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Abstract

In 2003 Klazar proved that the ordinary generating function of the sequence of Bell numbers is differentially
transcendental over the field C({t}) of meromorphic functions at 0. We show that Klazar’s result is an instance
of a general phenomenon that can be proven in a compact way using difference Galois theory. We present the
main principles of this theory in order to prove a general result about differential transcendence over C({t}),
that we apply to many other (infinite classes of) examples of generating functions, including as very special
cases the ones considered by Klazar. Most of our examples belong to Sheffer’s class, well studied notably in
umbral calculus. They all bring concrete evidence in support to the Pak-Yeliussizov conjecture, according to
which a sequence whose both ordinary and exponential generating functions satisfy nonlinear differential
equations with polynomial coefficients necessarily satisfies a linear recurrence with polynomial coefficients.
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1. Introduction

In this paper we deal with what we will call the strong differential transcendence of some power series
in C[[t]], i.e., with their differential transcendence over the field C({t}) of germs of meromorphic functions
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at 0. More precisely, we prove that the solutions f ∈ C[[t]] of some first-order linear functional equations
must be either rational, i.e., in C(t), or differentially transcendental over C({t}), i.e., for any non-negative
integer n and any polynomial P ∈ C({t})[X0, X1, . . . , Xn] we must have P (f, f ′, . . . , f (n)) ̸= 0, where f (k)

denotes the k-th derivative of f with respect to t. We conclude in this way that many well-known power
series in C[[t]] with a combinatorial origin are strongly differentially transcendental.

State of the art
We have come to consider this problem, influenced by three earlier works, by Klazar [Kla03], by

Pak [Pak18] and by Adamczewski, Dreyfus and Hardouin [ADH21].

First of all, in [Kla03], Klazar considers the ordinary generating function (OGF) of the Bell numbers
ϕ(t) := 1+

∑
n≥1 ϕnt

n, where ϕn is the number of partitions of a set of cardinality n ≥ 1, and proves that ϕ(t)
is differentially transcendental over C({t}). To do so, he uses a functional equation satisfied by ϕ(t), namely:

ϕ

(
t

1 + t

)
= tϕ(t) + 1. (1.1)

A classical and important property of the Bell numbers is that their exponential generating function (EGF)

ϕ̂(t) := 1 +
∑
n≥1

ϕn
n!
tn

satisfies
ϕ̂(t) = exp(exp t− 1).

As a consequence, ϕ̂(t) is D-algebraic, meaning that it satisfies an algebraic differential equation over Q(t)

(or equivalently over C(t)). However, ϕ̂(t) is not D-finite, that is, it does not satisfy any linear differential
equation with coefficients in Q(t). This can be seen either analytically, using the asymptotics of ϕn [Odl95,
Eq. (5.47)], or algebraically, using [Sin86] and the fact that the power series exp(t) is not algebraic.

Secondly, starting from the example of the Bell numbers, Pak and Yeliussizov formulated the following
ambitious conjecture as an “advanced generalization of Klazar’s theorem”:

Conjecture 1 ([Pak18, Open Problem 2.4]). If for a sequence of rational numbers (an)n≥0 both ordinary and
exponential generating functions

∑
n≥0 ant

n and
∑
n≥0 an

tn

n! are D-algebraic, then both are D-finite (equivalently,
(an)n≥0 satisfies a linear recurrence with polynomial coefficients in Q[n]).

Thirdly, a very recent work by Adamczewski, Dreyfus and Hardouin in difference Galois theory establishes
the following general statement:

Theorem 2 ([ADH21, Thm. 1.2]). Let f ∈ C((t)) be a Laurent series satisfying a linear functional equation of
the form

α0y + α1τ(y) + · · ·+ αnτ
n(y) = 0,

where αi ∈ C(t), not all zero, and τ is one of the following operators:

• τ(f(t)) = f
(

t
1+t

)
;

• τ(f(t)) = f (qt) for some q ∈ C∗, not a root of unity;

• τ(f(t)) = f (tm) for some positive integer m.

Then either f ∈ C(t1/r) for some positive integer r, or f is D-transcendental over C(t). Moreover, in the case of
the first operator, r is necessarily equal to 1.

The juxtaposition of the three works above raises immediately three remarks. The first one is that Klazar is
concerned with the strong differential transcendence, i.e. over C({t}), while Pak and Yeliussizov’s conjecture
and the main theorem of [ADH21] are concerned with the differential transcendence over the field of rational
functions. The second one is that Theorem 2 would prove Conjecture 1 if we were able to rephrase the
differential properties of the series

∑
n≥0 an

tn

n! in terms of a difference operator acting on
∑
n≥0 ant

n. The
third one is that we could not find in the literature any another functional equation of the form (1.1), satisfied
by other generating functions of combinatorial interest, with the exception of the generating function of the
Bernoulli numbers, considered in [Zag98], and of Fubini numbers, as in [Kla16]. In this paper, we address
these three issues.

2



polynomial Pn(x) v(t) h(t)

Laguerre Lαn(x) (1− t)−1−α −t(1− t)−1

Hermite Hn(x) exp(−t2) 2t

D-finite Mott Mn(x) 1 (
√
1− t2 − 1)/t

examples Bessel pn(x) 1 1−
√
1− 2t

Falling factorial (x)n 1 log(1 + t)

Euler E(α)
n (x) 2α(et + 1)−α t

Bernoulli B(α)
n (x) tα(et − 1)−α t

exponential Bell-Touchard ϕn(x) 1 exp(t)− 1
functions Mahler sn(x) 1 1 + t− exp(t)

Actuarial a(β)n (x) exp(βt) 1− exp(t)
Bernoulli, 2nd kind bn(x) t/log(1 + t) log(1 + t)
Poisson-Charlier cn(x; a) exp(−t) log(1 + t/a)

Narumi N (a)
n (x) talog(1 + t)

−a
log(1 + t)

logarithmic Peters P (λ,µ)
n (x) (1 + (1 + t)λ)−µ log(1 + t)

functions Meixner-Pollaczek P (λ)
n (x;ϕ) (1 + t2 − 2t cosϕ)−λ i log

(
1−teiϕ
1−te−iϕ

)
Meixner mn(x;β, c) (1− t)−β log

(
1−t/c
1−t

)
Krawtchouk Kn(x; p,N) (1 + t)N log

(
p−(1−p)t
p(1+t)

)
Table 1: Examples of various families of polynomials Pn(x) of the Sheffer type [Rom84, Ch. 2], with the corresponding v, h as in (1.3).
The first set of entries corresponds to D-finite examples. We focus on the second set of entries, also called exponential functions [EMOT81,
§19.7]. The last entries are sometimes called logarithmic functions, and are not covered by our methods.

Combinatorial examples for the Pak-Yeliussizov conjecture
We consider families of polynomials (Pn(x))n≥0 in C[x], with deg(Pn) = n, and whose exponential

generating functions (EGFs) are defined in terms of power series u, v, f, g, h ∈ C[[t]] by∑
n≥0

Pn(x)
tn

n!
= u(x) v(t) f

(
g(x)h(t)

)
. (1.2)

A surprisingly large number of classical polynomials fits into the framework of Eq. (1.2). An important special
case is provided by Sheffer sequences, very classical in umbral calculus [Rom84, Ch. 2], whose EGFs have the
form ∑

n≥0

Pn(x)
tn

n!
= v(t) exh(t). (1.3)

An important subclass is that of Appell polynomials [App80], for which h(t) = t. Other interesting examples
(see Table 1) include some families of classical orthogonal polynomials (Hermite, Laguerre, Bessel, . . . ),
for which both ordinary and exponential generating functions are D-algebraic, since they are even D-finite
(always over C(t) unless we clearly state otherwise). Even more interesting examples, for our purpose, are
those for which D-finiteness does not hold: for instance the Bell-Touchard and the Bernoulli polynomials.
This is a consequence of the fact that their EGFs possess an infinite number of complex singularities, which is
incompatible with D-finiteness. In these cases, a natural question is whether the corresponding OGF

F (x, t) =
∑
n≥0

Pn(x)t
n

can still be D-algebraic, at least when evaluated at special values x0 ∈ C of x.
As Klazar in his D-transcendence proof for the OGF of the Bell numbers [Kla03] (which correspond to the

evaluation at x = 1 of the Bell-Touchard polynomials ϕn(x) in Table 1), we focus on the case where F (x, t)
satisfies a functional equation of the form

F

(
x,

t

1 + t

)
= R(x, t) · F (x, t) + S(x, t), (1.4)

where R and S are non-zero rational functions in C(x, t). In §2.1, we explain a recipe to deduce a functional
equation à la Klazar from the closed form of the EGFs in Table 2 (more precisely, from the differential
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equations with exponential coefficients that they satisfy). Therefore, all our examples bring further evidence
and reinforce Conjecture 1, thanks to Theorem 2. This is the first contribution of our paper. To our
knowledge, Klazar’s examples of the Bell and of the (related) Uppuluri-Carpenter numbers were the only
known combinatorial examples on which Conjecture 1 was proved prior to our work.

Main Galois theoretic result
Our aim in this article is to demonstrate, using difference Galois theory, that Klazar’s result is a very

particular instance of a general phenomenon. To do so, we equip C with the usual absolute value so that it
makes sense to consider the field C({t}), which coincides with the field of fractions of the ring of convergent
series at 0 with coefficients in C. We can finally state the second contribution of this paper (see §4 below),
which generalizes (from D-transcendence to strong D-transcendence) the first instance of Theorem 2, in the
case of first-order inhomogeneous difference equations:

Theorem 3. Let α, β, γ, δ ∈ C such that αδ − βγ ̸= 0 and (δ − α)2 + 4γβ = 0. Let f ∈ C((t)) \ C(t) be any
solution of

f

(
β + αt

δ + γt

)
= a(t)f(t) + r(t),

where a, r ∈ C(t) \ {0}. Then f is differentially transcendental over C({t}).

This result will be proven in §4 in the particular case α = γ = δ = 1 and β = 0, which corresponds to the
map τ in Theorem 2. Note that the hypotheses on α, β, γ, δ are equivalent to assume that the homography
t 7→ β+αt

δ+γt has only one fixed point, therefore Theorem 3 is an easy consequence of this particular case, by a
rational change of variable, as any homography with only one fixed point is conjugated to τ . See Corollary 38
below.

The theorem above applied to the OGFs of Table 2, including all the families obtained after appropriately
specializing x and λ, allows to immediately obtain their strong differential transcendence:

Corollary 4. Let f(t) be any F (x, t) in Table 2 evaluated at some x ∈ C \ {0} and λ ∈ C. Then f(t) is
differentially transcendental over C({t}).

Note that the assumption x ∈ C \ {0} is only necessary for the last four entries of Table 2. Indeed, in the
other cases the EGF is non D-finite for any x ∈ C, hence the OGF as well, and therefore the OGF is strongly
D-transcendental by Theorem 3.

In particular, we deduce the strong D-transcendence of interesting combinatorial OGFs, among which the
two main examples in Klazar’s paper (see §2.2 for a few other combinatorial examples):

• the OGF of the Bell numbers [Kla03, Prop. 3.3] (A000110)∑
n≥0

ϕn(1)t
n = 1 + t+ 2 t2 + 5 t3 + 15 t4 + 52 t5 + 203 t6 + · · ·

• the OGF of the Uppuluri-Carpenter numbers [Kla03, Thm. 3.5] (A000587)∑
n≥0

ϕn(−1)tn = 1− t+ t3 + t4 − 2 t5 − 9 t6 − 9 t7 + 50 t8 + · · ·

• the OGF of the bicolored partitions [BBMD+02, Tab. 2] (A001861)∑
n≥0

ϕn(2)t
n = 1 + 2 t+ 6 t2 + 22 t3 + 94 t4 + 454 t5 + · · ·

• the OGF of the number of set partitions without singletons (A000296)∑
n≥0

sn(−1)tn = 1 + t2 + t3 + 4 t4 + 11 t5 + 41 t6 + 162 t7 + 715 t8 + · · ·

• the OGF of the Genocchi numbers [Dum74] (A001469)∑
n≥0

Gn(1)t
n = t+ t2 − t4 + 3 t6 − 17 t8 + 155 t10 − · · ·

• the OGF of the surjection numbers (also, preferential arrangements) [FS09, p. 109] (A000670)∑
n≥0

Fn(1)t
n = 1 + t+ 3 t2 + 13 t3 + 75 t4 + 541 t5 + · · ·
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polynomial Pn(x) EGF
∑
n≥0 Pn(x)

tn

n! R S ref.

Bernoulli Bn(x) t
et−1 · exp (xt) t+ 1 − t (t+1)

(t+1−xt)2 [Apo08]

Glaisher Un(x) t
et+1 · exp (xt) −(t+ 1) t (t+1)

(t+1−xt)2 [Gla98, §230,§234]

Apostol-Bernoulli A(λ)
n (x) t

λ et−1 · exp (xt) λ (t+ 1) − t (t+1)

(t+1−xt)2 [Apo51]

Imschenetzky Sn(x) t
et−1 · (exp(xt)− 1) t+ 1 xt2(xt−2 t−2)

(t+1)(t+1−xt)2 [Ims83],

[EMOT81, p. 254, (38)]

Euler En(x) 2
et+1 · exp (xt) −(t+ 1) 2(t+1)

t+1−xt [Car59]

Genocchi Gn(x) 2 t
et+1 · exp (xt) −(t+ 1) 2 t (t+1)

(t+1−xt)2 [Hor91]

Carlitz C(λ)
n (x) 1−λ

1−λ et · exp (xt) λ (t+ 1) (1−λ)(t+1)
t+1−xt [Car53, Car62]

Fubini Fn(x) 1/(1− x(et − 1)) x
x+1 · (t+ 1) 1

x+1 [Tan75]

Bell-Touchard ϕn(x) exp (x(et − 1)) xt 1 [Bel34, Tou56]

Mahler sn(x) exp (x(t+ 1− et)) xt(t+1)
xt−t−1

t+1
t+1−xt [Mah32],

[EMOT81, p. 254, (40)]

Toscano’s actuarial a(λ)n (x) exp (−xet + λt+ x) xt(t+1)
λt−t−1

t+1
t+1−λt [Tos50], [BB64, p. 42]

Table 2: Examples of power series F (x, t) =
∑

n≥0 Pn(x)tn ∈ C[x][[t]] with D-algebraic exponential generating functions (EGF) and
satisfying first-order difference equations of the form F

(
x, t

t+1

)
= R(x, t) ·F (x, t) +S(x, t), for some rational functions R,S ∈ C(x, t).

In the cases of Apostol-Bernoulli, Carlitz and Toscano, λ is assumed to be a fixed parameter in C.

While Theorem 3 and Corollary 4 demonstrate that Klazar’s theorem is an instance of a general phe-
nomenon, they raise more questions than they answer. First, it is striking that so many concrete combinatorial
objects are enumerated by strongly differentially transcendental functions. Secondly, although there is a
huge gap between the D-transcendental and the strongly differentially transcendental classes, Theorem 3 and
Corollary 4 show that their intersections with solutions of difference equations of order 1 coincide. Thirdly, it
is natural to inquire whether an extension of Conjecture 1 might hold with differentially algebraic over Q(t)
replaced by differentially algebraic over C({t}). We feel that this paper should provide a motivation to look
further into these questions.

We should also point out that the (strong) D-transcendence of very natural combinatorial examples such
as the OGF of labeled rooted trees

∑
n≥1 n

n−1tn, or the OGF of the logarithmic functions in Table 1, does
not fit into our framework, and actually escapes for the moment any other attempt of proof. Three other
challenging examples are presented in §2.2.6.

Finally, let us mention that there are several interesting examples satisfying higher order linear τ -equations
or linear q-difference equations, some of which arise from combinatorics of lattice walks [BBMR16, BBMR21,
DHRS20, DHRS18, HS21]. We plan to consider them in subsequent publications under the viewpoint of the
Pak-Yeliussizov conjecture, together with the differential transcendence with respect to the parameters x
and λ of the examples in Table 2. We expect that similar techniques will allow us to obtain more general
results, such as the algebraic-differential independence of the families of power series in Table 2.

Content of the paper
In Section 2, we explain how to deduce a functional equation from a closed form of an exponential type as

the EGFs in Table 2. As a corollary, we find functional equations satisfied by several combinatorial examples,
on which Theorem 3 will be applied.

Section 3, and in particular §3.1, may be considered as a quick and gentle introduction to the parameterized
Galois theory of difference equations, starting from the point of view of the usual Galois theory of difference
equations. In §3.2 we have included some proofs, since we have stated some results in the exact form needed
to prove Theorem 3. They are quite similar to some statements in [HS08], but under a weaker assumption
on the field of constants, necessary in our applications. Besides, we have tried to provide a user-friendly
exposition, avoiding as much as possible the use of the more sophisticated parameterized Galois theory, since
we do not want to restrict the audience of the paper to specialists.
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Theorem 3 is our main technical result. Its proof in given is Section 4, and it relies on results from
Section 3.
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2. From exponential generating functions to difference equations: setting and examples

2.1. From exponential generating functions to τ -equations

Let C be a field of characteristic zero. As before, we consider the substitution map τ : f(t) 7→ f
(

t
1+t

)
,

with compositional inverse τ−1 : f(t) 7→ f
(

t
1−t

)
, and the derivation D := d

dt : f(t) 7→ f ′(t). It is not difficult

to see that τ defines an automorphism of C((t)), C({t}) and C(t). We will informally call difference τ -equation,
or simply τ -equation, a linear functional equation with respect to τ .

We want to tackle the relation between the closed forms of the EGFs of Table 2 and the existence of a
difference τ -equation for the corresponding OGFs. First of all, we recall the definition of the formal Borel
transform B : C[[t]] → C[[t]]:

g :=
∑
n≥0

gnt
n 7→ ĝ := B(g) =

∑
n≥0

gn
tn

n!
.

Moreover, we consider the Euler-type transform Φ : C[[t]] → C[[t]] defined by:

f(t) 7→ (Φf)(t) :=
1

1− t
· f
(

t

1− t

)
.

Note for later use that, for all j ∈ Z,

Φj(f(t)) =
1

1− jt
· f
(

t

1− jt

)
and τ j(f(t)) = f

(
t

1 + jt

)
. (2.1)

The maps B and Φ intertwine in an interesting way, described in Lemma 5 below, reminiscent of the formal
Fourier transform. Although not stated in this generality, (variants of) this result can be found in various
papers from various areas of mathematics and computer science, such as [Gou90, FR92, Sch92, Pro94, FS95].
For instance, part (a) is a consequence of Theorems 1 and 2 in [Gou90], which relate the coefficients of f
and those of Φ(f) via a binomial (Euler-type) transform. Section 1 in [FS95] gives a slight variation of (a),

while [Pro94] gives a generalization of (a) to transforms of the form f(t) 7→ 1
1−bt · f

(
ct

1−bt

)
. The (inverse)

Borel transform is used in [FR92, Sch92] for the analysis of some “digital trees” and “tree algorithms”, in
order to solve different types of functional equations similar to ours (see Lemmas 1 and 2 in [FR92] and Eqs.
(2.5) and (2.8) in [Sch92]).

Lemma 5. For any f, g ∈ C[[t]], we have:

(a) Φ(f) = g if and only if B(g) = B(f) · et;

(b) d
dt (B(f)) = B

(
f(t)−f(0)

t

)
;

(c) for any j, k ∈ N, the following commutation rule holds

ejt ◦Dk ◦B = B ◦ Φj ◦∆k,

where ∆ : C[[t]] → C[[t]] is the divided difference operator f(t) 7→ (∆f)(t) := f(t)−f(0)
t .

Proof. Note that (a) is equivalent to (c) for the particular choice (j, k) = (1, 0) and that (b) is equivalent to (c)
for the particular choice (j, k) = (0, 1). Moreover, an easy induction on j and k shows that (c) follows from
an iteration of (a) and (b). It is therefore sufficient to prove (a) and (b). By linearity, it is enough to show
that, for any m ≥ 0, we have

et · (B(tm)) = B(Φ(tm)) and D(B(tm)) = B(∆(tm)). (2.2)
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The second part of Eq. (2.2) is straightforward, since both terms are clearly equal to tm−1/(m−1)!. It remains
to prove the first part of Eq. (2.2). Using the binomial theorem, its right-hand side is equal to

B

(
1

1− t
·
(

t

1− t

)m)
= B

tm ·
∑
n≥0

(
m+ n

n

)
tn

 =
∑
n≥0

tm+n

n!m!
= et · t

m

m!
,

and it is thus equal to its left-hand side. This finishes the proof of the lemma.

Note that Lemma 5(c) also holds for non-integer values of j, by taking Eq. (2.1) as definition of Φj . This
simple remark will be used in some examples of Section 2.2.

Lemma 5 will be our main tool to transform any linear differential equation with polynomial coefficients
in exp(t) satisfied by f̂ = B(f) into a linear Φ-difference equation satisfied by f . Then, using the rule
(consequence of (2.1))

τd ◦ Φj = 1 + dt

1 + (d− j)t
◦ τd−j , for all j, d ∈ Z (2.3)

will allow us to transform the latter Φ-difference equation into a τ -difference equation satisfied by f . Let us
first illustrate this process on an example.

Example 6. The case of Bell numbers, considered by Klazar and mentioned in (1.1), coincides with the Bell-
Touchard polynomials ϕn(x) in Table 2 evaluated at x = 1. The associated EGF is ϕ̂(t) = exp(et − 1), which
satisfies

D(ϕ̂)− et · ϕ̂ = 0,

thus B
(
ϕ−1
t

)
= B (Φ(ϕ)), by Lemma 5(a) and Lemma 5(b). Therefore, ϕ satisfies the first-order Φ-equation

Φ(ϕ) =
ϕ− 1

t
.

Now, applying τ to both sides of this equation, and using Eq. (2.3) with d = j = 1, we find

(t+ 1)ϕ(t) = τ

(
ϕ− 1

t

)
.

Since on the other hand τ
(
ϕ−1
t

)
= τ

(
1
t

)
· τ(ϕ− 1) = t+1

t · (τ(ϕ)− 1), we finally conclude that ϕ satisfies the
first-order τ -equation τ(ϕ) = tϕ+ 1, as expected. This provides an alternative proof to [Kla03, Prop. 2.1].

In general, an iteration of the same argument allows to show:

Proposition 7. Let f ∈ C[[t]]. If f̂ = B(f) satisfies a linear differential equation of order r, of the form

a0(e
t)f̂ + a1(e

t)D(f̂) + · · ·+ ar(e
t)Dr(f̂) = 0, (2.4)

with a0, . . . , ar ∈ C[t] of degree at most d, then f satisfies a linear inhomogeneous difference τ -equation of order
at most d, with coefficients in C[t] of degree at most d+ r.

Proof. Setting ai(t) =
∑d
j=0 ai,jt

j with ai,j ∈ C, Eq. (2.4) writes
∑r
i=0

∑d
j=0 ai,je

jtDi(B(f)) = 0. By

Lemma 5, this implies
∑r
i=0

∑d
j=0 ai,jΦ

j(∆i(f)) = 0. Applying τd to this last equation, and using (2.3), yields

d∑
j=0

r∑
i=0

ai,d−j ·
τ j(∆i(f))

1 + jt
= 0. (2.5)

Now, for i > 0, each term τ j(∆i(f)) in the above sum is equal to

∆i(f)

(
t

1 + jt

)
=
f
(

t
1+jt

)
−Ri,j

(
t

1+jt

)
(

t
1+jt

)i =
(1 + jt)i

ti
·
(
τ j(f)−Ri,j

(
t

1 + jt

))
,

where Ri,j ∈ C[t] is a polynomial of degree less than i. Therefore, multiplying (2.5) by tr
∏d
j=1(1 + jt) and

arranging terms yields an inhomogeneous τ -equation of order at most d with polynomial coefficients of degree
at most d+ r.
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Remark 8. Proposition 7 generalizes without difficulty when Eq. (2.4) has a non-zero right-hand side, e.g.
an exponential polynomial P ∈ C[t, et]. In this case, the (equivalent) τ -equation (2.5) has a right-hand side
equal to τd(B−1(P ))

1+dt . For instance if P ∈ C[t], then instead of multiplying (2.5) by just tr
∏d
j=1(1 + jt), we

multiply this time by tr(1 + dt)dP
∏d
j=1(1 + jt), where dP := degP ; this produces a τ -equation of order at

most d and coefficients in C[t] of degree at most dP + d+ r. In the general case P =
∑dP
i=0

∑eP
j=0 pi,jt

iejt with
pi,j ∈ C, we use that B−1(tiejt) = i!ti/(1− jt)i+1 to deduce, after multiplying this time the τ -equation (2.5) by
tr(1 + dt)degP

∏d−1
ℓ=d−eP (1 + ℓt)dP+1

∏d
j=1(1 + jt), a τ -equation of order at most d and with coefficients in C[t]

of degree at most dP + r + d+ (dP + 1)eP .

Before deducing from the proposition above the functional equations satisfied by the OGF in Table 2, let
us just illustrate that one can obtain higher order difference equations in some other interesting cases:

Example 9. We consider the EGF f̂ = exp((et−1)2/2). The associated OGF is f = 1+t2+3 t3+10 t4+45 t5+· · · ,
the generating function of the numbers of simple labeled graphs on n nodes in which each component is a complete
bipartite graph, see A060311. Then D(f̂) = f̂ · et(et − 1), thus B( f−1

t ) = B(Φ2(f) − Φ(f)) by Lemma 5.
Therefore, f satisfies the second-order Φ-equation Φ2(f)−Φ(f) = f−1

t . Applying τ2 to both sides of this equation
yields, using (2.3), the second-order τ -equation (2t+ 1)f − 2t+1

t+1 τ(f) =
2t+1
t · (τ2(f)− 1). Rearranging terms,

we deduce that f satisfies the second-order τ -equation (t+ 1)τ2(f) + tτ(f)− (t2 + t)f = t+ 1.

2.2. Other combinatorial examples
As promised in the introduction, we finish this section by considering the series in Table 2 plus a few more

examples of τ -equations arising from combinatorial generating functions.
As far as Table 2 is concerned, we will only detail the case of the family of Bernoulli polynomials

Bn(x) = B
(0)
n (x) (see [Apo08]), defined by their exponential generating function as follows:

t

et − 1
· exp (xt) =

∑
n≥0

Bn(x)
tn

n!
.

We apply our recipe to find a linear τ -equation for B(x, t).

Lemma 10. The OGF of the Bernoulli polynomials B(x, t) :=
∑
n≥0Bn(x)t

n satisfies the functional equation

τ(B) = (t+ 1) ·B − t(t+ 1)

(t+ 1− tx)2
. (2.6)

Proof. We start with the inhomogeneous differential equation (of order 0) B̂ · exp(t)− B̂ = t · exp(xt), and
follow the procedure described in the proof of Proposition 7 and in Remark 8. We deduce B(ϕ(B)−B) =
B(t/(xt− 1)2), and by applying τ ◦B−1 we get (t+ 1)B − τ(B) = t(t+ 1)/(t+ 1− xt)2.

As a consequence of Lemma 10, Theorem 3 implies Corollary 4 for the first entry of Table 2; in particular,
this proves that the OGF B(0, t) of the sequence of Bernoulli numbers Bn = Bn(0), classical in number theory,
is strongly D-transcendental. All the other functional equations for the OGFs in Table 2 are calculated in the
same way, by using the procedure described in the proof of Proposition 7. In each case, Theorem 3 implies
Corollary 4 for the corresponding entry of Table 2.

We complete our list with a few more examples from combinatorics.

2.2.1. Tangent numbers
The integer sequence of the so-called “tangent numbers” (fn)n≥0 = (1, 2, 16, 272, 7936, 353792, . . .)

(A000182) appears in the expansion of the (D-algebraic) tangent function as an EGF:

tan(t) = 1
t

1!
+ 2

t3

3!
+ 16

t5

5!
+ 272

t7

7!
+ 7936

t9

9!
+ 353792

t11

11!
+ · · · .

A slight variation of Lemma 5, based on the exponential form of the tangent function, proves that the
corresponding OGF F (t) = t+ 2 t3 + 16 t5 + 272 t7 + 7936 t9 + · · · satisfies the difference equation

F

(
t

1− 2 it

)
+ (1− 2 it)F (t) = 2 t, (2.7)

and Theorem 3 implies that F (t) is strongly D-transcendental.
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Indeed, as pointed out earlier, Lemma 5(c) also holds for non-integer values of j, by taking Eq. (2.1) as
definition of Φj . Thus, from the equality

tan(t) = −i e
2it − 1

e2it + 1

we deduce that (e2it + 1)B(F ) = i(1− e2it), and hence

B(Φ2i(F ) + F ) = B

(
i− i

1− 2it

)
,

which in turn implies Eq. (2.7).
As a side remark, note that one can deduce from the D-transcendence of F (t) an alternative proof for the D-

transcendence of the OGF of the Bernoulli numbers via the classical relation fn = 22n+1(22n+2−1) (−1)n

n+1 B2n+2.

2.2.2. Alternating permutations
A permutation σ = σ1 · · ·σn of the set {1, 2, . . . , n} is called alternating if σ1 < σ2 > σ3 < · · · . Alternating

permutations are counted by the sequence (an)n≥0 = (1, 1, 1, 2, 5, 16, 61, 272, . . .) (A000111). By a famous
result due to André [And81], its EGF is known to be tan(t) + sec(t), which is clearly D-algebraic. It is natural
to inquire about the nature of the corresponding OGF, A(t) :=

∑
n≥0 ant

n. Using the identity

tan(t) + sec(t) =
1− ieit

eit − i

we deduce as in §2.2.1 that

B(Φi(A)−A) = (eit − i)B(A) = 1− i eit = B(1− i/(1− it)),

and therefore A(t) satisfies the difference equation

A

(
t

1− it

)
= (t+ i)A (t) + 1− i− it.

Theorem 3 then implies that A(t) is strongly D-transcendental.

2.2.3. Springer numbers
The sequence (sn)n≥0 = (1, 1, 3, 11, 57, 361, 2763, . . .) (A001586) of the Springer numbers [Spr71] bears

several combinatorial interpretations; for instance, it counts the topological types of odd functions with 2n
critical values [Arn92b, Arn92a]. By a result due to Glaisher [Gla98], its EGF is 1/(cos(t) − sin(t)), which
is D-algebraic. As in §2.2.1 one can prove that the corresponding OGF, S(t) =

∑
n≥0 snt

n, satisfies the
difference equation

S

(
t

1− 2it

)
= (2 t+ i)S (t) +

(1− i) (2 t+ i)

t+ i
,

and Theorem 3 implies that S(t) is strongly D-transcendental.
An alternative way to deduce this fact is to use the relations [Gla98, §253]

s2n = (−1)n
42n+1

4n+ 2
· U2n+1(1/4), s2n−1 = (−1)n

42n

4n
· U2n(1/4)

between the Springer numbers and the values at x = 1/4 of the Glaisher polynomials Un(x) in Table 2.

2.2.4. Barred preferential arrangements
For any m ∈ N, the sequence (rm,n)n≥0 = (1,m+1, (m+1)(m+3), (m+1)(m2+8m+13), (m+1)(m3+

15m2 + 63m+ 75), . . .) (A226513) counting the number of “barred preferential arrangements” of n elements
with m bars was studied in [AUP13]. When m = 0, this coincides with the sequence of surjection numbers
mentioned on page 4. It was shown in [AUP13, Thm. 4] that the EGF of (rm,n)n≥0 is equal to 1/(2− et)m+1.
As in §2.2.1 one can prove that the corresponding OGF, Rm(t) =

∑
n≥0 rm,nt

n, satisfies the difference
equation

τ(Rm) =
(m+ 1)t+ 1

2
Rm +

1

2

and Theorem 3 allows to conclude that Rm(t) is strongly D-transcendental.
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2.2.5. Various other sequences
Many other examples of D-algebraic EGFs, whose corresponding OGFs can be shown to satisfy τ -equations,

may be found in various references such as the book [EMOT81] (e.g. on page 252 for generalized Bernoulli
polynomials; on page 253 for generalized Euler polynomials; on page 254 for generalized Imschenetzky
polynomials), and the articles [Gla98, Gla99, Fro10, Car59, BB64, KT75, Luo06, OSS10, AO11], that we
will comment in detail in the sequel. Note however that these references never mention explicitly the
corresponding τ -equations for the OGFs. For all these examples, the OGF is D-transcendental by Theorem 2,
and even strongly D-transcendental by Theorem 3 when the order of the τ -equation is 1.

Karande–Thakare polynomials. In [KT75] Karande and Thakare introduced the family of polynomials
Dn(x; a, k), with a ̸= 0 and k ∈ N, defined by

2
(
t
2

)k
et − a

· exp(xt) =
∑
n≥0

Dn(x; a, k)
tn

n!
. (2.8)

This is a simultaneous generalization of several families from Table 2, since Bn(x) = Dn(x; 1, 1), En(x) =
Dn(x;−1, 0), Gn(x) = Dn(x;−1, 1) and C(λ)

n (x) = λ−1
2λ Dn(x; 1/λ, 0) for λ ̸= 0. Using Proposition 7 one can

prove that the OGF F (t) :=
∑
n≥0Dn(x; a, k)t

n satisfies the τ -equation

τ(F )− t+ 1

a
F = − k!tk

2k−1a
· t+ 1

(t+ 1− tx)k+1
.

The OGF F (t) cannot be D-finite, since otherwise
∑
n≥0Dn(x; a, k)

tn

n! would be D-finite too, hence 1/(et − a)

would be D-finite as well by (2.8), a contradiction with the fact that 1/(et − a) has infinitely many complex
singularities. By Theorem 3, F is therefore strongly D-transcendental.

Frobenius–Carlitz rational functions. Carlitz considered in [Car59] the “Eulerian” rational functions Rn(x)
defined by

1− x

et − x
=
∑
n≥0

Rn(x)
tn

n!
,

and already studied by Frobenius [Fro10]. Using Proposition 7 one can prove that the OGF F (t, x) :=∑
n≥0Rn(x)t

n satisfies the τ -equation

τ(F )− t+ 1

x
F =

x− 1

x
.

Again, by Theorem 3, F (t, x0) is strongly D-transcendental for any x0 ̸= 0.

Generalized Bernoulli, Euler and Carlitz polynomials. Extensions of the classical Bernoulli, Euler and Carlitz
polynomials are defined by ([Nør22, §32, p. 185], [Nør24, §77, p. 145], [EMOT53, p. 252], [BB64, p. 30])

∑
n≥0

B(α)
n (x)

tn

n!
:=

(
t

et − 1

)α
·ext,

∑
n≥0

E(α)
n (x)

tn

n!
:=

(
2t

et + 1

)α
·ext and

∑
n≥0

C(λ,α)
n (x)

tn

n!
:=

(
1− λ

1− λet

)α
·ext.

For α ∈ N, the corresponding OGFs satisfy τ -equations of order α, hence they are D-transcendental. We
conjecture that they are even strongly D-transcendental. For instance, F (t) =

∑
n≥0B

(2)
n (x)tn satisfies

τ2(F ) =
4t+ 2

t+ 1
· τ(F )− (2t+ 1)F − 2 (2t+ 1) t2

(tx− 2t− 1)
3 ,

and since F is not D-finite, it is D-transcendental by Theorem 2. Similar conclusions can be drawn for other
families of generalized polynomials, such as the generalized Apostol-Euler polynomials [Luo06] and the
further unification of the Apostol–Bernoulli, Euler and Genocchi polynomials [OSS10], and its generalization
to higher orders [AO11].
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Glaisher’s sequences. Glaisher introduced in [Gla98, Gla99] several interesting sequences, that are nowa-
days called Glaisher’s I, J , H, P , Q, R and T numbers. For instance, the R-numbers 1, 7, 305, 33367, . . .
(A002437) are the coefficients Rn in the expansion cosh(t)/(2 cosh(2t)− 1) = (1 + cosh(2t))/(2 cosh(3t)) =∑

n≥0(−1)nRnt
2n/(2n)! [Gla98, §132, p. 70]. The corresponding OGF R(t) :=

∑
n≥0(−1)nRnt

2n satisfies
the difference equation

R

(
t

1 + 6t

)
+ (6t+ 1)R(t)−

2 (6t+ 1)
(
7t2 + 6t+ 1

)
(5t+ 1) (3t+ 1) (t+ 1)

= 0.

Similarly, the T -numbers 1, 23, 1681, 257543, . . . (A002439) are the coefficients Tn in the expansion
sinh(t)/(2 cosh(2t) − 1) = sinh(2t)/(2 cosh(3t)) =

∑
n≥0(−1)nTnt

2n+1/(2n + 1)! [Gla98, §143, p. 75]. The
corresponding OGF T (t) :=

∑
n≥0(−1)nTnt

2n+1 satisfies the difference equation

T

(
t

1 + 6t

)
+ (6t+ 1)T (t)− 2t (6t+ 1)

(t+ 1) (5t+ 1)
= 0.

More generally, one can prove using Proposition 7 that, for any complex numbers a, b, c, u, v, the OGF F (t)
associated to the EGF of (u sinh(at) + v cosh(at))/(c cosh(bt)) satisfies the difference equation

F

(
t

1 + 2bt

)
+ (2bt+ 1)F (t) +

2 (2bt+ 1) ((au+ bv)t+ v)

c ((a− b)t− 1) ((a+ b)t+ 1)
= 0.

By Theorem 3, we conclude that T (t), and hence also
∑
n≥0 Tnt

n, are (strongly) D-transcendental.
The following is a generalization of Glaisher’s I-numbers and J -numbers: one starts with∑
n≥0

fn
tn

n!
:=

3

2
· e

at + e−at + c

ebt + e−bt + 1
= 1 +

c

2
+

(
a2 − 2

3
b2 − 1

3
b2c

)
t2 +

(
b4c+ a4 − 4b2a2 + 2b4

)
t4 + · · · .

Then, the corresponding OGF F (t) =
∑
n≥0 fnt

n satisfies the difference equation

F

(
t

1 + 3bt

)
− (3bt+ 1)F (t) + r(t) = 0,

where r(t) is the rational function

3bt (3bt+ 1)
(
(at− bt− 1) (at+ bt+ 1) (at− 2bt− 1) (at+ 2bt+ 1) c+ 2 (bt+ 1) (2bt+ 1)

(
a2t2 + 2b2t2 + 3bt+ 1

))
2 (bt+ 1) (2bt+ 1) (at− bt− 1) (at+ bt+ 1) (at− 2bt− 1) (at+ 2bt+ 1)

.

Glaisher’s I-numbers [Gla98, §57, p. 35] correspond to the particular choice (a, b, c) = (0, 1, 0) and the
J -numbers [Gla98, §75, p. 44] correspond to the particular choice (a, b, c) = (1, 2, 0). For any b ̸= 0, the EGF
admits infinitely many singularities, hence it cannot be D-finite; thus F (t) cannot be D-finite either, and by
Theorem 3 F (t) is necessarily strongly D-transcendental.

2.2.6. Three more challenging examples
Here we describe three interesting functional equations from the literature where we cannot conclude

differential transcendence using the methods of this article.

Fishburn-Stoimenow numbers. The sequence (pn)n≥0 = (1, 1, 2, 5, 15, 53, 217, 1014, . . .) (A022493) with OGF

P (t) =
∑
n≥0

n∏
i=1

(
1− (1− t)i

)
is known to count several interesting combinatorial objects. For instance, Zagier proved in [Zag01, Thm. 1]
that pn is equal to the number of certain involutions on 2n points, called regular linearized chord diagrams:
these are involutions π in S2n with no fixed points and such that if πi > πi+1, then πi > i ≥ πi+1. On the
other hand, Bousquet-Mélou et al. [BMCDK10, Thm. 13] proved that pn is the number of unlabeled posets of
size n that do not contain any induced subposet isomorphic to the union of two disjoint 2-element chains
(these are called (2 + 2)-free posets). Zagier proved [Zag01, Thm. 4] that pn/n! ∼ κ · (6/π2)n · n1/2 with
κ ≈ 2.7, which implies that P (t) is not D-finite. He also proved [Zag01, Thm. 3] that

P (1− e−24t) = et ·
∑
n≥0

Tn
n!
tn,
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where (Tn)n≥0 = (1, 23, 1681, 257543, . . .) is the sequence of Glaisher’s T -numbers. This implies that
P (t) is D-transcendental if and only if the EGF of Glaisher’s T -numbers is D-transcendental. Note that∑
n≥0 Tnt

2n+1/(2n+ 1)! is equal to sin(2t)/(2 cos(3t)), hence it is D-algebraic. Recall that we proved that the
OGF

∑
n≥0 Tnt

n is (strongly) D-transcendental. However, none of these results allows to conclude whether
the EGF

∑
n≥0

Tn

n! t
n (equivalently, P (t)) is D-transcendental or not. We leave this as an open question. Note

that it was proved in [BMCDK10, §6.2] that P (t) is equal to F (t, 1) where F (t, u) ∈ Q[u][[t]] ∩Q(t)[[u]] starts

1+ t+(u+ 1) t2+
(
u2 + 3u+ 1

)
t3+

(
u3 + 7u2 + 6u+ 1

)
t4+ · · · = 1

1− t
+

t2u

(1− t)
3 +

t3
(
1 + t− t2

)
u2

(1− t)
6 + · · ·

and satisfies the functional equation

F (t, u) =
(1− u) (1− t)

(tu− t+ 1)
2 +

u

(tu− t+ 1)
2 · F

(
t,

u

tu− t+ 1

)
.

From the second part of Theorem 2, we can deduce that for any t0 ∈ C \ {0} with |t0| < 1, we have that
F (t0, u) ∈ C[[u]] is D-transcendental in u (this is because the homography u/(t0u − t0 + 1) has two fixed
points, hence it is conjugated to a dilation). But, once again, this does not give any information about the
nature of F (t, 1) = P (t). Another example related to the previous one is the following. An unlabeled poset
is called (3 + 1)-free if it does not contain the disjoint union of chains of lengths 3 and 1 as an induced
subposet. The sequence (qn)n≥0 = (1, 2, 5, 15, 49, 173, 639, 2469, . . .) (A079146), counting (3 + 1)-free posets
with n unlabelled vertices, was studied by Guay-Paquet, Morales and Rowland in [GPMR14]. They showed
that qn ∼ 2n

2/4−κn logn+O(n) for some κ > 0, see [GPMR14, Thm. 4.4 and Table 1], a result which implies
that the OGF

∑
n≥0 qnt

n is not D-finite. As for (2 + 2)-free posets, it is natural to ask whether
∑
n≥0 qnt

n is
D-transcendental, see Question 1 in Morales’ compilation of combinatorial conjectures.

Schmid’s equation. The following functional equation, with q ∈ N and a, c ∈ (0, 1), was considered in [Sch92,
Eq. (2.8)]:

f(t) = qf(t/q)− aq

1 + t
· f
(

ct/q

1 + (1− c)t

)
+

qt2

1 + t2
.

His analysis in Section 3 shows that f is not a rational function. It would be interesting to prove that f is
(strongly) D-transcendental, by using an extension of the methods in this paper.

Generalized digital trees. Flajolet and Richmond [FR92, Lem. 1] solved the following difference-differential
equation, with b ∈ N:

f (b)(t) = 2et/2 · f
(
t

2

)
+ et.

Here f is the EGF of the expected number fn of nonempty nodes in a random tree built from n elements.
They showed ([FR92, Lem. 2]) that if G(t) denotes the inverse Borel transform B−1(e−t · f(t)), then

(1 + t)b ·G(t) = 2tb ·G
(
t

2

)
+ t(1 + t)b−1.

They proved that G has infinitely many singularities, and that fn has asymptotic behavior incompatible with
D-finiteness. It would be nice to be able to study the D-algebraic nature of f and G.

2.3. An elementary treatment of one example: Bernoulli polynomials
We give here an elementary proof of the D-transcendence of B(x, t), based on two main steps: first, a

strong link between the expansion of B(x, t) at t = ∞ and the Euler gamma function Γ, see (2.9); second,
Hölder’s theorem on the D-transcendence of the Γ-function [H8̈6].

Beyond the case of the OGF B(x, t) of Bernoulli polynomials, thinking at the two-step approach mentioned
above, a result of Praagman [Pra86, Thm. 1] ensures that solutions to general τ -equations are meromorphic
at ∞; however, there is no hope in general to express such expansions at ∞ using special functions, nor to
prove that these expansions are D-transcendental. As we shall see in Section 2.4, Galois theory comes into
the play to solve this problem, focusing on the equation itself rather than on its solutions. (Praagman result
applies to the meromorphic behavior on C of solutions to difference equations with the shift t 7→ t+ 1, which
translates into a similar result on C ∪ {∞} \ {0} after our change of variable t 7→ 1

t ).

Proposition 11. The ordinary generating function B(x, t) is D-transcendental over C(t) for any x ∈ C.
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Notice that the conclusion of Proposition 11 (which can alternatively be deduced by combining Theorem 2
and Lemma 10) is weaker than the one in Theorem 3.

Proof. We first prove the result for x = 0, that is for the OGF of the sequence of Bernoulli numbers (Bn)n≥0:

B0(t) = B(0, t) = 1− 1

2
t+

1

6
t2 − 1

30
t4 +

1

42
t6 − 1

30
t8 + · · · .

The idea is to use the “logarithmic Stirling formula”: as t→ ∞,

log Γ(t) ∼
(
t− 1

2

)
log t− t+

log(2π)

2
+
∑
n≥1

B2n

2n(2n− 1)
t2n−1.

More precisely, we will use its consequence on the asymptotic expansion as t→ ∞ of the derivative of the
digamma function Ψ(t) := Γ′(t)/Γ(t), see [EMOT53, Sec. 1.18]:

Ψ′(t) ∼t→∞
1

t
+

1

2t2
+

∞∑
n=1

B2n

t2n+1
, (2.9)

and the fact that Γ(t) is D-transcendental. More formally, let us introduce the power series in C[[t]] defined by

S(t) := t+
t2

2
+

∞∑
n=1

B2nt
2n+1.

As Γ(t) is D-transcendental, it follows that Ψ(t) is D-transcendental, hence the asymptotic expansion (2.9) of
Ψ′(t) at infinity is also D-transcendental (if a meromorphic function on C is D-algebraic, then its potential
asymptotic expansion at infinity satisfies the same differential equations), and finally S(t) is D-transcendental.
Since S(t) = tB0(t) + t2, it also follows that B0(t) is D-transcendental.

Now, let us treat the case of a general x ∈ C. The key is the following equality, which holds in C[x][[t]]:

B(x, t) =
1

t
· S
(

t

1 + t− tx

)
,

and which readily implies that B(x, t) is D-transcendental. To prove this last equality, it is sufficient to check
that both sides are power series in C[x][[t]] that satisfy the same τ -equation from Lemma 10 (since (2.6)
admits at most one power series solution). This is an easy consequence of the fact that B0 satisfies the
equation τ(B0) = (t+ 1) ·B0 − t

1+t , hence S satisfies τ(S) = S − t2.

2.4. Why the situation is not so easy in general
We know from [Pra86, Thm. 1] that any linear functional equation of the form

a0(t)y + a1(t)τ(y) + · · ·+ an(t)τ
n(y) = 0,

with a0(t), . . . , an(t) ∈ C(t), has a basis of meromorphic solutions at ∞, i.e., in C
({

1
t

})
This means that the

functional equation (2.6)

τ(B) = (1 + t) ·B − t(1 + t)

(1 + t− tx)2

satisfied by the OGF of the Bernoulli polynomials, has a meromorphic solution at ∞. As it turns out, we
can find explicitly this solution at ∞ with some lucky and elementary manipulations, which might give the
impression that the proof of Proposition 11 is a bit magical and pulled out of a hat.

These manipulations are alternatively described in the next lemma. Once the solution is found, checking
its correctness simply amounts to using the classical identity Ψ′(t)−Ψ′(1 + t) = 1

t2 .

Lemma 12. The meromorphic function F (x, t) = 1
tΨ

′ ( 1+t−tx
t

)
at ∞ is a solution of (2.6), for any x ∈ C.

Proof. We first remark that z(t) = 1/t is solution to the homogeneous equation τ(z) = (1 + t) · z. Setting
G(x, t) := F (x, t)/z(t) = tF (x, t) yields a simpler functional equation, amenable to telescopic summation:

τ(G) = G−
(

t

1 + t− tx

)2

. (2.10)
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Iterating identity (2.10), we obtain that G satisfies the following equation for any n ≥ 1

G− τn(G) = G(x, t)−G

(
x,

t

1 + nt

)
=

n−1∑
k=0

τk
(

t

1 + t− tx

)2

=

n∑
k=1

(
t

1 + kt− tx

)2

.

We remind that ψ′(t) =
∑
k≥0

1
(t+k)2 . Now, letting n→ ∞, we conclude that G(x, t) = G(x, 0) + Ψ′ ( 1+t−tx

t

)
.

Since limt→0+ ψ
′(1/t) = 0 we can choose G(x, 0) = 0, hence we have found a solution of the functional

equation in Lemma 10 satisfied by B(x, t), namely

F (x, t) =
1

t
Ψ′
(
1 + t− tx

t

)
.

This ends the proof.

The solution F (x, t) is a “nice” solution, due to its link with the gamma function. Hölder’s theorem implies
immediately that it is D-transcendental over C(t), for any x ∈ C. One could try to use (2.9) to deduce that
B(x, t) is the expansion of F (x, t), but this may be a delicate procedure. Galois theory comes into the picture
to solve this problem. One can even say that the solution of such a problem is the core of Galois theory,
namely recognizing the properties of solutions that depend on the equation, and therefore being able to
transfer a property from a solution to another, in spite of the fact that they live in very different algebras of
functions. For Eq. (2.10), the question is treated in Example 30, using Proposition 29, where the differential
transcendence of G(x, t), or of tB(x, t), is proven to be equivalent to the differential properties of the rational
function (t/1 + t− tx)

2, that is the inhomogeneous right-hand side of (2.10).

3. Differential transcendence via Galois theory

3.1. A survey of difference Galois theory
We quickly review the basic concepts of Galois theory for difference equations. We follow the classical

book [vdPS97], in order to state the two main theorems of the theory: the Galois correspondence (see
Theorem 23) and the theorem on the dimension of the Galois group (see Theorem 19). All the criteria for the
applications we have in mind are their consequences; they form the object of the subsequent sections.

Let us consider a field K of characteristic zero equipped with an automorphism τ : K → K. We call C the
subfield of K of τ -invariant elements of K, i.e., C := Kτ := {f ∈ K : τ(f) = f}. The elements of C are the
“constants of the theory”, therefore they are also called τ -constants or simply constants, when the meaning is
clear from the context.

Example 13. We can take for instance K = C((t)) and set τ(f(t)) := f
(

t
t+1

)
, for any f ∈ C((t)). We claim that

the field of constants C((t))τ of C((t)) coincides with C. Let us assume that there exists
∑
n≥−N ant

n ∈ C((t)),
for some positive integer N , with a−N ̸= 0, which is invariant by τ . We have

N∑
n=1

a−n

(
1 +

1

t

)n
+
∑
n≥0

an
tn

(t+ 1)n
=

N∑
n=1

a−n
tn

+
∑
n≥0

ant
n.

By identifying the coefficients of t1−N , one sees that Na−N + a−N+1 = a−N+1, hence a−N = 0. This is in
contradiction with our assumptions and therefore we conclude that we must have N ≤ 0. A similar argument
allows to exclude the case of a formal power series with positive valuation, and to conclude that the only
τ -constants are the actual constants. Notice that τ induces an automorphism of C(t) and of C({t}) as well.
Therefore we also have C(t)τ = C({t})τ = C.

We consider a linear functional system τ(y⃗) = Ay⃗, where A is an invertible square matrix of order ν with
coefficients in K, y⃗ is a vector of unknowns and τ acts on vectors (and later also on matrices) componentwisely.

Picard-Vessiot rings. The Galois theory of difference equations follows the general structure of classical Galois
theory. Picard-Vessiot rings play the role of the splitting fields, where we can find abstract solutions that can
be manipulated in the proofs.

Definition 14 ([vdPS97, Def. 1.5]). A Picard-Vessiot ring for τ(y⃗) = Ay⃗ over K is a K-algebra R equipped with
an automorphism extending the action of τ , that we still call τ , and such that:

1. R does not have any non-trivial proper ideal invariant under τ , i.e., R is τ -simple;
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2. there exists Y ∈ GLν(R) such that τ(Y ) = AY and R is generated by the entries of Y and the inverse of
detY , that is R = K

[
Y,detY −1

]
.

Proposition 15 ([vdPS97, §1.1]). A Picard-Vessiot ring always exists. If C is algebraically closed, then Rτ = C
and R is unique up to an isomorphism of K-algebras commuting with τ .

Remark 16. We will not need the explicit construction of R, but it is quite simple and it may be helpful to have it
in mind: one considers the ring of polynomials in the ν2 variables X = (xi,j) with coefficients in K. Inverting
detX and setting τ(X) = AX, we obtain a ring K[X,detX−1] with an automorphism τ . Any of its quotients by
a maximal τ -invariant ideal is a Picard-Vessiot ring of τ(y⃗) = Ay⃗ over K.

It is important to notice that the ring R does not need to be a domain. If C is algebraically closed, we can
say more on its structure, namely that it can be written as a direct sum R1 ⊕ · · · ⊕Rr, such that: Ri = eiR, for
some ei ∈ R with e2i = ei; Ri is a domain; τ acts transitively on the Ri’s, i.e., changing the order of the Ri’s and
identifying {1, . . . , r} with the elements of Z/rZ, we have τ(Ri) ⊂ Ri+1. See [vdPS97, Cor. 1.16].

Example 17. Let a ∈ K, a ̸= 0 and R be the Picard-Vessiot ring of τ(y) = ay. Then there exists z ∈ R such that
τ(z) = az and R = K[z, z−1].

Example 18. Let a, f be non-zero elements of K and let us consider the functional equation τ(y) = ay + f . It

can be rewritten as τ(y⃗) =
(
a f
0 1

)
y⃗. This system has two linearly independent solution vectors, so that an

invertible matrix of solutions has the form Y =

(
z w
0 1

)
, where w, z are elements of a Picard-Vessiot ring R, with

τ(z) = az and τ(w) = aw + f . Then R = K[z, z−1, w].

The Galois group. We suppose that the field of constants C of K is algebraically closed. The Galois group G of
τ(y⃗) = Ay⃗ over K is defined to be the group Autτ (R/K) of automorphisms of rings φ : R→ R that commute
with τ and such that φ|K is the identity.

Since φ ∈ G leaves K invariant, the matrix φ(Y ) is another invertible matrix of solutions of τ(y⃗) = Ay⃗. It
follows that τ(Y −1φ(Y )) = Y −1φ(Y ) and hence that Y −1φ(Y ) ∈ GLν(C). In other words, we have a natural
group morphism G→ GLν(C). It depends on the choice of Y and a different choice gives a conjugated map.
The theorem below contains two crucial pieces of information: First of all, G is a geometric object, more
precisely it can be identified with the C-points of a linear algebraic group. Roughly, this is another way of
saying that G can be identified with a subgroup of matrices of GLν(C), whose entries and their determinant
are exactly the points in an algebraic variety of the affine space Aν

2+1
C . Secondly, an algebraic relation among

the entries of Y exists if and only if the dimension of G is “smaller than expected”. These ideas can be
formalized as follows:

Theorem 19 ([vdPS97, Thm. 1.13 and Cor. 1.18]). The morphism G→ GLν(C), φ 7→ Y −1φ(Y ), represents
G as the group of the C-points of a linear algebraic subgroup of GLν(C). Moreover, the dimension of G over C
as an algebraic variety is equal to the transcendence degree of R over K, i.e., tr.degKR = dimC G.

Example 20. We consider an equation of the form τ(y) = ay, as in Example 17. Its Galois group G is represented
through its action on a solution z ∈ R. Since any element φ of G must send z to another solution of τ(y) = ay,
we have φ(z) = cφz, for some cφ ∈ C. Therefore G is an algebraic subgroup of the multiplicative group C∗ of
the field C. The solution z is transcendental over K if and only if G = C∗. Since the only algebraic subgroups
of C∗ are the groups of roots of unity, z is algebraic over K if and only if G is a group of roots of unity, i.e., if
and only if there exists a positive integer N such that cNφ = 1, for any φ ∈ G. Therefore, for any φ ∈ G, we have
φ(zN ) = cNφ z

N = zN . By the Galois correspondence, this is equivalent to the fact that zN ∈ K.

Example 21. Let us go back to Example 18. We consider the associated Galois group G over C. Any φ ∈ G
must map a matrix of solutions of the functional equation into another matrix of solutions, therefore there

exist cφ, dφ ∈ C such that φ(z) = cφz and φ(w) = w + dφz. In other words, we must have: φ
(
z w
0 1

)
=(

z w
0 1

)(
cφ dφ
0 1

)
. Therefore, G is a subgroup of G̃ :=

{(
c d
0 1

)
: c, d ∈ C, c ̸= 0

}
⊂ GL2(C). According to

whether z and w are algebraically dependent or not, either G will be a proper linear algebraic subgroup of G̃, or
G = G̃.

15



The total Picard-Vessiot ring. We have seen in Remark 16 that R is not a domain, therefore we cannot consider
its field of fractions. However, it is a direct sum of domains, so that we can consider its ring L of total fractions,
which is the direct sum of the fields of fractions Li of the Ri’s. This means that L = L1 ⊕ · · · ⊕ Lr, where,
for any i = 1, . . . , r, Li is a field and τ r induces an automorphism of Li. Moreover, τ acts transitively on the
Li’s, i.e., τ(Li) = Li+1, with the same notation as in Remark 16. We will call L the total Picard-Vessiot ring of
τ(y⃗) = Ay⃗.

The action of the Galois group Autτ (R/K) naturally extends from R to L. See [vdPS97, §1.3] for details.
For further reference, we recall the following characterization of total Picard-Vessiot rings.

Proposition 22 ([vdPS97, Prop. 1.23]). In the notation above, the total Picard-Vessiot ring L of τ(y⃗) = Ay⃗ is
uniquely determined, up to an isomorphism of K-algebras commuting with τ , by the following properties:

1. L has no nilpotent elements and any non-zero divisor of L is invertible.

2. Lτ = C.

3. The system τ(y⃗) = Ay⃗ has a matrix solution in GLν(L).

4. L is minimal with respect to the inclusion and the three previous properties.

In particular, any τ -ring satisfying the first three properties above contains a copy of the Picard-Vessiot ring R of
τ(y⃗) = Ay⃗ over K.

The Galois correspondence. We consider the set F of all τ -stable rings F ⊂ L, such that K ⊂ F and any
element of F is either a zero divisor or a unit in F , and the set G of all linear algebraic subgroups of
G. For any H ∈ G, we set LH = {f ∈ L : φ(f) = f for all φ ∈ H} and, for any F ∈ F , we set
HF := {φ ∈ G : φ(f) = f for all f ∈ F}.

Theorem 23 (Galois correspondence [vdPS97, Thm. 1.29 and Cor. 1.30]). In the notation above, the following
two maps are each other’s inverses:

G → F
H 7→ LH and

F → G
F 7→ HF

.

In particular, LH = K if and only if H = G. Moreover, the group H is a normal subgroup of G if and only if LH
is the total Picard-Vessiot ring of a linear system of τ -equations whose Galois group coincides with G/H.

We start mentioning the following immediate consequence of the theorem above, which illustrates how the
transcendental nature of a solution to the homogeneous equation transfers to solutions of the inhomogeneous
system. This statement is well known to specialists.

Corollary 24. In the notation of Example 21, if z is transcendental over K and w ̸∈ K, then also w is
transcendental over K.

Proof. We suppose that w is algebraic over K. Since w ̸∈ K, there exists φ ∈ G such that φ(w) = dφz+w ̸= w,
i.e., dφ ̸= 0. The element φ(w) is necessarily algebraic over K, and therefore φ(w)−w = dφz is also algebraic
over K.

The purpose of the following subsections is to give a proof of an analogous statement for differential
transcendence.

3.2. Application to differential transcendence
The ∂-Picard-Vessiot ring. Now, we suppose that there exists a derivation ∂ on K commuting with τ .

Example 25. In the situation of Example 13, for τ(f(t)) = f
(

t
1+t

)
, we can take ∂ := t2 ddt .

Proposition 26 ([Wib12] and [DVH12, Prop. 1.16, Rem. 1.18, Cor. 1.19]). For any linear system of the form
τ(y⃗) = Ay⃗, with A ∈ GLν(K), there exists a K-algebra R, equipped with an extension of τ and of ∂, preserving
the commutation, such that:

1. there exists Z ∈ GLν(R) such that τ(Z) = AZ;

2. R is generated over K by the entries of Z, 1
det(Z) and all their derivatives;

3. R is τ -simple.
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Moreover, the total ring of fractions of R satisfies the first three properties of Proposition 22.

We will call the ring R the ∂-Picard-Vessiot ring of τ(y⃗) = Ay⃗ over K, without giving a formal definition.
Applying ∂n to the system τ(y⃗) = Ay⃗ for any positive integer n, we can consider the difference system:

τ(y⃗) =


A ∂(A) · · · ∂n(A)

0 A
. . .

...
...

. . .
. . . ∂(A)

0 · · · 0 A

 y⃗, with solution


∂n(Z) ∂n−1(Z) · · · Z

0 ∂n(Z)
. . .

...
...

. . .
. . . ∂n−1(Z)

0 · · · 0 ∂n(Z)

 . (3.1)

The following corollary is hidden in the proof of [DVH12, Prop. 1.16]. Since R is generated by Z and its
derivatives, it is a fairly natural consequence of Proposition 22. However, since Z ∈ GLν(R), the matrix
∂n(Z) has its coefficients in R for all n, but there is no reason for it to be in GLν(R). In other words, the
corollary below is not as easy as one may think at first glance.

Corollary 27. For any integer n ≥ 0, the ring R contains a copy of the Picard-Vessiot ring of (3.1).

Before dealing with the general case of linear τ -difference equations τ(y) = ay + f of order 1, we study
the particular cases f = 0 and a = 1.

Notation 28. From now on, F will be a K-algebra with no nilpotent elements, and such that any element is
either a zero divisor, or invertible. We suppose that F is equipped with an extension of τ and of ∂, preserving the
commutation, and that F τ = C. Of course, it does not need to be the same algebra in all the statements.

Proposition 22 thus implies that F contains a copy of the (total) Picard-Vessiot ring of (3.1) for any n ≥ 0.
They form an ascending chain of subrings of F and their union coincides with R (see Corollary 27).

We say that an element of F is differentially algebraic over K if it satisfies an algebraic differential equation
(with respect to the derivation ∂) with coefficients in K, and that it is differentially transcendental otherwise.

Proposition 29. Let f be a non-zero element of K, and let w ∈ F be such that τ(w) = w+ f . Then the following
assertions are equivalent:

1. w is differentially algebraic over K.

2. There exist a non-negative integer n, α0, . . . , αn ∈ C (not all zero) and g ∈ K such that α0f + α1∂(f) +
· · ·+ αn∂

n(f) = τ(g)− g.

3. There exist a non-negative integer n and α0, . . . , αn ∈ C (not all zero) such that g :=
∑n
i=0 αi∂

i(w) ∈ K.

Proof. It follows from Corollary 27 that F contains a copy of the Picard-Vessiot ring Rf,n of the system{
τ(yi) = yi + ∂i(f), i = 0, . . . , n

}
. Notice that the latter system can be written in the form of a linear τ -

difference system as follows (where diagonal(A1, A2, . . . , An) indicates a block-diagonal matrix, having the
blocks A1, A2, . . . , An on the diagonal):

τ(y⃗) = diagonal
((

1 f
0 1

)
,

(
1 ∂(f)
0 1

)
, . . . ,

(
1 ∂n(f)
0 1

))
y⃗. (3.2)

For any i ≥ 0, ∂i(w) is a solution of τ(yi) = yi + ∂i(f), so that Rf,n = K[w, ∂(w), . . . , ∂n(w)] ⊂ F , as in
Example 18 and Example 21.

By definition, the element w ∈ F is differentially algebraic over K if and only if there exists n ≥ 0 such
that w, ∂(w), . . . , ∂n(w) are algebraically dependent over K, therefore if and only if there exists n ≥ 0 such
that tr.degKRf,n ≤ n. Moreover, for any φ ∈ Gn := Autτ (Rf,n/K), we must have φ(∂i(w)) = ∂i(w) + dφ,i,
for some dφ,i ∈ C. The composition of two automorphisms φ and ψ in the Galois group is represented by
the sum dφ,i + dψ,i. This means that we can identify the Galois group to a subgroup of the vector space
(C,+)n+1. Theorem 19 implies that tr.degKRf,n ≤ n if and only if dimC Gn ≤ n, hence if and only if Gn
is a proper linear subgroup of (C,+)n+1, i.e., Gn is contained in a hyperplane of Cn+1. Thus, the property
tr.degKRf,n ≤ n is equivalent to the existence of α0, . . . , αn ∈ C (not all zero) such that for any φ ∈ G, we
have

∑n
i=0 αidφ,i = 0. The last linear relation is equivalent to the fact that g :=

∑n
i=0 αi∂

i(w) is G-invariant,
that is φ(

∑n
i=0 αi∂

i(w)) =
∑n
i=0 αi∂

i(w) for any φ ∈ G. Theorem 23 implies that the latter condition is
equivalent to the fact that g belongs to K and we obtain:

τ(g)− g = τ

(
n∑
i=0

αi∂
i(w)

)
−

n∑
i=0

αi∂
i(w) =

n∑
i=0

αi∂
i(f).

The proof is completed.
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The equivalence between the first two assertions of the previous statement is an immediate corollary
of [Har08, Prop. 2.1], applied to the system

{
τ(yi) = yi + ∂i(f), i = 0, . . . , n

}
. The equivalence with the

third assertion is contained in the cited proof and explains how, under these assumptions, differential
algebraicity (i.e., existence of an algebraic differential equation for w) and D-finiteness (i.e., existence of a
linear differential equation for w) are equivalent. It also explains how to recover a linear differential equation
for the solution w from the “telescoper” for f in the second assertion. One can find it in this form in [DV21,
Cor. 6.7]. Let us notice that a similar criterion, but in a much more sophisticated setting, has been proved
by Papanikolas in [Pap08] and applied to the algebraic independence of Carlitz logarithms (see Thm. 1.2.6
in loc. cit.). Even though they are defined in positive characteristic, they present some analogies with the
ordinary and exponential generating series considered in §2.

Example 30. We consider the OGF of the family of Bernoulli polynomials, which satisfies the functional equation

τ(B) = (1 + t) ·B − t(1 + t)

(1 + t− tx)2
,

as proved in Lemma 10. Setting G(x, t) := tB(x, t), one obtains the functional equation:

τ(G) = G−
(

t

1 + t− tx

)2

.

We need to prove that G is differentially transcendental over C(t), for any fixed value of x ∈ C, to conclude the
differential transcendence of B. We do so supposing by contradiction that G is differentially algebraic over C(t).
The argument that follows will appear again in the proof of Theorem 37 (precisely in the proof of Lemma 43)
and is actually used frequently in this kind of problems. One can apply Proposition 29 and show that for any
non-negative integer n, there do not exist any constants α0, . . . , αn (not all zero) and any function g ∈ C(t) such
that

α0f + α1∂(f) + · · ·+ αn∂
n(f) = τ(g)− g, (3.3)

with ∂ = t2 ddt and f =
(

t
1+t−tx

)2
. We easily compute, for all k ≥ 0,

∂k(f) = (k + 1)!

(
t

1 + t− tx

)k+2

. (3.4)

Let us first deal with the case x ̸= 1. By (3.4), the left-hand side of (3.3) has a unique pole, namely, at t0 such
that 1 + t0 − t0x = 0 (i.e., t0 = 1

x−1). This proves that the right-hand side of (3.3) has only one pole at t0, and
hence either g or τ(g) has a pole at t0. To fix ideas, let us assume that g has a pole at t0. Then τ−1(t0) is a pole
of τ(g). If τ(g)− g has a pole at τ−1(t0), we have proved that τ(g)− g has at least two poles, a contradiction
with (3.3). If τ(g)− g has no pole at τ−1(t0), then we conclude that g has also a pole at τ−1(t0), that cancels
the pole of τ(g) in τ(g) − g. It means that τ(g) must have a pole at τ−2(t0) and we can repeat the argument.
Since g and τ(g) are rational functions, they admit a finite number of poles, therefore eventually one shows that
τ(g)− g has two poles, contradicting the fact that the left-hand side of (3.3) has only one pole.

In the case x = 1, the left-hand side of (3.3) becomes a non-zero polynomial with no constant term. One first
proves that g ∈ C(t) must also be a polynomial and finally gets a contradiction, showing that it can only be a
constant, in contradiction with the fact that the left-hand side is non-zero.

Let a be a non-zero element of K. We consider the equation τ(y) = ay and the Picard-Vessiot ring Ra,n
over K of the linear difference system obtained as in (3.1) for A = (a). The following proposition is proved
by using the trick of taking logarithmic derivatives, as in [Har08, Prop. 2.2].

Proposition 31. Let a ∈ K be non-zero, F be a K-algebra as in Notation 28 and let z ∈ F be a non-zero solution
of τ(y) = ay. With the notation introduced above, the following assertions are equivalent:

1. The element z is differentially algebraic over K.

2. There exists a non-negative integer n such that tr.degKRa,n ≤ n.

3. There exists a non-negative integer n such that there exist α0, . . . , αn ∈ C (not all zero) and g ∈ K satisfying

α0
∂(a)

a
+ α1∂

(
∂(a)

a

)
+ · · ·+ αn∂

n

(
∂(a)

a

)
= τ(g)− g. (3.5)
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Proof. We have Ra,n = K[z, ∂(z), . . . , ∂n(z), z−1] ⊂ F , up to an automorphism commuting with τ . The first
equivalence follows immediately from the definition of differential algebraicity and Theorem 19. We notice
that z is differentially algebraic over K if and only if w := ∂(z)

z ∈ F is differentially algebraic over K. Since we
have τ(w) = τ(∂(z))

τ(z) = ∂(τ(z))
τ(z) = ∂(az)

az = w + ∂(a)
a , we conclude by applying Proposition 29.

Example 32. Let us consider the setting of Examples 13 and 25, with τ(f(t)) = f
(

t
1+t

)
and ∂ = t2 ddt . The

function z(t) := Γ
(
1
t

)−1, which lives in the algebra of analytic functions over C∗ ∪ {∞}, is a solution of the
equation τ(y) = ty, that is the homogenous equation associated to Klazar’s example (1.1). Since ∂(t)

t = t and
∂n(t) = n!tn+1, one deduces that for any α0, . . . , αn ∈ C (not all zero), the linear combination

α0t+ α1∂ (t) + · · ·+ αn∂
n (t) = α0t+ α1t

2 + · · ·+ αn n!t
n+1

cannot be written as g
(

t
1+t

)
− g(t), for any g ∈ C(t). This is easily proved by reasoning on the poles of

the potential rational functions g, as in Example 30. We deduce from Proposition 31 that z(t) := Γ
(
1
t

)−1 is
D-transcendental over K := C(t), which reproves Hölder’s theorem [H8̈6, BK78, HS08] on the D-transcendence of
the gamma function. We also deduce from Proposition 31 that any non-zero solution of τ(y) = ty in any algebra
F as above is differentially transcendental1 over C(t).

Differential transcendence: the equation τ(y) = ay + f . We want to prove a generalization of Corollary 24
to differential transcendence (see Theorem 33 below). Let f and a be non-zero elements of K, and let us
consider the difference equation τ(y) = ay + f . It can be transformed in a linear system as in the examples

above: τ(y⃗) = Ay⃗, with A :=

(
a f
0 1

)
. The following statement generalizes [HS08, Item 1 of Prop. 3.8] to

the case of an algebraically closed field of constants. We remind that in [HS08] the authors assume that the
field of constants is differentially closed (although it is not difficult to prove a descent to any algebraically
closed field, for the readers familiar with this kind of reasoning). The advantage of the statement below,
compared to [HS08], is that one can look for the solutions of the inhomogeneous equation and the associated
homogeneous equation in two different algebras. As we have already observed in §2.4, this is particularly
useful in our setting. We will illustrate further the situation in Remark 35 below.

Theorem 33. Let us consider an equation of the form τ(y) = ay + f , with a, f ∈ K, such that a ̸= 0, 1 and
f ̸= 0. Let F/K be a field extension such that there exists w ∈ F \ K satisfying the equation τ(w) = aw + f .
Moreover, let Fa be a K-algebra as in Notation 28, such that there exists z ∈ Fa satisfying the equation τ(z) = az.
If z is differentially transcendental over K, then w is differentially transcendental over K.

Proposition 31 and Theorem 33 imply directly the following corollary:

Corollary 34. In the notation of the theorem above, if for any n ≥ 0, any α0, . . . , αn ∈ C (not all zero) and any
g ∈ K, we have

α0
∂(a)

a
+ α1∂

(
∂(a)

a

)
+ · · ·+ αn∂

n

(
∂(a)

a

)
̸= τ(g)− g, (3.6)

then w is differentially transcendental over K.

Remark 35. The corollary above allows us to conclude immediately that the generating function of the Bell
numbers is differentially transcendental over C(t), as a consequence of Hölder’s theorem. See Example 32. If we
want to apply Theorem 33, it is enough to take F = C((t)) and Fa the field of meromorphic functions at ∞.
Notice that there is no common natural extension of the fields F and Fa.

We will rather prove the following statement, which is obviously equivalent to Theorem 33:

Proposition 36. In the notation of Theorem 33, if w ∈ F \K is differentially algebraic over K, then z ∈ Fa is
differentially algebraic over K.

Proof. Let Rn be the Picard-Vessiot ring over K of the system obtained from τ(y⃗) =

(
a f
0 1

)
y⃗ by n-fold

derivation as in (3.1), and R be its ∂-Picard-Vessiot ring over F . It follows from Proposition 26 and

1After we submitted to the arXiv a first version of the present paper, Michael F. Singer has brought to our attention the fact that in
2010, in a private letter to Charlotte Hardouin, he had given a Galoisian proof of Klazar’s theorem on the OGF of Bell numbers, based on
some calculations very similar to this example and [HS08, Prop. 3.9].
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Proposition 22 that we can suppose without loss of generality that Rn ⊂ R, because K ⊂ F , by assumption.
Moreover,

Rn = K[z̃, ∂(z̃), . . . , ∂n(z̃), w, ∂(w), . . . , ∂n(w), z̃−1],

for some z̃ satisfying τ(z̃) = az̃.
Let us assume that w is differentially algebraic over K. This means that w satisfies an algebraic differential

equation of order κ with coefficients in K. Let φ ∈ Autτ (Rκ/K) and let us consider φ(w) ∈ Rκ such that
τ(φ(w)) = aφ(w) + f . The derivatives of φ(w) may not belong to Rκ, since φ commutes only with τ and not
necessarily with ∂, however the K-algebra

R̃κ = K[z̃, ∂(z̃), . . . , ∂κ(z̃), φ(w), ∂(φ(w)), . . . , ∂κ(φ(w)), z−1] ⊂ R

is another Picard-Vessiot ring of the difference system obtained by κ-fold iteration. Hence Rκ and R̃κ are
isomorphic as K-algebras and, in particular, they have the same transcendence degree over K. We deduce that
φ(w) ∈ R is solution of an algebraic differential equation of order κ, with coefficients in K. Finally, w − φ(w)
satisfies an algebraic differential equation of order at most 2(κ+1) (see for instance [BR86, Thm. 2.2]). Since
z̄ := w − φ(w) ∈ R is a solution of τ(y) = ay, we deduce by Proposition 31, applied to z̄ ∈ R, that there exist

α0, . . . , αn ∈ C (not all zero) and g ∈ K such that
∑n
i=0 αi∂

i
(
∂(a)
a

)
= τ(g) − g. We conclude, by applying

again Proposition 31 to z ∈ Fa, that z ∈ Fa is itself differentially algebraic over K.

4. Main result: Strong differential transcendence for first-order difference equations

We consider a field K0 := C(t), where C is an algebraically closed field of characteristic zero, equipped
with an Archimedean norm | · |. Typically, we will choose C to be the algebraic closure Q of Q or C, with the
usual norm.

We will look for solutions in F := C((t)) and we will establish their differential transcendence over
the field K := C({t}), where the convergence is considered with respect to | · |. We remind (Example 25)
that the derivation ∂ := t2 ddt commutes with τ : f(t) 7→ f(t/(1 + t)) and that establishing the differential
transcendence with respect to ∂ is equivalent to establishing it with respect to d

dt .
The next theorem generalizes [Nis84, Thm. 2], where the author proves a similar statement for the

differential transcendence over K0. It should be the first step of a generalization of [ADH21, Thm. 1.2] to
higher-order difference equations (in the case called S∞ in loc. cit).

Theorem 37. Let a, f ∈ K0 with a ̸= 0, and let w ∈ F \K0 satisfy the difference equation τ(w) = aw + f . Then
w is differentially transcendental over K.

A simple rational change of variable shows the following corollary:

Corollary 38. The theorem above holds if we replace τ with the endomorphism associated to any homography
with only one fixed point t0, K with the field of germs of meromorphic functions at t0 and F with the field of
formal Laurent series based at t0.

Theorem 37 above implicitly says that any solution w of τ(w) = aw + f , meromorphic in a punctured
neighborhood of 0, is the Taylor expansion of a rational function. We start by proving this fact:

Lemma 39. Let a, f ∈ K0 with a ̸= 0, and let w ∈ K satisfy the difference equation τ(w) = aw + f . Then
w ∈ K0.

Proof. Notice that if τ(w) = aw + f , then τ2(w) = τ(a)aw + (τ(a)f + τ(f)), with τ(a)a, τ(a)f + τ(f) ∈ K0.
By induction, one proves that for any n ≥ 1, w satisfies a functional equation of the form τn(w) = anw + fn,
with an := τn−1(a) · · · τ(a)a ∈ K0 and fn ∈ K0.

By assumption, w is analytic in an open punctured disk of radius r centered at 0. Let t0 ∈ C\{− 1
k , k ∈ Z≥1}

be outside such a disk, i.e., |t0| ≥ r. Then τn(t0) = t0
1+nt0

, for any n ≥ 1. Therefore τn(y) tends to 0 as n tends
to +∞. This means that there exists n such that |τn(t0)| < r, so that the functional equation τn(w) = anw+fn
allows to continue w to a meromorphic function in a neighborhood of t0. If t0 = − 1

k , for some positive
integer k, then τ−n

(
− 1
k

)
= − 1

n+k , which also tends to 0. Applying τ−1 recursively to τ(w) = aw + f , we
obtain a functional equation that allows to continue w in a neighborhood of t0. Summarizing, w is actually
meromorphic on the whole C. In particular w is meromorphic in a neighborhood of −1, with τ(−1) = ∞,
therefore the initial functional equation τ(w) = aw + f allows to continue w to a meromorphic function in a
neighborhood of ∞. Finally w can be continued to a meromorphic function on C ∪ {∞}, hence it is actually a
rational function.
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The following corollary explains the strategy of the proof:

Corollary 40. Theorem 37 is equivalent to the following statement:

(T) Let a, f ∈ K0 with a ̸= 0, and let w ∈ F \ K satisfy the difference equation τ(w) = aw + f . Then w is
differentially transcendental over K.

Proof. If w satisfies the hypotheses of (T), then Theorem 37 implies that w is differentially transcendental
over K. Therefore (T) is a consequence of Theorem 37.

On the other hand, let w ∈ F \K0 as in Theorem 37. If w ∈ K, then w ∈ K0, thanks to Lemma 39, which
contradicts the hypotheses of Theorem 37, hence w ∈ F \K. Statement (T) implies that w is differentially
transcendental over K. This proves that (T) implies Theorem 37.

Thanks to the statement (T), the strategy of the proof is becoming clear: if the equation τ(y) = ay has
a differentially transcendental solution, one applies Theorem 33; otherwise we need to look closer to the
structure of the space of solutions of τ(y) = ay. The following couple of lemmas are the main steps in the
proof of Theorem 37.

Lemma 41. Let a ∈ C, a ̸= 0, 1, and let Fa be a K-algebra as in Notation 28 containing a solution z of τ(y) = ay,
minimal for the inclusion. Then z satisfies a differential equation of the form ∂(z) = cz, for some c ∈ C, c ̸= 0,
and Fa is a field of the form Fa = K(z), with z transcendental over K.

Remark 42. In Lemma 41 we may of course take Fa = F, but such a result would not be enough to prove Theorem
37. Indeed, generically one cannot expect that both the functional equations τ(w) = aw + b and τ(z) = az have
a solution in F. Most examples, such as the generating series of Bell’s numbers, actually do not.

We point out that if a = 1, then Fa = K, since z ∈ C.

Proof of Lemma 41. Since ∂ and τ commute, we have τ(∂(z)) = a∂(z). Therefore z and ∂(z) are solutions to
the same functional equation and ∂(z)/z = c ∈ C. If c = 0, then z would be a constant, which contradicts the
fact that a ̸= 1. Hence c ̸= 0. It follows from Proposition 22 that Fa is generated by z over K and that Fa is
unique up to a K-algebra isomorphism commuting with τ .

Let us fix a branch of the complex logarithm, so that exp
(
− log a

t

)
is a solution of τ(y) = ay. The

field K
(
exp

(
− log a

t

))
is a total Picard-Vessiot ring for τ(y) = ay over K, hence Fa is isomorphic to

K
(
exp

(
− log a

t

))
, as a K-algebra. According to Example 21, since no integer power of exp

(
− log a

t

)
can be a

germ of a meromorphic function at 0, the element exp
(
− log a

t

)
is transcendental. Hence we have Fa = K(z),

with z transcendental over K.

The proof of the following lemma is an elaborated version of the argument of Example 30: more explicit,
in particular as far as the double poles in a single orbit is concerned. In particular we have added some details
at the end of the proof, in connection with remark R2-15. The key-point is the remark on the pole at ∞ at the
beginning of the proof.

Lemma 43. Let a ∈ C, f ∈ K0, a, f ̸= 0, and let w ∈ F \ K0 satisfy τ(w) = aw + f . Then w is differentially
transcendental over K.

Proof. We may assume that f does not have a pole at ∞. Indeed, we can replace w by τn(w), which satisfies

the functional equation τ(τn(w)) = aτn(w) + τn(f). If f has a pole at ∞, then τn(f) = f
(

t
1+nt

)
has a pole

at t = −1/n, and by conveniently choosing n, it does not have a pole at ∞.
Notice that we can replace w by w + r for any r ∈ K0, and change the equation accordingly, since this will

change neither the hypotheses nor the conclusion of the lemma. Indeed, we have:

τ(w + r) = a(w + r) + (f + τ(r)− ar).

We remark that the element w + r of F cannot be in C, since w ̸∈ K0, therefore f + τ(r)− ar cannot be 0.
With this in mind, one sees that for any α ∈ C, α ̸= 0, 1, and any m ∈ Z we have:

τ

(
1

(t− α)m

)
− a

(t− α)m
=

(1 + t)m

((1− α)t− α)m
− a

(t− α)m
.

Notice that τ
(

α
1−α

)
= α, hence the poles of the right-hand side of the expression above are on the same

τ -orbit. Therefore, replacing w by w + r, where r is a rational function, we can “shift the poles ̸= 0, 1 of f
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along their τ -orbit”. The poles of the form 1
n , for any integer n ≥ 2, can all be moved to the pole 1, since

τ( 1n ) =
1

n−1 . We conclude that, adding a convenient rational function to w, we can suppose that f has only
one pole in each τ -orbit, that does not contain 0. We point out that the change of unknown function that we
performed does not change the fact that f does not have a pole at ∞.

We now assume by contradiction that w ∈ F is differentially algebraic over K. Let us consider the total
ring of fractions Fa of the ∂-Picard-Vessiot ring of τ(y) = ay over the field F (see Proposition 26). Then
Fa contains a copy of the total Picard-Vessiot ring Fa of τ(y) = ay over K, which is a field, by Lemma 44
below. Since w is differentially algebraic over K, it is differentially algebraic over Fa and we can consider the
functional equation τ

(
w
z

)
= w

z + f
z , where z ∈ Fa satisfies τ(z) = az. It follows from Proposition 31, that

there exist an integer n ≥ 0, and elements α0, . . . , αn ∈ C with αn ̸= 0, and g ∈ Fa, such that

α0
f

z
+ α1∂

(
f

z

)
+ · · ·+ αn∂

n

(
f

z

)
= τ

(g
z

)
− g

z
.

Since ∂(z) = cz for some c ∈ C, we have ∂
(
f
z

)
= ∂(f)

z − c fz , with c ̸= 0 if a ̸= 1 and c = 0 otherwise.

Calculating recursively ∂i
(
f
z

)
, one proves that there exist β0, . . . , βn ∈ C, with βn = αn ̸= 0, such that

β0f + β1∂(f) + · · ·+ βn∂
n(f) = τ(g)− ag.

If a = 1, then g ∈ Fa = K. If a ̸= 1, then z is transcendental over K and g ∈ Fa = K(z) ⊂ K((z)), therefore
we can write g as a Laurent series g =

∑
i giz

i ∈ K((z)). Plugging g in the identity above, we find:

β0f + β1∂(f) + · · ·+ βn∂
n(f) =

∑
i

(
τ(gi)a

i − agi
)
zi.

Since the left-hand side of such identity is in K0, the right-hand side must be in K0 too, hence g = g0 ∈ K.
Summarizing, both for a = 1 and a ̸= 1, we have β0f + β1∂(f) + · · ·+ βn∂

n(f) = τ(g)− ag, for some g ∈ K.
Notice that β0f + β1∂ (f) + · · ·+ βn∂

n (f) has the same non-zero poles as f , therefore it has at most one pole
per non-zero orbit.

By assumption, g is analytic in a punctured disk around zero. Let us suppose by reductio ad absurdum
that there exists a singularity t0 ∈ C∗ on the border of the domain of analyticity of g, i.e. that g is not analytic
on C∗. We notice that τ−m(t0) =

t0
1−mt0 for any m ∈ Z, m ≥ 0, therefore the orbit of t0 has an accumulation

point at 0 as m → ∞. Since g is analytic in the open punctured disk of center 0 and radius |t0|, possibly
replacing t0 by another singularity in its orbit, we can suppose that, for any positive integer m, no τ−m(t0) is
a singularity of g. Then t0 is a singularity of g but not of τ(g), while τ−1(t0) is a singularity of τ(g) but not
of g, therefore τ(g) − g is forced to have a singularity both at t0 and at τ−1(t0), in contradiction with the
fact that f has at most one singularity in each τ -orbit. We conclude that the domain of analyticity of g is the
whole C∗ and that f cannot have any pole other than 0 and ∞. In other words, f ∈ C[t, t−1] and g is analytic
over C∗, with a pole at 0.

We now notice that for any integer m ≥ 1, we have

τ

(
1

tm

)
− a

tm
=

1− a

tm
+

m−1∑
j=0

(
m

j

)
1

tj
.

This means that replacing w by w + r for a convenient choice of r ∈ K0, we can replace f by f + τ(r)− ar
and assume that f is a non-zero polynomial in t without constant coefficient. We are finally reduced to an
f ∈ tC[t], which implies that f = 0, since we have supposed that f does not have any pole at ∞. As we have
noticed at the beginning, we can never obtain a zero inhomogeneous term in the functional equation adding a
rational function r to w, therefore we have found a contradiction. This means that w cannot be differentially
algebraic over K, unless it is rational.

We have finished the core of the proof. It only remains to put the pieces together.

Lemma 44. Let a ∈ K0, a ̸= 0, and let Fa be a K-algebra as in Notation 28 containing a solution z of τ(y) = ay.
Then either z is differentially algebraic over K0 and there exist a∗ ∈ C and b ∈ K0 such that a = a∗ τ(b)b , or the
solution z (and hence any solution) of τ(y) = ay is differentially transcendental over K.

Example 45. We set C = C and we go back to Example 32. Since we know that the gamma function is
not rational, we immediately obtain that Γ

(
1
t

)−1 is strongly differentially transcendental, being a solution of
τ(y) = ty. Notice that the statement makes sense since Γ

(
1
t

)−1 is analytic in any punctured disk around 0, hence

we can consider the K-field of functions K
(
Γ
(
1
t

)−1
)

.
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Proof of Lemma 44. If z is differentially algebraic over K, so is ∂(z)/z, which is solution of τ(y) = y + ∂(a)/a.
It follows from Lemma 43 that ∂(z)/z is differentially algebraic over K if and only if v := ∂(z)/z ∈ K0. We
have ∂(a)/a = τ(v)− v. Since both a and v are rational functions, we make the change of variable s = 1

t , so
that τ(s) = s+ 1 and ∂ = − d

ds . As we have remarked in Example 30, if v, as a function of the variable s, has
a pole in C, then τ(v)− v must have at least two poles in the same orbit. In particular, if v has a pole of order
greater than 1, then τ(v)− v has at least two poles of order greater than 1, while ∂(a)

a has none. Therefore v
does not have any finite pole of order greater than 1. Since all the residues of ∂(a)

a are integers, the same
argument shows that v cannot have any simple pole with a residue in C \ Z. We conclude that v is the sum
of a polynomial p ∈ C[t] and of some terms of the form m

s−a , with m ∈ Z and a ∈ C. Then τ(p)− p ∈ C[t],

while ∂(a)
a is the logarithmic derivative of a rational function. Therefore τ(p)− p = 0 and p ∈ C. Since v is

determined up to a constant, we can suppose that p = 0. Hence there exists a rational function b such that
v = ∂(b)

b . We conclude that τ
(
∂(z)
z − ∂(b)

b

)
= ∂(z)

z − ∂(b)
b , for some b ∈ K0, hence that there exists a∗ ∈ C

such that a = a∗ τ(b)b .

Proof of Theorem 37. Let Fa be the total ring of fractions of the ∂-Picard-Vessiot ring of τ(y) = ay over K,
constructed in Proposition 26 and let z ∈ Fa be a solution of τ(y) = ay. If z is differentially transcendental
over K, then w is differentially transcendental over K because of Theorem 33, therefore there is nothing
more to prove. If z ∈ Fa is differentially algebraic over K then Lemma 44 implies that there exist a∗ ∈ C and
b ∈ K0 suh that a = a∗ τ(b)b . Therefore w/b ∈ F is differentially algebraic over K and τ(w/b) = a∗(w/b) + f/b.
Without loss of generality, we can write w for w/b, a for a∗ and f for f/b, so that τ(w) = aw + f , with
a ∈ C \ {0}. This is the situation of Lemma 41, which allows to conclude that f ∈ K0.
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function. Math. Ann., 232(2):115–120, 1978. doi:10.1007/BF01421399.

[BMCDK10] Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, and Sergey Kitaev. (2+ 2)-free posets,
ascent sequences and pattern avoiding permutations. J. Combin. Theory Ser. A, 117(7):884–909,
2010. doi:10.1016/j.jcta.2009.12.007.

[BR86] Michael Boshernitzan and Lee A. Rubel. Coherent families of polynomials. Analysis, 6(4):339–
389, 1986. doi:10.1524/anly.1986.6.4.339.

[Car53] L. Carlitz. A note on the multiplication formulas for the Bernoulli and Euler polynomials. Proc.
Amer. Math. Soc., 4:184–188, 1953. doi:10.2307/2031788.

[Car59] L. Carlitz. Bernoulli and Euler numbers and orthogonal polynomials. Duke Math. J., 26:1–15,
1959. URL http://projecteuclid.org/euclid.dmj/1077468334.

[Car62] L. Carlitz. Some generalized multiplication formulas for the Bernoulli polynomials and related
functions. Monatsh. Math., 66:1–8, 1962. doi:10.1007/BF01418872.

[Car59] L. Carlitz. Eulerian numbers and polynomials. Math. Mag., 32:247–260, 1958/59.
doi:10.2307/3029225.

[DHRS18] Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F. Singer. On the nature
of the generating series of walks in the quarter plane. Invent. Math., 213(1):139–203, 2018.
doi:10.1007/s00222-018-0787-z.

[DHRS20] Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F. Singer. Walks in
the quarter plane: genus zero case. J. Combin. Theory Ser. A, 174:105251, 25, 2020.
doi:10.1016/j.jcta.2020.105251.

[Dum74] Dominique Dumont. Interprétations combinatoires des nombres de Genocchi. Duke Math. J.,
41:305–318, 1974. URL http://projecteuclid.org/euclid.dmj/1077310398.

[DV21] Lucia Di Vizio. Difference Galois Theory for the “Applied” Mathematician. In Arithmetic and
geometry over local fields—VIASM 2018, volume 2275 of Lecture Notes in Math., pages 29–59.
Springer, Cham, [2021] ©2021. doi:10.1007/978-3-030-66249-3 2.

[DVH12] Lucia Di Vizio and Charlotte Hardouin. Descent for differential Galois theory of differ-
ence equations: confluence and q-dependence. Pacific J. Math., 256(1):79–104, 2012.
doi:10.2140/pjm.2012.256.79.
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