (RH), it is sufficient to

prove that ¢ has no zero on the right hand side 1/2 < R(s) < 1 of the
critical strip.

s) has a simple pole at s = 1 with residue 1.

1This is slightly different from the functional equation presented in Riemann’s paper[1].
This is a variation that is found everywhere in the litterature[2,3,4]. Another variant using
the cos:

C(1—s) =275 cos (?)F(S)C(s) (6)



1.3 Proof of the Riemann Hypothesis

Let’s take a complex number s such that s = o 4 ¢7. Unless we explicitly
mention otherwise, let’s suppose that 0 < o < 1, 7 > 0 and ((s) = 0.

We have from the Riemann’s integral above:

S teo fg
C(s)zs_l—s/1 :;{H}ldm (8)

We have s # 1, s # 0 and ((s) = 0, therefore:

L )
s—1 7/1 pstl dz ©)

Therefore:

! = /m S 2 S (10)

ctir—1 gotiT+1

And

o—1—ir _ /+m (cos(rln (z)) — isin(7In (x))){x}d

- = 11
(c—1)2+72 zot+l = (1)

The integral is absolutely convergent. We take the real part and the
imaginary part of both sides of the above equation and define the functions
F and G as following:

Flo,7) ﬁ (12)
_ /:oo <COS(T::S))){m}dm (13)

And
Glo,7) = m (14)

oo (sin(Tln (x))){x}
- /1 — dx (15)

We also have 1 — 5§ =1 — 0 447 = 01 + 971 a zero for ¢ with a real
part o1 such that 0 < 01 =1 —0 < 1 and an imaginary part 7, such that
71 = 7. Therefore

o1 —1
F(l — 0, 7') = m (16)
S o
B /+oo (cos(rln (:c))){m}d (18)



And

T1

G(l—O',T) = m (19)
= (20)

oo [ sin(7In (x T
) /+ ( <x2<a>>){ i o

Before we move forward, we need to define the following function
I(a,o,7) for a > 0:

Ha,0,7) = /lawdx (22)

In(a)
= / sin(Tx)e(lfg)zdx (23)
0
= K(o, T)(l B COS(C;I—Hl(a)) (o ; 1) Sm(aTaE(a))) (24)
Where
K(o,7) m (25)

Let’s define the function J(a, o, 1) for a > 0:

Ja,0,7) = / cos(T ln(:c))dx
1 z7
In(a) L
= / cos(tz)e " dx
0
- K(o, 7_)<(U —1) (o—1)cos(r ljl(a)) n sin (7 lil(a)))
T T a®~1 a®~1
Where K (o, ) is defined above in the equation (25).
Now, let’s write G(co,7) as the limit of a sequence as follows:
N .
_ . {z}sin(7 In(z))
G(o,7) = NEIEOO : ite dx (29)
71In(N) I\~ Zx
= lim dz sin(m)w (30)
N—+oo Jg T
71n(N)
= NHTOO ; dz g(x) sin(x) (31)
= NHTOO U(N,o) (32)
Where
71n(N)
U(N,o) = / dz g(x) sin(x) (33)
0
e(e¥) _a,
o) = et (34

(x) = {a} (35)



And the same for F(o,7):

N
F(o,7) = NLiIEoo {z} cos(rIn(z)) C(;Sl(l—:n(x)) dx (36)
1

71In(N) o~ Zx

= lim dz cos(z) cler)e (37)
N—+oo [g T

71In(N)
= NLHEOO dz g(z) cos(x) (38)
= lim V(N o) (39)

Where
7In(N)
V(N,o) = / dz g(z) cos(x) (40)
0

Let’s study the function g over R. We have the function g piecewise
continuous and and its derivatives are also peicewise continuous and:

[

(e%) —Zz

o) = L ()
gla) = o)~ L) (2

The interval (0,7 In(N)) is the union of the intervals (7 In(n), 7 In(n +
1)) where 1 < n < N. We have e/(x) = 1 for each = € (7log(n), T log(n +
1)) for each 1 < n < N. Therefore, thanks to the integration by parts we
can write:

UN,o) = /0 T e o(2) sin(a) (43)
= 9(0%)cos(0) + lim N_ (vIn(n) + ) cos(7 In(n) + €) — g(r In(n) — &) cos(7 In(n) — ¢)] (44)
—g(rIn(N)") cos(r In(N)) + /0 T e () costa) (45)

- %NZ [9(rIn(n) + €) — g(rIn(n) — e)] cos(r In(n)) (46)
—eoo(T ) /0 " e 1) cos(@) (47)

_ _% Nll COS(;IS(")) - COS(:JI\‘;[EN ) 4 /0 " i) cos(a) (48)

- 2 nﬁ:l conlrin(m)) _ g/OTl"(Néxg(x) cos(x) + /OH"(N) da <617f;m (49)

- -1 3 AT Ty (v, 0) + /OHH(N) dz 6:72% cos(z) (50)



Therefore

o 1 cos(tln(n)) 1
U(N,o) + ;V(N, o) = - Zl — ;J(M o,7) (51)
Therefore
N cos(7 In(n
> ———* -J(N,o,7) = —1U(N,0)-0V(N,0) (52)
n=1

Therefore, the sequence ( > 2[:1 COS(:L% —J(N, o, T)) converges
N>1
and its limit is as follows:

2 —_—
lim costr() _ N 0,7) = - Folo=D "(;T D (53)
N—ytoo £~ ne 1-0)2472
Therefore we can write the following:
N
cos(71In(n)) 2 +o(c—1)
costtIn(n)) ;N _rtoloe—1) 4
> O e R (54)
Where (an) is a bounded sequence with limit zero.
And the same for V(N, o) as follows:
71n(N)
V(N,o) = / dz g(z) cos(z)
0
N—
= —g(0")sin(0) + hn}) g(TIn(n) + €) sin(rIn(n) + €) + g(7In(n) — €) sin(r In(n) —
e—

71n(N)

+g(rIn(N)") sin(r In(N)) — /0 dz g1(x) sin(z)

- lii% g(rIn(n) + €) + g(r In(n) — )] sin(r In(n))
sin(7In 7In(N)
+7(7']1\7‘£N)) —/0 dz g/(x) sin(z)
= sin(r In(n sin(7 In 7 In(N)
= % (nla( ) + (TJIV(EN)) —/(; dzx g/(x) sin(z)

3
Il
—

1

l1—0o

I
9=
M=

ne T T2
n=1
N . 7 In(N) l:aac
= I I 2y [T e T
T ne T 0 T

Il
-

n

Therefore

S8

: 7In(N) 7In(N) —>z
sin(r In(n)) +2 / dz g(z)sin(z) — / dx (6 ele
0 0



o 1 sin(rln(n)) 1
N.o)— ZU(N = = — —I(N
V(N,0) = ~U(N,0) T; — ~I(N,0,7) (63)
Therefore
al sin(7 In(n))
> — < —I(N,o,1) = 7V(N,0)=0U(N,0) (64)
n=1
Therefore, the sequence (ij:l S"‘(Tn% —I(N,o, 7')) converges
N>1
and its limit is as follows:
N
. sin(7 In(n)) T
1 —— = —I(N = -V 65
N oo — ne (N,0,7) (1-0)2472 (65)
Therefore we can write the following:
N
sin(7In(n)) T
——= = I(N - 66
nz::l ne ( 7U7T) (1—0’)2+T2 +/BN ( )

Where (Bn) is a bounded sequence with limit zero.
From equation (5), the {(s) function is also defined through the Dirich-
let eta function 7n(s) as follows:

) = (1=57) "n(s) (67)
(68)

Let’s define the sequences Xn and Yn as follows:

AN |
Xy = Zn— (69)

n=1
N n+1
(=p"*
Y = E —_—t 70
" n=1 n* ( )
We can also write the following;:
Yo = Xonv—2'7°Xy (71)

In our case, s is a zero of ((s). Therefore

lim Yoy = lim Xon —2'7°Xny =0 (72)

N—+oco N—+oo

Therefore, the limit of the real part of Yan is also zero:

ne ne
n=1 n=1

lim % M —ol=e <cos(7' In(2)) ﬁ: M — sin(71n(2)) ﬁ: M) =

0 (73)



We inject the equations (54) and (66) into the last equation to get the

following;:
. ™ +o(c—1) -0
NETw J(2N,0,7) — [T + oon — 2 cos(T 111(2))<J(N7 0,T) (74)

™ +o(oc—1) ) . B
S + aN) - 81n(Tln(2))(I(N, 0,T) — (e + 5N)> =0 (75)
Therefore
Nlirfm J(2N,o,7) —2'7° (COS(T In(2))J(N, o, 7) — sin(7In(2))I(N, o, T)) = (76)

™ +a(o—1) 1-o 24+ o(c—1) . T B
T2t 2 (COS(T ln(2))7(1 s o sin(7 1n(2))m)> =0 (77)

We have from the equations (24) and (28) the following:

I(N,o,7) = K(o7)(1- COSS;EQN)) G - D) Sm(];fi(fv))) (78)
o) = Koy (OZD o Desr) | )y
seNor) = Ko - oD ernEh) O - (s
We inject the equations (78-80) into the equation (76-77) to get the
following:
K(o,7) (("—;1) - @2“ cos(r In(2)) + 2~ sin(r 1n(2))) (81)
- K(o,7) (W _gle cos(ﬂn(z))w T sin(Tln(2))) (82)
Therefore
@ (1 gl cos(Tln(2))) - w (1 — 2" cos(r ln(2))) (83)
Therefore
(1- 2" cos(rIn(2))) T tolo _Tl) il Gl VR (1- 2" cos(rIn(2))) M — 0 (34)
Since 72 + (¢ — 1)? > 0, we conclude that:
cos(7 In(2)) = 21{0 (85)

We saw above that 1 —§=1— 0 +iT = 01 + i71 is also a zero for ¢
with a real part o1 such that 0 < 01 =1 — 0 < 1. We apply the same
technique above, we will get:

L _ 2L (86)

cos(t1In(2)) = ier = 3



Therefore

1 1
In(2)) = = —
cos(71n(2)) 3= = 30 (87)
Therefore
oc=1—0 (88)
Therefore
1
= = 89
o= 3 (39)
Hence, the Riemann’s Hypothesis is true. |

1.4 Conclusion

We saw that if s is a zeta zero, then real part R(s) can only be 2. Therefore
the Riemann’s Hypothesis is true: The non-trivial zeros of ((s) have real
part equal to % In the next article, we will try to apply the same method
to prove the Generalized Riemann Hypothesis (GRH).
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