
HAL Id: hal-03091042
https://hal.science/hal-03091042v1

Submitted on 30 Dec 2020 (v1), last revised 29 Aug 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice Boltzmann method for miscible gases: A
forcing-term approach

Lucien Vienne, Simon Marié, Francesco Grasso

To cite this version:
Lucien Vienne, Simon Marié, Francesco Grasso. Lattice Boltzmann method for miscible gases: A
forcing-term approach. Physical Review E , 2019, 100 (2), pp.10. �10.1103/physreve.100.023309�.
�hal-03091042v1�

https://hal.science/hal-03091042v1
https://hal.archives-ouvertes.fr


Lattice Boltzmann model for miscible gases: a forcing term approach

Lucien Vienne,∗ Simon Marié,† and Francesco Grasso‡

DynFluid laboratory, 151 boulevard de l’hôpital, 75013 Paris, France
Conservatoire National des Arts et Métiers

A lattice Boltzmann model for miscible gases is presented. In this model, the standard lattice
Boltzmann model is employed for each species composing the mixture. Diffusion interaction among
species is taken into account by means of a force derived from kinetic theory of gases. Transport
coefficients expressions are recovered from the kinetic theory. Species with dissimilar molar masses
are simulated by also introducing a force. Finally, mixing dynamics is recovered as shown in different
applications: an equimolar counter-diffusion case, Loschmidt’s tube experiment and an opposed jets
flow simulation. Since collision is not altered, the present method can easily be introduced in any
other lattice Boltzmann algorithms.

I. INTRODUCTION

This paper deals with the application of Lattice Boltz-
mann method (LBM) to mixing dynamics. Mixing oc-
curs in many natural and industrial processes such as
thermohaline circulation, pollute dispersion, diffusion in
porous media, combustion, chemical processing or mass
and momentum transport in multicomponent fluids. An
accurate understanding of mixing dynamics is of great
importance for these applications.

In the simplest case of the mixing not affecting the
flow dynamics, as is the case of the mixing of a dye or
a tracing species, the Navier-Stokes or the Lattice Boltz-
mann equations are solved to describe the flow dynamics,
while the dye or species concentrations are modeled sep-
arately by simple convection-diffusion equations (passive
scalar approach). However, mixing is often much more
complex. The flow dynamics and the mixing process are
heavily coupled and cannot be separated since mixing
produces changes to the fluid. Mixing dynamics are then
incredibly complicated as the interactions between vari-
ous species need to be accounted for (e.g. collisions in the
kinetic formulation). Whereas a large number of stud-
ies about global mixing dynamics are available, a good
understanding of the microscopical processes involved in
complex chemical mixing is still lacking.

The classical approach for the simulation of mixtures
is based on the single-fluid approach that assumes as
unknowns the species densities and the mixture veloc-
ity. The Navier-Stokes equations are solved for the mix-
ture using phenomenological laws such as Fick’s law or
the Maxwell-Stefan equations for the species mass fluxes.
This approach is often used in combustion with detailed
chemistry, which involves a large number of species (see
Ref. [1] for a Lattice Boltzmann single-fluid model).

However, the use of a mixture velocity as a unique un-
known can lead to some errors in the description of the
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flow dynamics. This is particularly true when the chem-
ical properties of each species differ greatly and in situa-
tions where the mixing process depends on the chemical
composition and on the velocities of each species. For in-
stance, consider the case of two different coflowing gases
separated by a splitter plate. On either side of the plate,
the dynamics is governed by Navier-Stokes equations and
a velocity is defined for each gas. Past the splitter plate,
the two gases start mixing. In the case of the single-fluid
approach, only one velocity is specified for the mixture,
which may be defined in terms of either a mass, molar or
any other averages. Instead, in order to accurately depict
the transient mixing dynamics, a more natural way is to
consider the species densities and the velocities of each
species as unknowns (as prior to mixing). This is the so
called multi-fluid approach.

The lattice Boltzmann method (LBM) provides an al-
ternative and convenient way to model fluid flows com-
pared to conventional macroscopic approaches [2]. In-
deed, the algorithm is simple, computationally efficient
due to its explicit formulation and is easily adapted for
parallel computing. The LBM is therefore particularly
appealing for the simulation of miscible mixtures. In
the multi-fluid strategy, one introduces a distribution
function for each species. In single species flows, the
collision of particles is approximated by the Bhatnagar-
Gross-Krook (BGK) collision operator [3] and the distri-
butions relax to equilibrium values at a rate that depends
on the relaxation time. In the case of a mixture, there
is no unique BGK formulation. Hence, different lattice
Boltzmann models for multicomponent flows have been
developed depending on the underlying kinetic theory of
the mixture being investigated. One possible approach is
to split collisions between molecules of the same species
(self-collision) and collisions between molecules of differ-
ent species (cross-collision). Luo and Girimaji [4] employ
a linear collision based on Sirovich’s kinetic theory of
mixtures [5]. This work is further extended from binary
to multicomponent flows in references [6, 7]. In his early
work, Asinari [8, 9] uses a model derived from Hamel’s ki-
netic theory [10]. Other noticeable split collision models
can be found in [11] and [12]. The latter authors exploit
a fast-slow decomposition (quasi-equilibrium to equilib-



rium) and is further extended in reference [13] to ther-
mal multicomponent flows. Other approaches are based
on a single global collision term such as Asinari’s model
[14], derived from the AAP-BGK collision operator [15].
The equilibrium velocity is given by the conservation of
species momenta. Diffusive and viscous effects are sepa-
rated in the momentum space. References [16–18] have
slightly modified the formulation of the equilibrium state
and the definition of the equilibrium velocity and appli-
cations to electrolytes are reported in Ref. [19].

In contrast to the previous Lattice Boltzmann models,
the coupling terms due to diffusion are introduced in our
model by means of a force derived from the kinetic theory
of gases extended to mixtures [20, 21]. We have extended
the work of Kerkhof and Geboers [21] to formulate the
forcing term in the framework of LBM. Furthermore, the
transport coefficients are derived from the kinetic theory
of gases and a forcing term strategy is proposed to take
into account species having dissimilar molecular masses.
This latter force, the diffusion force, and the formulation
of the transport coefficients constitute the three building
blocks of the present model. One major advantages of
the proposed method is the easiness of implementation.
Since Collision is not modified, the method can be in-
troduced in any other lattice Boltzmann algorithms (e.g.
[22–25]) to take into account complex diffusion among
species.

This paper is laid out as follows. In section II, we in-
troduce our simplified kinetic model for miscible gases.
The macroscopic equations as well as the transport co-
efficients are presented in section III. In section IV, we
address the problem of the simulation of species with
different molecular masses. Finally, in section V, we val-
idate the main features of our model.

II. A SIMPLIFIED KINETIC MODEL FOR
MULTICOMPONENT MIXTURES

The lattice Boltzmann method is an alternative
method for simulating fluid flows by solving a simpli-
fied formulation of the kinetic model. In this section, we
present a new lattice Boltzmann model for mixtures of
miscible gases. The model is an extension of the macro-
scopic theory of Kerkhof and Geboers [21] which is based
on the work of Hirschfelder, Curtiss, and Bird on kinetic
theory of gases [20]. The model satisfies the indifferen-
tiability principle. Namely, for a mixture of like gases, it
reduces to a single species BGK model. In addition, the
macroscopic Maxwell-Stefan equations are recovered for
purely diffusive flows when convection is negligible.

A mixture is composed of multiple species and each
species is defined by its own distribution function, which
is governed by its own kinetic equation. For the sake of
simplicity we only consider a BGK-like collision opera-
tor. More advanced collisions operators such as multiple
relaxation time, entropic, regularized or cumulant opera-
tors, mostly developed to remedy some stability defects,

could also be implemented [22–25]. Let m and n denote
different species (m,n = 1, 2, ..., N ; N being the total
number of species). The distribution function of species
m, fmα , obeys the following discrete kinetic equation

fmα (x + eαδt, t+ δt) = fmα (x, t)

− 1

τm

[
fmα (x, t)− fm(eq)

α (x, t)
]

+ Smα (x, t) (1)

where x, t, α, and τm are, respectively, the spatial coor-
dinate, the time, the number of discrete kinetic velocities
eα, and the relaxation time of each species. The equi-

librium distribution functions, f
m(eq)
α , are given by the

standard polynomial formulation,

fm(eq)
α = ρmωα

[
1 +

um · eα
c2s

+
(um · eα)2

2c4s
− um · um

2c2s

]
.

(2)
Smα is the source term from Guo’s forcing scheme [26],
widely used in order to include forces in the lattice Boltz-
mann algorithm,

Smα = (1− δt
2τm

)ωα

[
eα − um

c2s
+

(eα · um)eα
c4s

]
· Fm (3)

Fm being the force acting on the m-th species which is
derived in the following to take into account the species
interactions.

In this study, we use the so-called D2Q9 isothermal,
two-dimensional and nine-velocity discretisation. Ex-
tension to the three-dimensional formulation (D3Q19 or
D3Q27) is straightforward. The pseudo-sound velocity is
c2s = 1

3 , the kinetic velocities are expressed as

eα =

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]T
1 ≤ α ≤ 9 (4)

and the lattice weights are equals to

ωα =
[

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

]T
1 ≤ α ≤ 9. (5)

The macroscopic quantities, namely the density and mo-
mentum of each species, are obtained by computing the
different moments of the distribution functions.

ρm =
∑
α

fmα , ρmum =
∑
α

fmα eα +
δt
2
Fm. (6)

The resulting macroscopic equations are the conserva-
tion equations for low Mach number flows subjected to
a body force (for example the gravity). In order to take
into account the interaction of miscible species, we in-
troduce diffusion forces. These forces are derived from
kinetic theory by Kerkhof and Geboers [21],

FD,m = −p
N∑
n=1

xmxn
Dmn

(um − un), (7)

and Fm becomes

Fm = FD,m + FB,m (8)



where FB,m is a body force. As a result, the discrete
kinetic equations Eq. (1) for the various species are cou-
pled through Fm. Since the diffusion force FD,m depends
on the velocity, total pressure p, molar fractions xm, and
(Maxwell-Stefan) diffusion coefficients Dmn, a linear sys-
tem must be solved at each time step in order to compute
the species momentum by means of Eq. (6).

This force also called inter-molecular friction force de-
pends on the relative velocity of species. Thus, when all
species have the same velocity, no diffusion occurs. The
attempt to include the diffusion effects as a force act-
ing on particles dates back to the early work on kinetic
theory by Maxwell [27]. The same expression has been
rigorously derived later [20, 28] and Kerkhof and Geboers
present a more recent derivation in Ref. [21].

III. MACROSCOPIC LIMIT

A. Macroscopic equations

In this section, we present the macroscopic limit of
the proposed model via the Chapman-Enskog analysis.
This multiple scale expansion provides a relation between
the mesoscopic scale of the Boltzmann equation and the
macroscopic scale of the Navier-Stokes equation. This
derivation is straightforward and is similar to the stan-
dard lattice Boltzmann model with a force arising from
Guo’s forcing scheme (see Ref. [26]). Therefore in the low
Mach and continuum limit, the kinetic equation Eq. (1)
and its moments Eq. (6) are equivalent to the following
macroscopic equations,

∂tρm +∇ · (ρmum) = 0, (9)

∂t(ρmum) +∇ · (ρmum ⊗ um) = −∇pm
+∇ ·

[
µm
(
∇um + (∇um)T

)]
− p

N∑
n=1

xmxn
Dmn

(um − un) + FB,m (10)

where the partial pressure is equal to pm = ρmc
2
s, and

the total pressure is given by Dalton’s law p =
∑N
m=1 pm.

The dynamic viscosity of species m is expressed in terms
of the relaxation time according to

µm = ρmc
2
s(τm −

δt
2

). (11)

B. Limit expression

We now focus on the limit expressions of the previous
equations. Using the dimensionless formulations of Eqs
(9, 10), one may estimate, a priori, the order of magni-
tude of each terms. In the following, we will show that
the Maxwell-Stefan equations are recovered in the case

of pure diffusion. We first begin with the inter-molecular
friction force, which yields to the estimate

FD,m = −p
N∑
n=1

xmxn
Dmn

(um − un) = O (prefu∆/Dref ) ,

(12)
where u∆ is an appropriate velocity difference between
species, and quantities with the ref subscript represent
an estimate of their order of magnitude. In a similar way,
we have

∂t(ρmum) =O (ρrefuref/tref ) (13)

∇ · (ρmum ⊗ um) =O
(
ρrefu

2
ref/Lref

)
(14)

∇pm =O (pref/Lref ) (15)

∇ ·
[
µm
(
∇um + (∇um)T

)]
=O

(
µrefuref/L

2
ref

)
. (16)

The species momentum convection can be neglected com-
pared to the diffusion if (14) � (12), i.e. Ma2 � Pe∆,
where the Mach number is defined as Ma = uref/cs,ref
and the Péclet number is Pe = Lrefu∆/Dref . Simi-
larly, the shear forces are negligible if (16) � (12), i.e.
Ma2 � Pe∆Re with Re = Lrefuref/νref . As u∆ may
change during the mixing, the influence of the different
terms in Eq. (10) may vary in time and space.

Let assume a low Mach flow whose dynamic is mostly
diffusive. We can neglect the contributions associated
with convection (Ma2 � Pe∆) and shear forces (Ma2 �
Pe∆Re). In addition, the characteristic time is given by
tref = L2

ref/Dref and uref = u∆, thereby the species

acceleration can also be neglected, (13) � (12). Hence,
Eq. (10) reduces to

∇pm = p
N∑
n=1

xmxn
Dmn

(un − um). (17)

If we sum this equation over all species, we obtain

∇p = 0. (18)

As a result for this specific case, the process is isobaric.
Using Dalton’s law, Maxwell-Stefan’s equations are easily
recovered from Eq. (17).

∇xm =
N∑
n=1

xmxn
Dmn

(un − um)

=
N∑
n=1

xmNn − xnNm

ctDmn

(19)

where we have introduced the species molar concentra-
tion cm = xmct and the species molar flux Nm = cmum,
ct being the mixture molar concentration. In the case
of an equimolar binary mixture, Fick’s law is obtained
N1 = −ctD12∇x1 or u1 = −x−1

1 D12∇x1.



C. Transport coefficients

In the previous subsections, the equivalent macroscopic
equations are presented. However the transport coeffi-
cients, viscosities and diffusion coefficients have still to
be defined.

The lattice Boltzmann scheme still retains a connec-
tion with the macroscopic scale through the relation be-
tween the relaxation time and the viscosity stemming
from the Chapman-Enskog expansion (Eq. (11)). Since
each species has its own kinetic equation (Eq. (1)), N re-
laxation times (i.e. viscosities) need to be defined, and a
relation between the mixture properties and species vis-
cosity has to be specified. Some of the previous lattice
Boltzmann multicomponent models disregard this issue
([4, 7]), others set the viscosities of each species equal to
the mixture viscosity ([8, 9, 14, 16, 18]) or use Wilke’s
law ([12, 13]).

In the following, we present the sub-model for the
transport coefficients that we derive in the framework of
the multifluid approach that constitutes one the the main
features of our model. Expression for the transport coef-
ficients for a dilute gas can be obtained by kinetic theory
[20]. By extending the works of Hirschfelder, Curtiss, and
Bird to mixtures, Kerkhof and Geboers [21] define diffu-
sion coefficients and species partial viscosities in terms of
the molecular properties, temperature and composition
of the mixture.

In order to avoid confusion between pure viscosity and
the viscosity of a species m in the mixture, we refer to
the latter as the partial viscosity. Following Kerkhof and
Geboers, the partial viscosities can be computed by solv-
ing the linear system

(µm) = [Pmn]
−1

1
...
1

 (20)

with

Pmm =
2

kBT

[
4

5
Ω(2,2)
mm +

N∑
n6=m

xn
xm

16

15

Mn

(Mm +Mn)2
×

(
5MmΩ(1,1)

mn +
3

2
MnΩ(2,2)

mn

)]
(21)

and for off-diagonal elements (n 6= m),

Pmn = − 2

kBT

[
16

15

MmMn

(Mm +Mn)2

(
5Ω(1,1)

mn −
3

2
Ω(2,2)
mn

)]
(22)

where kB is the Boltzmann constant, T the temperature,
Mm the mass of a single molecule for the species m, xm
the mole fraction and the Ω-integrals are defined as in
Ref. [20] and depend on the temperature and the molec-
ular properties based on the Lennard-Jones potential (see
Appendix A for details).

Following the same assumptions made in Ref. [20] (
§8.2.iii) and in Ref. [29], the previous linear system can

be simplified. Thereby, the partial viscosities depend on
the composition of the mixture and can be expressed in
terms of the molar fractions, the pure viscosities µ0,m

and the species molar masses, and Wilke’s formula is re-
covered yielding to

µm =
xmµ0,m∑N
n xnΦmn

(23)

with

Φmn =
1

2
√

2

(
1 +

Mm

Mn

)− 1
2

[
1 +

(
µ0,m

µ0,n

) 1
2
(
Mn

Mm

) 1
4

]2

(24)

where Mm = Mm/Na, with Na the Avogadro number
and Mm the molar mass of species m. We point out
that in kinetic theory, the pure viscosity has the following
expression:

µ0,m =
5kBT

8Ω
(2,2)
mm

, (25)

which is asymptotically consistent with Eqs. (21,22).
For the Maxwell-Stefan diffusion coefficients, we use

the same expression obtained from the classical kinetic
theory of gases [20],

Dmn = Dnm =
3(Mm +Mn)

16pMmMn

(kBT )2

Ω
(1,1)
mn

. (26)

The diffusion coefficients are usually taken as constant
at a given reference pressure and temperature since the
pressure variation is not significant. In practice, the
transport coefficients, pure viscosities and diffusion co-
efficients, can be set according to different strategies.
For instance, they can be directly chosen in lattice units
(as in Sec.V A and Sec.V B) depending a given dimen-
sionless number (Reynolds number, Péclet number, etc).
In some cases, experimental value are available (as in
Sec.V C), else the previous equations can be employed
(as in Sec.V D).

IV. SPECIES WITH DIFFERENT MOLECULAR
MASSES

In the standard lattice Boltzmann equation, the
pseudo (isothermal) speed of sound (cs) is fixed by the
lattice. For D2Q9 velocity set, cs is equal to c2s = 1/3 (in
lattice units for a reference temperature and molecular
mass) for all species which is not the case for mixture
of species having different molecular masses. Indeed, re-
calling that the partial pressure obeys the ideal gas law,
from the definition of the isothermal speed of sound of
a species (c2s,m = (∂pm∂ρm

)T ), one lies c2s,m = RT/Mm and

pm = ρmc
2
s,m, where R is the universal gas constant.

In order to account for the differences in the species
pseudo speed of sound, one can modify the equilibrium



distribution functions [30]. However, as shown by those
authors, the maximum molecular mass ratio is limited to
three. Furthermore, this approach adds some errors in
the viscous stress tensor which can be reduced by increas-
ing the velocity set from D2Q9 to D2Q13 [31]. Nonethe-
less, the molar mass ratio is still limited to three because
of stability issues, and expanding the number of velocities
makes the algorithm more complex and costly. Another
strategy is to set the pseudo speed of sound in terms of
the minimum molecular mass [30]. Thus, in one time
step, the lightest species streams exactly to the next lat-
tice point while the heavier species stream between the
original lattice point and the next one. Populations for
the heavier species are then interpolated to the next lat-
tice point. This process can simulate binary diffusion
with molar mass ratio up to nine before the accuracy de-
creases because of the interpolation that adds numerical
diffusion. This approach is very expensive. Indeed, it re-
quires the use of an interpolation scheme for each species
populations in each kinetic velocity directions (i.e. 8 in
D2Q9).

In the present study, a variable pseudo speed of sound
is introduced through a body force [32]. This strategy is
simple since neither interpolation, nor extended velocity
set, nor modified equilibrium is required. In particular,
Guo’s forcing scheme [26] is used and the forcing term is
calculated according to

FB,m = (1− βm)c2s∇ρm, (27)

where the gradient term is computed by means of a com-
pact scheme

∇ρm(x) =
1

c2s

∑
α

ωαeαρm(x + eα). (28)

The partial pressure then becomes

pm = βmc
2
sρm (29)

where βm = c2s,m/c
2
s is the ratio between the species and

the standard LBM pseudo speeds of sound. This forcing
strategy only changes the equation of state and the rela-
tion between the partial pressure and density is modified
according to the molecular mass of the species. This ap-
proach has also the advantage that the partial viscosity
(Eq. (11)) is always defined in terms of the standard
LBM pseudo speed of sound cs. In practice, we usu-
ally define a reference species n whose speed of sound
is the same as cs equal to 1/3 in lattice units (βn = 1,
pn = ρnc

2
s = ρnRT/Mn) and βm = Mn/Mm are then the

ratio of molecular masses (pm = ρmc
2
s,m = ρmc

2
sβm =

ρmRT/Mm).

V. NUMERICAL SIMULATIONS

In order to validate the proposed model, we present
four two-dimensional cases referred to as A, B, C, and

D. In case A, the forcing term approach is applied to the
free decay of a density wave. In case B, two species hav-
ing the same molecular mass diffuse in each other. These
two cases are selected to assess the numerical capabili-
ties of the proposed method and the results are validated
against analytical results. Then Loschmidt’s tube exper-
iment is reproduced in case C, which corresponds to the
diffusion of a ternary mixture with different molecular
masses. In case D, we simulate the interaction of two
multicomponent opposed jets. In all cases, the simula-
tion is initialized with the equilibrium distribution Eq.
(2).

A. Decay of a density wave

The accuracy of the forcing strategy to define the
species pseudo speed of sound is assessed by simulating
a single species flow corresponding to the decay of a free
density wave damped by a low viscosity as proposed by
Ref. [31]. By considering small perturbations of density
and velocity from the linearized Navier-Stokes equations,
the density and the velocity of the damped wave are given
by

ρ = ρ0 + δρ exp(wit) cos(kx− wrt), (30)

u =
δρ
k

exp(wit) [wr cos(kx− wrt)− wi sin(kx− wrt)]
(31)

We perform simulations assuming two-dimensional pe-
riodic domain (nx, ny). In order to compare our results
with the analytical solution, we introduce the equiva-
lent species pseudo speed of sound ce =

√
βcs and ν the

kinematic viscosity of the fluid, and set ρ0 = 1 (average
density), δρ = 10−3 (amplitude of the density perturba-
tion wave) and νk/ce = 10−2, k being the wave number
k = 2π/nx. In the harmonic decomposition, the disper-
sion relation yields a wave frequency that is split into a
real and an imaginary part:

w = wr + iwi, (32)

wr = ±kce
√

1− ν2k2/c2e, (33)

wi = −kce(νk/ce). (34)

Simulations are carried out for different domain sizes nx
at various speed of sound ratios β while keeping ny = 5
constant. As an example, we plot in Fig. 1 the temporal
evolution of ρ and u at nx/4 for β = 0.05, 1, 4.3 and
nx = 128. The dissipation error is undetectable and a
small dispersion error is only visible for β = 0.05.

The relative global error of the density and the velocity
field is defined in terms of the L2-norm

εφ =

√∑nx

i (φi − φanalytical,i)2∑nx

i φ2
analytical,i

, (35)

φ standing for either density or velocity. The results are
compared at non dimensional time ktce = 10 × 2π and
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FIG. 1. (a) Temporal evolution of ρ and u (b) at nx/4 for
β = 0.05, 1, 4.3 and nx = 128. Symbols and lines stand for
simulation results and analytical solutions from Eqs. (30-31),
respectively.

reported in Fig. 2 for various β and nx. The model is
found to be stable in the range 0.05 ≤ β ≤ 4.3, indicat-
ing that our model is able to simulate molar mass ratios
up to 86 with small errors on the density and velocity
depending on the size of the grid and on the value of β.
With the present strategy, the relative errors are lower
and the range of stable β values is greater in comparison
to the modifications of the equilibrium and the use of a
larger velocity set as proposed in Ref. [31]. In addition,
the present approach is also easier to implement compare
to the interpolation of distribution functions which can
be cumbersome to code in 3D, especially on the boundary
nodes.

B. Equimolar counter-diffusion

In this test case, we study the mixing between two
species of equal molecular masses for which the mass
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FIG. 2. (a) Relative errors of the density ερ and velocity εu
(b).

transfer occurs only by diffusion, and governing equa-
tions are

∂tρm = D∇2ρm, for m = 1, 2 (36)

A particular solution of Eq.(36) is

ρm (x, t) = ρ0 + (−1)mδρ exp(−k2Dt) sin(kx). (37)

We choose ρ0 = 1, δρ = 10−3, k = 2π/nx, and use a
two-dimensional periodic domain (nx = 200, ny = 5). As
an example, we plot in Fig. 3 the temporal evolution of
ρ2 for D = 10−2 and τ = 1 for both species. Numerical
results are indistinguishable from the analytical solution
Eq. (37).

For comparison, we have evaluated the error of the
diffusion coefficient at various D and relaxation times τ
(which is assumed to be the same for the two species).
The relative error ||Dnum − D||/D is reported in Fig. 4
where Dnum is computed at x = nx/4 by linear fit of
Eq. (37) and D is set using Eq. (7). The numerical
solution is in good agreement with the theoretical results
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FIG. 3. Evolution of ρ2 for τ = 1 and D = 10−2 at different
iterations. Symbols and lines stand for simulation results and
analytical solutions from Eq. (37), respectively.

for D < 0.1 and for all relaxation times. We note that the
relative error in density, ερ as defined in Eq. (35), is three
orders of magnitude smaller than the relative errors of
the diffusion coefficient. The figure shows a discrepancy
between the numerical and theoretical results for D >
0.1. Having kept constant the size of the domain for all
D’s, this discrepancy is likely to be ascribed to a loss of
spatial and temporal resolution. Nonetheless the relative
error of the diffusion coefficient is always less than 0.4%
for all τ ’s. Different sizes of domain are used (not show in
the present study) and we recover the classic second order
accuracy in space indicating that the forcing approach do
not deteriorate the accuracy of the LBM algorithm.
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FIG. 4. Relative errors of the diffusion coefficient.

C. Loschmidt’s tube

Having validated the ability of the method to simulate
the decay of a single species density wave (at various dif-
ferent molar masses), and the counter-diffusion of species
having equal molecular masses (at various diffusion co-
efficients), we simulate the Loschmidt’s tube experiment
[33]. The latter consists of the mixing of a ternary mix-
ture of gases having different molecular masses (argon,
methane, and hydrogen). For such a process, a diffu-
sion reversal is observed depending on the initial species
composition [34]. In particular, we have considered two
tubes of the same dimension filled with mixtures of dif-
ferent composition in the left and right tubes that are
joined at the beginning of the experiment. In the exper-
iment the left and right mean composition is measured
in time during the mixing. In the experimental appa-
ratus, the lengths of each tube is Lref/2 ≈ 0.405 and
the period of observation is approximately 1h. The ini-
tial molar fractions are given in Tab. I, and the other
physical parameters are summarized in Table II.

tube xAr xCH4 xH2

left (0 < x < Lref/2) 0.509− δ 2δ 0.491− δ
right (Lref/2 < x < Lref ) 0.485− δ 0.515− δ 2δ

TABLE I. Initial molar fractions, in our simulation we take
δ = 5× 10−4 (in the experiment, δ = 0).

Lref [m] 2
√

1/60π
p [Pa] 101325
T [K] 307.15

m Ar CH4 H2

Mm [g/mol] 39.948 16.0425 2.01588
DArm [mm2/s] − 21.57 83.35
DCH4m [mm2/s] 21.57 − 77.16
DH2m [mm2/s] 83.35 77.16 −
µ0,m [µPa/s] 22.83 11.35 9.18

TABLE II. Physical parameters of the experiment.

The simulation is carried out on a domain size of
(nx, ny) = (200, 25). Classical bounce-back rules are used
on the left and right boundaries, and periodic conditions
are applied on the top and bottom sides of the domain.

For computational purposes, we have rescaled the
Maxwell-Stefan diffusion coefficients by a factor 103, and
the partial viscosities have been computed imposing the
same species Schmidt numbers, which we define in terms
of the pure viscosity as in the experiment.

Figure 5 reports the evolution of the mean molar frac-
tions for the left and right tubes in non-dimensional time
units t∗ = t × DArCH4

/(Lref )2. The mean molar frac-
tions are in very good agreement with the experimental
data. As expected, initially argon diffuses in the same
direction of the concentration gradient contrary to the
behavior predicted by using Fick’s law. This reverse
diffusion occurs on a scale of approximately 0.04 non-



dimensional time units, and the concentration of argon
attains a plateau in both tubes in spite of the presence of
large concentration gradients. The other species do not
exhibit such diffusion barrier. At later times, Fick’s like
diffusion takes place. It is important to point out that
this complex diffusion dynamics can only be recovered by
the Maxwell-Stephan equations [35].
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FIG. 5. Comparison between simulation (lines) and experi-
mental data (symbols) extracted from Ref. [36]. Molar frac-
tion of argon, blue; molar fraction of methane, orange; molar
fraction of hydrogen, green. Solid lines and filled symbols, left
tube; dashed lines and unfilled symbols, right tube.

D. Opposed jets flow

The model is finally validated for a flow whose dy-
namics is dominated by a convection-diffusion compet-
ing mechanism. The test case that we investigate is the
same proposed by Ref. [12], which consists of two op-
posed jets of quaternary mixtures of gases having dif-
ferent initial concentrations (see Fig. 6 and Tab. III).
The domain size is (nx, ny) = (200, 400) and the widths
of the left and right incoming streams are the same and
equal to 0.4ny. At left and right boundaries, equilibrium
is assumed for the distribution functions and the veloc-
ity is set equal to zero. For the left and right incoming
streams, we assume that all species velocities are respec-
tively equal to UL = U0 and UR = −0.936U0 (as inferred
from Fig. 3 of Ref. [12]), and we chose U0 = 0.04. At the
top and bottom boundaries, the outer incoming distribu-
tion functions are extrapolated from the interior. The
transport coefficients are evaluated by means of Eqs (23-
26) at atmospheric pressure and temperature T = 300K.
The species kinetic constants needed to evaluate the Ω-
integrals are given in Table IV.

Figure 7 shows the distributions of the molar fractions
and the mixture mass velocity at the symmetry plane
(y = ny/2) and at steady state. The results are in close
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FIG. 6. Molar fraction and velocity streamline plot of H2O.

stream xH2 xN2 xO2 xH2O

left 0.10 0.85− δ 0 + δ 0.05
right 0 + δ 0.9− 2δ 0.10 0 + δ

TABLE III. Initial molar fractions, in our simulation we take
δ = 10−5 (in the experiment, δ = 0).

agreement with Ref. [12] where the CHEMKIN pack-
age is used to calculate the transport coefficients and
mixture-averaged diffusion coefficients are employed for
each species. Despite of using a simplifying mixture-
average diffusion, the results are similar since the multi-
components diffusion effects, which can not be captured
with this assumption, are not significant. In addition,
these transitory complex diffusion phenomena as in the
case of the Loschmidt’s tube experiment (Sec. V C)
would not be visible on this steady state comparison.
The figure 7 confirms that our model correctly predicts
the dynamics of the flow characterized by a competing
convection-diffusion mechanism.

m H2 N2 O2 H2O
Mm [g/mol] 2.01588 28.0134 31.9988 18.0153
εm/kB [K] 36.7 47.6 113. 775.
σm [nm] 0.2959 0.385 0.433 0.252

TABLE IV. Kinetic constants from Ref. [20].
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FIG. 7. Comparison between the present method (line) and
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VI. CONCLUSION

In the present paper, we derive, explain and validate
a lattice Boltzmann model for miscible gases. We show
that the mixing dynamics of multi-species mixtures can
be simulated by a forcing term in the lattice Boltzmann
algorithm (Eq. (7)) and the addition of a body force
to account for species having different molecular masses
(Eq. (27)). Furthermore, the model also relies on the
use of transport coefficients that are calculated by an ap-
proximation of the relations obtained from kinetic theory
(Eq. (23)).

The model is validated against analytical, experimen-
tal, and numerical results available in the literature. We
have shown that the model can accurately simulate the
decay of a density wave for a variety of pseudo speed of
sound corresponding to molar mass ratios up to 86. The
model adequately predict the diffusion process in binary
and ternary mixtures of gases as shown for the case of the
equimolar counter-diffusion and Loschmidt’s tube exper-
iment. Complex diffusion phenomena such as reverse dif-
fusion occur in ternary mixtures. These phenomena are
well observed in our model and the dynamics predicted
by the Maxwell-Stefan equations is correctly recovered.
The present model also adequately predicts the dynam-
ics of flows where convection and diffusion compete as in
the case of two opposed jets of mixtures.

Finally, one of the advantages of the forcing approach
is the easiness of implementation. Since collision is not
altered, the method that we propose can easily be intro-

duced in any other lattice Boltzmann algorithms in or-
der to take into account complex diffusion among species.
Upcoming applications of the present model will focus on
instabilities resulting from the transient mixing dynamics
in porous media.

Appendix A: Omega-integrals

We specify the expression of the Ω-integrals. We recall
that the interactions of a similar pair of molecules can be
approximated by the Lennard-Jones potential.

ϕ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(A1)

where r is the distance between the molecules, σ the col-
lision diameter, and ε the depth of the potential well. For
a dissimilar (m,n) pair of molecules , we use the following
standard mixing rules:

σmn = (σm + σn)/2, (A2)

εmn =
√
εmεn, (A3)

1

ψmn
=

1

Mm
+

1

Mn
. (A4)

Unlike the rigid sphere model, the Lennard-Jones po-
tential is a physically realistic potential, and the Ω-
integrals can not be calculated analytically. However,
we compute the Ω-integrals for the rigid sphere and in-
troduce the Ω? ratio, which embodies the deviation of the
Ω-integrals between the Lennard-Jones and rigid sphere
potentials.

Ω?(i,j)mn = Ω(i,j)
mn /Ω

rs(i,j)
mn (A5)

with

Ωrs(i,j)mn =

√
kBT

2πψmn

(j + 1)!

2

[
1− 1

2

1 + (−1)i

1 + i

]
π(σmn)2.

(A6)

Ω
?(i,j)
mn depends only on T ? = TkB/εmn and its value is

obtained from a fitted curve computed from a numerical
integration [21]. For more details about the potentials,
we invite the reader to read the Chapter 8 of Ref. [20].

Despite the derivation is only rigorously correct for di-
lute gases, we could to a certain extend, apply these re-
sults to liquids and dense gases by means of the Eyring
and Enskog theories, respectively.
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