Antonio Anastasio Bruto Da Costa

Pallab Dasgupta

Nikolaos Kekatos

ForFET SM T : Quantitative SMT Analysis of Hybrid Automata using Features *

We present ForFET SM T , a tool for the quantitative analysis of hybrid systems modeled as hybrid automata (HA). ForFET SM T makes use of features to express quantitative measurements over behaviours of a HA and builds upon the tool ForFET. ForFET SM T is the first tool to provide a formal quantitative analysis of HA that provides the option to use both set-based reachability and SMT. In particular, it first computes feature ranges formally over runs of a HA using the reachability tool SpaceEx. Then, it refines the feature range using an expansion-bisection search using the delta-reachability SMT solver dReal. By leveraging SMT solvers, ForFET SM T acts as a practical tool, able to produce concrete traces associated with the extremal corners of the feature range. These traces can be used by experts for tuning the design to make the system more robust.

Introduction

Formal verification techniques can provide guarantees of correctness and performance for hybrid and cyber-physical systems. Nowadays, they are supported by several robust verification tools, e.g. SpaceEx [START_REF] Frehse | SpaceEx: Scalable Verification of Hybrid Systems[END_REF], dReal/dReach [START_REF] Gao | dreal: An SMT solver for nonlinear theories over the reals[END_REF]. A common modeling formalism for the design of such systems is hybrid automata [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF] (HA). HA can exhibit non-deterministic behaviors and have been used to model control systems and analog mixed-signal circuit designs [START_REF] Arch | Benchmarks for continuous and hybrid system verification[END_REF][START_REF] Dang | Verification of analog and mixed-signal circuits using hybrid system techniques[END_REF]. Formalizing specifications of hybrid automata such that they can be verified automatically is not an easy task, especially in an industrial setting.

There is a semantic mismatch between industrial requirements and formal specifications. Typically, industrial requirements are described in natural language"The caliper speed at contact must be below 2 mm/s", while formal specifications are expressed in a formal language, like temporal logic (TL), e.g.

(q → (p)) with p := {speed <= 2mm/s} and q := {caliper at contact}. Standard analysis tools [START_REF] Frehse | SpaceEx: Scalable Verification of Hybrid Systems[END_REF] can answer reachability questions and can verify if given safety properties are satisfied. For more complex properties, one has to construct a monitor automaton and take its product with the HA [START_REF] Frehse | A toolchain for verifying safety properties of hybrid automata via pattern templates[END_REF][START_REF] Kekatos | Formal Verification of Cyber-Physical Systems in the Industrial Model-Based Design Process[END_REF]. In practice, however, the resulting automaton can be large, resulting in long analysis times and scalability issues. In addition, the answer provided by the tool is qualitative, i.e. yes or no. It is not possible to support quantitative measures, e.g. by what extent was the specification violated? In addition, describing common system properties requires the ability to express quantitative measures such as overshoot, settling time, or other timing and value quantities.

There are two directions to address this limitation. On the one hand, it is possible to use temporal logic. Much literature exists on TL, especially on Linear Temporal Logic (LTL) [START_REF] Pnueli | The temporal logic of programs[END_REF]. Languages such as MITL [START_REF] Alur | The benefits of relaxing punctuality[END_REF], STL [START_REF] Maler | Monitoring temporal properties of continuous signals[END_REF] and its extensions such as xSTL [START_REF] Nickovic | AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic[END_REF] have been used for specifying specifications involving continuous signals. Some TL languages support the use of robustness metrics over properties [START_REF] Deshmukh | Robust online monitoring of signal temporal logic[END_REF]. Such metrics measure the distance of runs of the system from unsafe regions defined by the property. However, these languages are primarily designed to express specification correctness, and it can be tedious to use them to express quantitative measures.

The other direction is to use features [START_REF] Ain | Feature indented assertions for analog and mixed-signal validation[END_REF]. Unlike temporal logics like MITL or STL, the language of features is designed to explicitly specify quantitative measures. The quantity is expressed as a computation resulting from matching a behaviour description. ForFET [START_REF] Bruto Da Costa | ForFET: A Formal Feature Evaluation Tool for Hybrid Systems[END_REF] is a tool for computing an over-approximation for features, where the evaluation of a feature, written in the Feature Indented Assertion (FIA) language, over runs of a HA is automated.

In a quantitative analysis, knowledge of the stimulus that produces the best and worst-case quantity (minimum or maximum) provides insight into the system and on how to modify the design to more robustly adhere to specifications.

The tool ForFET SM T addresses the needs described above, extending For-FET, with the following:

-Feature corner analysis using SMT. Using SMT has two advantages, it allows us to refine the feature range beyond what ForFET produces, and also enables us to generate a witness trace describing the stimulus and behaviour for best and worst-case quantities. -Support for parameterized features and an extended language for features having mixed urgent and non-urgent semantics. -Usability and support: i) two translators, written in Matlab and Octave, for converting models from SpaceEx formalism to ForFET 's modeling language, ii) support for custom paths for workspace, models, and third-party tools.

Design and Implementation

We begin with a running example, as shown in Figure 1, to explain the inputs to ForFET SM T . The example is of a buck regulator taken from standard benchmarks [START_REF] Nguyen | Benchmark: DC-to-DC Switched-Mode Power Converters[END_REF]. The regulator receives an input voltage, and in the event of reasonably varying loads ensures that it provides an unchanging output voltage. Hybrid Automaton Description in HASLAC An input to the tool is the HA description. The HA of the buck regulator has two locations, open and closed, indicating the state of the switch that charges the capacitor of the regulator.

The description of the HA is specified in the Hybrid Automaton Specification Language for Analog Mixed-Signal (AMS) Circuits (HASLAC), as the model description language for ForFET and ForFET SM T . HASLAC is specially designed to mimic semiconductor circuit behavioural model description languages such as Verilong-AMS, to make adoption of formal analysis in the semiconductor circuit design flow less intimidating. HASLAC describes each location of the HA as a mode, with each transition and invariant expressed as a property. In the model description, v and i are aliases for the HA variables x 1 and x 2 .

Open 0 ≤ τ ≤ (1 -D)T τ ≥ (1 -D)T ẋi = Aox + Bo τ := 0 Closed 0 ≤ τ ≤ DT ẋi = Acx + Bc τ ≥ DT τ := 0 module buck(v,i,t) output v,i
Quantitative Specification using Features A feature defines, formally, a quantitative specification, i.e. a measurement over behaviours of the system. Unlike properties, which either match or fail, having a Boolean outcome, the outcome of evaluating a feature is a real-valued interval. The language of features is easier to use and understand for non-experts, especially in the AMS domain, and it can be evaluated with the use of reachability tools.

In our example, the intent to measure the time taken for the output voltage to settle into a stable state can be expressed as the feature settlingTime. The feature contains three core components: (i) a set of behaviours over which measurements are made, (ii) variables, local to a feature, that may be assigned values in the antecedent, as a matching behaviour is observed, and (iii) the feature compute expression, over local variables, evaluated once the behaviour has matched. The behaviour described by the feature in Figure 1 reads as follows, "(v<=Vr+E) is true and thereafter v settles below (Vr+E) for two successive openings of the capacitor switch". The expressions (v>=Vr+E) and (v<=Vr+E) are predicates over real-variables (PORVs). state is a special variable allowing us to write predicates over the location labels of the HA. The construct @+(P) represents an event, and is true only on the positive edge of the predicate P. A behaviour in the feature expresses a sequence of Boolean expressions over PORVs and events separated by time-delays. The statement "P ##[a:b] Q" is The symbol $ represents the notion "anytime after a". Observe that P can be true over a dense time interval, and for each point in the interval where "P ##[a:b]" is true, Q can be true yielding an infinite number of matches. A more complete description of the language for features is available in [START_REF] Bruto Da Costa | Formal feature interpretation of hybrid systems[END_REF].

Remark 1. A feature behaviour may match in one or multiple (potentially infinite) runs of the HA, at one or multiple (potentially infinite) time-points. Each match has the potential to yield a different feature value. Evaluating a feature over runs of a HA, therefore, yields an interval [F min , F max] of feature values. We call this a feature range.

Algorithm A functional overview of ForFET SM T is shown in Figure 2. The tool ForFET is marked within a blue box. ForFET SM T extends ForFET by introducing an iterative refinement step that refines the range provided by ForFET. It also introduces a wrapper around the SMT solver dReal in order to correctly visualize a trace that acts as a witness for each corner of the feature range.

The tool works as follows. The user provides two inputs (Step 1): a hybrid automaton model H and a feature specification F (single or a set of features), ForFET SM T computes the product automaton (Step 2) according to [START_REF] Bruto Da Costa | Formal feature interpretation of hybrid systems[END_REF]. Step 3 involves using SpaceEx [START_REF] Frehse | SpaceEx: Scalable Verification of Hybrid Systems[END_REF] to compute reach-sets for the transformed model H F . This results in a feature range [F min , F max] computed as an evaluation of the feature expression on the runs matching the feature sequence-expression (Step 4). The feature range is refined iteratively through a search using an SMT solver (Steps 4 to 7).

HyST [START_REF] Bak | HyST: A source transformation and translation tool for hybrid automaton models[END_REF] converter is used internally to translate the model H f into an acceptable format for use with dReach. In each interaction, called a query, between our tool and dReach, a goal statement is constructed to direct dReach to prove the existence/non-existence of a feature value in a given domain. Each query in

Step 5 includes the model description for H f , a goal statement, and a maximum transition hop count K, which is translated by dReach into SMT clauses. The response of the SMT solver (Step 6) is either unsatisfiable or satisfiable. In the latter case, a single timed trace of the HA is made available. dReal generates a trace as a JSON file with time-stamped valuations for the variables of the automaton, which is parsed to identify the feature values for the trace. The search concludes in Step 7 with a refined feature range [F * min , F * max] as well as a trace corresponding to each feature range corner value.

Implementation ForFET SM T is implemented in C/C++. The parsers for features and the HASLAC language are implemented in flex and bison, which are translated into C/C++. The language was chosen due to its efficiency for handling complex operations and data-structures involved in computing the product automaton of the HA feature monitor.

We represent the algorithm as a function which takes the HA and the feature as inputs, and produces a range of feature values [F * min , F * max] as output along with a trace that acts as a witness for each extremal corner of the range. The algorithm is guaranteed to terminate for bounded time traces [START_REF] Bruto Da Costa | Formal feature interpretation of hybrid systems[END_REF]. As such, it constitutes a procedure for computing feature ranges over bounded time horizons, which is expected in practice.

Challenges using dReal In general, HA use urgent locations to represent ordered discrete transformations. In a trace, dReal provides a series of indexed time-ordered tuples representing a trace satisfying the query. In our experience, when the model H f contains urgent locations, dReal generates a NULL tuple representing a visit to an urgent location. Visualization tools provided by the authors of dReal do not support drawing traces containing a NULL tuple. To enable visualization for all traces generated by dReal, ForFET SM T post-processes traces generated by dReal. It eliminates all NULL tuples and re-indexes them to be consistent with the syntax expected by the visualization tool.

Support for SpaceEx Models

The SpaceEx modeling language has become the quasi-standard interchange format for defining and describing HA in the formal verification community [START_REF] Arch | Benchmarks for continuous and hybrid system verification[END_REF]. It offers a graphical user interface, respects the SX grammar [START_REF] Cotton | The spaceex modeling language[END_REF] and the models are written as XML files. ForFET SM T accepts HA models written in HASLAC. To bridge this mismatch and facilitate the use of ForFET SM T with existing SpaceEx models and HA benchmarks, we provide two translators, written in MATLAB and Octave respectively. The translators require a SpaceEx model (necessary) and a configuration file (optional). They come with an XML parser (partly written in Java) and perform syntactic translation while also handling modeling differences. Note that there exist other converters tailored to hybrid automata and SpaceEx, e.g. HyST [START_REF] Bak | HyST: A source transformation and translation tool for hybrid automaton models[END_REF].

Installation and Usage

Installation The ForFET SM T tool is available at a public GitHub repository. The repository may be cloned in full using the following command: git clone https://github.com/antoniobruto/ForFET2.git

The tool is written in C/C++. Before building the tool, one needs to have g++, flex, bison, glib-2.0, json-glib-1.0 and C/C++ standard libraries for 32 bit binaries (ia32-libs on Ubuntu 10.04 and later).

The tool can be compiled by running ./buildForFET.sh in the cloned directory. One must also ensure that SpaceEx3 and the SMT translator and solver dReach 4 and dReal 4 are installed and executable in the user's path. The tool also uses the HA translator HyST (provided with ForFET SM T) which requires a java run-time environment to be installed.

Usage The compiled ForFET SM T tool can be interacted with through the command line. Once compiled, the tool binary resides within the forFET directory as the binary forFET. Standard invocation involves executing the binary with a configuration file, by running ./forFET CONFIG-FILE-NAME. The configuration file specifies where third party libraries may be found. An example configuration file is provided in forFET/default.cfg.

Experimental Evaluation

In this Section, we present selected results on three models, provided with ForFET SM T , i.e. a battery charger, a cruise control, and a buck regulator. We tested a wide variety of features, capturing state-dependent, time-dependent, sequential-properties and combinations of them. Some of these properties can also be encoded as control specifications, e.g. overshoot or settling time. More details about the models, specifications, features, and analysis results can be found in the tool manual. For each model, the feature range is computed first using SpaceEx and is then refined using SMT. Our observations show that, except in one case, reachability analysis and SMT require similar time to compute the expected feature range. The exception is when the model switches location often, like the Buck Regulator. In these cases, SMT might be more vulnerable to the state-space explosion. However, the additional computation overhead leads to tighter feature ranges.

Concluding Remarks

In this paper, we have presented the tool, ForFET SM T , that is a formal feature evaluation tool for hybrid automata (HA), emphasizing on its architecture and utilities. Features form a promising and practical research direction as they can be used on top of or alongside standard monitoring and hybrid reachability tools to provide quantitative measures about HA behaviors. ForFET SM T makes use of the HASLAC language for writing HA models and is linked to SpaceEx reachability tool and dReal/dReach SMT solver. Using such an SMT solver to compute features can produce concrete traces for feature corner points and lead to the generation of tighter feature ranges. The traces for corners of the feature range can provide insights that guide experts to refine their designs.

Fig. 1 :

 1 Fig. 1: HA of the Buck Regulator, HASLAC Code-snippet of HA description, Quantitative Specification of Settling Time as a feature.

Fig. 2 :

 2 Fig. 2: ForFET SM : Corner Case Analysis true whenever Q occurs within a time interval of a and b from when P is true; a, b ∈ R + , b ≥ a. The syntax ##[a:b] represents a time-delay. The symbol $represents the notion "anytime after a". Observe that P can be true over a dense time interval, and for each point in the interval where "P ##[a:b]" is true, Q can be true yielding an infinite number of matches. A more complete description of the language for features is available in[START_REF] Bruto Da Costa | Formal feature interpretation of hybrid systems[END_REF].

http://spaceex.imag.fr/sites/default/files/downloads/private/spaceex_exe-0.9.8f.tar.gz