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Using direct numerical simulations, we show that swirling electrovortex flows significantly
enhance the mixing of the bottom layer alloy in liquid metal batteries during discharge.
By studying the flow in various parameter regimes, we identify and explain a novel
scaling law for the intensity of these swirling electrovortex flows. Using this scaling law
and the model described in Herreman et al. (2020), we estimate the minimal intensity of
the external magnetic field that is needed for the swirling electrovortex to enhance the
mixing of the alloys in the bottom electrode of arbitrary liquid metal batteries.

1. Introduction

Liquid metal batteries (LMBs) are high temperature electrochemical cells composed of
three superposed layers of electrically conducting fluids of different densities (see sketch
of Figure 1(a)). The top layer is composed of a light metal (here Li), the middle layer is
composed of a molten salt of higher density, and the bottom layer is composed of a heavy
molten metal (here Pb). During discharge, the light metal ions from the top layer (here
Li+) enter the molten salt. These ions then migrate towards the bottom of the salt layer
and eventually enter the metal layer to form an alloy (here a Pb (Li) alloy). Contrary to
what is assumed in most hydrodynamical studies on LMBs, the composition of the alloy
layer is not constant in time. In particular when the discharge is rapid, there is a local
accumulation of light elements near the alloy-salt interface (see sketch of Figure 1(b)) as
diffusion of light elements into the alloy is slow: diffusivities of order D ≈ 10−8m2 s−1

are considered to be realistic. The presence of an inhomogeneous alloy layer concentrated
in light elements is detrimental to the operation of the battery: it lowers the delivered
electrical potential and it may prematurely trigger the formation of solid intermetallics
near the alloy-salt interface (Ning et al. 2015). In line with previous studies (Kelley &
Sadoway 2014; Ashour & Kelley 2018; Ashour et al. 2018; Weber et al. 2018; Personnettaz
et al. 2019; Weber et al. 2020; Herreman et al. 2020), we investigate in this paper how
swirling electrovortex flows occurring in the alloy can enhance the mixing therein and
hence prevent the formation of the inhomogeneous alloy layer at the alloy-salt interface.

As discussed in Weber et al. (2020), the idea of using fluid motions to enhance mixing
in the alloy layer of LMBs may be as old as LMBs themselves, but this idea has
remained unexplored up until recently. This idea started to gain momentum in Kelley
& Sadoway (2014) where a fluid flow is generated in a liquid Pb(Bi) electrode by using
the electrovortex mechanism and thermal convection. The magnitude of the velocity thus
generated is measured in this reference by ultrasound techniques. The measured eddy
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turnover time then serve as a first order estimate of the time needed to mix the alloy in
the electrode. This experimental set-up has been studied numerically in various papers.
In Ashour et al. (2018) the electrovortex flow and the thermal convection are investigated
separately, and it is found therein that in some circumstances thermal convection can be
slightly more intense than the electrovortex flow. Both types of forcing are considered
simultaneously in Weber et al. (2018). This paper also studies the effects of supplying the
current with a wire that is perpendicular to the axis of the battery. The conclusion from
these studies is that significant flows can be driven by thermal convection and by the
electrovortex mechanism in liquid metal alloys. Moreover, in agreement with previous
studies on the electrovortex mechanism (Millere et al. 1980; Bojarevics et al. 1989;
Bojarevičs & Shcherbinin 1983; Davidson 1992; Kharicha et al. 2015; Ivochkin et al. 2015;
Vinogradov et al. 2018; Teplyakov et al. 2018), these papers show that adding an external
vertical magnetic field creates an electrovortex flow that rotates and is significantly more
intense (this configuration is henceforth called swirling electrovortex).

The first study that seeks to model mixing of the alloy layer in LMBs using the above
mechanisms is due to Ashour & Kelley (2018). A prescribed stationary fluid flow, similar
to a non-swirling electrovortex flow, and an advection-diffusion equation are used to
model the alloy composition. A more precise model for the alloy motion and composition
is introduced by Personnettaz et al. (2019). This study is also the first to highlight the role
of solutal buoyancy in the alloy motion. This effect was systematically neglected before.
During the charging cycle, the alloy near the interface with the salt becomes locally
heavier than its surounding and rapidly plunges downwards giving rise to an intense
solutal convection flow. This phenomenon is so strong that it is even active in very small
LMBs. During a rapid discharge, solutal buoyancy has a strong stabilizing effect. The
thin layer of light (here Li-enriched) alloy becomes lighter than the bulk and literally
floats at the top of the alloy; see Figure 1(b). The density difference can be as large as a
few thousand kg m−3 (Herreman et al. 2020). This is a very large number compared to
what thermal buoyancy could create. In conclusion, solutal buoyancy radically changes
the behavior of the battery during charge and discharge. Solutal convection naturally
mixes the alloy during charge. But during discharge, solutal buoyancy strongly opposes
any vertical motion near the top of the alloy and thereby blocks dynamic mixing; hence,
a sufficiently strong source of motion has to be found if one wants to enhance mixing.

Creating efficient motion in the alloy using thermal convection is not realistic. Previous
studies on thermal convection in LMBs (Shen & Zikanov 2016; Köllner et al. 2017;
Personnettaz et al. 2018) suggest that the bottom alloy layer is in stable thermal
stratification and that it is only weakly entrained by viscosity. Shen & Zikanov (2016);
Personnettaz et al. (2018) both report velocities in the alloy that are below 1mm s−1 in
a centimeter-scale device. This is likely not enough to both oppose solutal buoyancy and
enhance mixing during discharge. On the other hand the electrovortex mechanism is an
interesting and fairly natural option to drive a fluid flow in the alloy.

In our first study (Herreman et al. 2020) we have investigated the mixing capabilities
of non-swirling electrovortex flows in LMBs. Referring to Figure 1(b), the Lorentz force
drives a predominantly poloidal electrovortex flow with uθ ≈ 0 when there is no external
magnetic field (Bz = 0). We have shown that this flow would be strong enough to
influence the mixing of the alloy if solutal buoyancy were ignored. But the conclusion is
entirely different when solutal buoyancy is accounted for. During charge, the electrovortex
flow is overpowered by solutal convection. During discharge, the electrovortex flow is
present in the bulk of the alloy, but it is unable to penetrate the layer of light alloy that
forms at the alloy-salt interface and is therefore unable to enhance the mixing. Using basic
physical arguments (energy balances), we have derived scaling laws for the intensity of
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(a) (b)

Figure 1. (a) We study the flow and composition of the bottom alloy layer of a discharging
LMB. This layer is submitted to a uniform vertical magnetic field Bz and it is electrically
connected from below to a thinner solid copper wire. The streamlines of the current density j
show how the current is deviated towards the wire. (b) The Lorentz-force is mainly azimuthal
−jrBzeθ and always localized near the electrical contact. It generates a swirling electrovortex
flow that pumps the material downwards in a spiral motion prior to ejecting it radially. The
fluid motion is similar to that induced by a rotating impeller. We investigate how the swirling
electrovortex flow enhances the mixing of the alloy that floats at the top of the cell and has a
high lithium molar fraction.

the flow induced by solutal convection and for the mixing time during charge. For the
more problematic case of discharge, we have estimated the magnitude of the velocity that
is needed in a general bulk flow to overcome the solutal buoyancy effects. This model
identifies two characteristic velocities Up and Um > Up (see (1.1)):

Up =

(
2|J |MLi β g H

neF

)1/3

, Um =

(
4|J |MLi βg

neF

)2/5
H3/5

(πD)1/5
, (1.1)

which only depend on the design parameters of the cell (height of the alloy layer H,
current density J), the properties of the charge carrier (for Li, the charge number ne =
1, the molar mass MLi), the alloy properties (solutal expansion coefficient β, binary
diffusion coefficient D) and physical constants (g gravity, F Faraday constant). A bulk
flow with a velocity magnitude U such that U � Up is too weak to penetrate the
stratified buoyant layer forming at the interface with the electrolyte. This type of flow
cannot influence mixing. When U � Um, the bulk flow is on the contrary intense enough
to drag lightweight fluid parcels forming at the alloy-salt interface all around the cell
and through the heavier bulk fluid, thereby making efficient mixing possible. In the
intermediate range, i.e., U ∈ [Up, Um], the flow can have a moderate effect on mixing,
possibly only for a finite amount of time. The relevance of these velocity scales in the
mixing problem has been supported by numerous numerical simulations in Herreman
et al. (2020). Using this model together with a scaling law for the typical intensity U
of non-swirling electrovortex flows, we have verified that non-swirling electrovortex flows
that are such that U � Up cannot enhance mixing during discharge.

In this article, we continue this investigation and focus our attention on swirling
electrovortex flows. By allowing a background magnetic field Bzez along the axis (green
lines in Figure 1(a)), the Lorentz force has an azimuthal component that is localized
near the rim of the electrical contact between the alloy and the copper wire. This
force distribution is reminiscent of that produced by a rotating impeller in a blender
as illustrated in Figure 1(b). It has already been shown in Weber et al. (2020) that
swirling electrovortex flows can increase mixing in the alloy layer during discharge, despite
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the stabilizing effects of solutal buoyancy. We confirm this here and also offer some
physical arguments identifying what is actually needed to enhance mixing with swirling
electrovortex flows. The article is structured as follows. We introduce the problem and
the model investigated in the paper in §2. We also briefly describe in this section the
numerical technique that we use. Then we numerically demonstrate in §3 that enhanced
mixing can be achieved by using the swirling electrovortex mechanism. Some of the three-
dimensional simulations are extremely challenging as the Reynolds (and Péclet number)
can reach very high values and transition to turbulence occurs. In §4, we use numerical
simulations and theoretical arguments to derive a novel scaling law for the intensity of
the electrovortex. Using this scaling law we then derive a theoretical estimate for the
minimal external magnetic field Bz that is needed to enhance mixing in LMB alloys
using swirling electrovortex flows. We finally combine this scaling law with the criterion
for efficient mixing, U � Um, derived in Herreman et al. (2020) to find the minimal
external magnetic field strength that yields enhanced mixing. Our numerical simulations
show that this criterion is accurate.

2. Model

We consider a Li||Pb liquid metal battery in discharge mode. We use the same model
as in Herreman et al. (2020) to describe the flow and the composition of the Pb(Li) alloy
in the positive electrode of the battery. We denote R the radius of the cylindrical cell and
H the height of the alloy layer. We neglect the slow time variation of H during discharge.
In the fluid domain we solve the Boussinesq model

ρ∗(∂tu + (u·∇)u) = −∇p− (ρ∗ − χ(ρLi − ρLi,∗))gez

+∇·
(
ρ∗ν

(
∇u + (∇u)T

))
+ j×b, (2.1a)

∂tb = ∇×(u×b) + (µ0σ)−1∆b, (2.1b)

∇·u = 0, ∇·b = 0, (2.1c)

∂tρLi + u·∇ρLi = D∇2ρLi. (2.1d)

Here u is the velocity, p the pressure, b the magnetic induction, j = µ−10 ∇×b the current
density, and ρLi the mass concentration of Li in the alloy. We denote g gravity and µ0

the vacuum magnetic permeability. The reference densities (ρ∗, ρLi,∗) correspond to the
eutectic alloy with the molar fraction xLi = 17%. The linear variation of the density with
respect to ρLi is obtained from an experimental result (Khairulin et al. 2016):

ρ ≈ ρ∗ − χ(ρLi − ρLi,∗) with

{
ρ∗ = 9543 kg m−3

ρLi,∗ = 65 kg m−3
χ = −dρ/dρLi = 15.1. (2.1e)

As an alternative to χ, one can use the solutal expansion coefficient β = χ/ρ∗ =
1.58×10−3 m3 kg−1. The kinematic viscosity, ν, electrical conductivity, σ, and diffusion
coefficient, D, are held fixed at their eutectic alloy values:

ν ≈ 1.44×10−7 m2 s−1, σ ≈ 7.39×105 S m−1, D = 8×10−9m2 s−1. (2.1f )

The fluid domain is connected from below to a solid copper wire of radius Rw and height
Hw. In this wire, we solve the magnetic induction equation:

∂tbw = (µ0σw)−1∆bw, ∇·bw = 0. (2.1g)

We use the conductivity of copper: σw = 5.96×107 S m−1.
The no-slip boundary condition is enforced everywhere on the velocity. This condition
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is actually an approximation at the interface between the molten salt layer and the alloy
layer, {z = H}. This boundary condition has been shown in Herreman et al. (2020) to be
good approximation for non-swirling electrovortex flows. In the case under consideration
here where the flow undergoes a swirling motion about the vertical axis, the salt layer
should be entrained in a very slow rotation but we do not expect that neglecting this effect
significantly alters the flow or the alloy composition. The electrical boundary conditions
are

(br, bθ)|z=H = (0, µ0Jr/2), (bθ, bz)|r=R = (µ0JR/2, Bz), (2.2a)

(br, bθ)|z=0 = (0, µ0JR
2/2r) ∀r ∈ [Rw, R], (2.2b)

ez×(b− bw)|z=0 = 0, ez×((j/σ)− (jw/σw))|z=0 = 0, ∀r ∈ [0, Rw], (2.2c)

(bw,θ, bw,z)|r=Rw
= (µ0JR

2/2Rw, Bz), (2.2d)

(bw,r, bw,θ)|z=−Hw
= (0, µ0JR

2r/2R2
w). (2.2e)

These boundary conditions are suitable in the low magnetic Reynolds number regime
(see discussion in last paragraph of §III.A of Herreman et al. (2019b)). Notice that it
is through these boundary conditions that we impose the external Bz, see (2.2a) and
(2.2d). There is no external magnetic field in Herreman et al. (2020). Concerning the
boundary conditions for ρLi, we consider that the side and the bottom boundaries are
impermeable to Li (i.e., the mass flux is zero there). The mass flux of Li is imposed at
the top surface (i.e., the interface with the electrolyte):

D∂rρLi|r=R = 0, D∂zρLi|z=0 = 0, D∂zρLi|z=H = −JMLi

neF
. (2.3)

In this formula MLi = 6.941×10−3 kg mol−1 is the molar mass of Lithium, ne = 1 is
the number of charges carried by Lithium ions, and F = 96485 s A mol−1 is the Faraday
constant. The mass flux of Li at the electrolyte interface is positive during discharge
(J < 0).

As initial condition, the fluid is at rest, i.e., u = 0, and ρLi = ρLi,∗. The initial condition
for the magnetic field is less important than the initial conditions on the velocity and the
molar fraction as the magnetic field almost immediately adjusts due to the high magnetic
diffusion.

We solve this problem using the massively parallel numerical code SFEMaNS, previ-
ously described in Guermond et al. (2007, 2009); Cappanera et al. (2018) and used in the
LMB context in Herreman et al. (2015, 2019a,b, 2020). All the fields are decomposed on
a Fourier basis in the azimuthal direction and finite element bases in the meridian plane.
As an example, we expand the velocity field as:

u =

M−1∑
m=0

ucm(r, z, t) cos(mθ) +

M−1∑
m=1

usm(r, z, t) sin(mθ). (2.4)

Here ucm(r, z, t) and usm(r, z, t) are time-dependent quadratic finite element functions and
m is the azimuthal wavenumber. The code is parallelized using domain decomposition
in the meridian plane and along the different Fourier modes. A noticeable advantage
of SFEMaNS is that axisymmetric simulations and three-dimensional simulations can
be performed on the same configuration. Throughout the article, we use several global
diagnostics. For the molar fraction we use

〈xLi〉S =
1

πR2

∫
S

xLi|z=H dS, 〈xLi〉V =
1

πR2H

∫
V

xLi dV. (2.5)
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Figure M mesh size in mm ∆t in s
2 1 [0.25, 0.5] 10−3

3 1 [0.25, 0.5] or [0.1, 0.2] {10→ 1}×10−4

4 1 [0.1, 0.2] 2×10−4

5 1 (axi) [0.1, 0.2] 2×10−4

5-6 128 (3D) [0.1, 0.2] {20→ 2.5} × 10−5

7 1 [0.25, 0.5] or [0.1, 0.2] {10−1 → 10−4}
8 1 [0.25, 0.5] or [0.1, 0.2] 10−2 or 4×10−3

10 1 [0.25, 0.5] {50→ 4}×10−3

11 1 (axi) [0.25, 0.5] 5×10−3

11 40 (3D) [0.25, 0.5] 5×10−3

12 128 (3D) [0.1, 0.2] {20→ 2.5} × 10−5

13 1 (axi) [0.1, 0.2] 2×10−4

13-14 128 (3D) [0.1, 0.2] {2→ 1}×10−4

Table 1. Details on the numerical simulations discussed in this article. Referring to each figure,
we provide the number of Fourier modes, M , the interval of (non-uniform) mesh-sizes of the
finite element grid in the meridian plane. The time-step ∆t is fixed but needs sometimes to be
lowered after checkpoints/restarts to maintain stability. Intervals ∆t1 → ∆t2 indicate that ∆t
was progressively decreased at various checkpoints.

The notation 〈. . .〉V indicates a volume average. For the flow, we use the root mean
square (rms) velocity and the maximal velocity in the volume

urms =
√
〈‖u2‖〉V , umax = max

x∈V
‖u‖. (2.6)

To isolate the axisymmetric part of the rms velocity, we introduce

uaxi =
√
u2tor + u2pol, utor =

√〈
(uc0,θ)

2
〉
V
, upol =

√〈
(uc0,r)

2 + (uc0,z)
2
〉
V
. (2.7)

Here the indices tor and pol refer to the toroidal (along θ) and the poloidal (along r, z)
parts of the velocity. Notice that in axisymmetric simulations urms = uaxi. To keep track
of the non-axisymmetric part of the flow in the three-dimensional simulations we also
compute

u3D =
√
u2rms − u2axi. (2.8)

We report in Table 1 important parameters that have been used in the numerical
simulations done for this paper. More precisely, we give in this table the maximal number
of Fourier modes, M , the typical meridian mesh size, and the time-step, ∆t for every
figure shown in the article.

3. Demonstrating the possibility of enhanced mixing in a small cell

In a first series of simulations, we demonstrate the feasibility of enhanced mixing
by means of the swirling electrovortex mechanism. This has already been done in
Weber et al. (2020) in a small realistic LMB set-up with a very thin alloy layer (R =
4.45 cm, H = 0.28 cm). Here we investigate the idealized cell considered in our previous
study (Herreman et al. 2020). The geometry is (H,R,Hw, Rw) = (2, 4, 4, 0.8) cm. All the
simulations are done in the discharge scenario, i.e., J < 0. Somewhat arbitrarily we also
use Bz < 0 which creates a negative swirl (predominantly uθ < 0). Simulations with
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Figure 2. Molar fraction xLi (left panel) and velocity magnitude ‖u‖ (right panel) in the
meridian section at t = 100 s with J = −5 kA m−2 and Bz = −1 mT. Streamlines of the velocity
field near the z-axis are also shown.

Bz > 0 would give a velocity field that swirls in the opposite direction (predominantly
uθ > 0) but with the same radial and vertical components ur, uz.

3.1. Axisymmetric simulations

We first present axisymmetric simulations. Three-dimensional computations are dis-
cussed later. We impose the density current J = −5 kA m−2 and vary Bz in the range
−[1, 10] mT. We show in Figure 2 the molar fraction distribution and the velocity field
obtained at t = 20 s with the lowest magnetic field Bz = −1 mT. The molar fraction is
shown in the left panel. The magnitude of the velocity field and some streamlines are
shown in the right panel of the figure. We observe in the left panel that the fluid flow
generated by the swirling electrovortex is not strong enough to prevent the formation of a
buoyant layer at the top of the electrode. In this layer the molar fraction xLi is stratified
and reaches high values at the interface with the electrolyte. The fluid flow is time-
dependent and has a strong azimuthal component as suggested by the three-dimensional
streamlines. The magnitude of the velocity is close to 4.3 cm s−1 and, as discussed in the
introduction, it is maximal at the rim of the electrical contact with the wire.

A small increase in the value of the magnetic field strength Bz significantly changes the
blending capabilities of the flow. This is demonstrated in the left panel of Figure 3, where
we display the surface averaged molar fraction 〈xLi〉S at the top interface as a function
of time (see (2.5)a). For comparison, we have added in the figure two theoretical limit
behaviors discussed in Herreman et al. (2020). The dotted line shows the time evolution
of the molar fraction that would be observed if the alloy were mixed instantaneously
throughout the bulk. The dashed line shows the time evolution of the molar fraction that
would be observed if only diffusion were acting. With the magnetic field |Bz| = 1 mT, the
time evolution of 〈xLi〉S remains close to the diffusive line, indicating poor mixing. When
the magnetic field intensity is large enough, say |Bz| > 2.5 mT, the surface averaged
molar fraction 〈xLi〉S initially follows the diffusive line, but after a short transient, it
significantly drops down and eventually follows a path parallel to the ideal scenario
where the alloy is perfectly mixed. This is a sign that mixing in the alloy has been greatly
enhanced. We show in the right panel of the figure the distribution in the meridian section
of the molar fraction xLi at t = 20 s for different values of Bz. These snapshots clearly
show that the homogeneity of the alloy improves as |Bz| increases.

We show in Figure 4 three snapshots of the molar fraction and the magnitude of the
velocity field at t = 4 s, t = 8 s, and t = 12 s with Bz = −5 mT. A movie of this sequence
for t ∈ [0, 12]s with intervals of 0.1s is provided in the supplementary material ( movie
1 (velocity ||u||) and movie 2 (molar fraction xLi)) At t = 4 s the velocity field rotates
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Figure 3. Influence of the swirling electrovortex flow on the molar fraction of Li with
J = −5 kA m−2 and Bz ∈ {−1,−1.5,−2.5,−5,−10}mT. (Left) Time evolution of 〈xLi〉S . The
influence of the electrovortex flow is clear for magnetic field intensities greater than |Bz| = 1 mT.
(Right) xLi distribution in the meridian section at t = 20 s.

Figure 4. Snapshots at t = 4 s, t = 8 s, and t = 12 s of the molar fraction xLi (left) and velocity
magnitude ‖u‖ (right) with J = −5 kA m−2 and Bz = −5 mT. The fluid is pumped downwards
prior to being radially expelled as an impeller would do. This flow is very efficient at blending
the alloy and prevents large inhomogeneities to build up near the interface with the electrolyte.
See also movie 1 and movie 2 in the supplementary material.

rapidly in the region close to the junction with the copper wire. This rotation creates
a centrifugal pressure drop near the vertical axis of the cell, which in turn pumps the
fluid downwards along a conical path (white arrows) prior to expelling it radially. This
motion is also visible on the xLi distribution on the left panels of the figure, where the
light alloy is clearly being dragged downwards from the top of the electrode into the bulk.
The sharp change of the magnitude of the velocity ‖u‖ near the axis is indicative of a
shear layer (with conical shape). This layer is unstable and a Kelvin Helmholtz instability
develops over time. Vortex rings are clearly visible at t = 8 s on both the molar fraction
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Figure 5. Comparison of three-dimensional and axisymmetric simulations for J = −5 kA m−2

and Bz = −5 mT. (a) Surface averaged molar fraction as a function of time. (b) Snapshots
of the molar fraction at similar times in x = 0 plane and z = 2 cm plane. (c) Rms velocities
as a function of time. (d) Snapshots of the flow speed at similar times in x = 0 plane and
z = 1.98 cm plane. In movie 3 of the supplementary material, one can observe a sequence of xLi

in the three-dimensional simulation at different times.

distribution xLi and the velocity magnitude ‖u‖ distribution. These vortex rings strongly
interact and cause large fluctuations in the velocity field which greatly help the mixing. In
the snapshot at t = 12 s, we observe structures reminiscent of Taylor-Proudman columns
in the bulk.

3.2. Three-dimensional simulations

We now numerically investigate how three-dimensionality affects the swirling electro-
vortex flow and its mixing properties. We focus on the parameters J = −5 kA m−2 and
Bz = −5 mT which the axisymmetric simulations show mix well the alloy. With velocities
of order U ≈ 5 cm s−1 the Reynolds number Re = UR/ν is approximately Re ≈ 14000;
as a result, transition to turbulence must occur after some transient. The low value of the
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diffusivity D = 8× 10−9 m2 s−1 is more problematic for the Péclet number Pe = UR/D
reaches values as high as Pe ≈ 2.5 × 105. This means that one must expect to see
scales as small as

√
DR/U ≈ 0.08 mm in the ρLi-distribution (scale at which diffusion

balances fluid parcel stretching). Axisymmetric simulations can resolve this scale, but
three-dimensional simulations that are fully resolved down to this scale are not possible
with the resource available to us. Hence, starting from an axisymmetric state, we only
simulate the initial transient phase of the three-dimensionalization before turbulence fully
develops. We use a fine meridian mesh that contains 86×103 points and M = 128 complex
Fourier modes (i.e., 256 real Fourier modes). At the end of the simulation the time-step
is ∆t = 2.5×10−5 s. The maximal time reached in the 3D simulations is t = 18.375 s.
After this time, the filaments in the molar fraction xLi become so thin that they can no
longer be correctly resolved and numerical instabilities occur.

In Figure 5 we compare the axisymmetric and the three-dimensional simulations. We
show in Figure 5(a) the time evolution of the surface averaged molar fraction 〈xLi〉S .
We observe that the mixing properties of the three-dimensional flow are slightly affected
by three-dimensionality. The mixing seems to be slightly less efficient in 3D, but the
3D simulation is probably too short to draw a definitive conclusion in this respect.
The snapshots of the molar fraction distribution in Figure 5(b) show that the mixing
is intense both in the axisymmetric and in the 3D simulations. In movie 3 of the
supplementary material one can see the evolution of the molar fraction xLi in the three-
dimensional simulation through time. We show in Figure 5(c) the time evolution of the
rms velocities uaxi and u3D (defined in (2.7) and (2.8)). The non-axisymmetric part of
the flow, u3D, rapidly grows at about t = 12 s and in about just 6 s reaches a signifiant
level u3D = 0.12uaxi. Notice though that the axisymmetric part of the rms velocity in
the 3D simulation, uaxi, is almost identical to that from the axisymmetric simulation.
We show snapshots of ‖u‖ in Figure 5(d). The three-dimensional flow is turbulent but
remains comparable to the axisymmetric flow.

In Figure 6 we show horizontal slices of the three-dimensional molar fraction distribu-
tion at the heights z ∈ {1.98, 1.5, 1, 0.5} cm at the final time t = 18.375 s. The graphical
abstract shows the xLi distribution at time t = 16 s at the same height. Recalling that
H = 2 cm, and since the diffusive length-scale is about

√
Dt = 0.04 cm, the slice at

z = 1.98 cm in Figure 6(a) is within the thin stratified boundary layer that forms by
diffusion at the top of the alloy. In movie 4 of the supplementary material, we can clearly
observe how spiraling waves appear after some 15s: we conjecture that they are the
consequence of shear type instabilities that are also observed in rotor-stator experiments
(Gauthier et al. 2002). The three slices at z ∈ {1.5, 1, 0.5} cm in Figure 6(b) clearly
demonstrates that the molar fraction distribution is three-dimensional. The size of the
finest filaments in these figures is close to the meshsize. Long time three-dimensional
simulations with Pe > 105 when turbulence is fully developed would require either finer
grids (too expensive at the moment) or some kind of turbulence modeling or stabilization.

The 3D simulation is too short to conclude unequivocally on the mixing properties
of the three-dimensional flow at late times, but it nevertheless shows that mixing is
very intense. Whether mixing is as efficient in 3D as in axisymmetric simulations is
not clear. Another important point here is that this 3D simulation demonstrates that
the axisymmetric simulations provide good estimates of the mixing capabilities of the
swirling electrovortex flow.

In appendix B, we further compare the axisymmetric and the three-dimensional simu-
lations with a diffusivity that is ten times higher Drelax = 10D = 8×10−8 m2 s−1 (J and
Bz being unchanged). The actual value of the diffusion coefficient is anyway somewhat
uncertain as it depends on the temperature and the alloy composition (Khairulin et al.
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Figure 6. Vertical slices of molar fraction xLi in three-dimensional simulation with
J = −5 kA m−2, Bz = −5 mT at t = 18.375 s and at different heights. (a) Just below the
top surface at z = 1.98cm we are in the stratified boundary and we observe spiraling structures.
The notation >19 means that the color-scale is slightly saturated for a better contrast, xLi can
locally exceed 19% (b) at heights z = 1.5, 1, 0.5cm. In the supplementary material, we provide
a movie for xLi at height z = 1.98 cm in the three-dimensional simulation (movie 4).

2017), and it might indeed be higher than the very small value D = 8×10−9 m2 s−1 that
we have used here. With this value of the diffusivity the overall structure of the fluid
flow is fairly similar but the spiraling wave-like structures are more clearly visible near
the top of the alloy. Interestingly, we also observe that the time evolution of the surface
averaged molar fraction 〈xLi〉S for the 3D and the axisymmetric flows are very close, see
Figure 13(a). With increased diffusion, mixing is made easier and the density variations
in the stratified layer at the top of the alloy are smaller. It is then easier for the bulk
flow to reach through the stratified layer and enhance mixing therein.

4. Minimal magnetic field strength to enhance mixing

Having demonstrated that mixing of the alloy in the bottom electrode can be greatly
improved during discharge, we now want to identify the physical conditions that are really
required in order to enhance the mixing. We answer this question in two steps. First we
look for a scaling law for the magnitude of the velocity in the swirling electrovortex flow.
Then, we estimate the minimal magnetic field intensity that is needed to enhance the
mixing during discharge by combining the velocity scaling law with the characteristic
velocities Up and Um introduced by Herreman et al. (2020).

4.1. Scaling law for the intensity of swirling electrovortex flows

In this section we estimate the intensity U of the electrovortex flow in terms of the
input parameters J and Bz. We first identify a scaling law using numerical simulations,
then we propose theoretical arguments to explain the origin of this behavior.
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set −J(kA m−2) −Bz(mT) Re
(i) 0.5 0.0125→ 10 35→ 3500
(ii) 10 0.1→ 5 1400→ 20000
(iii) 0.5→ 10 1 170→ 6800
(iv) 0.5→ 5 10 900→ 11000

Table 2. Ranges for J and Bz in the axisymmetric simulations. The Reynolds number
Re = urmsR/ν is based on the time-averaged rms speed obtained from the simulations.

4.1.1. Numerical evidences

The flow is steady and axisymmetric for small values of JBz (Millere et al. 1980).
But, as explained in Appendix A, as JBz increases the flow first bifurcates to an un-
steady regime, and eventually bifurcates to a time-dependent three-dimensional regime.
Although axisymmetric solutions are not realistic at large Reynolds numbers, we have
seen in the previous section that on average the velocity field is very similar to that
observed in three-dimensional simulations. We then posit that axisymmetric simulations
provide accurate estimates of the mean magnitude of the actual three-dimensional flow.
We have done four sets of axisymmetric simulations to explore the parameter domain
covered by the pair (J,Bz). These four sets are described in Table 2. In the set labeled
(i) we set the current to the low value J = −0.5 kA m−2 and let Bz vary in the interval
[0.125, 10] mT. In the set (ii), we set the current to the large value J = −10 kA m−2

and let Bz vary in the interval [0.1, 5] mT. In the set (iii), we set the magnetic field
to the low value Bz = 1 mT and let J vary in the interval [0.5, 10] kA m−2. In the set
(iv), we set the magnetic field to the large value Bz = 10 mT and let J vary in the
interval [0.5, 5] kA m−2. We ignore the buoyancy effects in all these simulations, i.e., we
set g = 0 in (2.1a). For each simulation we denote by urms the time-averaged rms of the
magnitude of the computed velocity (see (2.6)). This quantity allows us to define the
Reynolds number

Re =
urmsR

ν
. (4.1)

The range covered by the Reynolds number for each data set is shown in Table 2.
We show in Figure 7(a) the time-averaged rms speeds utor and upol as functions of

the parameters Bz and J for the four data sets (i), (ii), (iii), (iv). In most cases, we
observe a power-law behavior in which utor ∼ upol ∼ (JBz)

2/3. We also notice that the
toroidal (azimuthal) component of the velocity is typically 5 times more intense than
the poloidal component, which also implies that urms ≈ utor. In Figure 7(b), we replot

utor as a function of (JBz

ρ∗
)

2
3 ν−

1
3R for all the data points. Setting U = utor ≈ urms, we

observe that the scaling law

U ∼
(
JBz
ρ∗

)2/3
R

ν1/3
(4.2)

is valid over almost three decades. Several points are marked with a star because they
deviate from this scaling law. An explanation for these discrepancies is proposed below
in §4.1.3.

4.1.2. Origin of the scaling law

We now want to propose an explanation for the origin of the above scaling law. But
first we show that a simple first-order guess leads to erroneous conclusions. The candid
argument runs as follows. In the inertially dominated regime, it is tempting to think that
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(a) (b)

Figure 7. Scaling laws for the quantities utor and upol using the data sets (i)–(iv) from Table 2.
(a) Data set (i) (top left); data set (ii) (top right); data set (iii) (bottom left); data set (iv)

(bottom right). (b) utor as a function of (JBz/ρ∗)
2
3 (R/ν

1
3 ) for the combined data sets. The

points marked with an asterisk (∗) deviate slightly from the scaling law because the induced
currents are not negligible.

inertia balances the Lorentz force, i.e., [ρ∗(u·∇u)] ∼ [j×b]. Using that j = ∇×(b/µ0),
this type of argument yields the correct scaling law U ∼

√
µ0/ρ∗JR when there is

no swirling, as shown in Herreman et al. (2020). But when the swirling mechanism is
active and under the assumptions that the magnetic field is mainly vertical and the
induced currents are small, i.e., Bz � µ0JR/2 (see (2.2a)&(2.2d)) and σUBz � J ,
the term [j×b] scales like JBz, and the above balance would yield ρ∗U

2/R ∼ JBz or
U ∼ (JBzR/ρ∗)

1/2. Since the exponent 1/2 is not observed in the numerical simulations,
we are lead to conclude that the above balance is not correct.

To understand the origin of the problem, we must look at how the swirling flow is
generated. We show in Figure 8 the azimuthal component of the Lorentz force, −jrBz,
or more precisely −jxBz, in the y = 0 plane. It is evident that this force distribution
is largest near the bottom of the cell. In fact, it is even singular at the rim of the
electrical contact with the copper wire, i.e., at (r, z) = (Rw, 0). We numerically observe
the singular nature of the Lorentz force by refining the grid. As shown in the zoomed
figures, finer grids always yield higher peak values in |jxBz|. The origin of this singularity
is purely geometric and to handle it correctly, a specific numerical procedure is needed.
In SFEMaNS we use the method of Bonito et al. (2013) that was benchmarked on
several electromagnetic problems with corner singularities. As shown in the bottom right
panels in Figure 8, the swirling electrovortex flow driven by the singular Lorentz force
distribution is always regular and well resolved. We conclude here that the swirling
electrovortex flow is predominantly driven by a force density that is strongly localized
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Figure 8. The azimuthal part of the Lorentz force is strongly localized near the bottom of the
fluid domain and singular at the rim (r, z) = (Rw, 0) of the electrical contact. This singularity
can be numerically handled by SFEMaNS and its presence is illustrated by refining the grid.
With finer grid we observe larger peak values in the Lorentz-force (see the zoomed region in
the red rectangle). The flow that is driven is however always regular and well-converged, here
illustrated by the ‖u‖ charts in the meridional planes for both grids. Here J = −0.5 kA m−2

and Bz = 1mT exceptionally positive.

near the bottom of the fluid domain. Therefore it is natural to think that it is the
momentum balance in the viscous boundary layer and not that in the volume (previous
paragraph) that determines the magnitude of the velocity field.

Let us consider this viscous boundary layer of thickness δ � R yet to be determined
(see Figure 8). To get rid of the pressure, we consider the vorticity equation. Taking
into account that vertical gradients in the viscous term are dominant and b ∼ Bzez, the
equation for the vertical component of the vorticity ωz is

∂tωz + (u · ∇)ωz ≈ (ω · ∇)uz + ρ−1∗ Bz∂zjz + ν∂2zzωz. (4.3)

We focus on this component since arguing on the radial or on the azimuthal component
of the vorticity yields the same conclusions. Let us estimate the orders of magnitude
of the terms of this equation. Using the separation of the scales δ and R, the orders of
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magnitude for the vertical and radial derivatives in the boundary layer are [∂z] = δ−1 and
[∂r] = R−1. We denote [ur, uθ] = U the order of magnitude of the horizontal components
of the velocity. From incompressibility we estimate [uz] = UδR−1, and from the definition
of the vorticity we estimate [ωr, ωθ] = Uδ−1 and [ωz] = UR−1. This allows us to estimate
the weight of the inertial terms in the equation as [(u · ∇)ωz] = [(ω · ∇)uz] = U2R−2.
Letting the time scale to beR/U , we estimate that [∂tωz] = U2R−2. The magnitude of the
viscous term is [ν∂2zzωz] = R−1δ−2νU , and for the Lorentz force we have [ρ−1∗ Bz∂zjz] =
ρ−1∗ δ−1BzJ . We now make the assumption that the inertial term, the Lorentz-force term
and the viscous term all have the same magnitude, which yields the following three-term
balance:

U2

R2
∼ JBz

ρ∗δ
∼ νU

Rδ2
. (4.4)

Taking these balances by pairs we can either eliminate δ or U . This yields the scaling
law (4.2) for the flow intensity U and we can also deduce that the typical boundary layer
thickness is

δ ∼
(

ρ∗
JBz

)1/3

ν2/3. (4.5)

In this physical picture, the intensity of the flow is set by the boundary layer dynamics.
The bulk flow just reacts to what is imposed at the boundary. Therefore, we conjecture
that turbulence in the bulk does not affect the scaling law (4.2) as long as the boundary
layer itself does not become turbulent.

To our knowledge, the scaling law (4.2) has not been proposed elsewhere in the
literature. Many studies on swirling electrovortex flows have focused on the flow driven in
a hemispherical device and under a very thin (tip) electrode, see for example Bojarevičs
& Shcherbinin (1983); Davidson (1992); Kharicha et al. (2015); Ivochkin et al. (2015);
Vinogradov et al. (2018); Teplyakov et al. (2018). This flow is likely very different from the
one we observe here, but similar velocity scales in the cm/s range are measured therein.
Davidson (1992) proposed several scaling laws for swirling flows driven by rotating
magnetic fields. This type of electromagnetic forcing is however essentially different from
the one we find here.

4.1.3. Limits of the scaling law

Although the numerical simulations show that the scaling law is adequate over more
than three decades, it has a limited range of validity. Let us discuss the essential
assumptions that were made. First, we have assumed that the magnetic Reynolds number
is small:

Rm = σµ0UR� 1. (4.6)

Considering that the magnetic Prandtl number of the alloy is Pm = σµ0ν = 1.3×10−7

and with Re < 20000, we obtain Rm < 3×10−3, which means that the above assumption
is always very well satisfied in the considered range of parameters. Second, we have
ignored the horizontal component of the magnetic field, which means that we have
assumed

Γ =
µ0JR

Bz
� 1. (4.7)

According to Table 3, this condition is well verified except in some set-ups where J
is large and Bz is small. The fact that no significant deviations from the scaling law
are observed in these cases suggests that the assumption Γ � 1 can be slightly violated.
Nevertheless, it is certain that one will recover the non-swirling electrovortex scaling, i.e.,
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set Γ Π δ/R Reδ
(i) 2→ 0.0025 10−5 → 0.73 0.079→ 0.0085 13→ 120
(ii) 5→ 0.1 10−4 → 0.085 0.015→ 0.0040 69→ 250
(iii) 0.0025→ 0.5 0.034→ 0.0058 0.040→ 0.0068 25→ 150
(iv) 0.0002→ 0.025 1.6→ 0.34 0.018→ 0.0040 54→ 250

Table 3. Non-dimensional numbers Γ = µ0JR/Bz, Π = σRB
5/3
z /(Jνρ2∗)1/3,

δ/R = (ρ∗/JBz)
1/3ν2/3/R, Reδ = (JBz/ρ∗)1/3R/ν2/3 for the four data sets from Table 2.

U =
√
µ0/ρ∗JR, (Herreman et al. 2019b, Eq. (19)) when Γ � 1. A third, more critical

assumption that was made is that the induced currents are negligible. By estimating
[j] = J , we implicitly ignore that the induced currents may modify the intensity of the
Lorentz force, i.e., we assume that σu×(Bzez) is significantly smaller than J , that is
σUBz/J � 1. Using the scaling law (4.2), we replace U in this inequality to find a more
practical condition that only depends on the input parameters. We then conclude that
the scaling law (4.2) is not affected by the induced currents as long as

Π =
σRB

5/3
z

(Jνρ∗2)1/3
� 1. (4.8)

According to Table 3, the condition Π � 1 is well satisfied for the entire series (ii) and
(iii), and we observe in Figure 7 that the scaling law is indeed well satisfied for these
data. There are deviating points in the series (i) and (iv). These points are identified
with an asterisk (∗) in Figure 7 when Π > 0.5. Since for all these points there is a
slight deviation to the scaling law, we conjecture that the misalignment is due to the
induced currents. Since in all these cases the magnitude of the velocity is smaller than
that suggested by the inductionless scaling law (4.2), we conclude as in (Vinogradov et al.
2018, figure 7) that induction acts as a magnetic brake on the swirling electrovortex flow.
A fourth assumption that was made is that the boundary layer is thin, meaning here
that

δ

R
=

(
ρ∗
JBz

)1/3
ν2/3

R
� 1. (4.9)

According to Table 3, δ/R � 1 in all the simulations, so this assumption is certainly
valid. There are at least 2 grid points over the boundary layer scale δ in all the simulations
reported here. Finally, the fifth assumption we made is that the boundary layer in which
the flow is forced remains laminar. This can only be true up to some critical value of the
local boundary layer Reynolds number, say Returbδ , i.e., we assumed that

Reδ =
Uδ

ν
=

(
JBz
ρ∗

)1/3
R

ν2/3
� Returbδ . (4.10)

The precise value of Returbδ is unknown but can reasonably be expected to be large.
Table 3 shows that the local Reynolds number never exceeds 250 in all the simulations
which likely is too low to have a turbulent boundary layer.

4.2. Estimating the mixing capability

Given some fluid flow with velocity scale U in the alloy, we have formulated in Herreman
et al. (2020) a physical model to estimate the mixing capability of this flow. The general
idea of the model was explained in the introduction of the paper. With Up and Um given
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(a) (b)

Figure 9. Testing the criterion for efficient mixing. (a) The time-averaged maximum velocity
umax follows the same scaling law as urms given in (4.2). Buoyancy slightly affects the maximum
velocity when no mixing occurs (red dot, |Bz| = 1 mT). (b) Isolines of the ratio Umax/Um in the
plane (|J |, |Bz|) using Umax given by the fit of (4.11) and Um given in (1.1).

in (1.1), no mixing is expected when U � Up, efficient mixing occurs when U � Um,
and there may be moderate mixing when U ∈ [Up, Um].

4.2.1. Validation of the mixing criteria (1.1)

Let us check how well the theoretical predictions (1.1) hold for the swirling electrovor-
tex flows considered in the paper. We first focus on the data obtained in the kinematic
series (ii) (J = −10 kA m−2, |Bz| ∈ [0.1, 5] mT, g = 0). Figure 9(a) shows the time-
averaged maximal velocity umax as a function of the velocity scale (JBz/ρ∗)

2/3(R/ν1/3)
identified in (4.2) (gray lines, ×). As expected all the data points are aligned, thereby
showing again that the scaling law is well satisfied. We now evaluate the validity of
the scaling law when buoyancy is active. The colored dots connected with the pink line
show the time-averaged maximal velocity obtained at t = 20 s in the mixing simulations
reported in Figure 3, (J = −5 kA m−2, Bz ∈ {−1,−2.5,−5,−10}mT, g = 9.81 m s−2).
We observe that the data points corresponding to |Bz| = 2.5, 5, 10 mT align very well
with the gray line. As reported in §3.1, the flow mixes well the alloy for these three
intensities of the magnetic field. The only point that does not align well with the scaling
law corresponds to |Bz| = 1 mT. As reported in §3.1, the electrovortex created with
this magnetic field intensity is not strong enough to mix well the alloy. The value of
umax obtained is slightly above the prediction of the scaling law. We think that in this
case viscous friction at the top interface is weaker than what it would be if mixing were
occurring. We now estimate the proportionality constant in the scaling law by fitting the
three data points that align well (i.e., we discard |Bz| = 1 mT). We obtain

Umax ≈ C
(
JBz
ρ∗

)2/3
R

ν1/3
, with C = 0.74. (4.11)

Henceforth Umax denotes the prediction of the maximal speed. The constant C depends
on the geometry of the setup. We now use this fit to test the predictive capacity of the
mixing criteria.

Recalling that we have J = −5 kA m−2 for the simulations reported in Figure 3, using
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(1.1) we calculate Up = 0.61 cm s−1 and Um = 4.4 cm s−1. The fit on the maximal velocity
predicts Umax = {3.7, 6.8, 10.7, 17.0} cm s−1 with Bz = −{1, 2.5, 5, 10}mT respectively.
We notice that Umax � Up for the four data points, which is in remarkable contrast with
the non-swirling case considered by Herreman et al. (2020) (in exactly the same setting
but with Bz = 0 we found U � Up and observed a stagnant layer of light metal stuck at
the alloy/salt interface). The velocity scale Umax = 3.7 cm s−1 for Bz = −1 mT is the only
one for which Umax < Um. As we observed that the mixing is not efficient in this case, this
observation suggests that the criterion Umax > Um quite precisely locates the transition
for efficient mixing. To further illustrate this, we show in Figure 9(b) the isolines of
Umax/Um in the J − Bz plane. No efficient mixing is expected in the zone marked with
diagonal gray lines which is below the isoline 1. To illustrate the use of this chart, we
have reported the four simulation points |J | = 5 kA m−2, |Bz| ∈ {1, 2.5, 5, 10}mT that
are used in Figure 3. We see that the first point is in the no-efficient-mixing zone whereas
the other three are well inside the mixing-zone. We think that this type of chart is useful
to visually locate where efficient mixing should be expected and where it should not.

4.2.2. Mixing criteria in terms of Bz

Since the mixing criteria (1.1) proposed in Herreman et al. (2020) seem to have good
predictive capabilities, we now use these criteria to estimate the minimal intensity of the
magnetic field that is required for mixing. We inject the expression of the velocity given
in (4.11) into the expressions of Up and Um given in (1.1). We introduce the aspect ratio
of the alloy layer h = H/R and obtain:

|Bz| �
(

2MLiβghν

neF |J |C3

) 1
2 ρ∗
R

⇔ no influence on mixing, (4.12a)

and

|Bz| �
(

4MLiβg

neFR

) 3
5 h

9
10

(πD)
3
10

ρ∗ν
1
2

C
3
2 |J | 25

⇔ significant effect on mixing. (4.12b)

We have not fully tested these expressions in the context of the present paper, but we
believe that these formulas can be useful in the design process of liquid metal batteries
where mixing is expected to be enhanced by the swirling electrovortex mechanism.
Applied to the small cell under consideration here (R = 4 cm, h = 0.5) and with C = 0.74
in (4.11), we find that for |J | = 5 kA m−2 the swirling electrovortex cannot mix the
allow if |Bz| � 6.7×10−2 mT. For such a small value of |Bz| one probably approaches
the non-swirling electrovortex configuration treated in Herreman et al. (2020) so this
estimate is probably inadequate (the reader is referred to Eq. (25a)-(25b) therein for
better predictions when Bz ∼ 0). On the other hand, significant mixing is expected when
|Bz| � 1.2 mT. This is indeed what we observe in Figure 3.

5. Conclusion

We have shown in this article that the swirling electrovortex mechanism can efficiently
mix the alloy layer in the bottom electrode of Li‖Pb liquid metal batteries during
discharge, thereby confirming the results reported in Weber et al. (2020). Even when
discharging the cell at high rate J = −5 kA m−2, fairly weak vertical magnetic fields of
just a few mT are sufficient to significantly enhance mixing and overcome the stabilizing
effect of solutal buoyancy (see Figure 1(b)). This is in sharp contrast with the results
reported in Herreman et al. (2020) where it is shown that under exactly the same



Efficient mixing in liquid metal batteries 19

conditions but without external magnetic field the non-swirling electrovortex flow is not
strong enough to affect the composition of the alloy.

We have compared axisymmetric and fully three-dimensional numerical simulations.
Despite the fairly small size of the cell (R = 4 cm) and the moderate flow intensity
(U ≈ 5 cm s−1), fully resolved three-dimensional simulations using realistic values for the
material parameters D and ν are very challenging as the Reynolds number and the Péclet
number reach large values, Re > 104, Pe > 105. As a result, only a short lapse of time of
the three-dimensional evolution has been simulated. We have nonetheless observed that
the axisymmetric and the three-dimensional rms velocities are very similar. The mixing
capabilities of the axisymmetric and the three-dimensional flows are also somewhat
similar. In the three-dimensional simulations, we have observed wave-like structures in
the stratified layer just below the alloy-salt interface. These structures are reminiscent
of shear-type instabilities observed in rotor-stator experiments (Gauthier et al. (2002)).
The presence of these waves in the thin stratified layer has a beneficial impact on the
homogenization of the alloy.

In a systematic parametric study, we have investigated how the magnitude of the
velocity U induced by the swirling electrovortex mechanism varies with J and Bz. We
have observed that U obeys the following scaling law: U ∼ (|JBz|/ρ∗)2/3(R/ν1/3). This
behavior has been shown to be valid over almost three decades as long as the currents
induced by the flow are negligible. We have proposed a possible scenario to explain this
scaling law by equating the order of magnitude of the inertial, viscous, and Lorentz
forces in the viscous boundary layer created at the bottom of the electrode. Viscosity is
important because the Lorentz force is singular close to the rim of the electrical contact
with the copper wire connecting the battery to the external circuit. To our knowledge,
this scaling law for the magnitude of the swirling electrovortex flow has not been reported
in the literature before.

The scaling law for the flow intensity is useful to estimate conditions under
which efficient mixing can occur. According to the model proposed in Herreman
et al. (2020) the magnitude of the fluid velocity must be significant larger than

Um = (4|J |MLi βg/neF )
2
5 (H

3
5 /(πD)

1
5 ) in order to mix the alloy efficiently. Applied

to various numerical simulations and with U = Umax being based on the fit for the
maximal speed in the cell, we have observed that the criterion Umax > Um turns
out to be surprisingly precise to predict efficient mixing. From this criterion, we have
estimated in (4.12b) the minimal external magnetic Bz that is required for the swirling
electrovortex mechanism to mix efficiently the alloy in the bottom electrode of LMBs.
The expression (4.12b) depends on input parameters only and has one tunable coefficient,
C, which depends on the geometry of the cell and of the wire connecting the battery to
the external circuit.

One can easily create the vertical magnetic field that is necessary to generate the
electrovortex flow by re-directing the current exiting the cell (I = πR2J) through a
solenoid surrounding the battery. Denoting by N the number of loops in the coil and
l the length of the coil, the magnetic field created by the coil is Bz = µ0

N
l I. Using

|J | = 5 kA m−2, R = 4 cm and |Bz| = 5 mT, we find N
l ≈ 158. So a coil with a height

l = 10 cm and 16 loops already suits the purpose. It would be of interest to implement
this kind of design in a LMB prototype such as that of Personnettaz et al. (2019) and
verify whether lower mass transfer overpotentials are indeed observed during discharge.
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Figure 10. Axisymmetric simulations of the swirling electrovortex flow without solutal
buoyancy (g = 0) and with J = −0.5 kA m−2. (a) Time evolution of the rms azimuthal velocity
utor with Bz ∈ −{0.1, 1, 2, 5}mT. (b) Axisymmetric steady state flow for Bz = −0.1 mT.
Distribution of uθ in the meridian section θ = 0 and 2D streamlines of the poloidal components
of the velocity field (ur, uz). We also show the streamlines of the complete velocity field near
the z-axis.
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Appendix A. Swirling electrovortex flows: from steadiness and
axisymmetry to unsteadiness and three-dimensionality

In the numerical simulations done for the present work, we have observed that the flow
becomes fairly turbulent at Reynolds numbers above 104. This regime of the electrovortex
flow is rarely reported in literature which most often focuses on the steady-state, see
Millere et al. (1980) for example. The purpose of this appendix is to document the rapid
transition to turbulence of the flow as the Reynolds number increases.

All the simulations presented here are done in the small cell with geometry
(H,R,Hw, Rw) = (2, 4, 4, 0.8) cm without solutal buoyancy (g = 0). We vary both
J and Bz, which is more or less equivalent since it is mainly the product JBz that
controls the intensity of the Lorentz force. We fix J = −0.5 kA m−2 and run axisymmetric
simulations with different Bz ∈ −[0.1, 5] mT. In Figure 10, we show the time evolution
of utor (the rms azimuthal velocity) and clearly observe a transition from a steady to a
weakly fluctuating flow regime as |Bz| grows. The spatial structure of the flow in the
steady-state regime is shown on the right panel of the figure. This flow described in
Millere et al. (1980) is only observed at very low Reynolds numbers. With Bz = −0.1mT,
U ≈ 1 mm s−1, and Re is defined in (4.1), we have Re ≈ 280. For Bz = −1 mT, the
oscillations in time are so small that they are not visible on the graph. With Bz = −5 mT,
velocities of the order U ≈ 1 cm s−1 are reached and the corresponding Reynolds number
is about Re = 2800. The axisymmetric numerical simulations show that the flow becomes
unsteady.

Since Re = 2800 is quite a large Reynolds number and the axisymmetric simula-
tions give a time-dependent solution, one could expect the flow to transition to three-
dimensionality. We have run a three-dimensional simulation with J = −0.5 kA m−2 and
Bz = −1 mT, corresponding to Re ≈ 920 with U ≈ 3.3 mm s−1, and found that the
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Figure 11. Three-dimensional and axisymmetric simulations of the swirling electrovortex flow
with J = −1 kA m−2 and Bz = −1 mT. (Left) Time evolution of the rms-velocities uaxi and
urms. The axisymmetric and three-dimensional results differ very little. (right) Vorticity lines
and magnitude of the velocity in the horizontal plane z = 0.2 cm at t = 400 s and t = 1100 s in
the three-dimensional simulation.

weakly oscillatory flow remains axisymmetric. This suggests that the first bifurcation
from the steady to the oscillatory state does not break the axisymmetry. Doubling
the current density to J = −1 kA m−2 and keeping the same magnetic field intensity
Bz = −1 mT, we observe that the flow transitions to three-dimensionality for Re ≈ 1390
as shown in Figure 11. By comparing the time evolutions of urms and uaxi in the left
panel of the figure, we conclude that the axisymmetric component of the flow remains
dominant at all times. The two snapshots on the right panel of the figure show the
vorticity lines before (t = 400 s) and after (t = 1100 s) the three-dimensional bifurcation
occured. The colored horizontal plane shows the magnitude of the velocity at z = 0.2 cm.
The snapshot at 1100 s clearly shows that the flow is three-dimensional, although the
axisymmetric component of the field is still visible. Notice how the vorticity lines are
nearly vertical near the z-axis (indicating rotation) and are deflected horizontally in the
boundary layers near the top and the bottom boundaries of the cell.

In figure 12, we show a snapshot of a three-dimensional simulation of the swirling
electrovortex flow with J = −5 kA m−2 and Bz = −5 mT, the solutal buoyancy effects
still being tuned off. Here the Reynolds number is about 2.2×104. We see that the overall
organization of the turbulent flow is similar to that observed when solutal buoyancy
is active, see Figure 5(d). This confirms that for this set of parameters the swirling
electrovortex flow is far stronger than solutal buoyancy. In movie 5 of the supplementary
material, we show a movie composed of 26 snapshots of ‖u‖ from t = 15 s to t = 20s
sampled at 0.2 s interval. This short movie shows the rotation of the spiral structures
and the fluctuating nature of the flow.

Appendix B. Three-dimensional simulations with higher diffusivity

In this section we estimate the effects of the diffusivity coefficient. We use again
J = −5 kA m−2 and Bz = −5 mT, as in Section §3.2, but we now take Drelax =
8×10−8 m2 s−1. Notice that Drelax is 10 times larger than D. We compare the results
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Figure 12. Snapshot of the three-dimensional flow intensity at t = 18.4 s in simulation with
J = −5 kA m−2 and Bz = −5 mT and no solutal buoyancy. We show the x = 0 plane and
the z = 1.98 cm plane. The flow is very similar to the 3D flow observed in presence of solutal
buoyancy, see Figure 5(d). Movie 5 of the supplementary material shows a sequence from t = 15 s
to t = 20s sampled at 0.2s interval.

of the three-dimensional and the axisymmetric simulations. The three-dimensional sim-
ulation is done up to t = 19.5 s using the same grid, the same time step, and the same
initial data as in Section §3.2.

The organization of the panels in Figure 13 is the same as in Figure 5 to facilitate
comparisons. We see in Figure 13(a) that the time evolution of 〈xLi〉S for the three-
dimensional and the axisymmetric simulations are very similar. We show in Figure 13(b)
the molar fraction distribution at t = 19.5 s. The spiraling structures on the surface
z = 2 cm are clearly visible. In Figure 13(c), we observe that three-dimensionalization
starts at t = 12s as in Figure 5(c). The time evolution of the rms velocities u3D and uaxi
is more or less the same as in Figure 5(c). The three-dimensional organization of the flow
in Figure 13(d) is also similar to that in Figure 5(d). The spiraling wave-patterns are
clearly visible on the top surface (which we recall is the alloy/salt interface).

Horizontal slices of the molar fraction distribution at z = 1.98cm (just below the
alloy/salt interface) are shown in Figure 14 at the final time t = 19.5 s using the
same presentation as in Figure 6. The spiraling structure is again clearly visible. In
Figure 14(b), we observe that three-dimensionalization increases then decreases as one
moves downwards. By comparing Figure 14(b) and Figure 6(b), we see that mixing is
faster with Drelax than with D, as expected.
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