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Our first objective is to identify two-dimensional equations that model the displacement of a linearly elastic flexural shell subjected to the action of an external heat source. To this end, we embed the shell into a family of linearly elastic flexural shells, all sharing the same middle surface θ(ω), where ω is a domain in R 2 and θ : ω → E 3 is a smooth enough immersion and whose thickness 2ε > 0 is considered as a "small" parameter approaching zero. We then identify, and justify by means of a rigorous asymptotic analysis as ε approaches zero, the corresponding "limit" two-dimensional variational problem.

Our second objective is to identify and justify a set of two-dimensional equations that are meant to approximate the original three-dimensional model in the case where the shell under consideration is either an elliptic membrane shell or a flexural shell.

Introduction

A thin linearly elastic shell can be either modelled by the three-dimensional equations of linearised elasticity or by means of a set two-dimensional equations obtained by W.T. Koiter in the seminal works [START_REF] Koiter | A consistent first approximation in the general theory of thin elastic shells[END_REF][START_REF] Koiter | On the foundations of the linear theory of thin elastic shells. I[END_REF].

Koiter's model provides a different approach from the classical one (i.e., the one based upon the threedimensional equations of linearised elasticity) for modelling the same kind of situation by means of specific two-dimensional equations. A rigorous asymptotic analysis (cf. [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF]) shows that both the threedimensional equations and the two-dimensional equations of Koiter's model have the same asymptotic behaviour as the thickness of the shell approaches zero. Moreover, Koiter's model does not a priori depend on the choice of the shell and it indeed includes both the elliptic membrane shells bilinear form and the flexural shells bilinear form. This feature is very convenient if one aims to approximate a variety of situations that would otherwise be substantially more delicate to handle by means of the classical three-dimensional approach.

Koiter's model has been extensively studied in the literature by Ciarlet and his associates [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF][START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF][START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF][START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF][START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF][START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF][START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF]. For what concerns the literature related to time-dependent problems in elasticity, it is worth mentioning the papers [START_REF] Bock | On hyperbolic contact problems[END_REF][START_REF] Bock | Dynamic contact problem for viscoelastic von Kármán-Donnell shells[END_REF][START_REF] Bock | On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate[END_REF][START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF][START_REF] Piersanti | A time-dependent obstacle problem in linearised elasticity[END_REF]. It is also worth mentioning the papers [START_REF] Piersanti | On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell lying subject to an obstacle[END_REF][START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF][START_REF] Rodríguez-Arós | Mathematical justification of the obstacle problem for elastic elliptic membrane shells[END_REF].

In this paper, we propose a suitable model of Koiter's type for time-dependent thermoelastic shells. Differently from the classical model, the model we are going to propose does not only incorporate bilinear forms associated with the elliptic component and the flexural component, but also additional terms related to the interaction between the temperature variation and the displacement. As a consequence of the Duhamel-Neumann law (cf., e.g., Chapter I, Section X of [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF]), the model takes the form of a coupled hyperbolicparabolic system.

To our best knowledge, there is no record in the literature treating the justification of Koiter's model for thermoelastic shells. The purpose of this paper is exactly to remedy this situation.

This paper is divided into eight sections (including this one). In section 2 we present some background and notation. In section 3 we introduce the problem under examination, modelling the displacement of a general three-dimensional linearly elastic shells as well as the evolution of its internal temperature variation. In section 4 we scale the problem presented in the previous section and, following [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and [START_REF] Ciarlet | Mathematical Elasticity[END_REF], we make suitable assumptions on the given data in the case where the linearly elastic shell under consideration is a flexural shell. In section 5 we show that a certain initial boundary value problem -that will turn out to be the two-dimensional limit problem of the asymptotic analysis performed in section 6 -has a more regular velocity field. In section 6, as announced, we perform a rigorous asymptotic analysis of the scaled threedimensional model in the case where the linearly elastic shell under consideration is a flexural shell, and we identify a suitable two-dimensional limit model, which exhibits the peculiar feature of being governed by two sets of uncoupled evolutionary equations, i.e., the equations governing the mechanical displacement, and the equations governing the internal temperature evolution. In section 7 we state our proposed Koiter's model for a family of "general" thermoelastic shells, and we study its convergence in the case where the shell under consideration is a flexural shell. Lastly, in section 8 we study the convergence of our proposed Koiter's model for a family of thermoelastic elliptic membrane shells, and we show that the recovered two-dimensional limit model coincides with the one recovered in [START_REF] Cao-Rial | Asymptotic analysis of elliptic membrane shells in thermoelastodynamics[END_REF].

Geometrical preliminaries

For details about the classical notions of differential geometry recalled in this section, see, e.g. [START_REF] Ciarlet | Mathematical Elasticity[END_REF] or [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF].

Greek indices, except ε, take their values in the set {1, 2}, while Latin indices, except when they are used for indexing sequences, take their values in the set {1, 2, 3}, and the summation convention with respect to repeated indices is systematically used in conjunction with these two rules. The notation E 3 designates the three-dimensional Euclidean space; the Euclidean inner product and the vector product of u, v ∈ E 3 are denoted u • v and u ∧ v; the Euclidean norm of u ∈ E 3 is denoted |u|. The notation δ j i designates the Kronecker symbol.

Given an open subset Ω of R n , notations such as L 2 (Ω), H m (Ω), or H m 0 (Ω), m ≥ 1, designate the usual Lebesgue and Sobolev spaces, and the notation D(Ω) designates the space of all functions that are infinitely differentiable over Ω and have compact support in Ω. The notation • X designates the norm in a normed vector space X. The dual space of a vector space X is denoted by X * and the duality pair between X * and X is denoted by X * •, • X . Spaces of vector-valued functions are denoted with boldface letters. Lebesgue-Bochner spaces defined over a bounded open interval I (cf. [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF]), are denoted L p (I; H), where H is a Banach space and 1 ≤ p ≤ ∞. The notation • L p (I;H) designates the norm of the Lebesgue-Bochner space L p (I; H). Sobolev-Bochner spaces defined over a bounded open interval I (cf. [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF]), are denoted W m,p (I; H), where H is a Banach space, m ≥ 1 and 1 ≤ p ≤ ∞. The notation • W m,p (I;H) designates the norm of the Sobolev-Bochner space W m,p (I; H). The notations η and η denote the first weak derivative with respect to t ∈ I and the second weak derivative with respect to t ∈ I of a scalar function η defined over the interval I. The notations η and η denote the first weak derivative with respect to t ∈ I and the second weak derivative with respect to t ∈ I of a vector-valued function η defined over the interval I.

The boundary Γ of an open subset Ω in R n is said to be Lipschitz-continuous if the following conditions are satisfied (cf., e.g., Section 1.18 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]): Given an integer s ≥ 1, there exist constants α 1 > 0 and L > 0, and a finite number of local coordinate systems, with coordinates φ r = (φ r 1 , . . . , φ r n-1 ) ∈ R n-1 and φ r = φ r n , and corresponding functions θr : ωr :

= {φ r ∈ R n-1 ; |φ r | < α 1 } → R, 1 ≤ r ≤ s, such that Γ = s r=1
{(φ r , φ r ); φ r ∈ ωr and φ r = θr (φ r )}, and | θr (φ r ) -θr (υ r )| ≤ L|φ r -υ r |, for all φ r , υ r ∈ ωr , and all 1 ≤ r ≤ s.

We observe that the second last formula takes into account overlapping local charts, while the last set of inequalities express the Lipschitz continuity of the mappings θr .

An open set Ω is said to be locally on the same side of its boundary Γ if, in addition, there exists a constant α 2 > 0 such that {(φ r , φ r ); φ r ∈ ωr and θr (φ r ) < φ r < θr (φ r ) + α 2 } ⊂ Ω, for all 1 ≤ r ≤ s, {(φ r , φ r ); φ r ∈ ωr and θr (φ r ) -α 2 < φ r < θr (φ r )} ⊂ R n \ Ω, for all 1 ≤ r ≤ s.

A domain in R n is a bounded and connected open subset Ω of R n , whose boundary ∂Ω is Lipschitzcontinuous, the set Ω being locally on a single side of ∂Ω.

Let ω be a domain in R 2 , let y = (y α ) denote a generic point in ω, and let ∂ α := ∂/∂y α and ∂ αβ := ∂ 2 /(∂y α ∂y β ). A mapping θ ∈ C 1 (ω; E 3 ) is an immersion if the two vectors a α (y) := ∂ α θ(y) are linearly independent at each point y ∈ ω. Then the image θ(ω) of the set ω under the mapping θ is a surface in E 3 , equipped with y 1 , y 2 as its curvilinear coordinates. Given any point y ∈ ω, the vectors a α (y) span the tangent plane to the surface θ(ω) at the point θ(y), the unit vector a 3 (y) := a 1 (y) ∧ a 2 (y) |a 1 (y) ∧ a 2 (y)| is normal to θ(ω) at θ(y), the three vectors a i (y) form the covariant basis at θ(y), and the three vectors a j (y) defined by the relations a j (y) • a i (y) = δ j i form the contravariant basis at θ(y); note that the vectors a β (y) also span the tangent plane to θ(ω) at θ(y) and that a 3 (y) = a 3 (y).

The first fundamental form of the surface θ(ω) is defined by means of its covariant components

a αβ := a α • a β = a βα ∈ C 0 (ω),
or by means of its contravariant components

a αβ := a α • a β = a βα ∈ C 0 (ω).
Note that the symmetric matrix field (a αβ ) is the inverse of the matrix field (a αβ ), that a β = a αβ a α and a α = a αβ a β , and that the area element along θ(ω) is given at each point θ(y), y ∈ ω, by a(y) dy, where a := det(a αβ ) ∈ C 0 (ω).

Given an immersion θ ∈ C 2 (ω; E 3 ), the second fundamental form of the surface θ(ω) is defined by means of its covariant components

b αβ := ∂ α a β • a 3 = -a β • ∂ α a 3 = b βα ∈ C 0 (ω),
or by means of its mixed components b β α := a βσ b ασ ∈ C 0 (ω), and the Christoffel symbols associated with the immersion θ are defined by

Γ σ αβ := ∂ α a β • a σ = Γ σ βα ∈ C 0 (ω).
The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is defined by

κ(y) := det(b αβ (y)) det(a αβ (y)) = det b β α (y) ,
and we observe that the denominator in the above relation never vanishes as the mapping θ is assumed to be an immersion. Note that the Gaussian curvature κ(y) at the point θ(y) is also equal to the product of the two principal curvatures at this point.

A surface θ(ω) defined by means of an immersion θ ∈ C 2 (ω; E 3 ) is said to be elliptic if its Gaussian curvature is everywhere > 0 in ω, or equivalently, if there exists a constant κ 0 such that 0 < κ 0 ≤ κ(y) for all y ∈ ω.

Given an immersion θ ∈ C 2 (ω; E 3 ) and a vector field η = (η i ) ∈ C 1 (ω; R 3 ), the vector field η := η i a i can be viewed as a displacement field of the surface θ(ω), thus defined by means of its covariant components η i over the vectors a i of the contravariant bases along the surface. If the norms η i C 1 (ω) are small enough, the mapping (θ + η i a i ) ∈ C 1 (ω; E 3 ) is also an immersion, so that the set (θ + η i a i )(ω) is also a surface in E 3 , equipped with the same curvilinear coordinates as those of the surface θ(ω), called the deformed surface corresponding to the displacement field η = η i a i . One can then define the first fundamental form of the deformed surface by means of its covariant components

a αβ (η) := (a α + ∂ α η) • (a β + ∂ β η),
and the second fundamental form of the deformed surface by means of its covariant components

b αβ (η) := ∂ α (a β + ∂ β η) • (a 1 + ∂ 1 η) ∧ (a 2 + ∂ 2 η) |(a 1 + ∂ 1 η) ∧ (a 2 + ∂ 2 η)| .
The linear part with respect to η in the difference 1 2 (a αβ (η) -a αβ ) is called the linearised change of metric tensor associated with the displacement field η i a i , the covariant components of which are then given by

γ αβ (η) = 1 2 (a α • ∂ β η + ∂ α η • a β ) = 1 2 (∂ β η α + ∂ α η β ) -Γ σ αβ η σ -b αβ η 3 = γ βα (η).
The linear part with respect to η in the difference 1 2 (b αβ (η) -b αβ ) is called the linearised change of curvature tensor associated with the displacement field η i a i , the covariant components of which are then given by

ρ αβ (η) = (∂ αβ η -Γ σ αβ ∂ σ η) • a 3 = ∂ αβ η 3 -Γ σ αβ ∂ σ η 3 -b σ α b σβ η 3 + b σ α (∂ β η σ -Γ τ βσ η τ ) + b τ β (∂ α η τ -Γ σ ατ η σ ) + (∂ α b τ β + Γ τ ασ b σ β -Γ σ αβ b τ σ )η τ = ρ βα (η).
Let us now define the time-dependent "analogue" of the linearised change of metric tensor γ αβ . Consider the operator γαβ :

L 2 (0, T ; H 1 (ω) × H 1 (ω) × L 2 (ω)) → L 2 (0, T ; L 2 (ω)), defined by γαβ (η)(t) := γ αβ (η(t)) for all η ∈ L 2 (0, T ; H 1 (ω) × H 1 (ω) × L 2 (ω)),
for almost all (a.a. in what follows) t ∈ (0, T ). It has been shown in [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF] that this operator is well-defined, linear and continuous. Let us now define the time-dependent "analogue" of the linearised change of curvature tensor ρ αβ . Consider the operator

ραβ : L 2 (0, T ; H 1 (ω) × H 1 (ω) × H 2 (ω)) → L 2 (0, T ; L 2 (ω)), defined by ραβ (η)(t) := ρ αβ (η(t)) for all η ∈ L 2 (0, T ; H 1 (ω) × H 1 (ω) × H 2 (ω)),
for a.a. t ∈ (0, T ). It has been shown in [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF] that this operator is well-defined, linear and continuous.

3 The three-dimensional problem for a "general" linearly elastic shell

Let ω be a domain in R 2 , let γ := ∂ω, and let γ 0 be a non-empty relatively open subset of γ. For each ε > 0, we define the sets

Ω ε := ω × ]-ε, ε[ and Γ ε 0 := γ 0 × [-ε, ε] and Γ ε ± := ω × {±ε},
we let x ε = (x ε i ) designate a generic point in the set Ω ε , and we let ∂ ε i := ∂/∂x ε i . Hence we also have x ε α = y α and ∂ ε α = ∂ α . Given an immersion θ ∈ C 3 (ω; E 3 ) and ε > 0, consider a shell with middle surface θ(ω) and with constant thickness 2ε. This means that the reference configuration of the shell is the set Θ(Ω ε ), where the mapping Θ : Ω ε → E 3 is defined by

Θ(x ε ) := θ(y) + x ε 3 a 3 (y) at each point x ε = (y, x ε 3 ) ∈ Ω ε .
One can then show (cf. Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that, if ε > 0 is small enough, such a mapping Θ ∈ C 2 (Ω ε ; E 3 ) is an immersion, in the sense that the three vectors

g ε i (x ε ) := ∂ ε i Θ(x ε )
are linearly independent at each point x ε ∈ Ω ε ; these vectors then constitute the covariant basis at the point Θ(x ε ), while the three vectors g j,ε (x ε ) defined by the relations

g j,ε (x ε ) • g ε i (x ε ) = δ j i
constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that ε > 0 is small enough so that Θ : Ω ε → E 3 is an immersion.

One then defines the metric tensor associated with the immersion Θ by means of its covariant components

g ε ij := g ε i • g ε j ∈ C 1 (Ω ε ), or by means of its contravariant components g ij,ε := g i,ε • g i,ε ∈ C 1 (Ω ε ).
Note that the symmetric matrix field (g ij,ε ) is then the inverse of the matrix field (g ε ij ), that g j,ε = g ij,ε g ε i and

g ε i = g ε ij g j,ε
, and that the volume element in Θ(Ω ε ) is given at each point Θ(x ε ),

x ε ∈ Ω ε , by g ε (x ε ) dx ε , where g ε := det(g ε ij ) ∈ C 1 (Ω ε
). One also defines the Christoffel symbols associated with the immersion Θ by

Γ p,ε ij := ∂ i g ε j • g p,ε = Γ p,ε ji ∈ C 0 (Ω ε ). Note that Γ 3,ε α3 = Γ p,ε 33 = 0. Given a vector field v ε = (v ε i ) ∈ C 1 (Ω ε ; R 3 ), the associated vector field ṽε := v ε i g i,ε
can be viewed as a displacement field of the reference configuration Θ(Ω ε ) of the shell, thus defined by means of its covariant components v ε i over the vectors g i,ε of the contravariant bases in the reference configuration.

If the norms

v ε i C 1 (Ω ε ) are small enough, the mapping (Θ + v ε i g i,ε
) is also an immersion, so that one can also define the metric tensor of the deformed configuration (Θ + v ε i g i,ε )(Ω ε ) by means of its covariant components

g ε ij (v ε ) := (g ε i + ∂ ε i ṽε ) • (g ε j + ∂ ε j ṽε ) = g ε ij + g ε i • ∂ j ṽε + ∂ ε i ṽε • g ε j + ∂ i ṽε • ∂ j ṽε .
The linear part with respect to ṽε in the difference

1 2 (g ε ij (v ε ) -g ε ij )
is then called the linearised strain tensor associated with the displacement field v ε i g i,ε , the covariant components of which are thus defined by

e ε i j (v ε ) := 1 2 g ε i • ∂ ε j ṽε + ∂ ε i ṽε • g ε j = 1 2 (∂ ε j v ε i + ∂ ε i v ε j ) -Γ p,ε ij v ε p = e ε j i (v ε ).
The functions e ε i j (v ε ) are called the linearised strains in curvilinear coordinates associated with the displacement field v ε i g i,ε . Let us now define the time-dependent "analogue" of the linearised strain tensor e ε i j . Consider the operator ẽε i j :

L 2 (0, T ; H 1 (Ω ε )) → L 2 (0, T ; L 2 (Ω ε )), defined by ẽε i j (v ε )(t) := e ε i j (v ε (t)) for all η ∈ L 2 (0, T ; H 1 (Ω ε )
), for a.a. t ∈ (0, T ). It has been shown in [START_REF] Piersanti | A time-dependent obstacle problem in linearised elasticity[END_REF] that this operator is well-defined, linear and continuous.

We assume throughout this paper that, for each ε > 0, the reference configuration Θ(Ω ε ) of the shell is a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic, and linearly elastic.

The behaviour of such an elastic material is thus entirely governed by its two Lamé constants λ ε ≥ 0 and µ ε > 0 (for details, see, e.g., Section 3.8 of [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]). The positive function ρ ε ∈ L ∞ (Ω ε ) denotes the mass density of the shell per unit volume.

We will also assume that the shell is subjected to applied body forces whose density per unit volume is defined by means of its covariant components f i,ε ∈ H 1 (0, T ; L 2 (Ω ε )), to applied surface forces whose surface per unit area is defined by means of its covariant components h i,ε ∈ H 1 (0, T ; L 2 (Γ ε + ∪ Γ ε -)) and to a homogeneous boundary condition of place along the portion Γ ε 0 of its lateral face (i.e., the displacement vanishes on Γ ε 0 ). Apart from the applied body forces and the applied surface forces mentioned beforehand, the shell is also subjected to the action of heat (or cool ), defined by the function

Q ε ∈ L ∞ (0, T ; L ∞ (Ω ε )). The positive function A ε ∈ L ∞ (Ω ε ) denotes the thermal dilatation coefficient, the positive function K ε ∈ L ∞ (Ω ε )
denotes the conductivity coefficient, and the positive function

S ε ∈ L ∞ (Ω ε ) denotes the specific heat coefficient. Let A ijk ,ε := λg ij,ε g k ,ε + µ g ik,ε g j ,ε + g i ,ε g jk,ε = A jik ,ε = A k ij,ε
denote the contravariant components of the fourth order three-dimensional elasticity tensor of the linearly elastic material constituting the shell. The unknown associated with the "mechanical " part of the problem is the vector field u ε = (u ε i ) where the functions u ε i : [0, T ] × Ω ε → R are the three covariant components of the unknown "three-dimensional" displacement vector field u ε i g i,ε of the reference configuration of the shell. The space of admissible displacements is defined by:

V (Ω ε ) := {v ε = (v ε i ) ∈ H 1 (Ω ε ); v ε = 0 on Γ ε 0 }.
The unknown associated with the "thermal " part of the problem is the function Θ ε : [0, T ] × Ω ε → R, which denotes the (internal) temperature variation of the shell. The space of admissible temperature variations is defined by:

W (Ω ε ) := {Ξ ε ∈ H 1 (Ω ε ); Ξ ε = 0 on Γ ε 0 }.
This gives rise to a system of coupled equations defined in terms of the displacement and the temperature variation. Such a coupling is achieved thanks to the Duhamel-Neumann law (cf., e.g., Chapter I, Section X of [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF]), and gives rise to a hyperbolic-parabolic system.

Following [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF], we assume that the temperature variation is very small if compared with the temperature of the surrounding environment. Besides, we assume that the surrounding environment is sufficiently big so that the heat irradiated from the linearly elastic shell induces a negligible change in the temperature of the surrounding environment.

In order to infer the well-posedness of the solution of the problem we are going to define next, we need to introduce the space

X(Ω ε ) := V (Ω ε ) × L 2 (Ω ε ) × W (Ω ε ),
and the space

H(Ω ε ) := V (Ω ε ) × L 2 (Ω ε ) × L 2 (Ω ε ),
and we equip them with the norms

U ε X(Ω ε ) := v ε V (Ω ε ) + w ε L 2 (Ω ε ) + Ξ ε W (Ω ε ) , for all U ε = (v ε , w ε , Ξ ε ) ∈ X(Ω ε ),
and

U ε H(Ω ε ) := v ε V (Ω ε ) + w ε L 2 (Ω ε ) + Ξ ε L 2 (Ω ε ) , for all U ε = (v ε , w ε , Ξ ε ) ∈ H(Ω ε ),
respectively. The three-dimensional problem modelling the displacement of a "general" linearly elastic shell takes the following form:

Problem P(Ω ε ) Find a vector field u ε = (u ε i ) : (0, T ) → V (Ω ε ) and a function Θ ε : (0, T ) → W (Ω ε ) such that u ε ∈ L ∞ (0, T ; V (Ω ε )), uε ∈ L ∞ (0, T ; L 2 (Ω ε )), üε ∈ L ∞ (0, T ; V * (Ω ε )), Θ ε ∈ L ∞ (0, T ; W (Ω ε )), Θε ∈ L ∞ (0, T ; W * (Ω ε )),
that satisfy the following variational equations

d 2 dt 2 Ω ε ρ ε u ε i (t)g ij,ε v ε j √ g ε dx ε + Ω ε A ijk ,ε e ε k (u ε (t))e ε i j (v ε ) √ g ε dx ε - Ω ε A ε (3λ ε + 2µ ε )Θ ε (t)e ε i j (v ε )g ij,ε √ g ε dx ε = Ω ε f i,ε (t)v ε i √ g ε dx ε + Γ ε + ∪Γ ε - h i,ε (t)v ε i √ g ε dΓ ε , for all v ε = (v ε i ) ∈ V (Ω ε ), in the sense of distributions in (0, T ), (1) 
d dt Ω ε K ε Θ ε (t)Ξ ε √ g ε dx ε + Ω ε S ε ∂ ε i Θ ε (t)g ij,ε ∂ ε j Ξ ε √ g ε dx ε + d dt Ω ε A ε (3λ ε + 2µ ε )Ξ ε e ε i j (u ε (t))g ij,ε √ g ε dx ε = Ω ε Q ε (t)Ξ ε √ g ε dx ε , for all Ξ ε ∈ W (Ω ε ), in the sense of distributions in (0, T ), (2) 
and that satisfy the following initial conditions

     u ε (0) = u ε 0 , uε (0) = u ε 1 , Θ ε (0) = Θ ε 0 , (3) 
where the initial data

(u ε 0 , u ε 1 , Θ ε 0 ) ∈ X(Ω ε ) is prescribed.
The existence and uniqueness of solutions of Problem P(Ω ε ) immediately follows by the properties of semi-groups [START_REF] Engel | A short course on operator semigroups[END_REF], which can be verified for the context under consideration by resorting, since X(Ω ε ) is dense in H(Ω ε ), to the same proof technique utilised in [START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF]. As a consequence of Proposition 6.2 of [START_REF] Engel | A short course on operator semigroups[END_REF], we obtain that uε ∈ L ∞ (0, T ; V (Ω ε )).

Another proof, not resorting to semi-groups theory, can be given by mimicking the argument of Theorems 5 and 6 in section 5.

4 The scaled three-dimensional problem for a family of flexural shells

In Section 3, we considered a variational problem for "general" linearly elastic shells. From now on, we will restrict ourselves to a specific class of shells, according to the following definition (originally proposed in [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF]; see also [START_REF] Ciarlet | Mathematical Elasticity[END_REF]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in Section 3. Such a shell is said to be a linearly elastic flexural shell if the following two additional assumptions are satisfied: first, ∅ = γ 0 ⊂ γ, i.e., the homogeneous boundary condition of place is imposed over a non-zero area portion of the entire lateral face γ 0 × [-ε, ε] of the shell, and second, the space

V F (ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); γ αβ (η) = 0 in ω and η i = ∂ ν η 3 = 0 on γ 0 },
contains non-zero functions, i.e., we have V F (ω) = {0}. The symbol ∂ ν denotes the outer unit normal derivative operator along γ.

The corresponding space of admissible temperature variations takes the form:

W (ω) := {ξ ∈ H 1 (ω); ξ = 0 on γ 0 }.
Similarly, we define the space

X F (ω) := V F (ω) × L 2 (ω) × W (ω),
and the space

H F (ω) := V F (ω) × L 2 (ω) × L 2 (ω),
and we equip them with the norms

U X F (ω) := η V F (ω) + ξ L 2 (ω) + τ W (ω) , for all U = (η, ξ, τ ) ∈ X F (ω),
and

U H F (ω) := η V F (ω) + ξ L 2 (ω) + τ L 2 (ω) , for all U = (η, ξ, τ ) ∈ H F (ω),
respectively.

If the initial data of Problem P(Ω ε ) is also in X F (ω), then such an initial data can be identified with a uniquely determined vector field in X(Ω ε ) independent of the transverse variable (cf. Section 4.2 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]). Such an assumption on the data will be used to correctly recover the sought two-dimensional limit problem in the forthcoming asymptotic analysis. Therefore, in the rest of the analysis, we assume that the prescribed initial data (u ε 0 , u ε 1 , Θ ε 0 ) satisfies the following hypothesis: There exists

(ζ 0 , ζ 1 , ϑ 0 ) ∈ V F (ω)×V F (ω)×L 2 (ω) such that: (u ε 0 , u ε 1 , Θ ε 0 ) = (ζ 0 , ζ 1 , ϑ 0 ). (4) 
Our basic objective then consists in performing an asymptotic analysis as ε → 0, so as to seek whether we can identify a two-dimensional limit problem. To this end, we shall resort to a (by now standard) methodology first proposed by Ciarlet, Lods and Miara (cf. Theorem 5.1 of [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] and Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]): To begin with, we "scale" each problem P(Ω ε ), ε > 0, over a fixed domain Ω, using appropriate scalings on the unknowns and assumptions on the data. Note that these scalings and assumptions definitely depend on the type of shells that are considered; for instance, those used for the linearly elastic elliptic membrane shells considered elsewhere (cf., e.g., [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF], [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF] and also [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF]) are different.

Let us define the sets

Ω := ω × ]-1, 1[ and Γ 0 := γ 0 × [-1, 1
] and Γ ± := ω × {±1}, let x = (x i ) denote a generic point in the set Ω, and let ∂ i := ∂/∂x i . With each point x = (x i ) ∈ Ω, we associate the point x ε = (x ε i ) defined by

x ε α := x α = y α and x ε 3 := εx 3 , so that ∂ ε α = ∂ α and ∂ ε 3 = ε -1 ∂ 3 .
To the unknown u ε = (u ε i ) and to the vector fields v ε = (v ε i ) appearing in the equations (1) of Problem P(Ω ε ) corresponding to a linearly elastic flexural shell, we then associate the scaled unknown u(ε) = (u i (ε)) and the scaled vector fields v = (v i ) by letting

u i (ε)(t)(x) := u ε i (t)(x ε ) and v i (x) := v ε i (x ε ), at each x ∈ Ω and at each t ∈ [0, T ].
For the temperature variations, we can proceed analogously: To the unknown Θ ε and to the functions Ξ ε appearing in the equations ( 2) of Problem P(Ω ε ), we associate the scaled unknown Θ(ε) and the scaled functions Ξ by letting

Θ(ε)(t)(x) := Θ ε (t)(x ε ) and Ξ(x) := Ξ ε (x ε ), at each x ∈ Ω and at each t ∈ [0, T ].
To begin, with, we assume that there exist functions

f i ∈ H 1 (0, T ; L 2 (Ω)), h i ∈ H 1 (0, T ; L 2 (Γ + ∪ Γ -)), Q ∈ L ∞ (0, T ; L 2 (Ω))
independent on ε such that the following assumptions on the data hold:

f i,ε (t)(x ε ) = ε 2 f i (t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Ω, h i,ε (t)(x ε ) = ε 3 h i (t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Γ + ∪ Γ -, Q ε (t)(x ε ) = ε 2 Q(t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Ω. (5) 
Finally, we assume that there exist positive constants ρ, A, K, S, λ and µ such that:

ρ ε (x ε ) = ε 2 ρ at a.a. x ∈ Ω, A ε (x ε ) = εA at a.a. x ∈ Ω, K ε (x ε ) = ε 2 K at a.a. x ∈ Ω, S ε (x ε ) = ε 2 S at a.a. x ∈ Ω, λ ε = λ and µ ε = µ. (6)
Note that the independence on ε of the Lamé constants assumed in Section 3 in the formulation of Problem P(Ω ε ) implicitly constituted another assumption on the data. The scalings of the mass density per unit volume, of the applied body force, and the applied surface forces are made in accordance with [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and [START_REF] Ciarlet | Mathematical Elasticity[END_REF].

The next lemma (cf., e.g., Theorems 3.3-1 and 3.3-2 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) assembles various asymptotic properties as ε → 0 of functions and vector fields appearing in the formulation of problem P(ε; Ω); these properties will be repeatedly used in the proof of the convergence theorem (Theorem 7):

In the next statement, the notation "O(ε)", or "O(ε 2 )", stands for a remainder that is of order ε, or ε 2 , with respect to the sup-norm over the set Ω, and any function, or vector-valued function, of the variable y ∈ ω, such as a αβ , b αβ , a i , etc. (all these are defined in section 2) is identified with the function, or vectorvalued function, of x = (y, x 3 ) ∈ Ω = ω × [-1, 1] that takes the same value at x 3 = 0 and is independent of x 3 ∈ [-1, 1]; for brevity, this extension from ω to Ω is designated with the same notation.

Recall that ε > 0 is implicitly assumed to be small enough so that Θ : Ω ε → E 3 is an immersion. For later purposes (like in Lemma 1 below), we also let

g i (ε)(x) := g ε i (x ε ) at each x ∈ Ω.
Lemma 1 Let ε 0 be defined as in Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. The functions

A ijk (ε) = A jik (ε) = A k ij (ε)
have the following properties:

A ijk (ε) = A ijk (0) + O(ε), A αβσ3 (ε) = A α333 (ε) = 0,
for all 0 < ε ≤ ε 0 , where

A αβστ (0) = λa αβ a στ + µ(a ασ a βτ + a ατ a βσ ), A αβ33 (0) = λa αβ , A α3σ3 (0) = µa ασ , A 3333 (0) = λ + 2µ,
and there exists a constant

C 0 > 0 such that i,j |t ij | 2 ≤ C 0 A ijk (ε)(x)t k t ij
for all 0 < ε ≤ ε 0 , all x ∈ Ω, and all symmetric matrices (t ij ).

The functions Γ p ij (ε) and g(ε) have the following properties:

Γ σ αβ (ε) = Γ σ αβ -εx 3 (∂ α b σ β + Γ σ ατ b τ β -Γ τ αβ b σ τ ) + O(ε 2 ), Γ 3 αβ (ε) = b αβ -εx 3 b σ α b σβ , ∂ 3 Γ p αβ (ε) = O(ε), Γ σ α3 (ε) = -b σ α -εx 3 b τ α b σ τ + O(ε 2 ), Γ 3 α3 (ε) = Γ p 33 (ε) = 0, g(ε) = a + O(ε),
for all 0 < ε ≤ ε 0 and all x ∈ Ω. In particular then, there exist constants g 0 and g 1 such that

0 < g 0 ≤ g(ε)(x) ≤ g 1 for all 0 < ε ≤ ε 0 and all x ∈ Ω.
The vector fields g i (ε) and g j (ε) have the following properties:

g α (ε) = a α -εx 3 b σ α a σ , g 3 (ε) = a 3 , g α (ε) = a α + εx 3 b α σ a σ + O(ε 2 ), g 3 (ε) = a 3 .

Remark 1

The various relations and estimates in Lemma 1 hold in fact for any family of linearly elastic shells, i.e., irrespective of whether these shells are flexural ones or not.

The scaled variational problem P(ε; Ω) defined in the next theorem will constitute the point of departure of our asymptotic analysis.

Theorem 1 Define the space

V (Ω) := {v = (v i ) ∈ H 1 (Ω); v = 0 on Γ 0 },
and the space W (Ω) := {Ξ ∈ H 1 (Ω); Ξ = 0 on Γ 0 }.

Let ε 0 > 0 be defined as in Lemma 1. For each 0 < ε ≤ ε 0 , define the scaled functions

g i (ε)(x) := g i,ε (x ε ) at each x ∈ Ω, g(ε)(x) := g ε (x ε ) and A ijk (ε)(x) := A ijk ,ε (x ε ) at each x ∈ Ω, e α β (ε; v) := 1 2 (∂ β v α + ∂ α v β ) -Γ k αβ (ε)v k = e β α (ε; v), e α 3 (ε; v) = e 3 α (ε; v) := 1 2 1 ε ∂ 3 v α + ∂ α v 3 -Γ σ α3 (ε)v σ , e 3 3 (ε; v) := 1 ε ∂ 3 v 3 , where Γ p ij (ε)(x) := Γ p,ε ij (x ε ) at each x ∈ Ω.
Define the scaled version of Problem P(Ω ε ) as follows:

Problem P(ε; Ω) Find a vector field u(ε) = (u i (ε)) : (0, T ) → V (Ω) and a function Θ(ε) : (0, T ) → W (Ω) such that u(ε) ∈ L ∞ (0, T ; V (Ω)), u(ε) ∈ L ∞ (0, T ; L 2 (Ω)), ü(ε) ∈ L ∞ (0, T ; V * (Ω)), Θ(ε) ∈ L ∞ (0, T ; W (Ω)), Θ(ε) ∈ L ∞ (0, T ; W * (Ω)),
that satisfy the following variational equations

ε 2 ρ d 2 dt 2 Ω u i (ε)(t)g ij (ε)v j g(ε) dx + Ω A ijk (ε)e k (ε; u(ε)(t))e i j (ε; v) g(ε) dx -Aε(3λ + 2µ) Ω Θ(ε)(t)e i j (ε; v)g ij (ε) g(ε) dx = ε 2 Ω f i (t)v i g(ε) dx + ε 2 Γ + ∪Γ - h i (t)v i g(ε) dΓ, for all v = (v i ) ∈ V (Ω), in the sense of distributions in (0, T ), (7) 
Kε 2 d dt Ω Θ(ε)(t)Ξ g(ε) dx + Sε 2 Ω ∂ α Θ(ε)(t)g αβ (ε)∂ β Ξ g(ε) dx + S Ω ∂ 3 Θ(ε)(t)∂ 3 Ξ g(ε) dx + Aε(3λ + 2µ) d dt Ω Ξe i j (ε; u(ε)(t))g ij (ε) g(ε) dx = ε 2 Ω Q(t)Ξ g(ε) dx, for all Ξ ∈ W (Ω), in the sense of distributions in (0, T ), (8) 
and that satisfy the initial conditions (3), which are assumed to appear in the form (4).

Then the pair of scaled unknowns (u(ε), Θ(ε)) is the unique solution of Problem P(ε; Ω).

Proof The variational problem P(ε, Ω) simply constitutes a re-writing of the variational problem P(Ω ε ), this time in terms of the scaled unknowns u(ε) and Θ(ε), of the vector fields v, and of the functions f i , h i and Q, as well as the constants ρ, A, K, S, λ and µ which are now all defined over the domain Ω. Then all the assertions follow from this observation.

The functions e i j (ε; v) appearing in problem P(ε; Ω) are called the scaled linearised strains in curvilinear coordinates associated with the scaled displacement vector field v i g i (ε).

When one considers a family of linearly elastic flexural shells whose thickness 2ε approaches zero, a specific Korn's inequality in curvilinear coordinates holds over the fixed domain Ω = ω × ]-1, 1[, according to the following theorem (cf., e.g., Theorem 4.1 of [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] or Theorem 5.3-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]). That the constant C 1 that appears in this inequality is independent of ε > 0 plays a key role in the forthcoming asymptotic analysis.

Theorem 2 Let there be given a family of linearly elastic flexural shells with the same middle surface θ(ω) and thickness 2ε > 0. Recall the definition of the space

V (Ω) = {v = (v i ) ∈ H 1 (Ω); v = 0 on Γ 0 }. Then there exist constants 0 < ε 1 ≤ ε 0 and C 1 > 0 such that i v i 2 H 1 (Ω) 1/2 ≤ C 1 ε i,j e i j (ε; v) 2 L 2 (Ω) 1/2 , for all 0 < ε ≤ ε 1 and all v ∈ V (Ω).
We recall a very important inequality which is used to study evolutionary problems: Gronwall's inequality (see the seminal paper [START_REF] Gronwall | Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[END_REF] and Theorem 1.1 in Chapter III of [START_REF] Hartman | Ordinary Differential Equations, Second edn[END_REF]). 

A preparatory result for the asymptotic analysis

In this section we consider the following problem P F (ω), that will be recovered by means of a rigorous asymptotic analysis in the next section. Before rigorously stating the problem, we define the space

V K (ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 }. Define the norm • V K (ω) by η V K (ω) := α η α 2 H 1 (ω) + η 3 2 H 2 (ω) 1/2 for each η = (η i ) ∈ V K (ω).
Define the fourth order two-dimensional elasticity tensor (a αβστ ), the vector p = (p i ) ∈ H 1 (0, T ; L 2 (ω)), and the function q ∈ L ∞ (0, T ; L 2 (ω)) respectively by:

a αβστ := 4λµ λ + 2µ a αβ a στ + 2µ a ασ a βτ + a ατ a βσ , p i (t) := 1 -1 f i (t)(•, x 3 ) dx 3 + h i (t)(•, 1) + h i (t)(•, -1) ∈ L 2 (ω), for a.a. t ∈ (0, T ), q(t) := 1 -1 Q(t)(•, x 3 ) dx 3 ∈ L 2 (ω), for a.a. t ∈ (0, T ). Problem P F (ω) Find a vector field ζ = (ζ i ) : (0, T ) → V F (ω) and a function ϑ : (0, T ) → W (ω) such that ζ ∈ L ∞ (0, T ; V F (ω)), ζ ∈ L ∞ (0, T ; L 2 (ω)), ζ ∈ L ∞ (0, T ; V * F (ω)), ϑ ∈ L ∞ (0, T ; W (ω)), θ ∈ L ∞ (0, T ; W * (ω)),
that satisfy the following variational equations

2ρ d 2 dt 2 ω (ζ α (t)a αβ η β + ζ 3 (t)η 3 ) √ a dy + 1 3 ω a αβστ ρ στ (ζ(t))ρ αβ (η) √ a dy = ω p i (t)η i √ a dy, for all η = (η i ) ∈ V F (ω), in the sense of distributions in (0, T ), (9) 
2 K + A 2 (3λ + 2µ) 2 λ + 2µ d dt ω ϑ(t)ξ √ a dy + 2S ω ∂ α ϑ(t)a αβ ∂ β ξ √ a dy = ω q(t)ξ √ a dy,
for all ξ ∈ W (ω), in the sense of distributions in (0, T ), [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and that satisfy the initial conditions

     ζ(0) = ζ 0 , ζ(0) = ζ 1 , Θ(0) = ϑ 0 , (11) 
where the right hand side of (11) is as in (4).

Following [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] and [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF], it can be shown that this problem admits a unique solution. In this fashion, the "mechanical" part of Problem P F (ω) is treated via a penalty scheme, amenable for the realisation of numerical simulations (cf., e.g., [START_REF] Shen | Numerical simulations for the dynamics of flexural shells[END_REF]). In order to establish this existence and uniqueness result, we resort to the following inequality of Korn's type on a general surface (cf., e.g., Theorem 2.6-4 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] for a proof).

Theorem 4 Let ω be a domain in R 2 and let θ ∈ C 3 (ω; E 3 ) be an immersion. Let γ 0 be a non-empty relatively open subset of γ = ∂ω. Recall the definition of the space

V K (ω) = {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 }.
Then there exists a constant c = c(ω, γ 0 , θ) > 0 such that

α η α 2 H 1 (ω) + η 3 2 H 2 (ω) 1/2 ≤ c α,β γ αβ (η) 2 L 2 (ω) + α,β ρ αβ (η) 2 L 2 (ω) 1/2 for all η = (η i ) ∈ V K (ω).
The above inequality, which is due to [START_REF] Bernadou | Sur l'ellipticité du modèle linéaire de coques de W. T. Koiter[END_REF] and was later given a simpler proof in [START_REF] Bernadou | Existence theorems for two-dimensional linear shell theories[END_REF], constitutes an example of a Korn's inequality on a general surface; it constitutes a "Korn inequality" in the sense that it provides a basic estimate of an appropriate norm of a displacement field defined on a surface in terms of an appropriate norm of a specific "measure of strain" (here, the linearised change of metric tensor and the linearised change of curvature tensor) corresponding to the displacement field considered.

The purpose of the next theorem, which constitutes the first new result in this paper, is to show that if the applied body forces and applied surface forces are as regular as in the assumption (5), we have that the velocity field ζ is of class L ∞ (0, T ; V F (ω)).

The technique we propose is independent of semi-groups theory, and the proof is worth working out, as the space V F (ω) incorporates a linear constraint which renders the analysis more complicated and prevents many of the standard results from being applied.

Let κ > 0 denote a penalty parameter and let us introduce the "penalised" problem P F,κ (ω) corresponding to equations ( 9) of Problem P F (ω).

Problem P F,κ (ω) Find a vector field ζ κ = (ζ i,κ ) : [0, T ] → V K (ω) such that ζ κ ∈ C 0 ([0, T ]; V K (ω)) ∩ C 1 ([0, T ]; L 2 (ω)),
that satisfies the following variational equations

2ρ d 2 dt 2 ω (ζ α,κ (t)a αβ η β + ζ 3,κ (t)η 3 ) √ a dy + 1 3 ω a αβστ ρ στ (ζ κ (t))ρ αβ (η) √ a dy + 1 κ ω a αβστ γ στ (ζ κ (t))γ αβ (η) √ a dy = ω p i (t)η i √ a dy,
for all η ∈ V K (ω), in the sense of distributions in (0, T ), and which satisfies the initial conditions

ζ κ (0) = ζ 0 , ζκ (0) = ζ 1 .
Problem P F,κ (ω) admits a unique solution by virtue of the results contained in [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]. We show next that the velocity field ζκ is more regular with respect to the spatial variable.

Theorem 5 Let κ > 0, and let ζ κ be the unique solution of Problem P F,κ (ω).

If p = (p i ) ∈ H 1 (0, T ; L 2 (ω)), then ζκ ∈ L ∞ (0, T ; V K (ω)) and ζκ ∈ L ∞ (0, T ; L 2 (ω)).
Proof Strong, weak and weak-star convergences are respectively denoted →, , and * .

The outline of the proof is to a large extent inspired by the proof of Theorem 5.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF], where no thermal action was considered. For sake of clarity, the proof is broken into three parts, numbered (i)-(iii).

(i)Construction of Galerkin approximation. Observe that the space V K (ω) is an infinite-dimensional and separable Hilbert space. Therefore, by Theorem 6.2-1 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF], there exists an orthonormal Hilbert basis (w k ) ∞ k=1 of the space L 2 (ω) which also constitutes an orthogonal Hilbert basis of the space V K (ω). For each positive integer m ≥ 1, let us denote by E m the following m-dimensional linear hull

E m := Span (w k ) m k=1 ⊂ V K (ω) ⊂ L 2 (ω).
Since each element of the Hilbert basis (w k ) ∞ k=1 is independent of the time variable t, we have w k ∈ L ∞ (0, T ; V K (ω)), for each integer 1 ≤ k ≤ m. We now discretize Problem P F,κ (ω) and, in order to keep the notation simple, we drop the dependence of the vector fields entering the variational equations on the parameters κ and ε. Let us observe that, the duality pair between E m and its dual coincides with the inner product of L 2 (ω).

For each positive integer m ≥ 1, the "penalised" discrete problem corresponding to Problem P F,κ (ω), that we denote by P m F,κ (ω), amounts to:

Problem P m F,κ (ω) Find functions c k : [0, T ] → R, 1 ≤ k ≤ m, such that ζ m (t) := m k=1 c k (t)w k , for a.a. t ∈ (0, T ),
which satisfies the following variational equations in the sense of distributions in (0, T ), for each integer

1 ≤ p ≤ m 2ρ ω ζm α (t)a αβ w p β √ a dy + 2ρ ω ζm 3 (t)w p 3 √ a dy + 1 3 ω a αβστ ρ στ (ζ m (t))ρ αβ (w p ) √ a dy + 1 κ ω a αβστ γ στ (ζ m (t))γ αβ (w p ) √ a dy = ω p i (t)w p i √ a dy,
and for which the following initial conditions hold:

ζ m (0) = ζ m 0 , ζm (0) = ζ m 1 , (12) 
where initial data ζ m 0 and ζ m 1 are, respectively, the projections of ζ 0 and ζ 1 onto the finite dimensional space E m .

For each κ > 0, we define the following continuous and V K (ω)-elliptic bilinear form:

a κ (η, ξ) = 1 3 ω a αβστ ρ στ (η)ρ αβ (ξ) √ a dy + 1 κ ω a αβστ γ στ (η)γ αβ (ξ) √ a dy, for all η = (η i ) ∈ V K (ω) and all ξ = (ξ i ) ∈ V K (ω).
We immediately observe that the projections of

ζ 0 = (ζ 0,i ) ∈ V F (ω) and ζ 1 = (ζ 1,i ) ∈ V F (ω
) onto E m can be expanded as follows (cf. Theorem 4.9-1 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF])

ζ m 0 = m k=1 ω ζ 0,i w k i √ a dy + ω ∂ α ζ 0,i ∂ α w k i √ a dy + ω ∂ αβ ζ 0,3 ∂ αβ w k 3 √ a dy w k , ζ m 1 = m k=1 ω ζ 1,i w k i √ a dy + ω ∂ α ζ 1,i ∂ α w k i √ a dy + ω ∂ αβ ζ 1,3 ∂ αβ w k 3 √ a dy w k , so that ζ m 0 → ζ 0 in V K (ω) and ζ m 1 → ζ 1 in V K (ω)
. Since the elements of the Hilbert basis do not depend on the time variable we can take the coefficients c k as well as their derivatives ċk and ck outside the integral sign. This gives, for each 1 ≤ k ≤ m, the following second order linear ordinary differential equation with respect to the variable t:

2ρc k (t) + a κ (w k , w k )c k (t) = ω p i (t)w k i √ a dy, (13) 
and satisfying the following initial conditions:

c k (0) = ω ζ 0,i w k i √ a dy + ω ∂ α ζ 0,i ∂ α w k i √ a dy + ω ∂ αβ ζ 0,3 ∂ αβ w k 3 √ a dy, ċk (0) = ω ζ 1,i w k i √ a dy + ω ∂ α ζ 1,i ∂ α w k i √ a dy + ω ∂ αβ ζ 1,3 ∂ αβ w k 3 √ a dy.
By the Cauchy-Lipschitz theorem (cf., e.g., Theorem 3.8-1 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]), such an ordinary differential equation admits a unique solution, which clearly depends on the parameter κ.

Since, by Theorem 8.60 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF], we have that

p i ∈ H 1 (0, T ; L 2 (ω)) → C 0 ([0, T ]; L 2 (ω))
, and since the left hand side of the variational equations in Problem P F,κ (ω) is an inner product in L 2 (ω) (recall that the matrix (a αβ ) is uniformly positive-definite in ω), we are in a position to infer that the vector field ζκ (0) is well-defined in L 2 (ω), and is independent of κ as well. We are thus in a position to infer the existence of a vector field

ζ 2 = (ζ 2,i ) ∈ L 2 (ω) in a way such that ζ 2,i := ζκ,i (0),
and this is the unique vector field for which the following variational equations are satisfied

2ρ ω ζ 2,α a αβ η β √ a dy + 2ρ ω ζ 2,3 η 3 √ a dy + 1 3 ω a αβστ ρ στ (ζ 0 )ρ αβ (η) √ a dy + 1 κ ω a αβστ γ στ (ζ 0 ))γ αβ (η) √ a dy =0 as ζ 0 ∈V F (ω) = ω p i (0)η i √ a dy, for all η = (η i ) ∈ V K (ω). Letting ζ m 2 be the projection of ζ 2 onto E m gives ζ m 2 → ζ 2 , in L 2 (ω).
(ii)Energy estimates. For a.a. t ∈ (0, T ), let h > 0 be such that 0 < t+h < T . Multiplying the variational equations in Problem P m F,κ (ω) at times t and (t + h) by { ċk (t + h) -ċk (t)} gives:

2ρ ω ( ζm α (t + h) -ζm α (t))a αβ ( ζm α (t + h) -ζm α (t)) √ a dy + 2ρ ω ( ζm 3 (t + h) -ζm 3 (t))( ζm 3 (t + h) -ζm 3 (t)) √ a dy + 1 3 ω a αβστ ρ στ (ζ m (t + h) -ζ m (t))ρ αβ ( ζm (t + h) -ζm (t)) √ a dy + 1 κ ω a αβστ γ στ (ζ m (t + h) -ζ m (t))γ αβ ( ζm (t + h) -ζm (t)) √ a dy = ω (p i (t + h) -p i (t))( ζm i (t + h) -ζm i (t)) √ a dy.
An integration over (0, t) gives:

ρ ω ( ζm α (t + h) -ζm α (t))a αβ ( ζm α (t + h) -ζm α (t)) √ a dy + ρ ω | ζm 3 (t + h) -ζm 3 (t)| 2 √ a dy + 1 6 ω a αβστ ρ στ (ζ m (t + h) -ζ m (t))ρ αβ (ζ m (t + h) -ζ m (t)) √ a dy + 1 2κ ω a αβστ γ στ (ζ m (t + h) -ζ m (t))γ αβ (ζ m (t + h) -ζ m (t)) √ a dy = t 0 ω (p i (τ + h) -p i (τ ))( ζm i (τ + h) -ζm i (τ )) √ a dy dτ + ρ ω ( ζm α (h) -ζm α (0))a αβ ( ζm α (h) -ζm α (0)) √ a dy + ρ ω | ζm 3 (h) -ζm 3 (0)| 2 √ a dy + 1 6 ω a αβστ ρ στ (ζ m (h) -ζ m (0))ρ αβ (ζ m (h) -ζ m (0)) √ a dy + 1 2κ ω a αβστ γ στ (ζ m (h) -ζ m (0))γ αβ (ζ m (h) -ζ m (0)) √ a dy.
Thanks to the uniform positive-definiteness of the matrix (a αβ ), the uniform positive-definiteness of the tensor (a αβστ ), Korn's inequality on a general surface (Theorem 4), Hölder's inequality and Young's inequality [START_REF] Young | On Classes of Summable Functions and their Fourier Series[END_REF], we obtain that there exists a constant C > 0 independent of m and κ such that:

ζm (t + h) -ζm (t) 2 L 2 (ω) + ζ m (t + h) -ζ m (t) 2 V K (ω) + 1 2κ α,β γ αβ (ζ m (t + h) -ζ m (t)) 2 L 2 (ω) ≤ C i T 0 p i (t + h) -p i (t) 2 L 2 (ω) dt + i T 0 ζm i (t + h) -ζm i (t) 2 L 2 (ω) dt + ζm (h) -ζm (0) 2 L 2 (ω) + ζ m (h) -ζ m (0) 2 V K (ω) + 1 2κ ω a αβστ γ στ (ζ m (h) -ζ m (0))γ αβ (ζ m (h) -ζ m (0)) √ a dy .
Divide both sides by h 2 and let h → 0. An application of Theorem 8.60 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF] together with the convergence of the family (ζ m 2 ) ∞ m=1 and the convergence of the family (ζ m 1 ) ∞ m=1 , gives:

ζm (t) 2 L 2 (ω) + ζm (t) 2 V K (ω) + 1 κ α,β γ αβ ( ζm (t)) 2 L 2 (ω) ≤ C T 0 ṗ(t) 2 L 2 (ω) dt + T 0 ζm (t) 2 L 2 (ω) dt + ζ 2 2 L 2 (ω) + ζ 1 2 V K (ω) + 1 2κ ω a αβστ γ στ (ζ m 1 )γ αβ (ζ m 1 )
√ a dy .

We also observe that, since

ζ m 1 → ζ 1 ∈ V F (ω) in V K (ω)
, there exists and integer m = m(κ) such that for all m ≥ m it results

1 2κ ω a αβστ γ στ (ζ m 1 )γ αβ (ζ m 1 ) √ a dy ≤ 1 2 .
Proceeding like in [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF], we apply Gronwall's inequality and we infer that

( ζm ) ∞ m=1 is bounded in L ∞ (0, T ; V K (ω)), ( ζm ) ∞ m=1 is bounded in L ∞ (0, T ; L 2 (ω)), 1 κ γαβ ( ζm ) ∞ m=1 is bounded in L 2 (0, T ; L 2 (ω)).
It is also possible to observe, by Fatou's lemma, that there exists a constant L > 0 independent of κ such that γαβ ( ζκ

) L 2 (0,T ;L 2 (ω)) ≤ √ κL. (14) 
(iii) Passage to the limit. An application of the Banach-Alaoglu-Bourbaki theorem (cf., e.g., Theorem 3.16 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]) gives that, up to passing to suitable subsequences,

ζm * ζκ in L ∞ (0, T ; V K (ω)), ζm * ζκ in L ∞ (0, T ; L 2 (ω)),
and the proof is complete

Theorem 6 Let ζ ∈ L ∞ (0, T ; V F (ω)) be the unique solution of Problem P F (ω). If p = (p i ) ∈ H 1 (0, T ; L 2 (ω)) we have that ζ ∈ L ∞ (0, T ; V F (ω)) and ζ ∈ L ∞ (0, T ; L 2 (ω)).
Proof By virtue of the conclusion obtained in Theorem 5 can thus re-perform the same passages as in the energy estimates. Thanks to the uniform positive-definiteness of the matrix (a αβ ), the uniform positivedefiniteness of the tensor (a αβστ ), Korn's inequality on a general surface (Theorem 4), Hölder's inequality and Young's inequality [START_REF] Young | On Classes of Summable Functions and their Fourier Series[END_REF], we obtain that there exists a constant C > 0 independent of κ such that:

ζκ (t + h) -ζκ (t) 2 L 2 (ω) + ζ κ (t + h) -ζ κ (t) 2 V K (ω) + 1 2κ α,β γ αβ (ζ κ (t + h) -ζ κ (t)) 2 L 2 (ω) ≤ C i T 0 p i (t + h) -p i (t) 2 L 2 (ω) dt + i T 0 ζκ,i (t + h) -ζκ,i (t) 2 L 2 (ω) dt + ζκ (h) -ζκ (0) 2 L 2 (ω) + ζ κ (h) -ζ κ (0) 2 V K (ω) + 1 2κ ω a αβστ γ στ (ζ κ (h) -ζ κ (0))γ αβ (ζ κ (h) -ζ κ (0)) √ a dy .
Divide both sides by h 2 and let h → 0. An application of Theorem 8.60 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF] gives:

ζκ (t) 2 L 2 (ω) + ζκ (t) 2 V K (ω) + 1 κ α,β γ αβ ( ζκ (t)) 2 L 2 (ω) ≤ C T 0 ṗ(t) 2 L 2 (ω) dt + T 0 ζκ (t) 2 L 2 (ω) dt + ζ 2 2 L 2 (ω) + ζ 1 2 V K (ω) .
Proceeding like in [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF], we apply Gronwall's inequality and we infer that

( ζκ ) κ>0 is bounded in L ∞ (0, T ; V K (ω)), ( ζκ ) κ>0 is bounded in L ∞ (0, T ; L 2 (ω)).
We apply the Banach-Alaoglu-Bourbaki theorem (cf., e.g., Theorem 3.6 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]) and we observe that the weak-star limits obtained are the weak time-derivatives of the unique solution ζ obtained in Theorem 6.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]. Combining the convergence process above with [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF] and applying Fatou's lemma gives that

γ αβ ( ζ) L 2 (0,T ;L 2 (ω)) = 0, which means that ζ ∈ L ∞ (0, T ; V F (ω))
as it was to be proved.

Asymptotic analysis

The following theorem, that resorts to an argument very similar to the one of [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF] (see also Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), constitutes the second new result in this paper. It shows that, in a specific sense, the solutions u(ε) of the (scaled) three-dimensional problems P(ε; Ω) converge as ε approaches zero to the solution of a ad hoc two-dimensional problem. It will turn out that such a two-dimensional limit problem exactly coincides with Problem P F (ω) introduced in section 5.

The vector fields a i and the functions Γ σ αβ , b αβ , a αβ , a, and γ αβ (η), have already been defined in section 2.

Theorem 7 Let ω be a domain in R 2 , let θ ∈ C 3 (ω; E 3 ) be the middle surface of a flexural shell, let γ 0 be a non-zero length portion of the boundary γ (cf. Section 4).

Let us consider the non-trivial space of admissible linearised inextensional displacements introduced in section 4

V F (ω) = {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); γ αβ (η) = 0 in ω and η i = ∂ ν η 3 = 0 on γ 0 },
as well as the space of admissible temperature variations

W (ω) := {ξ ∈ H 1 (ω); ξ = 0 on γ 0 }.
Let there be given a family of linearly elastic flexural shells with with each having the same middle surface θ(ω) and with each subjected to a boundary condition of place along a portion of its lateral face having the same set θ(γ 0 ) as its middle curve, and let the assumptions on the data be as in (5) and (6).

For 0 < ε ≤ ε 1 , where ε 1 was defined in Korn's inequality (Theorem 2), let the pair (u(ε), Θ(ε)) denote the solution of the associated scaled three-dimensional problem P(ε; Ω) introduced in Theorem 1. Then there exists a vector field u = (u i ) ∈ L ∞ (0, T ; H 1 (Ω)) satisfying u(t) = 0 on Γ 0 for a.a. t ∈ (0, T ) and there exists a function Θ ∈ L ∞ (0, T ; H 1 (Ω)) satisfying Θ(t) = 0 on Γ 0 for a.a. t ∈ (0, T ) such that

u(ε) → u, in L ∞ (0, T ; V (Ω)), u = (u i ) is independent of the transverse variable x 3 , u(ε) → u, in L ∞ (0, T ; L 2 (Ω)), Θ(ε) → Θ, in L ∞ (0, T ; W (Ω)),
Θ is independent of the transverse variable x 3 .

For a.a. t ∈ (0, T ), define the averages

u(t) = (u i (t)) := 1 2 1 -1 u(t)(•, x 3 ) dx 3 , and 
Θ(t) := 1 2 1 -1 Θ(t) dx 3 . Then u = ζ and Θ = ϑ,
where the pair (ζ, ϑ) is the unique solution of the two-dimensional limit problem P F (ω) introduced in section 5.

Proof Strong, weak and weak-star convergences as ε → 0 are respectively denoted →, , and * . For sake of brevity, we let ẽi j (ε)(t) := e i j (ε; u(ε)(t)) for a.a. t ∈ (0, T ).

The outline of the proof is to a large extent inspired by the proof of Theorem 6.2-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] (itself adapted from Theorem 5.1 in [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF]), where no thermal action was considered. This is why some parts of the proof are reminiscent of those in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]; otherwise, considering the time dependence requires substantial extra care. For sake of clarity, the proof is broken into six parts, numbered (i)-(vi).

(i) There exist subsequences, still denoted (u(ε)) ε>0 and (Θ(ε)) ε>0 , and there exist u ∈ L ∞ (0, T ; V (Ω)), Θ ∈ L ∞ (0, T ; W (Ω)) and there exist e 1 i j ∈ L ∞ (0, T ; L 2 (Ω)) satisfying

u(t) = 0 on Γ 0 = γ 0 × [-1, 1] for a.a. t ∈ (0, T ), Θ(t) = 0 on Γ 0 for a.a. t ∈ (0, T ),
and such that the following convergence process holds:

u(ε) * u in L ∞ (0, T ; V (Ω)), u(ε) * u in L ∞ (0, T ; L 2 (Ω)), ü(ε) * ü in L ∞ (0, T ; V * (Ω)), 1 ε ẽi j (ε) * e 1 i j in L ∞ (0, T ; L 2 (Ω)), Θ(ε) * Θ in L ∞ (0, T ; L 2 (Ω)), ∂ α Θ(ε) ∂ α Θ in L 2 (0, T ; L 2 (Ω)), 1 ε ∂ 3 Θ(ε) ∂ 1 3 Θ in L 2 (0, T ; L 2 (Ω)), Θ(ε) * Θ in L ∞ (0, T ; W * (Ω)). ( 15 
)
Let us fix a time instant t ∈ (0, T ). By virtue of the consequences drawn in Proposition 1 of [START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF] (see also Theorems 5 and 6), we can plug (v, Ξ) = ( u(ε)(t), Θ(ε)(t)) in the equations of Problem P(ε; Ω), getting:

ρ Ω üi (ε)(t)g ij (ε) uj (ε)(t) g(ε) dx + Ω A ijk (ε)ẽ k (ε)(t)e i j (ε; u(ε)(t)) g(ε) dx + K Ω Θ(ε)(t)Θ(ε)(t) g(ε) dx + S Ω {∂ α Θ(ε)(t)g αβ (ε)∂ β Θ(ε)(t) + ε -2 |∂ 3 Θ(ε)(t)| 2 } g(ε) dx = Ω f i (t) ui (ε)(t) g(ε) dx + Γ + ∪Γ - h i (t) ui (ε)(t) g(ε) dΓ + Ω Q(t)Θ(ε)(t) g(ε) dx.
Let us now perform an integration over the interval (0, t), getting:

ρ Ω ui (ε)(t)g ij (ε) uj (ε)(t) g(ε) dx + 1 2 Ω A ijk (ε)ẽ k (ε)(t)ẽ i j (ε)(t) g(ε) dx + K 2 Ω |Θ(ε)(t)| 2 g(ε) dx + S t 0 Ω ∂ α Θ(ε)(τ )g ij (ε)∂ β Θ(ε)(τ ) g(ε) dx dτ + S ε 2 t 0 Ω |∂ 3 Θ(ε)(τ )| 2 dx dτ = t 0 Ω f i (τ ) ui (ε)(τ ) g(ε) dx dτ + t 0 Γ + ∪Γ - h i (τ ) ui (ε)(τ ) g(ε) dΓ dτ + t 0 Ω Q(τ )Θ(ε)(τ ) g(ε) dx dτ + ρ Ω u ε 1,i g ij (ε)u ε 1,j g(ε) dx + 1 2 Ω A ijk (ε)e k (ε; u ε 0 )e i j (ε; u ε 0 ) g(ε) dx + K 2 Ω |Θ ε 0 | 2 g(ε) dx. (16) 
Combining ( 16), the uniform positive-definiteness of the matrix (g ij (ε)), the positive-definiteness of the tensor (A ijk (ε)), Korn's inequality (Theorem 2), Hölder's inequality, Young's inequality [START_REF] Young | On Classes of Summable Functions and their Fourier Series[END_REF], and the asymptotic behaviour of the function g(ε) (Lemma 1), we obtain that for ε > 0 sufficiently small we can find a constant C > 0 independent of ε such that:

1 C u(ε)(t) 2 L 2 (Ω) + u(ε)(t) 2 V (Ω) + Θ(ε)(t) 2 L 2 (Ω) ≤ ρ u(ε)(t) 2 L 2 (Ω) + i,j 1 ε e i j (ε)(t) 2 L 2 (Ω) + Θ(ε)(t) 2 L 2 (Ω) ≤ C f 2 L 2 (0,T ;L 2 (Ω)) + h 2 L 2 (0,T ;L 2 (Γ + ∪Γ -)) + Q 2 L 2 (0,T ;L 2 (Ω)) + Θ(ε) 2 L 2 (0,T ;L 2 (Ω)) + ρ T 0 Ω ui (ε)(τ )g ij (ε) uj (ε)(τ ) g(ε) dx dt + K 2 T 0 Θ(ε)(t) 2 L 2 (Ω) dt + 1 2 T 0 Ω A ijk (ε)ẽ k (ε)(t)ẽ i j (ε)(t) g(ε) dx dt .
By Gronwall's inequality (Theorem 3) we infer that:

(u(ε)) ε>0 is bounded in L ∞ (0, T ; V (Ω)), ( u(ε)) ε>0 is bounded in L ∞ (0, T ; L 2 (Ω)), 1 ε ẽi j (ε) ε>0 is bounded in L ∞ (0, T ; L 2 (Ω)), (Θ(ε)) ε>0 is bounded in L ∞ (0, T ; L 2 (Ω)).
Similarly, starting again from ( 16), we can prove that there exists a constant C > 0 independent of ε such that:

S α ∂ α Θ(ε) 2 L 2 (0,T ;L 2 (Ω)) + S 1 ε ∂ 3 Θ(ε) 2 L 2 (0,T ;L 2 (Ω)) ≤ C.
In view of the boundedness of the families above, we have that equation [START_REF] Cao-Rial | Asymptotic analysis of elliptic membrane shells in thermoelastodynamics[END_REF] gives:

( ü(ε)) ε>0 is bounded in L ∞ (0, T ; V * (Ω)).
Likewise, from equation ( 8) we derive that:

( Θ(ε)) ε>0 is bounded in L ∞ (0, T ; W * (Ω)).
By the Banach-Alaoglu-Bourbaki theorem (cf., e.g., Theorem 3.6 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]), we have that the convergence process (15) holds.

Besides, the fact that u(t) = 0 on γ 0 × [-1, 1] for a.a. t ∈ (0, T ) follows from the continuity of the trace operator tr :

H 1 (Ω) → L 2 (γ 0 × [-1, 1]
). Likewise, we can infer that Θ(t) = 0 on γ 0 × [-1, 1] for a.a. t ∈ (0, T ).

(ii) The weak limits u i ∈ L ∞ ((0, T ); H 1 (Ω)) found in (i) are independent of the transverse variable x 3 ∈] -1, 1[, in the sense that they satisfy

∂ 3 u i = 0 in D ((0, T ) × Ω).
Also the weak limit Θ ∈ L ∞ (0, T ; L 2 (Ω)) found in (i) is independent of the transverse variable x 3 ∈ ] -1, 1[, in the sense that

∂ 3 Θ = 0 in D ((0, T ) × Ω).
Besides, the average u satisfies u ∈ L ∞ (0, T ; V F (ω)), namely,

u = (u i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω), u i (t) = ∂ ν u 3 (t) = 0 on γ 0 for a.a. t ∈ (0, T ), γαβ (u) = 0 in (0, T ) × ω.
Apart from the part concerning the limit temperature Θ, the proof is identical to that of part (ii) of the proof of Theorem 6.2-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Let us thus prove that ∂ 3 Θ = 0 in D ((0, T ) × Ω). Thanks to the seventh convergence in [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF], we obtain that there exists a constant C > 0 such that:

1 ε ∂ 3 Θ(ε) L 2 (0,T ;L 2 ≤ C.
This means that lim sup ε→0 ∂ 3 Θ(ε) L 2 (0,T ;L 2 (Ω)) = 0, and thanks to Theorem 8.28 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF], we have that

(0,T )×Ω ∂ 3 Θ(ε)ϕ dx dt = - (0,T )×Ω Θ(ε)∂ 3 ϕ dx dt → 0, for all ϕ ∈ D((0, T ) × Ω),
which in turn implies that

∂ 3 Θ = 0 in D ((0, T ) × Ω). (iii) The weak limits e 1 i j ∈ L ∞ (0, T ; L 2 (Ω)), u ∈ L ∞ (0, T ; V (Ω)) and Θ ∈ L ∞ (0, T ; W (Ω)) found in (i) satisfy -∂ 3 e 1 α β = ραβ (u) in L ∞ (0, T ; L 2 (Ω)), e 1 α 3 = 0 in L ∞ (0, T ; L 2 (Ω)), e 1 3 3 = A(3λ + 2µ) λ + 2µ Θ - λ λ + 2µ a αβ e 1 α β in L ∞ (0, T ; L 2 (Ω)).
The equality -∂ 3 e 1 α β = ραβ (u) in L ∞ (0, T ; L 2 (Ω)) follows from Theorem 8.28 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF] and Theorem 5.2-2 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Besides, since u ∈ L ∞ (0, T ; V F (ω)) (Theorem 6), we have that the interchangeability of the weak time derivative with the weak derivative with respect to the transverse variable (which holds as a consequence of Theorem 8.28 of [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF]) gives:

- d dt (∂ 3 e 1 α β ) = ραβ ( u) = -∂ 3 ė1 α β in L ∞ (0, T ; L 2 (ω)). ( 17 
)
Given any vector field v = (v i ) ∈ V (Ω), the variational equations ( 7) of Problem P(ε; Ω) read as follows (recall that A αβσ3 (ε) = A α333 (ε) = 0):

ρε 2 T 0 (H 1 (Ω)) * üi (ε)(t), g ij (ε)v j g(ε) H 1 (Ω) ψ(t) dt + 1 ε T 0 Ω A αβστ (ε)ẽ σ τ (ε)(t){εe α β (ε; v)} g(ε) dxψ(t) dt + 1 ε T 0 Ω A αβ33 (ε)ẽ 3 3 (ε)(t){εe α β (ε; v)} g(ε) dxψ(t) dt + 1 ε T 0 Ω 4A α3σ3 (ε)ẽ σ 3 (ε)(t){εe α 3 (ε; v)} g(ε) dxψ(t) dt + 1 ε T 0 Ω A 33στ (ε)ẽ σ τ (ε)(t){εe 3 3 (ε; v)} g(ε) dxψ(t) dt + 1 ε T 0 Ω A 3333 (ε)ẽ 3 3 (ε)(t){εe 3 3 (ε; v)} g(ε) dxψ(t) dt -Aε(3λ + 2µ) T 0 Ω Θ(ε)(t)e α β (ε; v)g αβ (ε) g(ε) dxψ(t) dt -Aε(3λ + 2µ) T 0 Ω Θ(ε)(t)e 3 3 (ε; v) g(ε) dxψ(t) dt = ε 2 T 0 Ω f i (t)v i g(ε) dx dt + ε 2 T 0 Γ ε + ∪Γ ε - h i (t)v i g(ε) dΓ ψ(t) dt, (18) 
for all ψ ∈ D(0, T ).

Observe, in the same spirit as part (iii) of Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], that the following asymptotic behaviours as ε → 0 hold for each v ∈ V (Ω):

εe α β (ε; v) → 0 in L 2 (Ω), εe α 3 (ε; v) → 1 2 ∂ 3 v α in L 2 (Ω), εe 3 3 (ε; v) = ∂ 3 v 3 in L 2 (Ω) for all ε > 0. ( 19 
)
The relations [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF], combined with the convergence process [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF], and the asymptotic behaviour of the functions A ijk (ε) and g(ε) as ε → 0 (Lemma 1), give:

ρε 2 T 0 (H 1 (Ω)) * üi (ε)(t), g ij (ε)v j g(ε) H 1 (Ω) ψ(t) dt → 0 as ε → 0; 1 ε T 0 Ω A αβστ (ε)ẽ σ τ (ε)(t){εe α β (ε; v)} g(ε) dxψ(t) dt → 0 as ε → 0; 1 ε T 0 Ω A αβ33 (ε)ẽ 3 3 (ε)(t){εe α β (ε; v)} g(ε) dxψ(t) dt → 0 as ε → 0; 1 ε T 0 Ω 4A α3σ3 (ε)ẽ σ 3 (ε)(t){εe α 3 (ε; v)} g(ε) dxψ(t) dt → T 0 Ω 2µa ασ e 1 σ 3 (t)∂ 3 v α √ a dxψ(t) dt as ε → 0; 1 ε T 0 Ω A 33στ (ε)ẽ σ τ (ε)(t){εe 3 3 (ε; v)} g(ε) dxψ(t) dt → T 0 Ω λa στ e 1 σ τ (t)∂ 3 v 3 √ a dxψ(t) dt as ε → 0; 1 ε T 0 Ω A 3333 (ε)ẽ 3 3 (ε)(t){εe 3 3 (ε; v)} g(ε) dxψ(t) dt → T 0 Ω (λ + 2µ)e 1 3 3 (t)∂ 3 v 3 √ a dxψ(t) dt as ε → 0; Aε(3λ + 2µ) T 0 Ω Θ(ε)(t)e α β (ε; v)g αβ (ε) g(ε) dxψ(t) dt + Aε(3λ + 2µ) T 0 Ω Θ(ε)(t)e 3 3 (ε; v) g(ε) dxψ(t) dt → A(3λ + 2µ) T 0 Ω Θ(t)∂ 3 v 3 √ a dxψ(t) dt as ε → 0; ε 2 T 0 Ω f i (t)v i g(ε) dxψ(t) dt → 0 as ε → 0; ε 2 T 0 Γ + ∪Γ - h i (t)v i g(ε) dΓ ψ(t) dt → 0 as ε → 0. ( 20 
)
Consequently, we are able to draw the following conclusion from ( 18) and [START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF]:

Ω (2µa ασ e 1 σ 3 (t))∂ 3 v α + λa στ e 1 σ τ (t) + (λ + 2µ)e 1 3 3 (t) ∂ 3 v 3 √ a dx = A(3λ + 2µ) Ω Θ(t)∂ 3 v 3 √ a dx, for a.a. t ∈ (0, T ).
Since this inequality holds for any vector field v = (v i ) ∈ V (Ω) and for a.a. t ∈ (0, T ), by Theorem 3.4-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] it follows that:

e 1 σ 3 = 0 in L ∞ (0, T ; L 2 (Ω)), λa στ e 1 σ τ + (λ + 2µ)e 1 3 3 = A(3λ + 2µ)Θ in L ∞ (0, T ; L 2 (Ω)).
In particular, the latter gives:

e 1 3 3 = A 3λ + 2µ λ + 2µ Θ - λ λ + 2µ a αβ e 1 α β in L ∞ (0, T ; L 2 (Ω)),
and the conclusion is thus reached. (iv) The vector field u = (u i ) satisfies the variational equations (9) of Problem P F (ω). Fix η ∈ V F (ω) and, following the same steps as in part (iv) of Theorem 6.2-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], define the vector field w(ε; η) by

w α (ε; η) := η α -εx 3 (∂ α η 3 + b σ α η σ ), and 
w 3 (ε; η) := η 3 .
Observe that w(ε; η) ∈ V (Ω) and that, as ε → 0,

w(ε; η) →η in V (Ω), 1 ε e α β (ε; w(ε; η)) →{-x 3 ρ αβ (η)} in L 2 (Ω), 1 ε e α 3 (ε; w(ε; η)) ε>0 converges in L 2 (Ω),
e 3 3 (ε; w(ε; η)) =0 for all ε > 0.

Letting v = w(ε; η) in the variational equations ( 7) of Problem P(ε; Ω) gives:

ρ T 0 (H 1 (Ω)) * üi (ε)(t), g ij (ε)w j (ε; η) g(ε) H 1 (Ω) ψ(t) dt + T 0 Ω A αβστ (ε) 1 ε ẽσ τ (ε)(t) 1 ε e α β (ε; w(ε; η)) g(ε) dxψ(t) dt + T 0 Ω A αβ33 (ε) 1 ε ẽ3 3 (ε)(t) 1 ε e α β (ε; w(ε; η)) g(ε) dxψ(t) dt + 4 T 0 Ω A α3σ3 (ε) 1 ε ẽσ 3 (ε)(t) 1 ε e α 3 (ε; w(ε; η)) g(ε) dxψ(t) dt + T 0 Ω A 33στ (ε) 1 ε ẽσ τ (ε)(t) 1 ε e 3 3 (ε; w(ε; η)) g(ε) dxψ(t) dt + T 0 Ω A 3333 (ε) 1 ε ẽ3 3 (ε)(t) 1 ε e 3 3 (ε; w(ε; η)) g(ε) dxψ(t) dt -A(3λ + 2µ) T 0 Ω Θ(ε)(t)      1 ε e α β (ε; w(ε; η))g αβ (ε) + 1 ε e 3 3 (ε; w(ε; η)) =0      g(ε) dxψ(t) dt = T 0 Ω f i (t)w i (ε; η) g(ε) dxψ(t) dt + T 0 Γ + ∪Γ - h i (t)w i (ε; η) g(ε) dΓ ψ(t) dt, for all ψ ∈ D(0, T ).
The asymptotic behaviour of the functions w(ε; η) and 1 ε e i j (ε; w(ε; η)), the asymptotic behaviour of the three-dimensional elasticity tensor A ijk (ε) and g(ε) (Lemma 1), the weak-star convergences

1 ε ẽi j (ε) * e 1 i j in L ∞ (0, T ; L 2 (Ω)) established in part (i)
, and the relations satisfied by e 1 i 3 (part (iii)) together give:

2ρ d 2 dt 2 ω {u α (t)a αβ η β + u 3 (t)η 3 } √ a dy - 1 2 Ω a αβστ e 1 σ τ (t){x 3 ρ αβ (η)} √ a dx = ω p i (t)η i √ a dx, ( 21 
)
for all η ∈ V F (ω) and a.a. t ∈ (0, T ).

We have yet to take into account the relations ραβ (u) = -∂ 3 e 1 α β in L ∞ (0, T ; L 2 (Ω)) established in part (iii). Since u is independent of x 3 (part (ii)), these relations show that the functions e 1 α β are of the form e 1 α β = Υαβ -x 3 ραβ (u), for a unique Υαβ ∈ L ∞ (0, T ; L 2 (ω)).

Likewise, we infer from ( 17) that there exists a unique function υα ∈ L ∞ (0, T ; L 2 (ω)) such that:

ė1 α β = υαβ -x 3 ραβ ( u).
By the uniqueness of the time weak derivative, we infer that

υαβ = Υαβ , in L ∞ (0, T ; L 2 (ω)), ( 22 
)
which implies that Υαβ ∈ W 1,∞ (0, T ; L 2 (ω)).
Since, for a.a. t ∈ (0, T ), we have

Ω a αβστ e 1 σ τ (t){-x 3 ρ αβ (u(t))} √ a dx = 2 3 ω a αβστ ρ στ (u(t))ρ αβ (u(t)) dy- 1 -1 ω a αβστ x 3 ρ στ (u(t)) Υαβ (t) √ a dy dx 3 =0 , we thus get 2ρ d 2 dt 2 ω {u α (t)a αβ η β + u 3 (t)η 3 } √ a dy - 1 3 ω a αβστ ρ στ (u(t))ρ αβ (u(t)) dy = ω p i (t)η i √ a dx, ( 23 
)
for all η ∈ V F (ω) in the sense of distributions in (0, T ). Using the representation for linearised strains in Theorem 4.3-2 of [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF], we infer that

1 ε γαβ (u(ε)) Υαβ , in H 1 (0, T ; L 2 (ω)), ( 24 
)
where here, without loss of generality, we denote by γαβ the standard extension to the three-dimensional case of the time-dependent "analogue" of the change of metric tensor (cf., e.g., [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF]). Moreover, the fact that Υαβ ∈ W 1,∞ (0, T ; L 2 (ω)) (cf. ( 22)), [START_REF] Gronwall | Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[END_REF], and the fact that u(ε

)(0) = ζ 0 ∈ V F (ω) imply that Υαβ (0) = 0 in L 2 (ω).
(v) The function Θ satisfies the variational equations [START_REF] Ciarlet | Mathematical Elasticity[END_REF] of Problem P F (ω). Since this problem has a unique solution as a consequence of Theorem 6.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF], we infer that the convergences established in [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF] actually holds for the whole families. Testing the variational equations ( 8) of Problem P(ε; Ω) at any ξ ∈ W (Ω) independent of the transverse variable x 3 gives

K T 0 W * (Ω) Θ(ε)(t), ξ g(ε) W (Ω) ψ(t) dt + S T 0 Ω ∂ α Θ(ε)(t)g αβ (ε)∂ β ξ g(ε) dxψ(t) dt + S ε T 0 Ω 1 ε ∂ 3 Θ(ε)(t) ∂ 3 ξ g(ε) dxψ(t) dt + A(3λ + 2µ) T 0 Ω 1 ε e α β (ε; u(ε)(t))g αβ (ε) + 1 ε e 3 3 (ε; u(ε)(t)) ξ g(ε) dxψ(t) dt = T 0 Ω Q(t)ξ g(ε) dxψ(t) dt,
for all ψ ∈ D(0, T ). Since u(t) ∈ V F (ω) for a.a. t ∈ (0, T ), the relations established in part (iii) imply that the following time derivatives are well-defined:

ė1 i j (t) := d dt e 1 i j (t) ∈ L 2 (Ω) for a.a. t ∈ (0, T ), ėi j (ε)(t) := d dt ẽi j (ε)(t) = e i j (ε; u(ε)(t)) ∈ L 2 (Ω) for a.a. t ∈ (0, T ).
The convergence process [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF] and the definition of weak derivative in time give:

K T 0 W * (Ω) Θ(ε)(t), ξ g(ε) W (Ω) ψ(t) d → 2K T 0 W * (ω) Θ(t), ξ √ a W (ω) ψ(t) dt as ε → 0; S T 0 Ω ∂ α Θ(ε)(t)g αβ (ε)∂ β ξ g(ε) dxψ(t) dt → 2S T 0 ω ∂ α Θ(t)a αβ ∂ β ξ √ a dyψ(t) dt as ε → 0; S ε T 0 Ω 1 ε ∂ 3 Θ(ε)(t) ∂ 3 ξ g(ε)
dxψ(t) dt = 0 for all ε > 0 being ξ independent of x 3 ;

A(3λ + 2µ) T 0 Ω 1 ε e α β (ε; u(ε)(t))g αβ (ε) + 1 ε e 3 3 (ε; u(ε)(t)) ξ g(ε) dxψ(t) dt → 2A 2 (3λ + 2µ) 2 λ + 2µ T 0 W * (ω) Θ(t), ξ √ a W (ω) ψ(t) dt + 4A µ(3λ + 2µ) λ + 2µ D (0,T ;W * (ω)) ė1 α β , a αβ ξψ √ a D(0,T ;W (ω)) = 2A 2 (3λ + 2µ) 2 λ + 2µ T 0 W * (ω) Θ(t), ξ √ a W (ω) ψ(t) dt + 4A µ(3λ + 2µ) λ + 2µ D (0,T ;W * (ω)) Υαβ a αβ , ξψ √ a D(0,T ;W (ω)) as ε → 0; T 0 Ω Q(t)ξ g(ε) dxψ(t) dt → ω q(t)ξ √ a dy as ε → 0.
By the Duhamel-Neumann law, it results that Υαβ = c 1 γ αβ (u)+c 2 ρ αβ (u), for some c 1 , c 2 ∈ R. Moreover, up to changing the observation time instant t 0 to a point where u(t 0 ) ∈ V F (ω) \ {0}, we have that

0 = Υαβ (0) = c 2 ρ αβ (ζ 0 ).
Thanks to Theorem 2.6-3 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], it must be c 2 = 0. In conclusion, it must occur that for a.a. t ∈ (0, T ) the term Υαβ (t)a αβ is directly proportional to the change of metric tensor at u and so it vanishes almost everywhere in ω. In conclusion, we have that Υαβ = 0 in C 0 ([0, T ]; L 2 (ω)).

In conclusion, we obtain that

2 K + A 2 (3λ + 2µ) 2 λ + 2µ d dt ω Θ(t)ξ √ a dy + 2S ω ∂ α Θ(t)a αβ ∂ β ξ √ a dy = ω q(t)ξ √ a dy,
for all ξ ∈ W (ω) in the sense of distributions in (0, T ). By virtue of (4), we have that u and Θ satisfy the initial conditions [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF], and this puts us in a position to infer that the pair (u, Θ) is the unique solution of Problem P F (ω) (see Chapter 3 of [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] and Theorem 6.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]).

(vi) The weak-star convergences

u(ε) * u in L ∞ (0, T ; V (Ω)), u(ε) * u in L ∞ (0, T ; L 2 (Ω)), 1 ε ẽi j (ε) * e 1 i j in L ∞ (0, T ; L 2 (Ω)), Θ(ε) * Θ in L ∞ (0, T ; L 2 (Ω)), ∂ α Θ(ε) * ∂ α Θ in L ∞ (0, T ; L 2 (Ω)),
established in part (i) are actually stronger, in the sense that,

u(ε) → u in L ∞ (0, T ; V (Ω)), u(ε) → u in L ∞ (0, T ; L 2 (Ω)), 1 ε ẽi j (ε) → e 1 i j in L ∞ (0, T ; L 2 (Ω)), Θ(ε) → Θ in L ∞ (0, T ; L 2 (Ω)), ∂ α Θ(ε) → ∂ α Θ in L ∞ (0, T ; L 2 (Ω)), ∂ 3 Θ(ε) → ∂ 1 3 Θ in L ∞ (0, T ; L 2 (Ω)).
Besides, since these limits are uniquely determined, these convergences hold for the whole families.

For each ε ≤ ε 1 and for a.a. t ∈ (0, T ), let us consider the number

Λ(ε)(t) : = ρ V * (Ω) (ü i (ε)(t) -üi (t)), g ij (ε)( uj (ε)(t) -uj (t)) g(ε) V (Ω) + Ω A ijk (ε) ẽk (ε)(t) ε -e 1 k (t) ėk (ε)(t) ε -ė1 k (t) g(ε) dx + K W * (Ω) Θ(ε)(t) -Θ(t), (Θ(ε)(t) -Θ(t)) g(ε) W (Ω) + S Ω ∂ α (Θ(ε)(t) -Θ(t))g αβ (ε)∂ β (Θ(ε)(t) -Θ(t)) g(ε) dx + S Ω 1 ε ∂ 3 Θ(ε)(t) -∂ 1 3 Θ(t) 2 g(ε) dx.
On the one hand, by virtue of equations ( 7) and ( 8) of Problem P(ε; Ω), we get that

Λ(ε)(t) = Ω f i (t) ui (ε)(t) g(ε) dx + Γ ε + ∪Γ ε - h i (t) ui (ε)(t) g(ε) dΓ + A(3λ + 2µ) Ω Θ(ε)(t) ėi j (ε)(t)g ij (ε) g(ε) dx -2ρ V * (Ω) üi (ε)(t), uj (t)g ij (ε) g(ε) V (Ω) + ρ V * (Ω) üi (t), uj (t)g ij (ε) g(ε) V (Ω) -2 Ω A ijk (ε) 1 ε ẽk (ε)(t) ė1 i j (t) g(ε) dx + Ω A ijk (ε)e 1 k (t) ė1 i j (t) g(ε) dx + K W * (Ω) Θ(ε)(t), Θ(ε)(t) g(ε) W (Ω) -K W * (Ω) Θ(t), Θ(ε)(t) g(ε) W (Ω) -K W * (Ω) Θ(ε)(t), Θ(t) g(ε) W (Ω) + K W * (Ω) Θ(t), Θ(t) g(ε) W (Ω) + S Ω ∂ α Θ(ε)(t)g αβ (ε)∂ β Θ(ε)(t) g(ε) dx -2S Ω ∂ α Θ(ε)(t)g αβ (ε)∂ β Θ(t) g(ε) dx + S Ω ∂ α Θ(t)g αβ (ε)∂ β Θ(t) g(ε) dx + S ε 2 Ω |∂ 3 Θ(ε)(t)| 2 g(ε) dx -2S Ω 1 ε ∂ 3 Θ(ε)(t) ∂ 1 3 Θ(t) g(ε) dx + S Ω |∂ 1 3 Θ(t)| 2 g(ε) dx = Ω f i (t) ui (ε)(t) g(ε) dx + Γ ε + ∪Γ ε - h i (t) ui (ε)(t) g(ε) dΓ -2ρ V * (Ω) üi (ε)(t), uj (t)g ij (ε) g(ε) V (Ω) + ρ V * (Ω) üi (t), uj (t)g ij (ε) g(ε) V (Ω) -2 Ω A ijk (ε) 1 ε ẽk (ε)(t) ė1 i j (t) g(ε) dx + Ω A ijk (ε)e 1 k (t) ė1 i j (t) g(ε) dx -K W * (Ω) Θ(t), Θ(ε)(t) g(ε) W (Ω) -K W * (Ω) Θ(ε)(t), Θ(t) g(ε) W (Ω) + K W * (Ω) Θ(t), Θ(t) g(ε) W (Ω) -2S Ω ∂ α Θ(ε)(t)g αβ (ε)∂ β Θ(t) g(ε) dx + S Ω ∂ α Θ(t)g αβ (ε)∂ β Θ(t) g(ε) dx -2S Ω 1 ε ∂ 3 Θ(ε)(t) ∂ 1 3 Θ(t) g(ε) dx + S Ω |∂ 1 3 Θ(t)| 2 g(ε) dx + Ω Q(t)Θ(ε)(t) g(ε) dx.
An integration over the interval (0, t) gives:

t 0 Λ(ε)(τ ) dτ = t 0 Ω f i (τ ) ui (ε)(τ ) g(ε) dx dτ + t 0 Γ ε + ∪Γ ε - h i (τ ) ui (ε)(τ ) g(ε) dΓ dτ -2ρ t 0 (H 1 (Ω)) * üi (ε)(τ ), uj (τ )g ij (ε) g(ε) H 1 (Ω) dτ + ρ t 0 (H 1 (Ω)) * üi (τ ), uj (τ )g ij (ε) g(ε) H 1 (Ω) dτ -2 t 0 Ω A ijk (ε) 1 ε ẽk (ε)(τ ) ė1 i j (τ ) g(ε) dx dτ + t 0 Ω A ijk (ε)e 1 k (τ ) ė1 i j (τ ) g(ε) dx dτ -K t 0 W * (Ω) Θ(τ ), Θ(ε)(τ ) g(ε) W (Ω) dτ -K t 0 W * (Ω) Θ(ε)(τ ), Θ(τ ) g(ε) W (Ω) dτ + K t 0 W * (Ω) Θ(τ ), Θ(τ ) g(ε) W (Ω) dτ + t 0 Ω Q(τ )Θ(ε)(τ ) g(ε) dx dτ -2S t 0 Ω ∂ α Θ(ε)(τ )g αβ (ε)∂ β Θ(τ ) g(ε) dx dτ + S t 0 Ω ∂ α Θ(τ )g αβ (ε)∂ β Θ(τ ) g(ε) dx dτ -2S t 0 Ω 1 ε ∂ 3 Θ(ε)(τ ) ∂ 1 3 Θ(τ ) g(ε) dx dτ + S t 0 Ω |∂ 1 3 Θ(τ )| 2 g(ε) dx dτ.
Let ε → 0, and observe that the Lebesgue dominated convergence theorem gives:

lim ε→0 t 0 Λ(ε)(τ ) dτ = t 0 ω p i (τ ) ui (τ ) √ a dy dτ - 1 3 t 0 ω a αβστ ρ στ (u(τ ))ρ αβ ( u(τ )) √ a dy dτ -2ρ t 0 (H 1 (ω)) * üα (τ ), uβ (τ )a αβ √ a H 1 (ω) dτ -2ρ t 0 (H 2 (ω)) * ü3 (τ ), u3 (τ ) √ a H 2 (ω) dτ -2 K + A 2 (3λ + 2µ) 2 λ + 2µ t 0 W * (ω) Θ(τ ), Θ(τ ) √ a W (ω) dτ -2S t 0 ω ∂ α Θ(τ )a αβ ∂ β Θ(τ ) √ a dy dτ -S t 0 Ω |∂ 1 3 Θ(τ )| 2 √ a dx dτ + t 0 ω q(τ )Θ(τ ) √ a dy dτ = -S t 0 Ω |∂ 1 3 Θ(τ )| 2 √ a dx dτ.
In conclusion, we have shown that:

lim ε→0 t 0 Λ(ε)(τ ) dτ ≤ 0. (25) 
On the other hand, the uniform positive-definiteness of the fourth order three-dimensional elasticity tensor (A ijk (ε)), Korn's inequality (Theorem 2), and the initial conditions, give that there exists a constant C > 0 such that:

t 0 Λ(ε)(τ ) dτ ≥ u(ε)(t) -u(t) 2 L 2 (Ω) + i,j 1 ε ẽi j (ε)(t) -e 1 i j (t) 2 L 2 (Ω) + Θ(ε)(t) -Θ(t) 2 L 2 (Ω) + α ∂ α Θ(ε)(t) -∂ α Θ(t) 2 L 2 (Ω) + 1 ε ∂ 3 Θ(ε)(t) -∂ 1 3 Θ(t) 2 L 2 (Ω) , (26) 
for a.a. t ∈ (0, T ). Combining [START_REF] Hartman | Ordinary Differential Equations, Second edn[END_REF], and (26) thus gives that

∂ 1 3 Θ = 0 in L ∞ (0, T ; L 2 (Ω)).
and that the claimed strong convergences hold. The proof is complete.

In the asymptotic analysis conducted in Theorem 7 we noticed that, as the thickness ε to zero, the mutual interaction between the temperature and the displacement tends to zero. Indeed, the variational equations appearing in Problem P F (ω) are uncoupled. This does not mean that there is bo interaction between the displacement and the temperature variation. The fact that the mechanical variational equations and the thermal variational equations in Problem P F (ω) are uncoupled is solely owing to the fact that the heat induces a deformation expressed in terms of the change of metric tensor γ αβ only. The action of the change of metric tensor γ αβ at the elements of the space V F (ω) is null by definition.

It remains to "de-scale" the results of Theorem 2, which apply to the solutions u(ε) of the scaled problem P(ε; Ω). This means that we need to convert these results into ones about the unknown u ε i g i,ε : [0, T ]×Ω ε → E 3 , which represents the physical three-dimensional vector field of the actual reference configuration of the shell. As shown in the next theorem, this conversion is most conveniently achieved through the introduction of the averages 1 2ε ε -ε u ε i g i,ε dx ε 3 across the thickness of the shell, a procedure which also clearly highlights the striking difference (in terms of function spaces) between the asymptotic behaviors of the tangential and normal components of the displacement field of the middle surface of the shell.

Theorem 8 Let the assumptions on the data be as in Section 4 and let the assumptions on the immersion θ ∈ C 3 (ω; E 3 ) be as in Theorem 7.

Let u ε = (u ε i ) ∈ L ∞ (0, T ; V (Ω ε )) and Θ ε ∈ L ∞ (0, T ; L 2 (Ω ε )) denote for each ε > 0 the unique solution of Problem P(Ω ε ). Let ζ ∈ L ∞ (0, T ; V F (ω)) and ϑ ∈ L ∞ (0, T ; L 2 (ω))
denote the unique solution of Problem P F (ω). Then

1 2ε ε -ε u ε α g α,ε dx ε 3 → ζ α a α in L ∞ (0, T ; H 1 (ω)) as ε → 0, 1 2ε ε -ε u ε 3 g 3,ε dx ε 3 → ζ 3 a 3 in L ∞ (0, T ; H 1 (ω)) as ε → 0, 1 2ε ε -ε Θ ε dx ε 3 → ϑ in L ∞ (0, T ; L 2 (ω)) as ε → 0.
Proof The proof strategy, apart from a few slight changes concerning the time-dependent part, is analogous to that of Theorem 4.6-1 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and for this reason is omitted.

Justification of Koiter's model for thermoelastic flexural shells

A commonly used two-dimensional set of equations for modelling such a shell ("two-dimensional" in the sense that it is posed over ω instead of Ω ε ) was proposed in 1970 by Koiter [START_REF] Koiter | A consistent first approximation in the general theory of thin elastic shells[END_REF][START_REF] Koiter | On the foundations of the linear theory of thin elastic shells. I[END_REF]. We now recall, following Chapter 7 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], the modern formulation of this model in the static (i.e., time-independent) case. Koiter's model has also been recently studied in the context of obstacle problems by Ciarlet, Mardare and Piersanti [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF][START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF][START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF][START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF].

First, we recall the definition of the space

V K (ω) = {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 },
and we recall that the norm • V K (ω) is defined by:

η V K (ω) = α η α 2 H 1 (ω) + η 3 2 H 2 (ω) 1/2 for each η = (η i ) ∈ V K (ω).
Next, we recall the definition the fourth-order two-dimensional elasticity tensor of the shell, viewed here as a two-dimensional linearly elastic body, by means of its contravariant components (at this point, we have not made any assumptions on the data yet):

a αβστ,ε = 4λ ε µ ε λ ε + 2µ ε a αβ a στ + 2µ ε a ασ a βτ + a ατ a βσ .

Finally, define the bilinear forms

B M (•, •) and B F (•, •) by B M (ξ, η) := ω a αβστ γ στ (ξ)γ αβ (η) √ a dy, and B F (ξ, η) := 1 3 ω a αβστ ρ στ (ξ)ρ αβ (η) √ a dy, for each ξ = (ξ i ) ∈ V K (ω) and each η = (η i ) ∈ V K (ω).
Define the linear form ε by

ε (η) := ω p i,ε η i √ a dy, for each η = (η i ) ∈ V K (ω),
where p i,ε (y

) := ε -ε f i,ε (y, x ε 3 ) dx ε 3 + h i,ε (y, ε) + h i,ε (y, -ε) for a.a. y ∈ ω.
Then the total energy of the shell is the quadratic functional J : V K (ω) → R defined by:

J(η) := ε 2 B M (η, η) + ε 3 2 B F (η, η) -ε (η) for each η ∈ V K (ω).
The term

ε 2 B M (•, •) and ε 3 2 B F (•,
•) respectively represent the membrane part and the flexural part of the total energy, as aptly recalled by the subscripts "M " and "F ".

In Koiter's model, the unknown "two-dimensional" displacement field ζ ε i,K a i : ω → E 3 of the middle surface θ(ω) of the shell is such that the vector field ζ ε K := (ζ ε i,K ) should be the solution of the following problem: Find a vector field ζ ε K : ω → R 3 that satisfies

ζ ε K ∈ V K (ω) and J(ζ ε K ) = inf η∈V K (ω) J(η),
or equivalently, find ζ ε K ∈ V K (ω) that satisfies the following variational equations:

εB M (ζ ε K , η) + ε 3 B F (ζ ε K , η) = ε (η) for all η ∈ V K (ω).
As first shown in [START_REF] Bernadou | Sur l'ellipticité du modèle linéaire de coques de W. T. Koiter[END_REF] (see also [START_REF] Bernadou | Existence theorems for two-dimensional linear shell theories[END_REF]), this problem has one and only one solution. To begin with, define the space

X K (ω) := V K (ω) × L 2 (ω) × W (ω),
and the space

H K (ω) := V K (ω) × L 2 (ω) × L 2 (ω),
and we equip them with the norms

U X K (ω) := η V K (ω) + ξ L 2 (ω) + τ W (ω) , for all U = (η, ξ, τ ) ∈ X K (ω),
and

U H K (ω) := η V K (ω) + ξ L 2 (ω) + τ L 2 (ω) , for all U = (η, ξ, τ ) ∈ H K (ω),
respectively. For a.a. t ∈ (0, T ), we also define

q ε (t) := ε -ε Q ε (t)(•, x ε 3 ) dx ε 3 ∈ L 2 (ω),
and, in the same fashion as the static case, we define for a.a. t ∈ (0, T ) the functions

p i,ε (t) := ε -ε f i,ε (t)(•, x ε 3 ) dx ε 3 + h i,ε (t)(•, ε) + h i,ε (t)(•, -ε) ∈ L 2 (ω).
Our aim is to now formulate and justify the analogue of Koiter's model in the case where the shell under consideration is also subjected to the action of a heat source, apart from the usual applied body forces and applied surface forces.

To begin with, we propose a Koiter's model for thermoelastic shells, and we will proceed to its justification in the case where the shell under consideration is a flexural shell.

Problem P ε K (ω) Find a vector field ζ ε K = (ζ ε K,i ) : (0, T ) → V K (ω) and a function ϑ ε K : (0, T ) → W (ω) such that ζ ε K ∈ L ∞ (0, T ; V K (ω)), ζε K ∈ L ∞ (0, T ; L 2 (ω)), ζε K ∈ L ∞ (0, T ; V * K (ω)), ϑ ε K ∈ L ∞ (0, T ; W (ω)), θε K ∈ L ∞ (0, T ; W * (ω)),
that satisfies the following variational equations

2ε d 2 dt 2 ω ρ ε (ζ ε K,α (t)a αβ η β + ζ ε K,3 η 3 ) √ a dy + ε 3 3 ω a αβστ,ε ρ στ (ζ ε K (t))ρ αβ (η) √ a dy -4ε ω A ε µ ε 3λ ε + 2µ ε λ ε + 2µ ε ϑ ε K (t)γ αβ (η)a αβ √ a dy = ω p i,ε (t)η i √ a dy,
for all η = (η i ) ∈ V K (ω), in the sense of distributions in (0, T ),

2ε d dt ω K ε + (A ε ) 2 (3λ ε + 2µ ε ) 2 λ ε + 2µ ε ϑ ε K (t)ξ √ a dy + 2εS ε ω ∂ α ϑ ε K (t)a αβ ∂ β ξ √ a dy + 4ε d dt ω A ε µ ε 3λ ε + 2µ ε λ ε + 2µ ε ξγ αβ (ζ ε K (t))a αβ √ a dy = ω q ε (t)ξ √ a dy, (27) 
for all ξ ∈ W (ω), in the sense of distributions in (0, T ), [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF] and that satisfy the initial conditions

     ζ ε K (0) = ζ 0 , ζε K (0) = ζ 1 , Θ ε K (0) = ϑ 0 , (29) 
where the initial data satisfies (4).

Once again, mimicking the proof of the results contained in [START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF], noticing that X K (ω) is dense in H K (ω), and applying Proposition 6.2 of [START_REF] Engel | A short course on operator semigroups[END_REF] gives that Problem P ε K (ω) admits a unique solution and, moreover, the velocity field ζε K (t) is in the space V K (ω) for a.a. t ∈ (0, T ). We are now ready to state Koiter's model for a general linearly elastic shell. The forthcoming analysis resorts to an argument similar to the one used in Theorem 7.2-3 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] (itself based on [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée[END_REF] and, especially, on [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF]), and constitutes the third new result in this paper.

Theorem 9 Let ω be a domain in R 2 and let θ ∈ C 3 (ω; E 3 ) be an immersion. Consider a family of flexural shells with thickness 2ε approaching zero and with each having the same middle surface θ(ω). Let γ 0 be a non-empty relatively open subset of γ, and assume that each shell is subject to a boundary condition of place along a portion of its lateral face, whose middle curve is the set θ(γ 0 ).

Finally, assume that there exist functions

f i ∈ H 1 (0, T ; L 2 (Ω)), h i ∈ H 1 (0, T ; L 2 (Γ + ∪ Γ -)) and Q ∈ L ∞ (0, T ; L 2 (Ω))
independent of ε such that the assumptions (5) hold, i.e., as well as the assumptions on the coefficients (6) hold, i.e., there exist positive constants ρ, A, K, S, λ and µ such that:

f i,ε (t)(x ε ) = ε 2 f i (t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Ω, h i,ε (t)(x ε ) = ε 3 h i (t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Γ + ∪ Γ -, Q ε (t)(x ε ) = ε 2 Q(t)(x)
ρ ε (x ε ) = ε 2 ρ at a.a. x ∈ Ω, A ε (x ε ) = εA at a.a. x ∈ Ω, K ε (x ε ) = ε 2 K at a.a. x ∈ Ω, S ε (x ε ) = ε 2 S at a.a. x ∈ Ω, λ ε = λ,
and µ ε = µ.

For each ε > 0, let the pair (ζ ε K , ϑ ε K ) denote the solution of Problem P ε K (ω). Then the following convergences hold:

ζ ε K → ζ in L ∞ (0, T ; V K (ω)) as ε → 0, ζε K → ζ in L ∞ (0, T ; L 2 (ω)) as ε → 0, ϑ ε K → ϑ in L ∞ (0, T ; L 2 (ω)) as ε → 0, ( 30 
)
where the pair (ζ, ϑ) denotes the unique solution of Problem P F (ω).

Proof The outline of the proof is to a large extent inspired by the proof of Theorem 7.2-3 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] (itself adapted from [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF]), where only the static case is considered. This is why some parts of the proof are reminiscent of those in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]; otherwise, considering the time-dependence and requires extra care. For sake of clarity, we break the proof into three parts, numbered (i)-(iii).

(i)There exist subsequences, still denoted (ζ ε K ) ε>0 and (ϑ ε K ) ε>0 , and there exist ζ ∈ L ∞ (0, T ; V K (ω)) and ϑ ∈ L ∞ (0, T ; W (ω)) such that the following convergence process holds:

ζ ε K * ζ in L ∞ (0, T ; V K (ω)), ζε K * ζ in L ∞ (0, T ; L 2 (ω)), ζε K * ζ in L ∞ (0, T ; V * K (ω)), ϑ ε K * ϑ in L ∞ (0, T ; L 2 (ω)), ∂ α ϑ ε K ∂ α ϑ in L 2 (0, T ; L 2 (ω)), θε K * θ in L ∞ (0, T ; W * (ω)). ( 31 
)
By virtue of the results contained in [START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF] and Proposition 6.2 of [START_REF] Engel | A short course on operator semigroups[END_REF], we can specialise η = ζε K (t) and ξ = ϑ ε K (t) in the variational equations ( 27) and ( 28) of Problem P ε K (ω) at a certain time instant t ∈ (0, T ).

After such a specialisation, we sum equations ( 27) and ( 28) of Problem P ε K (ω), getting:

2ρε 3 (H 1 (ω)) * ζε K,α (t), a αβ ζε K,β (t) √ a (H 1 (ω)) * + 2ρε 3 (H 2 (ω)) * ζε K,3 (t), ζε K,3 (t) √ a H 2 (ω) + ε ω a αβστ γ στ (ζ ε K (t))γ αβ ( ζε K (t)) √ a dy + ε 3 3 ω a αβστ ρ στ (ζ ε K (t))ρ αβ ( ζε K (t)) √ a dy + 2ε 3 K + A 2 (3λ + 2µ) 2 λ + 2µ W * (ω) θε K (t), ϑ ε K (t) √ a W (ω) + 2Sε 3 ω ∂ α ϑ ε K (t)a αβ ∂ β ϑ ε K (t) √ a dy = ω p i,ε (t) ζε K,i (t) √ a dy + ω q ε (t)ϑ ε K (t) √ a dy. (32) 
Carrying an integration in the interval (0, t), dividing (32) by ε 3 , and resorting to the uniform positivedefiniteness of the fourth order two-dimensional elasticity tensor, Korn's inequality on general surface (Theorem 4), Hölder's inequality and Young's inequality [START_REF] Young | On Classes of Summable Functions and their Fourier Series[END_REF] gives:

ζε K (t) 2 L 2 (ω) + 1 c ζ ε K (t) 2 V K (ω) + ϑ ε K (t) 2 L 2 (ω) + α T 0 ∂ α ϑ ε K (t) 2 L 2 (ω) dt ≤ ζε K (t) 2 L 2 (ω) + α,β 1 ε γ αβ (ζ ε K (t)) 2 L 2 (ω) + α,β ρ αβ (ζ ε K (t)) 2 L 2 (ω) + ϑ ε K (t) 2 L 2 (ω) + α T 0 ∂ α ϑ ε K (t) 2 L 2 (ω) dt ≤ C ζ 0 2 V F (ω) + ζ 1 2 L 2 (ω) + ϑ 0 2 W (ω) + T 0 ζε K (t) L 2 (ω) dt + T 0 ϑ ε K (t) L 2 (ω) dt ,
for some C = C(p i , q) > 0 and some c = c(ω, γ 0 , θ) > 0. Hence, by Gronwall's inequality, we can conclude that

(ζ ε K ) ε>0 is bounded in L ∞ (0, T ; V K (ω)), ( ζε 
K ) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), ( ζε 
K ) ε>0 is bounded in L ∞ (0, T ; V * K (ω)), 1 ε γαβ (ζ ε K ) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), (ϑ ε K ) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), (∂ α ϑ ε K ) ε>0 is bounded in L 2 (0, T ; L 2 (ω)), ( θε 
K ) ε>0 is bounded in L ∞ (0, T ; W * (ω)), (33) 
and the conclusion is thus reached by the Banach-Alaoglu-Bourbaki theorem (cf., e.g., Theorem 3.6 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]).

(ii) The found weak-star pair (ζ, ϑ) is the unique solution of Problem P F (ω). Let us test the variational equations ( 27) at η ∈ V F (ω), and at ψ ∈ D(0, T ), and divide these equations by ε 3 . We obtain:

2ρ T 0 (H 1 (ω)) * ( ζε K,α (t), a αβ η β √ a H 1 (ω) ψ(t) dt + 2ρ T 0 (H 2 (ω)) * ζε K,3 (t), η 3 √ a H 2 (ω) ψ(t) dt + 1 ε 2 T 0 ω a αβστ γ στ (ζ ε K (t))γ αβ (η) √ a dyψ(t) dt + 1 3 T 0 ω a αβστ ρ στ (ζ ε K (t))ρ αβ (η) √ a dyψ(t) dt - 4 ε 2 Aµ 3λ + 2µ λ + 2µ T 0 ω ϑ ε K (t)a αβ γ αβ (η) √ a dyψ(t) dt = T 0 ω p i (t)η i √ a dyψ(t) dt.
By virtue of the convergence process [START_REF] Piersanti | On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell lying subject to an obstacle[END_REF], letting ε → 0 in the equations above gives:

2ρ d 2 dt 2 ω (ζ α (t)a αβ η β + ζ 3 (t)η 3 ) √ a dy + 1 3 ω a αβστ ρ στ (ζ(t))ρ αβ (η) √ a dy = ω p i (t)η i √ a dy,
for all η = (η i ) ∈ V F (ω) in the sense of distributions in (0, T ). Let us test the variational equations (28) at ξ ∈ W (ω), and at ψ ∈ D(0, T ), and divide these equations by ε 3 . We obtain:

2 K + A 2 (3λ + 2µ) 2 λ + 2µ T 0 W * (ω) θε K (t), ξ √ a W (ω) ψ(t) dt + 2S T 0 ω ∂ α ϑ ε K (t)a αβ ∂ β ξ √ a dyψ(t) dt + 4A ε µ 3λ + 2µ λ + 2µ T 0 ω γ αβ ( ζε K (t))a αβ ξ √ a dyψ(t) dt = T 0 ω q(t)ξ √ a dyψ(t) dt.
By virtue of the convergence process [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF], the Duhamel-Neumann law, and the fact that ζ(t) ∈ V F (ω) for a.a. t ∈ (0, T ) (Theorem 6), letting ε → 0 in the equations above gives:

2 K + A 2 (3λ + 2µ) 2 λ + 2µ d dt ω ϑ(t)ξ √ a dy + 2S ω ∂ α ϑ(t)a αβ ∂ β ξ √ a dy = ω q(t)ξ √ a dy,
for all ξ ∈ W (ω) in the sense of distributions in (0, T ), proving the claim.

(iii)The weak-star convergences established in (i) are actually stronger, in the sense of the process (30), i.e.,

ζ ε K → ζ in L ∞ (0, T ; V K (ω)) as ε → 0, ζε K → ζ in L ∞ (0, T ; L 2 (ω)) as ε → 0, ϑ ε K → ϑ in L ∞ (0, T ; L 2 (ω)) as ε → 0.
Let us define, for a.a. t ∈ (0, T ) and for all 0

< ε ≤ ε 1 , λ(ε)(t) : = 2ρ (H 1 (ω)) * ζε K,α (t) -ζα (t), a αβ ( ζε K,β -ζβ (t)) √ a H 1 (ω) + 2ρ (H 2 (ω)) * ζε K,3 (t) -ζ3 (t), ( ζε K,3 -ζ3 (t)) √ a H 2 (ω) + 1 ε 2 ω a αβστ γ στ (ζ ε K (t) -ζ(t))γ αβ ( ζε K (t) -ζ(t)) √ a dy + 1 3 ω a αβστ ρ στ (ζ ε K (t) -ζ(t))ρ αβ ( ζε K (t) -ζ(t)) √ a dy + 2 K + A 2 (3λ + 2µ) 2 λ + 2µ ω (ϑ ε K (t) -ϑ(t))( θε K (t) -θ(t)) √ a dy + 2S ω ∂ α (ϑ ε K (t) -ϑ(t))a αβ ∂ β (ϑ ε K (t) -ϑ(t)) √ a dy.
By virtue of equations ( 27) and ( 28) of Problem P ε K (ω) and the fact that ζ(t) and ζ(t) belong to V F (ω) for a.a. t ∈ (0, T ), we get that:

λ(ε)(t) = ω p i (t) ζε K,i (t) √ a dy + ω q(t)ϑ ε K (t) √ a dy -2ρ (H 1 (ω)) * ζε K,α (t), a αβ ζβ (t)) √ a H 1 (ω) -2ρ (H 1 (ω)) * ζα (t), a αβ ζε K,β (t) √ a H 1 (ω) -4ρ ω ζ3 (t) ζε K,3 (t) √ a dy + 2ρ ω ζ3 (t) ζ3 (t) √ a dy + 2ρ (H 1 (ω)) * ζα (t), a αβ ζβ (t) √ a H 1 (ω) - 2 3 ω a αβστ ρ στ (ζ ε K (t))ρ αβ ( ζ(t)) √ a dy + 1 3 ω a αβστ ρ στ (ζ(t))ρ αβ ( ζ(t)) √ a dy -2 K + A 2 (3λ + 2µ) 2 λ + 2µ ω θε K (t)ϑ(t) √ a dy -2 K + A 2 (3λ + 2µ) 2 λ + 2µ ω ϑ ε K (t) θ(t) √ a dy + 2 K + A 2 (3λ + 2µ) 2 λ + 2µ ω θ(t)ϑ(t) √ a dy -4S ω ∂ α ϑ ε K (t)a αβ ∂ β ϑ(t) √ a dy + 2S ω ∂ α ϑ(t)a αβ ∂ β ϑ(t) √ a dy.
On the one hand, letting ε → 0 gives

lim ε→0 t 0 λ(ε)(τ ) dτ = 0, (34) 
as the limit satisfies the equations ( 9) and ( 10) of Problem P F (ω) for a.a. t ∈ (0, T ). On the other hand, by virtue of the uniform positive-definiteness of the fourth order two-dimensional elasticity tensor (a αβστ ), Korn's inequality on general surfaces (Theorem 4), the uniform positive-definiteness of the matrix (a αβ ), and the initial conditions, we obtain that there exists a constant C > 0 independent of ε for which:

1 C t 0 λ(ε)(τ ) dτ ≥ ζε K -ζ(t) 2 L 2 (ω) + ζ ε K -ζ(t) 2 V K (ω) + ϑ ε K (t) -ϑ(t) 2 L 2 (ω) + α ∂ α ϑ ε K (t) -∂ α ϑ(t) 2 L 2 (ω) , (35) 
for a.a. t ∈ (0, T ). Putting together [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF] and [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF], the conclusion immediately follows and the proof is complete.

8 Justification of Koiter's model for thermoelastic elliptic membranes

The last part of the paper is devoted to the justification of Koiter's model in the case where the linearly elastic shells under consideration is a linearly elastic elliptic membrane shell (from now on simply elliptic membrane).

In section 3, we considered a variational problem for "general" linearly elastic shells. From now on, we will restrict ourselves to a specific class of shells, according to the following definition (proposed in [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF]; see also [START_REF] Ciarlet | Mathematical Elasticity[END_REF]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in section 3. Such a shell is said to be a linearly elastic elliptic membrane shell if the following two additional assumptions are satisfied: first, γ 0 = γ, i.e., the homogeneous boundary condition of place is imposed over the entire lateral face γ × [-ε, ε] of the shell, and second, its middle surface θ(ω) is elliptic, in the sense of section 2.

The following result is of paramount importance when studying elliptic membrane shells.

Theorem 10 Let ω be a domain in R 2 and let an immersion θ ∈ C 3 (ω; E 3 ) be given such that the surface θ(ω) is elliptic. Define the space

V M (ω) := H 1 0 (ω) × H 1 0 (ω) × L 2 (ω).
Then there exists a constant c 0 such that

α η α 2 H 1 (ω) + η 3 2 L 2 (ω) 1/2 ≤ c 0 α,β γ αβ (η) 2 L 2 (ω) 1/2 for all η = (η i ) ∈ V M (ω).
The above inequality, which is due to [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF] and [START_REF] Ciarlet | An existence and uniqueness theorem for the two-dimensional linear membrane shell equations[END_REF] (see also Theorem 2.7-3 of [10]), constitutes an example of a Korn's inequality on a surface, in the sense that it provides an estimate of an appropriate norm of a displacement field defined on a surface in terms of an appropriate norm of a specific "measure of strain" (here, the linearised change of metric tensor) corresponding to the displacement field considered.

In the recent paper [START_REF] Cao-Rial | Asymptotic analysis of elliptic membrane shells in thermoelastodynamics[END_REF] the authors performed a formal asymptotic analysis of the model, the point of departure of which was Problem P(Ω ε ). In order to conduct the asymptotic analyses in [START_REF] Cao-Rial | Asymptotic analysis of elliptic membrane shells in thermoelastodynamics[END_REF], the authors made the following assumptions on the data: there exist functions

f i ∈ H 1 (0, T ; L 2 (Ω)), h i ∈ H 1 (0, T ; L 2 (Γ + ∪ Γ -)), Q ∈ L ∞ (0, T ; L 2 (Ω))
independent on ε such that the following assumptions on the data hold:

f i,ε (t)(x ε ) = f i (t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Ω, h i,ε (t)(x ε ) = εh i (t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Γ + ∪ Γ -, Q ε (t)(x ε ) = Q(t)(x) at a.a. t ∈ (0, T ) and a.a. x ∈ Ω. (36) 
Finally, we assume that there exist positive constants ρ, A, K, S, λ and µ such that

ρ ε (x ε ) = ρ at a.a. x ∈ Ω, A ε (x ε ) = A at a.a. x ∈ Ω, K ε (x ε ) = K at a.a. x ∈ Ω, S ε (x ε ) = S at a.a. x ∈ Ω, λ ε = λ, and µ ε = µ. (37) 
The following convergence result was obtained (see Theorem 5 of [START_REF] Cao-Rial | Asymptotic analysis of elliptic membrane shells in thermoelastodynamics[END_REF]).

Theorem 11 Assume that θ ∈ C 3 (ω; E 3 ). Consider a family of elliptic membranes with thickness 2ε approaching zero and all sharing the same elliptic middle surface θ(ω). For all 0 < ε ≤ ε 0 let the pair (u(ε), Θ(ε)) be the solution of the associated three-dimensional scaled Problem P(ε; Ω). Then, there exist functions Θ, u α ∈ H

1 (Ω) satisfying Θ = 0 on γ × [-1, 1] and a function u 3 ∈ L 2 (Ω) such that u α (ε) → u α in L ∞ (0, T ; H 1 (Ω)), u 3 (ε) → u 3 in L ∞ (0, T ; L 2 (Ω)), Θ(ε) → Θ in L ∞ (0, T ; L 2 (Ω)).
Besides, the functions u i and ϑ are independent of the transverse variable x 3 , and the pair (u, Θ) is the unique solution of the two-dimensional limit problem P M (ω):

Problem P M (ω) Find a vector field ζ = (ζ i ) : (0, T ) → V M (ω) := H 1 0 (ω) × H 1 0 (ω) × L 2 (ω) and a function ϑ : (0, T ) → H 1 0 (ω) such that ζ ∈ L ∞ (0, T ; V M (ω)), ζ ∈ L ∞ (0, T ; L 2 (ω)), ζ ∈ L ∞ (0, T ; V * M (ω)), ϑ ∈ L ∞ (0, T ; H 1 0 (ω)), θ ∈ L ∞ (0, T ; H -1 (ω)),
that satisfies the following variational equations

2ρ d 2 dt 2 ω (ζ α (t)a αβ η β + ζ 3 η 3 ) √ a dy + ω a αβστ γ στ (ζ(t))γ αβ (η) √ a dy -4Aµ 3λ + 2µ λ + 2µ ω ϑ(t)γ αβ (η)a αβ √ a dy = ω p i (t)η i √ a dy, for all η = (η i ) ∈ V M (ω), in the sense of distributions in (0, T ), (38) 2 
K + A 2 (3λ + 2µ) 2 λ + 2µ d dt ω ϑ(t)ξ √ a dy + 2S ω ∂ α ϑ(t)a αβ ∂ β ξ √ a dy + 4Aµ 3λ + 2µ λ + 2µ d dt ω ξγ αβ (ζ(t))a αβ √ a dy = ω q(t)ξ √ a dy,
for all ξ ∈ H 1 0 (ω), in the sense of distributions in (0, T ), [START_REF] Young | On Classes of Summable Functions and their Fourier Series[END_REF] and that satisfy the initial conditions

     ζ(0) = ζ 0 , ζ(0) = ζ 1 , Θ(0) = ϑ 0 , (40) 
for a sufficiently smooth initial data (ζ 0 , ζ 1 , ϑ 0 ).

Clearly, by semi-groups theory (cf., e.g., [START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF]), it results that ζ ∈ L ∞ (0, T ; V M (ω)).

The purpose of the next theorem is to justify Koiter's model by means of a rigorous asymptotic analysis as the thickness of the shell approaches zero in the case where the shell under consideration is an elliptic membrane. This constitutes the fourth new result in this paper.

Theorem 12 Let ω be a domain in R 2 and let θ ∈ C 3 (ω; E 3 ) be an immersion. Consider a family of elliptic membranes with thickness 2ε approaching zero and with each having the same middle surface θ(ω).

Finally, assume that there exist functions f i ∈ H 1 (0, T ; L 2 (Ω)), h i ∈ H 1 (0, T ; L 2 (Γ + ∪ Γ -)) and Q ∈ L ∞ (0, T ; L 2 (Ω)) independent of ε such that the assumptions (36) hold.

For each ε > 0, let the pair (ζ ε K , ϑ ε K ) denote the solution of Problem P ε K (ω). Then the following convergence holds:

ζ ε K → ζ in L 2 (0, T ; V K (ω)) as ε → 0, ζε K → ζ in L 2 (0, T ; L 2 (ω)) as ε → 0, ϑ ε K → ϑ in L 2 (0, T ; L 2 (ω)) as ε → 0, ( 41 
)
where the pair (ζ, ϑ) denotes the unique solution of Problem P M (ω).

Proof The outline of the proof is to a large extent inspired by the proof of Theorem 7.2-3 in [START_REF] Ciarlet | Mathematical Elasticity[END_REF] (itself adapted from [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF]), where only the static case is considered, and Theorem 9. This is why some parts of the proof are reminiscent of those in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]; otherwise, considering the time dependence requires substantial extra care. For sake of clarity, we break the proof into three parts, numbered (i)-(iii).

(i)There exist subsequences, still denoted (ζ ε K ) ε>0 and (ϑ ε K ) ε>0 , and there exist ζ ∈ L ∞ (0, T ; V M (ω)) and ϑ ∈ L ∞ (0, T ; H 1 0 (ω)) such that the following convergence process holds:

ζ ε K * ζ in L ∞ (0, T ; V K (ω)), ζε K * ζ in L ∞ (0, T ; L 2 (ω)), ζε K * ζ in L ∞ (0, T ; V * K (ω)), ϑ ε K * ϑ in L ∞ (0, T ; L 2 (ω)), ∂ α ϑ ε K ∂ α ϑ in L 2 (0, T ; L 2 (ω)), θε K * θ in L ∞ (0, T ; H -1 (ω)). ( 42 
)
By virtue of the results contained in [START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF] and Proposition 6.2 of [START_REF] Engel | A short course on operator semigroups[END_REF], we can specialise η = ζε K (t) and ξ = ϑ ε K (t) in the variational equations ( 27) and ( 28) of Problem P ε K (ω) at a certain time instant t ∈ (0, T ). After specialising in this fashion, we sum equations ( 27) and [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF] 

) 43 
Carrying an integration in the interval (0, t), dividing by ε in (43), and resorting to the uniform positivedefiniteness of the fourth order two-dimensional elasticity tensor, Korn's inequality on an elliptic surface (Theorem 10) and Hölder's inequality gives:

ζε K (t) 2 L 2 (ω) + 1 c ζ ε K (t) 2 V K (ω) + ϑ ε K (t) 2 L 2 (ω) + α T 0 ∂ α ϑ ε K (t) 2 L 2 (ω) dt ≤ ζε K (t) 2 L 2 (ω) + α,β γ αβ (ζ ε K (t)) 2 L 2 (ω) + α,β ερ αβ (ζ ε K (t)) 2 L 2 (ω) + ϑ ε K (t) 2 L 2 (ω) + α T 0 ∂ α ϑ ε K (t) 2 L 2 (ω) dt ≤ C ζ 0 2 V M (ω) + ζ 1 2 L 2 (ω) + ϑ 0 2 H 1 (ω) + T 0 ζε K (t) L 2 (ω) dt + T 0 ϑ ε K (t) L 2 (ω) dt ,
for some C = C(p i , q) > 0 and some c = c(ω, γ 0 , θ) > 0. Hence, by Gronwall's inequality, we can conclude that (ζ ε K ) ε>0 is bounded in L ∞ (0, T ; V K (ω)), ( ζε K ) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), ( ζε K ) ε>0 is bounded in L ∞ (0, T ; V * K (ω)), (ερ αβ (ζ ε K )) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), (ϑ ε K ) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), (∂ α ϑ ε K ) ε>0 is bounded in L ∞ (0, T ; L 2 (ω)), ( θε K ) ε>0 is bounded in L ∞ (0, T ; H -1 (ω)), and the conclusion is thus reached by the Banach-Alaoglu-Bourbaki theorem (cf., e.g., Theorem 3.6 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]).

(ii) The weak-star pair (ζ, ϑ) is the unique solution of Problem P M (ω). Let us test the variational equations ( 27) at η ∈ V M (ω), and at ψ ∈ D(0, T ), and divide these equations by ε. We obtain: 2ρ for all ξ ∈ H 1 0 (ω) in the sense of distributions in (0, T ). (iii)The weak-star convergences established in (i) are actually stronger, in the sense of the process (41), i.e.,

ζ ε K → ζ in L ∞ (0, T ; V K (ω)) as ε → 0, ζε K → ζ in L ∞ (0, T ; L 2 (ω)) as ε → 0, ϑ ε K → ϑ in L ∞ (0, T ; L 2 (ω)) as ε → 0.
Let us define, for a.a. t ∈ (0, T ) and for all 0 < ε ≤ ε 1 , λ(ε)(t) : = 2ρ On the one hand, letting ε → 0 gives lim ε→0 t 0 λ(ε)(τ ) dτ = 0, (44) as the limit satisfies the equations [START_REF] Shen | Numerical simulations for the dynamics of flexural shells[END_REF] and [START_REF] Young | On Classes of Summable Functions and their Fourier Series[END_REF] of Problem P M (ω) for a.a. t ∈ (0, T ).

On the other hand, by virtue of the uniform positive-definiteness of the fourth order two-dimensional elasticity tensor (a αβστ ), Korn's inequality for elliptic surfaces (Theorem 10), as well as the uniform positivedefiniteness of the matrix (a αβ ), and the initial conditions, we obtain that there exists a constant C > 0 independent of ε for which:

1 C t 0 λ(ε)(τ ) dτ ≥ ζε K -ζ(t) 2 L 2 (ω) + ζ ε K -ζ(t) 2 V K (ω) + ϑ ε K (t) -ϑ(t) 2 L 2 (ω) + α ∂ α ϑ ε K (t) -∂ α ϑ(t) 2 L 2 (ω) , (45) 
for a.a. t ∈ (0, T ). Putting together (44) and (45), the conclusion immediately follows and the proof is complete.

Theorem 3

 3 Let T > 0 and suppose that the function y : [0, T ] → R is absolutely continuous and such that dy dt (t) ≤ a(t)y(t) + b(t), for a.a. t ∈ (0, T ), where a, b ∈ L 1 (0, T ) and a, b ≥ 0 almost everywhere in (0, T ). Then, it results y(t) ≤ y(0) + t 0 b(s) ds e t 0 a(s) ds , for all t ∈ [0, T ].

  at a.a. t ∈ (0, T ) and a.a. x ∈ Ω,

  of Problem P ε K (ω), getting: 2ρε H -1 (ω) ζε K,α (t), a αβ ζε K,β (t)

				√ a H 1 0 (ω) + 2ρε H -2 (ω)	ζε K,3 (t), ζε K,3 (t) √ a H 2 0 (ω)
	+ ε	ω	a αβστ γ στ (ζ ε K (t))γ αβ ( ζε K (t))	√ a dy +	ε 3 3 ω	a αβστ ρ στ (ζ ε K (t))ρ αβ ( ζε K (t))	√ a dy
	+ 2ε K + A 2 (3λ + 2µ) 2 λ + 2µ	H -1 (ω)	θε K (t), ϑ ε K (t) √ a H 1 0 (ω) + 2Sε	ω	∂ α ϑ ε K (t)a αβ ∂ β ϑ ε K (t) √ a dy	(
	=	p i,ε (t) ζε K,i (t) √ a dy +	q ε (t)ϑ ε K (t) √ a dy.
	ω			ω			

  = (η i ) ∈ V M (ω) in the sense of distributions in (0, T ). Let us test the variational equations (28) at ξ ∈ H 1 0 (ω), and at ψ ∈ D(0, T ), and divide these equations by ε. We obtain By virtue of the convergence process (42) and the fact that ζ(t) ∈ V M (ω) for a.a. t ∈ (0, T ) (cf., e.g.,[START_REF] Francfort | Homogenization and linear thermoelasticity[END_REF]), letting ε → 0 in the equations above gives:

							2 K +	A 2 (3λ + 2µ) 2 λ + 2µ	d dt ω	ϑ(t)ξ	√ a dy + 2S	ω	∂ α ϑ(t)a αβ ∂ β ξ	√ a dy
								+ 4Aµ		3λ + 2µ λ + 2µ	d dt ω	γ αβ (ζ(t))a αβ ξ	√ a dy =	ω	q(t)ξ	√ a dy,
	0	T	H -1 (ω)	ζε K,α (t), a αβ η β	√ a H 1 0 (ω) ψ(t) dt +	0	T	ω	ζε K,3 (t)η 3	√ a dyψ(t) dt
	+		0	T	ω	a αβστ γ στ (ζ ε K (t))γ αβ (η) √ a dyψ(t) dt +	ε 2 3	0	T	ω	a αβστ ρ στ (ζ ε K (t))ρ αβ (η) √ a dyψ(t) dt
	-4Aµ	3λ + 2µ λ + 2µ			0	T	ω	ϑ ε K (t)a αβ γ αβ (η)	√ a dyψ(t) dt =	0	T	ω	p i (t)η i	√ a dyψ(t) dt.
	By virtue of the convergence process (31), letting ε → 0 in the equations above gives:
						2ρ	d 2 dt 2	ω	(ζ α (t)a αβ η β + ζ 3 (t)η 3 ) √ a dy +	ω	a αβστ γ στ (ζ(t))γ αβ (η) √ a dy
								-4Aµ		3λ + 2µ λ + 2µ	ω	ϑ(t)a αβ γ αβ (η) √ a dy =	ω	p i (t)η i	√ a dy,
	for all η 2 K +	A 2 (3λ + 2µ) 2 λ + 2µ			0	T	H -1 (ω)	θε K (t), ξ	√ a H 1 0 (ω) ψ(t) dt + 2S	0	T	ω	∂ α ϑ ε K (t)a αβ ∂ β ξ	√ a dyψ(t) dt
	+ 4Aµ	3λ + 2µ λ + 2µ				

T 0 d dt ω γ αβ (ζ ε K (t))a αβ ξ √ a dyψ(t) dt = T 0 ω q ε (t)ξ √ a dyψ(t) dt.

  H -1 (ω) ζε K,α (t) -ζα (t), a αβ ( ζε K,β -ζβ (t))By virtue of equations (27) and (28) of Problem P ε K (ω) and the fact that ζ(t) and ζ(t) belong to V M (ω) for a.a. t ∈ (0, T ), we get that λ(ε)(t) =

								√ a H 1 0 (ω) + 2ρ	ω	( ζε K,3 (t) -ζ3 (t))( ζε K,3 -ζ3 (t))	√ a dy
	+						√ a dy +	ε 2 3 √ a dy
	+ 2 K +	A 2 (3λ + 2µ) 2 λ + 2µ	√ a dy
	+ 2S					
		p i (t) ζε K,i (t) √ a dy +	q(t)ϑ ε K (t)	√ a dy
	ω -2ρ H -1 (ω)	ω K,α (t), a αβ ζβ (t)) ζε	√ a H 1 0 (ω) -2ρ H -1 (ω) ζα (t), a αβ ζε K,β (t)	√ a H 1 0 (ω)
	-4ρ	ω	ζ3 (t) ζε K,3 (t) √ a dy + 2ρ H -1 (ω) ζα (t), a αβ ζβ (t) √ a H 1 0 (ω) + 2ρ	ω	ζ3 (t) ζ3 (t) √ a dy
	-2						√	a dy
	-	2ε 2 3 ω	a αβστ ρ στ (ζ ε K (t))ρ αβ ( ζ(t))	√ a dy +	ε 2 3 ω	a αβστ ρ στ (ζ(t))ρ αβ ( ζ(t)) √ a dy
	-2 K +	A 2 (3λ + 2µ) 2 λ + 2µ	ω	θε K (t)ϑ(t) √ a dy -2 K +	A 2 (3λ + 2µ) 2 λ + 2µ	ω	ϑ ε K (t) θ(t) √ a dy
	+ 2 K +	A 2 (3λ + 2µ) 2 λ + 2µ	ω	θ(t)ϑ(t)	√ a dy -4S	ω	∂ α ϑ ε K (t)a αβ ∂ β ϑ(t) √ a dy + 2S

ω a αβστ γ στ (ζ ε K (t) -ζ(t))γ αβ ( ζε K (t) -ζ(t)) ω a αβστ γ στ (ζ ε K (t) -ζ(t))γ αβ ( ζε K (t) -ζ(t)) ω (ϑ ε K (t) -ϑ(t))( θε K (t) -θ(t)) ω ∂ α (ϑ ε K (t) -ϑ(t))a αβ ∂ β (ϑ ε K (t) -ϑ(t)) √ a dy. ω a αβστ γ στ (ζ ε K (t))γ αβ ( ζ(t)) √ a dy + ω a αβστ γ στ (ζ(t))γ αβ ( ζ(t)) ω ∂ α ϑ(t)a αβ ∂ β ϑ(t) √ a dy.
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Conclusions

In this paper we first conducted -after making a suitable assumption on the data -a rigorous asymptotic analysis on a time-dependent thermoelastic three-dimensional flexural shell model as the shell thickness approaches zero, and we recovered a time-dependent thermoelastic two-dimensional limit model, where the mechanical and thermal equations do not exhibit any couplings.

Secondly, we proposed and justified a suitable time-dependent thermoelastic model of Koiter's type for flexural shells. We showed that under the same assumption on the data made beforehand, the proposed model of Koiter's type converges to the same two-dimensional limit model recovered as outcome of the asymptotic analysis conducted on the original three-dimensional mode in the case where the shell under consideration is a flexural shell.

Finally, we showed that our proposed time-dependent thermoelastic Koiter's model converges to the time-dependent thermoelastic two-dimensional limit model for elliptic membrane shells recovered in [START_REF] Cao-Rial | Asymptotic analysis of elliptic membrane shells in thermoelastodynamics[END_REF] provided that the given data satisfies the same assumptions made in the aforementioned bibliographical reference.