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Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the

β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin

S (HbS), which polymerizes under deoxygenation, and induces the sickling of red

blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently

become anemic and develop frequent and recurrent vaso-occlusive crises. However, it

is now evident that SCD is not only a RBC rheological disease. Accumulating evidence

shows that SCD is also characterized by the presence of chronic inflammation and

oxidative stress, participating in the development of chronic vasculopathy and several

chronic complications. The accumulation of hemoglobin and heme in the plasma, as a

consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability

and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin

also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs),

which may activate endothelial inflammation through TLR-4 signaling and promote the

development of complications, such as acute chest syndrome. It is also suspected that

heme may activate the innate immune complement system and stimulate neutrophils to

release neutrophil extracellular traps. A large amount of microparticles (MPs) from various

cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into

the plasma of SCD patients and participate in the inflammation and oxidative stress

in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters

the RBC properties. Increased pro-inflammatory cytokine concentrations promote the

activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte

ROS. Such enhanced oxidative stress causes deleterious damage to the RBCmembrane

and further alters the deformability of the cells, modifying their aggregation properties.

These RBC rheological alterations have been shown to be associated to specific

SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover,

RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive

to various inflammatory molecules that promote RBC dehydration and increase RBC

adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle

between abnormal RBC rheology and inflammation, which modulates the clinical severity

of patients.
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INTRODUCTION

Sickle cell disease (SCD) is a genetic disease caused by a
single mutation in the β-globin gene, leading to the production
of an abnormal hemoglobin called hemoglobin S (HbS).
Under deoxygenation, the HbS polymerizes, which causes the
sickling of red blood cells (RBCs). Sickled RBCs are very
fragile and rigid. These abnormal features of sickle RBCs are
believed to be responsible for chronic anemia and frequent and
recurrent painful vaso-occlusive crises, respectively. However,
although the molecular defects at the origin of the disease
have been well-described, patients with SCD may exhibit
various acute and/or chronic complications, which may affect
several organs, such as the lungs, heart, kidney, brain, skin,
bones, and eyes, for example. It is worth noting that this
genetic disorder is associated with an extreme inter-individual
variability of its clinical presentation (1). In addition, while
it is easy to consider that rigid RBCs could obstruct the
microcirculation and trigger the onset of vaso-occlusive like
events, it has been demonstrated that the transit time of
RBCs in deoxygenated vascular areas would be theoretically too
short to allow RBCs to spend enough time to sickle (2, 3).
This means that other biological mechanisms participate in
the pathophysiological processes of the disease. Activation and
increased adhesiveness of neutrophils, monocytes and platelets
to the endothelium, mainly in post-capillary venules, may
initiate vaso-occlusion (4–7). The resulting decreased blood flow
induces a longer transit time of RBCs in vascular areas with
poor oxygen content, hence promoting HbS polymerization
and RBC sickling (6). The accumulation of rigid RBCs and
adherent circulating cells into the microcirculation is responsible
for vaso-occlusion (6). Mounting evidence shows that SCD
is characterized by the presence of chronic inflammation
and oxidative stress, participating in the development of
chronic vasculopathy, endothelial dysfunction and several
chronic complications. In addition, this pro-oxidative and
pro-inflammatory environment further impairs the rheological
properties of RBCs, hence further impacting the clinical severity
of disease in patients.

THE ROLE OF HEMOLYSIS IN
INFLAMMATION AND VASCULAR
DYSFUNCTION

Although chronic anemia is fairly well-tolerated by SCD patients,
the severity of anemia modulates their aerobic fitness and quality
of life (8, 9). Moreover, levels of anemia, partly determined by
the rate of intravascular hemolysis in SCD patients, influences
their survival rate (9). In addition, intravascular hemolysis also
plays a key role in the pathophysiology of SCD, independently
of its effects on anemia. Patients with the highest rate of
hemolysis are at risk of earlier mortality, compared to those with
less pronounced hemolysis (10). This section will discuss the
consequences of enhanced hemolysis on inflammation, oxidative
stress and the vascular function in SCD (11).

Hemolysis and Nitric Oxide (NO)
Bioavailability
NO produced by the endothelial NO-synthase (eNOS) is a strong
modulator of vascular physiology. Through its effects on the
vascular smooth cells, NO plays a key role in vasodilation.
Moreover, NO has been shown to downregulate the transcription
of several endothelial adhesion molecules of both the CAM
(ICAM-1, VCAM-1) and selectin (E- and P-selectin) families (12)
and to inhibit platelet activation (13). Accumulating evidence
strongly supports a key role of hemolysis in the decrease of
NO bioactivity/bioavailability in SCD (14, 15). The accumulation
of hemoglobin in the plasma affects the bioavailability of nitric
oxide (NO). Cell-free hemoglobin destroys NO at a rate of 1,000-
fold faster than hemoglobin encapsulated in the RBCs (16).
Moreover, hemolysis leads to the release of the arginase contained
in erythrocytes into the plasma. The free arginase hydrolyzes
arginine, which is the precursor to NO, to ornithine and urea,
thereby exacerbating the decrease in NO bioavailability (11).
Indeed, any decrease in NO bioactivity/bioavailability would
result in vascular dysfunction.

Blood flow responses to sodium nitroprusside (a NO donor)
or to L-NMMA (a NO-synthase inhibitor) are abolished in
patients with SCD (17). Flow-mediated dilation response using
nitroglycerin (a NO donor) is impaired in patients with SCD,
compared to a control group (18). Belhassen et al. (19) reported
increased diameter in the brachial artery at baseline in SCD
patients, compared to a control group, but the vessel was not
able to further dilate in response to a flow-mediated dilation
procedure. At the microcirculatory level, Moeckesch et al. (20)
reported decreased hyperemic response to skin heating localized
stress in children with SCD, compared to healthy children,
suggesting impaired microcirculatory NO-driven vasodilation in
the former population.

The decrease in NO bioavailability could also be responsible
for the enhanced platelet activation (13) observed in SCD
patients, as documented by increased expression of platelet
activation markers, such as P-selectin, CD63, activated
glycoprotein IIb/IIIa, plasma soluble factor-3 and factor-4,
β-thromboglobulin, and platelet-derived soluble CD40 ligand
(21, 22). Such abnormal platelet activation has been associated
with thrombosis and pulmonary hypertension, a clinical
manifestation of endothelial dysfunction, in SCD patients (23).
Kato et al. (24) also reported positive associations between the
level of plasma soluble adhesion molecules and the severity of
pulmonary hypertension.

On the whole, these studies strongly support a key role of
hemolysis on endothelial/vascular dysfunction through its effects
on NO bioactivity/availability.

Hemolysis, Oxidative Stress, and
Inflammation
The accumulation of extracellular hemoglobin and heme in
SCD, which cannot be fully neutralized by haptoglobin and
hemopexin, respectively (14), is a major source of oxidative
stress. Hemoglobin may react with hydrogen peroxide through
the Fenton reaction to form hydroxyl free radical and
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methemoglobin. The rate of autooxidation of Hb is greatly
enhanced when released into the plasma, where it is partially
oxygenated, and more particularly when the Hb tetramer
dissociates into dimers (25). In addition, the repeated episodes
of ischemia-reperfusion, such as those that occur during vaso-
occlusive crises, induce the release of plasma xanthine oxidase
(XO) (26). The released XO can impair vascular function by
binding to the luminal cells of the vessel. This oxidative milieu
results in exacerbated NO scavenging via an oxygen free radical-
dependent mechanism, and further affects the vascular system.
Mockesch et al. (20) recently showed that the impairment of
microvascular regulation in children with SCD was significantly
associated with both nitrotyrosine and markers of systemic
oxidative stress, confirming the important roles of oxidative
stress and NO scavenging in the development of vascular
dysfunction in SCD.

Excessive production of reactive oxygen species (ROS) leads to
endothelial damage, through peroxidation of the lipid membrane
and/or DNA fragmentation, potentially leading to cellular
apoptosis (27, 28). In addition, ROS play a central role in
promoting vascular inflammation and endothelial activation
through the activation of redox-sensitive transcription factors in
the endothelium, such as NF-κB (29). The increased expression
of several vascular cell adhesion molecules, such as VCAM-
1, ICAM-1, L-, P-, and E-selectins, may then facilitate the
binding of sickle RBCs, platelets and white blood cells (WBCs)
to endothelial cells, which would trigger the onset of vaso-
occlusion (30–32). Marui et al. (30) demonstrated that the use
of pyrrolidine dithiocarbamate (an antioxidant) on cultured
endothelial cells (HUVEC) was able to decrease the expression
of VCAM-1 induced by IL-1β. There is clearly an interplay
between oxidative stress and inflammation, which participates in
the pathogenesis of SCD (33). Additionally, Belcher et al. (34)
demonstrated that the administration of dimethyl fumarate (a
drug activating Nrf2 expression and increasing the transcription
and expression of several genes involved in antioxidant defenses)
for several days in sickle cell mice decreased the hepatic
expression of TLR4, NF-κB activation, VCAM-1, ICAM-1 and
E-selectin mRNA levels, and hepatic necrosis.

Seminal work from Wagener et al. (35) showed that in vitro
incubation of endothelial cells with heme led to a rise in adhesion
molecule expression. Furthermore, the same group (36) reported
that injection of heme in mice increased vascular permeability,
adhesion molecule expression and leucocyte extravasation.
Another group reported that incubation of endothelial cells with
hemin (i.e., heme oxidized in its ferric form) increased the
production of IL-8 (37). Although most of these inflammatory
effects could be partly driven by the resulting enhanced oxidative
stress caused by heme accumulation, heme would also directly
activate the immune innate system (38).

Ghosh et al. (39) showed that hemin administration in sickle
mice enhanced intravascular hemolysis, which further increased
the amount of extracellular hemin, caused lung injuries typical of
acute chest syndrome and decreased their survival rate. However,
TLR4 inhibition (by the use of TAK-242) and hemopexin
replacement therapy, prior to hemin infusion, protected sickle
mice from developing acute chest syndrome. Chimeric sickle

cell mice, knocked out for TLR4, did not develop extensive
lung injury and were able to survive after infusion of hemin.
Belcher et al. (40) investigated the role of heme in SCD vaso-
occlusion and showed that administration of heme to SCD mice
caused increased endothelial P-selectin and vWF expression,
enhanced leucocyte rolling and adhesion and blood flow stasis.
When treated with TAK-242 (an inhibitor of TLR4), blood stasis,
leucocyte rolling and adhesion were decreased in mice injected
with heme.

Adisa et al. (41) reported an association between plasma
free heme concentration and the incidence of vaso-occlusive
crises, in children with SCD. More recently, Pitanga et al. (42)
reported a 4-fold higher level of circulating IL-1β in SCD patients
at steady state, compared to healthy individuals. The authors
also observed higher mRNA expressions of NLRP3 and IL-
1β in the peripheral blood mononuclear cells (PBMC) of SCD
patients, suggesting the activation of the NLRP3 inflammasome.
Subsequently, they showed that incubation of PBMC with
sickle RBCs induced higher mRNA expression of the genes
encoding IL-1β, leukotriene, TLR9, NLRP3, caspase 1, and
IL-18 in the supernatant, as compared to PBMC that were
incubated with healthy RBCs. The authors did not look for the
RBC element/molecule that could trigger the activation of the
inflammasome and one could suggest that RBCs may contain
several molecules that can act as eDAMPs. Hemolysis-related
products are now considered as important eDAMPs that could
trigger inflammasome activation in the context of SCD and
participate in the pathophysiology of several complications (15,
43). Collectively, these findings suggest that hemolysis-related
products could play amajor role in the pathophysiology of several
complications in SCD, through their binding to TLR4 and the
activation of NF-κB and NLRP3 pathways and the enhanced
production of pro-inflammatory cytokines, such as IL1β and IL18
(15). Other potent eDAMPs that may be released by RBCs during
hemolysis include heat shock proteins (Hsp), such as Hsp70,
IL-33, and adenosine 5′ triphosphate (43).

Hemolysis, Neutrophil Extracellular Traps
(NETs), and Inflammation
Heme/hemin have also been shown to activate neutrophils (44)
and promote the release of NETs in SCD (45). Schimmel et al.
(46) reported higher nucleosome levels in SCD patients at steady
state, compared to healthy individuals, with a further increase
during crisis. In addition, the authors reported a correlation
between the levels of nucleosomes and the length of hospital stay
in patients developing acute chest syndrome. NETs are composed
of decondensed chromatin fibers coated with antimicrobial
granular and cytoplasmic proteins, such as myeloperoxidase
(MPO), neutrophil elastase, and alpha defensin. These NETs are
able to promote endothelial activation, thus increasing VCAM-
1 and ICAM-1 expression (47). It has also been suggested that
NETs could promote vessel occlusion by providing a scaffold
for platelets, RBCs and pro-coagulant molecules (48). Recent
studies also demonstrated that NETs induced the activation of
the NLRP3 inflammasome in macrophages through TLR4/TLR9
signaling pathways, leading to higher production of IL-1β in the
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context of diabetes and atherosclerosis (49, 50). Indeed, one may
suspect a role of NETs in SCD pathogenesis through an activation
of the immune innate system (15).

Hemolysis and the Alternative
Complement Pathway
Hemolysis activates the alternative complement pathway. In
atypical uremic hemolytic syndrome, heme has been shown to
activate the complement system in plasma and on endothelial
cells (51). Heme-induced exocytosis of Weibel-Palade bodies
from endothelial cells induces the expression of P-selectin, which
is known to bind C3b and trigger complement activation (51). In
addition, heme can trigger the release of C5a and C5b9, leading
to the activation and permeabilization of endothelial cells (51).
The attachment of membrane attack complexes to the endothelial
cells may promote inflammation through NF-κB signaling (52).

Increased soluble C5b-9 levels have been reported in SCD
patients (53, 54). Vercellotti et al. (55) demonstrated increased
C3 activation fragments and C5b-9 in the kidneys, lungs
and liver of sickle cell mice, compared to control mice, and
Lombardi et al. (56) found increased microvascular deposition
of C5b-9 on skin biopsies in SCD patients. Increased alternative
pathway Bb fragments have also been reported in the plasma
of both sickle cell mice and sickle cell patients (55, 57).
The infusion of recombinant C5a has been shown to cause
blood stasis and inflammation in the liver of sickle cell mice
(through NF-κB activation and increased expression of TLR4
and several adhesion molecules), but this response was reversed
by an anti-C5a receptor IgG (55). The increased externalization
of phosphatidylethanolamine and phosphatidylserine at the
membrane of sickle RBCs is also suspected to induce complement
activation with increased C3 and C3b binding (56, 57). A
very recent work investigated the role of heme on complement
activation in the context of SCD (58). The authors showed
increased C3 and C9 deposition in the kidneys of both
sickle cell mice and SCD patients and demonstrated that C3
fragment deposition was increased in the kidney of normal mice
receiving phenylhydrazine to promote intravascular hemolysis.
The effects of hemin were tested on endothelial cells and it
was shown that heme triggered rapid P-selectin, C3aR and
C5aR expression, C3 and C5b9 deposition, and downregulated
CD46, a transmembrane protein able to bind and inactivate
C3b and C4b. The use of hemopexin with hemin reduced
the deposition of C3 and C5b9 on endothelial cells. Merle
et al. (59) demonstrated that P-selectin drives complement
attack on endothelial cells during intravascular hemolysis in
a TLR-4/heme-dependent manner. Altogether, these studies
support a key role for hemolysis in endothelial dysfunction in
SCD with implications for the participation of the alternative
complement pathway.

Hemolysis, Microparticles, Inflammation,
and Oxidative Stress
Circulating extra-cellular vesicles (EV), such as microparticles
(MPs, 0.1–1µm) and exosomes (30–100 nm), are thought to
play a role in the pathogenesis of SCD (60, 61). Several

groups reported a 3- to 4-fold increase of plasma MPs (mainly
originating from platelets and RBCs) in SCD patients at steady-
state compared to healthy individuals (62–66), with a further
rise during vaso-occlusive crises (62, 67, 68). Khalyfa et al.
(69) reported increased levels of circulating exosomes in SCD
patients compared to healthy individuals, with the most severe
patients (i.e., with the highest rate of painful vaso-occlusive
crises) exhibiting the highest levels.

MPs and exosomes carry diverse cargoes including proteins,
RNA species, such as mRNA and miRNA and lipids that
can be transported and exchanged between cells, strongly
suggesting that EV play key roles in cell-cell communication
at both paracrine and systemic levels (61, 70). Not specific to
SCD, these EV may promote inflammation, oxidative stress,
coagulation, and endothelial activation. The high amount of
externalized phosphatidylserine at the surface of most of the
MPs is responsible for their pro-coagulant property while
others express tissue factor (60, 61). Various blood cell-derived
MPs have also been shown to regulate the production of
reactive oxygen species and promote endothelial activation (61,
71). MPs shed by endothelial cells (71), monocytes (72), and
lymphocytes (73) induce endothelial O−

2 and H2O2 production
in cultured endothelial cells through processes involving different
enzymatic systems, and thus may lead to apoptosis (74).
Treatment of endothelial cells with platelet- and endothelial
cell-derived MPs were associated with increased expression
of cell adhesion molecules and monocyte-endothelial cell
interactions (74, 75).

However, only a few studies have investigated the effects
of EV in the context of SCD, and more particularly the
effects of RBC-derived MPs. It seems that the amount of
circulating RBC-derived MPs is directly related to the degree
of hemolysis (64, 76, 77). Several authors reported strong
associations between variousmarkers of hemolysis, such as heme,
lactate dehydrogenase, plasma hemoglobin, serum bilirubin,
reticulocyte count, fetal Hb or hemoglobin concentration, and
RBC-MPs (76, 77). Camus et al. (78, 79) previously demonstrated
that ex-vivo generated sickle RBC-MPs, when infused in sickle
cell mice, promoted kidney vaso-occlusions. The authors further
demonstrated that these RBC-MPs delivered toxic heme to
endothelial cells, which increased the production of reactive
oxygen species and the expression of endothelial cell adhesion
molecules, and promoted apoptosis. Interestingly, heme-loaded
MPs were also shown to activate the alternative and terminal
complement pathway at the surface of the endothelial cells
(58). Khalyfa et al. (69) demonstrated that exosomes isolated
from SCA patients with frequent vaso-occlusive crises, for which
RBC-derived exosomes being the most abundant, decreased
endothelial permeability and promoted P-selectin expression
on cultured endothelial cells. These exosomes also significantly
increased the adhesion of monocytes to the vascular wall in mice,
compared with exosomes isolated from SCA patients with a less
severe phenotype.

Taken together, these findings suggest that the accumulation
of RBC-MPs, consecutive to enhanced hemolysis, in SCD could
cause serious damage to the vascular system and modulate
clinical severity.
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HOW DO SICKLE RBCs REACT TO THIS
PRO-INFLAMMATORY AND
PRO-OXIDATIVE ENVIRONMENT?

Because RBCs are very fragile and prone to lysis, SCD patients
are characterized by chronic anemia.We previously discussed the
consequences of enhanced hemolysis in SCD on the reduction
of NO bioavailability, the increase in oxidative stress and
inflammation, the production of NETs, the activation of the
alternative complement pathway and the release of RBC-derived
MPs, which all lead to endothelial activation and vascular
dysfunction. However, this pro-inflammatory and pro-oxidative
environment may further damage the RBCs, which could further
alter their rheological properties and increase their fragility.

Nitric Oxide and RBCs
The effects of NO on the vascular system have been well-
described in the literature, but NOmay also affect the mechanical
properties of RBCs. One of the first reports suggesting that
NO could affect RBC deformability was the study of Starzyk
et al. (80), which demonstrated that intravenous infusion of L-
NAME (an eNOS inhibitor) in rats caused a reduction in RBC
deformability. Bor-Kucukatay et al. (81) then demonstrated that
several eNOS inhibitors decreased RBC deformability. A recent
work conducted in SCD showed that in vitro incubation of
RBCs with sodium nitroprusside (a NO donor) decreased the
amount of intracellular reactive oxygen species and increased
RBC deformability (82). This study also demonstrated that, in
addition to its effects on HbF production and the reduction of
HbS polymerization, the positive effects of hydroxycarbamide
treatment on SCD RBC deformability could be related to the
increased NO delivery from the drug to sickle RBCs.

It has been suggested that the effect of NO on RBC
deformability could be partially mediated by soluble guanylyl
cyclase (sGC) (83), but studies by Bor-Kucukatay et al. (81) and
Baskurt et al. (84) also support a role for NO in potassium
permeability. In addition, NO could decrease the risk for
hemolysis and increase RBC survival rate through its effects
on eryptosis since NO is able to down-regulate caspase 3
activity through S-nitrosylation (85). More recently, another
group demonstrated that the NO donor, sodium nitroprusside,
inhibited the decrease in RBC deformability induced by
ionophore A23187-mediated calcium influx in RBC (86).
Increased intracellular calcium concentration activates calcium-
sensitive K+ (Gárdos) channels, resulting in potassium-efflux and
decreased cell volume, which in turn increases the stiffness of
RBC; however, the presence of sodium nitroprusside abolished
this calcium-induced impairment in RBC deformability (86).
Barodka et al. (86) suggested that sodium nitroprusside may
have limited calcium influx, thereby inhibiting the activation of
Gárdos channels, and thus, maintaining cell volume and RBC
deformability. However, the effects of NO on RBC rheology
may not be limited only to its effects on RBC deformability.
For instance, Bor-Kucukatay et al. (87) demonstrated that
incubation of RBC with sodium nitroprusside decreased RBC
aggregation, while giving L-NAME to rats resulted in a rise

in their RBC aggregation. The underlying mechanisms at
the origin of these findings are unclear, but might involve
membrane/cytoskeletal protein nitrosylation or oxidative stress
modulation. In conclusion, the reduction of NO bioavailability
in SCD probably plays a role in the modulation of RBC
rheology (82, 88).

Oxidative Stress and RBCs
As previously discussed, oxidative stress is increased in SCD,
both in plasma and RBC (15, 82, 89–92), with a further
rise during painful vaso-occlusive crises (68). Through its
effects on the membrane of RBCs (i.e., lipid peroxidation
and protein oxidation) and caspase 3 activation (93, 94),
oxidative stress is a key modulator of RBC rheological properties.
Moreover, oxidative stress is able to activate Ca2+-permeable
non-selective cation channels in the RBC membrane, leading
to the accumulation of Ca2+ within RBCs, which can trigger
RBC membrane scrambling, resulting in phosphatidylserine
exposure and possibly in membrane bubbling and emission
of MPs (95). In addition, the activation of Ca2+-sensitive K+

channels can lead to K+ exit, hyperpolarization, Cl− exit and cell
shrinkage (95).

Baskurt et al. (96) demonstrated that superoxide anion
caused a decrease in RBC deformability, a slight decrease
in RBC aggregation and a large increase in RBC aggregates
strength, meaning that the RBC aggregates formed are more
robust upon oxidative stress. Depending on the concentration
used, hydrogen peroxide may decrease RBC deformability (high
concentration) or increase RBC adhesion to endothelial cells
(low concentration) (97). Using atomic force microscopy, Sinha
et al. (98) demonstrated the deleterious effects of several
oxidant molecules (hydrogen peroxide, diamide, primaquine
bisphophate, and cumene hydroperoxide) on RBC cytoskeletal
architecture andmembrane stiffness. All these changes may affect
the fragility of RBCs. For instance, McNamee et al. (99) recently
showed that phenazine methosulfate (an agent that generates
superoxide anion within RBCs) decreased RBC deformability
and increased the sensitivity of RBCs to shear-mediated damage.
Hierso et al. (100) compared the biophysical response of
healthy and SCD RBCs to in-vitro oxidative stress, using t-
butyl hydroperoxide (TBHP). TBHP increased the production
of ROS and decreased GSH content within the RBCs of both
SCD and healthy individuals. In addition, the molecule decreased
RBC deformability and RBC aggregation, and increased the
strength of RBC aggregates in the two populations. However,
the magnitude of changes in RBC rheology was 2- to 3-fold
higher in SCD patients than in healthy individuals, indicating
that RBC from SCD patients are more susceptible to oxidative
stress than RBC from healthy individuals. The decrease in
RBC antioxidant defenses in SCD could account for these
differences (100).

Inflammation and RBCs
SCD is characterized by a pro-inflammatory state leading to
high plasma cytokines levels. Karsten et al. (101) recently
showed that 46 cytokines can be detected in RBCs lysates
of healthy individuals, and their median concentrations in
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RBCs were 12-fold higher than in plasma. Among them, the
authors reported the presence of IFN-γ, IL-1β, IL-18, TNF-
α as well as several chemokines, such as IL-8 and RANTES.
The mean IL-1β and IL-18 concentrations in whole blood
were 0.5 and 13.3 pg/ml, respectively, but the concentrations
reached 4.2 and 657.6 pg/ml in RBCs, respectively (after
correction for white blood cell contamination). When incubated
in a protein-free media, the authors demonstrated that RBCs
were able to release TNF-α, RANTES, IL-6, IL-8, and other
molecules. It was also demonstrated that RBCs were able to
capture various recombinant cytokines by using a recombinant
standard cytokine mix. This study concluded that RBCs are
dynamic reservoirs of cytokines, preventing chemokine clearance
and thereby prolonging chemokine half-life in the blood.
One major locus for cytokines binding is the Duffy Antigen
receptor for chemokines (DARC) (102). Instead of acting as
a reservoir, Darbonne et al. (102) proposed that RBCs act
as a sink for IL-8, thereby inactivating the IL-8-dependent
gradient and preventing neutrophil recruitment. DARC may
also capture other chemokines of the CXC and CC families
(103). Lee et al. demonstrated that patients lacking erythroid
DARC expression exhibited higher plasma chemokine levels
following LPS exposure, suggesting that DARC could act as
chemokine scavengers to decrease immune-activating signals
(sink hypothesis). The two models for RBC regulation of
cytokines and chemokines levels could appear contradictory, but
theymay be not mutually exclusive. Fukuma et al. (104) proposed
that RBCs would scavenge chemokines/cytokines from sites of
inflammation, but could eventually release them in response to a
reduction of plasma levels, effectively maintaining homeostasis.
The degree of rupture of this homeostasis is unknown in
SCD, but some studies have investigated the consequences of
various inflammatory molecules on RBC properties. Bester et al.
(105, 106) recently demonstrated that IL-8 affects the shape
of healthy RBCs with morphological changes typical of those
occurring during eryptosis. Circulating extracellular histones
(i.e., a marker of NETosis) have recently been reported to
promote eryptosis in healthy donors, ending with increased RBC
phosphatidylserine externalization and RBC shrinkage (107).
Test et al. (108) demonstrated increased binding of C5-b7 and
of C9 to dense sickle RBCs, increasing the susceptibility of
these cells to C5b-9-mediated reactive lysis initiated by C5b6.
George et al. (109) tested the effects of transforming growth
factor β1 and endothelin-1 (two cytokines known to be elevated
in the context of SCD) on healthy RBCs. They demonstrated
that these two inflammatory molecules stimulated RBC NADPH
oxidase activity, leading to the accumulation of reactive oxygen
species, which are known to damage the membrane of RBCs
and increase their rigidity when produced in excess. In addition,
endothelin-1 has been shown to promote dehydration of sickle
RBCs through an activation of the Gárdos Channel, leading
to a rise in RBC density (110). Durpes et al. (111) showed
that the percentage of RBCs with densities higher than 1.12
(i.e., irreversibly sickle dehydrated RBCs) was 17-fold higher
in sickle cell patients expressing DARC, compared to Duffy-
negative patients. Since chemokines and cytokines would be
able to bind to DARC, these results suggest a link between

inflammation and sickle RBC dehydration. Furthermore, the
authors demonstrated that both IL-8 and RANTES promoted
dehydration in sickle RBC expressing DARC, through an
activation of the Gárdos pathway. The same group (112) reported
an effect of these two chemokines on the activation of α4β1
integrin in sickle reticulocytes expressing DARC, resulting in
a greater adhesion of sickle RBCs to immobilized VCAM-
1 and fibronectin. These findings could partly explain why
Drasar et al. (113) reported that SCD patients with RBCs
expressing DARC could be more prone to developing leg
ulcers and kidney disease than Duffy-negative SCD patients,
although this association between Duffy phenotype and SCD
clinical severity is still debated (114, 115). Nebor et al. (116)
failed to find an association between Duffy phenotype and the
clinical severity in a large cohort of SCD patients, but they
reported higher plasma IL-8 and RANTES levels in Duffy-
positive vs. Duffy-negative patients, suggesting that RBCs can
clearly modulate the level of inflammation in SCD. Although the
exact mechanisms by which RBCs can modulate inflammation
in SCD are not fully understood, these findings support the
fact that pro-inflammatory molecules may promote sickle RBC
dehydration and increase RBC density/rigidity through increased
Gárdos channel activity, as well as increase RBC adhesiveness to
endothelial cells through α4β1 clustering.

IMPAIRED RBC RHEOLOGY IS INVOLVED
IN THE PATHOPHYSIOLOGY OF SCD

As previously discussed, enhanced hemolysis, due to the
decreased deformability and increased fragility of sickle RBC,
disturbs NO metabolism and promotes oxidative stress and
inflammation through various mechanisms. In turn, this pro-
inflammatory and pro-oxidative environment may further
impair the rheological properties of RBCs and increase their
fragility, further impacting on the clinical expression of the
disease. For instance, SCD patients with the lowest RBC
deformability have been reported to be at higher risk of
developing priapism, leg ulcers and glomerulopathy than those
with the highest RBC deformability (117–119). There is a
clear relationship between RBC deformability, RBC fragility
and the extent of hemolysis in SCD (120). Patients with the
lowest deformability have higher hemolytic rates, which may
increase their risk of developing hemolytic-like complications,
such as those cited above (14, 121, 122). Moreover, abnormal
RBC aggregation properties may also play a role in SCD
pathogenesis and are modulated by both oxidative stress and
inflammation. Lamarre et al. (123) found an association between
increased RBC aggregation strength and the occurrence of acute
chest syndrome. More recently, Lapouméroulie et al. (124)
observed a rise of RBC aggregation and of the robustness
of RBC aggregates in SCD patients during vaso-occlusive
crisis compared to the steady-state condition. Abnormal RBC
aggregation may both disturb blood flow in the microcirculation
and microcirculation (125). In the microcirculation, increased
RBC aggregate strength may increase vascular resistance and
decrease blood flow at the entry of capillaries (88). In the
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macrocirculation, the different hemodynamic re-arrangements
between flowing RBC aggregates and single flowing RBCs
create a situation where the width of the cell free layer
close to the vascular wall is larger when RBC aggregates

are flowing, leading to a decrease in wall shear stress,
and reductions in eNOS activation and NO production,
thus impacting on the ability of the vessels to adapt their
diameters (125–127).

FIGURE 1 | The red blood cell—inflammation vicious circle in sickle cell disease. From RBC alterations to oxidative stress, inflammation and endothelial dysfunction:

Sickled RBC are very fragile and prone to hemolyze. Hemolysis leads to the release of heme, iron, Hb and arginase into the plasma, which interfere with the

metabolism/bioavailability of NO: (I) free arginase may hydrolyze the NO precursor Arginine; (II) free Hb scavenges NO at a rate of 1,000-fold faster than Hb

encapsulated in the RBCs; (III) heme and iron increase ROS generation, which lead to the production of peroxynitrite. ROS production is also enhanced by Xanthine

Oxidase activation, caused by the repetition of ischemic/reperfusion events. Decreased NO bioavailability and increased ROS activate endothelial cells, which in turn

express adhesion molecules of both the CAM and Selectin families, promoting cell-cell interactions. Free heme is able to activate endothelial TLR4, which promotes

inflammasome activation and cytokines production through NF-κB activation. Heme may also activate neutrophils, which would release NETs that can also affect

endothelial cells and act as a scaffold for platelets and RBCs. Recent evidence also showed that free heme could stimulate the complement pathway with potential

consequences at the endothelial cell level. From inflammation and oxidative stress to RBC alterations: This pro-inflammatory and pro-oxidative environment, resulting

from sickle RBCs alterations, also impacts on RBC rheology and physiology. Increased ROS production may lower RBC deformability and increase RBC aggregation.

Decreased NO bioavailability could also participate in the decrease of RBC deformability and promote eryptosis. NETs could also promote RBC eryptosis. Circulating

inflammatory molecules, such as ET-1 and TGF-β, may activate RBC NADPH Oxidase, which in turn would produce ROS and further alter RBC. ROS and ET-1 are

known to activate the RBC Gárdos channel, which could favor RBC dehydration and further promote HbS polymerization. The enhanced release of MP by sickled

RBCs could further exacerbate inflammation and oxidative stress. Increased RBC phosphatidylserine exposure may favor the binding of complement proteins at the

surface of RBCs, which can induce their lysis. RBCs also act as a reservoir and/or a sink for pro-inflammatory cytokines/chemokines. IL-8, TNF-α, and RANTES

promote RBC dehydration through Gárdos channel activation in RBCs expressing DARC. IL-8 and RANTES can also lead to the activation of α4β1 integrin in sickle

reticulocytes expressing DARC, contributing to the adhesion of these cells to the endothelium.
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CONCLUSION

While SCD is the first disease for which the molecular basis
has been identified (128), the pathophysiology of this disorder
remains not fully understood despite decades of extensive
studies dedicated to decipher these complex mechanisms.
While the consequences of the polymerization of abnormal
hemoglobin S were originally described to result in RBC
deformability impairment and increased fragility, a large number
of abnormalities have been described more recently, such
as: the consequences of enhanced hemolysis on decreased
NO bioactivity/bioavailability, the consequences of hemolysis
and other factors on oxidative stress, the activation of
inflammation, the release of NETosis products into the blood,
the activation of the alternative complement pathway and
the production of deleterious extracellular vesicles. All these
biological abnormalities modulate and reflect the clinical severity
of the patients. But, during the last years, accumulating evidence
shows that each of these abnormalities impacts on RBC
physiology and biophysical behavior: NO modulates directly
the rheology of RBCs, increased oxidative stress may cause

damage to the RBC membrane, accumulation of cytokines in the
RBCs may further promote their dehydration and increase their
adhesiveness to the vascular wall, accumulation of NETs could
participate in hetero-cellular aggregation and accumulation of
fragments of the alternative complement pathway may fragilize
RBCs. Indeed, one may assume that these recent data suggest a
new vicious circle in SCD, starting with impaired RBC rheology
and increased RBC fragility and ending with further impairment
of RBC, which would further worsen the clinical condition
of SCD patients (Figure 1). As our understanding of the
complex pathophysiological scheme of SCD has clearly improved
during the last decade, further studies are warranted to better
describe the relationships between the various abnormalities
associated with the most frequently encountered genetic
disease worldwide.
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