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Coordinate-transformation-inspired optical devices have been mostly examined in the continuous-
wave regime: the performance of an invisibility cloak, which has been demonstrated for monochro-
matic excitation, would inevitably deteriorate for short pulses. Here we investigate pulse dynamics of
flexural waves propagating in transformed plates. We propose a practical realization of a waveshifter
and a rotator for flexural waves based on the coordinate transformation method. Time-resolved
measurements reveal how our waveshifter deviates a short pulse from its initial trajectory, with no
reflection at the bend and no spatial and temporal distortion of the pulse. An invisible cloak for
flexural waves is proposed based on this elementary transformed device. Extending our strategy to
cylindrical coordinates, we design a perfectly invisible wave rotator. We demonstrate experimentally
how a pulsed plane wave is twisted inside the rotator, while its wavefront is recovered behind the
rotator and the pulse shape is preserved, with no extra time delay. We propose the realization of
the dynamical mirage effect, where an obstacle is seen to be oriented in a deceptive direction.

In two independent proposals, Pendry et al. [1] and
Leonhardt [2] showed that a transformation of coor-
dinates can map a particular distortion of the elec-
tromagnetic field onto a change of material proper-
ties -inhomogeneous and anisotropic-, unveiling unlim-
ited possibilities for the design of metamaterials with
new functionalities to control the flow of light. This
new concept was originally proposed to design an in-
visibility cloak that was first validated for electromag-
netic waves [3] and thereafter extended to other types
of waves including acoustic [4], hydrodynamics [5] and
water waves [6]. In all these cases, the governing equa-
tions are form invariant. When one moves to the area of
elastic waves however, the elasticity equations are not
form-invariant under a general coordinate transforma-
tion [7, 8]. Consequently, if cloaking exists for such a
class of waves, it would be of a different nature than its
acoustic and electromagnetic counterparts. Researchers
resort to studying the special case of flexural waves in
thin plates, which are described by the the fourth or-
der Kirchhoff-Love equation. Over the past ten years,
there have been various theoretical proposals to the de-
sign of elastic invisibility cloaks for flexural wave [9–
14], followed by their experimental validations [15–20].
However, experimental investigations of cloaking have
been mostly restricted to continuous-wave (CW) exci-
tation [3, 15, 16, 21–23]. Cloak invisibility to short
pulses has been rarely tested [22, 24], since these inhomo-
geneous, magnetic, and anisotropic metamaterial struc-
tures are subject to inherent frequency dispersion, which
inevitably distorts the pulse both in space and time and
makes its reconstruction challenging [25, 26]. Broadband
cloaking has been realized in various systems, including
acoustic [23], elastic [15, 16], and water waves [6]. But
achieving broad spectral range operation does not guar-
antee that a pulse propagating through the transformed

medium will remain undistorted.

The coordinate transformation used in the design of
electromagnetic cloaks with cylindrical geometry leads
to a gradient distribution of permittivity and permeabil-
ity, which necessitates engineering the magnetic response
of materials hardly available in the optical range [1, 3].
To solve this issue, a reduced set of parameters has been
proposed, which provides with non-magnetic structures,
while preserving the cloaking performances, but which
suffers from reflection and scattering due to impedance
mismatch at the outer boundary [21]. Another approach
to avoid magnetic materials and preserve the invisibility
of the device itself is to maintain the determinant of the
Jacobian transformation tensor at unity, therefore pre-
serving the volumes throughout the space [27–30]. Com-
pared to cylindrical cloaking, this so-called non-magnetic
geometrical transformation is continuous i.e. adiabatic
[31]. The space is not abruptly stretched or compressed
and the topology is conserved during the transformation
process [32], ensuring perfect impedance matching at the
boundaries. This volume-preserving method has never
been considered for elastic waves, where it could meet the
challenge of designing intrinsically reflection-less elastic
devices. [15–17].

Transformation optics actually has not been limited to
the design of invisibility cloaks but has led to the de-
velopment of novel wave-manipulation devices [32–35].
Among them, the waveshifter, the building-block of fun-
damental steering optical components such as the wave
splitter, and the rotator, an invisible device capable of
twisting and restoring waves, creating at the same time
a mirage effect [36], have been proposed to control elec-
tromagnetic waves [34], as well as scalar acoustic waves
[37, 38], water waves [39, 40] or hydrodynamic flows [41].
Surprisingly, these new classes of devices have never been
considered for elastic waves.
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In this article, we adapt the non-magnetic geometri-
cal transformation to elastic waves and call on for its
continuous and volume preserving character to design a
reflection-less waveshifter and an invisible wave rotator
for flexural waves. Here, we investigate the pulse dy-
namics of flexural waves propagating inside a 3D-printed
transformed plate by mapping the spatio-temporal field
distribution in response to a short pulse excitation. The
elastic pulse is shown to perfectly follow the 20◦ bent of
the waveshifter with minor back reflections at the bent
and negligible spatial and temporal dispersion of the in-
cident short pulse. A modal analysis shows how higher
modes of the bent waveguide are prevented from being
excited. We illustrate the importance of such a trans-
formed device by using it as the building block of a truly
invisibility cloak for elastic pulses. The elastic wave rota-
tor is designed following the same strategy. Most remark-
ably, a short pulse plane-wave excitation is shown to be
restored, after experiencing a 30◦ twist within the rota-
tor. The pulse is shown to cross the device with no extra
time delay, as if it propagated through “free space”. To
the best of our knowledge, this has never been observed
before in the context of elastic waves, and never in the
time domain with electromagnetic waves [34], acoustic
waves [37, 38], water waves [39, 40] or hydrodynamic
flow [41]. Three dimensional full-elasticity simulations
support our experimental observations. Finally, this ro-
tator is proposed to demonstrate the mirage effect with
elastic waves, where a scattering object is seen to radiate
from a deceptive direction.

In the limit of plate thickness much smaller than the
wavelength, the phase velocity c of flexural waves can
be described within the KirchhoffLove plate theory as

c =
√

Dω
ρh , where D = Eh3

12(1−ν2) is the flexural rigidity

of the plate, ρ its mass density, h its thickness and E
its Young’s modulus, ω being the angular frequency. By
analogy with layered anisotropic electromagnetic media
[31], anisotropic phase velocity for flexural waves can be
achieved by alternating layers of materials with different
elastic properties. A possible approach is to vary the
Young’s modulus or the density of the successive mate-
rials, as successfully demonstrated by the group of We-
gener [15]. But from a practical point of view, varying
the thickness of the plate, rather than modifying its in-
trinsic elastic parameters, turns out to be a much simpler
strategy to introduce anisotropy. This approach has been
validated for adiabatically varying thickness, e.g. for the
design of elastic lenses [42–44]. Here, we demonstrate
that, in contrast to an adiabatically varying thickness,
a periodic change of plate thickness on a subwavelength
scale can be utilized to design effective anisotropic meta-
materials for flexural waves. A significant advantage in
terms of realization is that a single material is required
and that the subwavelength structuration is easily imple-
mented by surface machining, or more conveniently and
elegantly, by 3D printing, a technique now readily avail-
able for many types of materials, including ceramics and
metals. Here we illustrate our novel approach with the

design of a waveshifter.
Consider a walker progressing along a horizontal path.

Further consider the space transformation which trans-
forms this flat path into a staircase. The walker now finds
himself going upstairs, at an angle θ with the horizontal
axis, while maintaining an upright position, as if noth-
ing had changed for him (see illustration in Fig. 1(a)).
To describe the associated coordinate transformation, we
consider the mapping which transforms a point (X,Y )
in the virtual space (the flat path) into a point (x, y) of
the oblique region in the real space (the staircase). This
change of coordinates can be expressed as:

{
x = X

y = X tan θ + Y
, (1)

where θ is the steering angle.
The Jacobian Matrix of the above geometrical transfor-
mation is

F =

(
1 0
t 1

)
, (2)

where t = tan θ. For a given angle θ, F is independent
of space coordinates. Note also that the determinant is
unity, J =| detF |= 1, so that the transformation we
have defined preserves the area throughout space.

Based on geometrical transformation method, map-
ping of coordinates from the homogeneous virtual space
to the real space, results in a change of material parame-
ters in the transformed wave equations. In the tracks of
[9, 14], the transformed Kirchhoff-Love equation results
in an anisotropic flexural rigidity of the form

D = D0FF
TFFTJ−2. (3)

The flexural rigidity becomes tensorial and accounts now
for the anisotropy of the transformed medium. In con-
trast to elastic cloak where it varies radially [15, 16], the
rigidity tensor in our case is independent of the space co-
ordinates. The mass density itself, ρ = ρ0J

−2 = ρ0, re-
mains unaffected by this coordinate transformation. This
greatly simplifies its implementation in an actual device,
as we proceed to explain.

A medium with this particular anisotropic rigidity
D can then be realized with a simple subwavelength
structure by invoking effective medium theory. Here
we propose to approximate the homogeneous anisotropic
medium by a bi-layered structure consisting of an alter-
nation of two materials with identical widths but different
flexural rigidities Da and Db. The normal to the layered
structure defines the direction of anisotropy. If in addi-
tion this direction makes an angle α with the direction
of propagation, the effective rigidity tensor is then given
by

Doblique = RTα

[
D‖ 0
0 D⊥

]
Rα, (4)
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FIG. 1. Dynamics of pulse propagation in the waveshifter. (a) Sketch of the coordinate mapping from a horizontal
waveguide in virtual space (X,Y) to an oblique waveguide in the real space (x, y). (b) Top view of the waveshifter: the
waveguide is a 100 mm-long, 10 mm-wide 3D-printed ceramic plate, with a bending angle θ = 20◦. Thickness is h0= 0.5 mm
for the left arm. The corrugation in the right arm (period 2 mm) alternates thicknesses ha= 0.785 mm and hb= 0.318mm, and
form an angle α = 40◦ with the waveguide axis. A piezoelectric diaphragm is attached to the left end of the waveguide. (c)
Experiment: Snapshots of the out-of-plane velocity field in response to a Ricker pulse (see Appendix A) with central frequency
20 kHz, measured at times 0.065 ms (top), 0.115 ms (middle), and 0.165 ms (bottom). The red dashed line outlines the physical
limit of the structure. (d) Full-3D numerical simulations: Snapshots of the out-of-plane velocity field calculated at same times
as (c), using Finite Element Method in Comsol Multiphysics. (e) Experiment: Pulse profile measured at two spatial positions,
before and after the bend, marked in (b) by black and red dots, respectively. (Top) Actual measurement showing the time
delay accumulated during propagation. (Bottom) The transmitted pulse (red) has been time-shifted to show the coincidence
with the incident pulse (black). (f) Numerical simulations: Pulse profiles calculated at same positions as in (e). (Top) and
(Bottom) same as in (e). The dashed red line is the pulse profile after propagation in a straight plain waveguide (no bend and
no corrugation). The perfect overlap between the 2 red curves demonstrates that the residual deformation of the pulse is solely
due to the natural dispersion of flexural waves is thin plates.

with D‖ = 2DaDb/(Da + Db), D⊥ = (Da + Db)/2 and

Rα =

[
cosα − sinα
sinα cosα

]
the conventional rotation matrix.

Identifying Eq. (3) and Eq. (4), we obtain the rigidity
profile for the transformed region, and a general expres-
sion for the angle α, Da and Db, in terms of parameter

t = tan θ:
t = 2 cot (2α)

Da/D0 = cot4(α) +
√
−1 + cot8 (α)

Db/D0 = cot4(α)−
√
−1 + cot8 (α)

, (5)

Keeping all elastic parameters constant, the rigidity
for each layer, Da and Db, is easily implemented by ad-
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FIG. 2. Modal content before and after the bend. (a) Experimentally measured out-of-plane velocity field at two
different frequencies 16kHz (left column), and 20kHz (right column); (b) Corresponding numerical results; (c) For comparison,
the numerical simulations are shown for an empty bent waveguide (no metamaterial structure).

justing the thickness, ha and hb, of the plate at each
layer, following the definition of D [16, 42–44]. We refer
to Fig. S1 in [Supplementary Information] for required
plate rigidity and thickness in each layer depending upon
the deviation angle θ. Opting for a variation of rigidity
single material can therefore be used, making 3D-printing
particularly well-suited to structure the plate and to de-
sign the transformed device, provided the angle θ is not
too large: The contrast in layers’ thicknesses increases
steeply when θ is above 40◦. We find that θ = 20◦ is
a good trade-off between easiness in 3D printing and a
marked cloaking effect.

Following our method, we design a waveguide with to-
tal length L=100 mm, width W=10 mm, and a deviation
angle θ=20◦, as shown in Fig. 1(b). In the left section
of the waveguide, plate thickness is h0=0.5 mm, while
the bent (right) section is corrugated at an angle α=40◦

with respect to the waveguide axis, as calculated from
Eq. (5) and shown in Fig. 1(b). The period of the
square corrugation is 2 mm, with alternating plate thick-
nesses ha=0.785 mm and hb=0.318 mm, to be compared
with the wavelength, λ=18.7 mm at 16 kHz. We chose
deliberately to design our waveshifter in a waveguide ge-
ometry (rather than “free space” propagation) in order to
investigate the modal coupling at the bend while the en-
ergy flow is steered in the oblique direction, as this will
be discussed later. Figure 1(b) depicts the waveshifter
device, 3D-printed in Zirconium dioxyde ceramic. To in-
vestigate the pulse dynamics along the bent waveguide,
we examine its temporal response to a Ricker pulse (see
definition in appendix A) centered at 20 kHz, launched
from its left section. A laser vibrometer is used to map
the spatio-temporal evolution of the elastic field along

the waveguide. The experimental setup is described in
full details in Appendix A. In Fig. 1(c), we present snap-
shots of the velocity field distribution at three different
times. The pulse is seen to propagate smoothly without
deformation along the waveguide while it is deflected,
with almost no reflection at the waveguide bend. Most
striking, the wavefront remains vertical, in the same di-
rection as the incident wave, like the walker in Fig. 1(a).
This is the main feature expected from the waveshifter:
The anisotropic section of the waveguide as we designed it
maintains perfectly the initial wavefront direction, giving
the illusion that the wave comes from the same direction,
although its energy has been deviated. This perfectly re-
alizes the mapping of Fig. 1(a). The experiment is suc-
cessfully compared against time-domain full-3D elastic
wave simulations, as shown in Fig. 1(d). The complete
movie of the pulse propagation is available in [Supple-
mentary Information].

The investigation of the pulse dynamics reveals how-
ever a new remarkable feature of the waveshifter: that
spatial and temporal dispersion of the pulse is negligible
during propagation and deflection. To demonstrate it,
we measure the pulse profile before and after the bend,
at positions indicated by black and red dots in Fig. 1(b).
Figure 1(e) shows the pulse before (top) and after (bot-
tom) time-shifting the transmitted pulse (red). We find
that the two signals almost perfectly overlap. Surpris-
ingly, the coincidence between the two signals turns out
to be even better in the experiment than in the numer-
ical simulations shown in Fig. 1(f). Actually, the small
residual temporal deformation observed in Fig. 1(e) and
1(f) is solely due to the natural dispersion of the flexural
waves during propagation. This is demonstrated in Fig.
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1(f), where a comparison is made with a pulse propa-
gating through an empty straight waveguide (red dashed
line). If a time delay exists between “free” propagation
and propagation in the waveshifter (top), the two pulses
perfectly overlap (bottom), showing that there is no pulse
distortion due to the transformed device.

We now investigate the waveshifter in the spectral do-
main. To do so, the time response to a chirp signal
between 10 kHz and 30 kHz is Fourier transformed to
recover the spectral response. Figure 2(a) shows the
real part of the out-of-plane velocity wavefield along
the waveshifter, measured at two different frequencies,
16 kHz and 20 kHz. The experiment is compared to
full-3D simulations at same frequencies for the same
waveshifter (Fig. 2(b)), as well as for a uniform bent
waveguide without the transformed medium (Fig. 2(c)).
The 0th-order even mode of the waveguide efficiently
converts into a new slanted “0th-order” mode of the
anisotropic waveguide, with the wavefront oriented in the
same direction as the incident mode. This is in stark
contrast to the simulations performed in the bent waveg-
uide without corrugation (Fig. 2(c)), where the incident
mode converts into a combination of even and odd higher-
order waveguide modes, and any information on the ini-
tial wavefront is lost. We refer to Figs. S2 & S3 in
[Supplementary Information] for simulations of dynam-
ics of pulse propagation in the waveshifter for different
bending angles θ.

To better quantify the efficiency of the mode conver-
sion in our waveguide shifter, we carry out a modal analy-
sis of the measured and simulated fields inside the waveg-
uide, before and after the bend [39]. The modal decom-
position is performed in the virtual space (X,Y ):

η(X,Y ) =

n∑
i=0

ηi(X)ψi(Y ), (6)

where ηi(X) =
∫ +W/2

−W/2 η(X,Y )ψi(Y )dY refers to the in-

tegration across the width W of the waveguide of the
ith-order transverse component, ψi(Y ). The first orders,
even and odd, transverse modes are calculated in Ap-
pendix B for free boundary conditions and shown in Fig.
3(a). Before the bend, we simply have (X = x, Y = y).
After the bend, the field η(X,Y ) is interpolated on a
grid (X,Y ), using the inverse geometrical transformation
X = x and Y = y − x tan θ.

Fig. 3(b) and 3(c) show the measured and calculated
first even and odd modes at f=16 kHz. Results confirm
the efficiency of the energy transfer. The modal content
of the incident signal, which is essentially the 0th-order
even transverse mode, is perfectly preserved after deflec-
tion by the bent. This mode translates in the real space
into the slanted mode seen in Fig. 2(c) with k-vector
in the forward direction, x, but energy flow along the
bent waveguide. Note that the scale for measured odd
modes is 20 times smaller than that for even modes. Af-
ter the bend, the conversion from incident mode to first
odd mode due to the asymmetry of the designed struc-

ture, remains negligible. This contrasts with the empty
waveguide (Fig. 3(d)) where the sharp change of direction
couples the excitation to higher modes: the magnitude
of first-order odd mode becomes comparable to that of
mode 0 (Fig. 3(d)). This demonstrate the efficiency of
our design, which deflects the 0th-order even mode into a
slanted 0th-order mode, preserving the wavefront direc-
tion while preventing higher modes from being excited.

The waveshifter is an interesting device which can be
used as the building block of a variety of new functional
components, including wave splitters, combiners and in-
visibility cloak [32]. This is illustrated here with a cloak-
ing device based on 4 waveshifters, arranged in a sym-
metric way around a diamond-shaped hole (see Fig. 4).
Such a cloaking device has been proposed in [31] for CW
lightwaves and is demonstrated here for pulsed elastic
waves. We use the parameters calculated earlier, θ, ha,
hb, h0, and α, but instead of limiting the transformed
region to a waveguide geometry, we simulate an incident
pulse (Ricker pulse centered at 20 kHz) with a 160 mm-
wide Gaussian wavefront propagating in a wide corru-
gated area around the diamond-shaped hole. Figure 4
compares the field distribution of the vertical elastic ve-
locity resulting from the scattering by a bare hole with
free boundaries without and with the cloaking device,
at three different time steps. The Gaussian wavefront
splits as it hits the hole and the wavefront rapidly breaks
apart. With the cloak however, the wavefront is main-
tained while following the edges of the obstacle and re-
combines after the hole. Beyond the hole, the initial
Gaussian profile is restored. In addition to the cloaking
effect, the cloak itself is invisible, with negligible back
reflection. We checked that the temporal elongation of
the pulse is solely due to flexural waves dispersion, as it
would occur naturally in a plain plate without the obsta-
cle.

This cloaking effect is however restricted by construc-
tion to a single direction of incidence. Here, we pro-
pose to design an isotropically invisible device, the so-
called wave rotator, by transposing the concept of the
waveshifter from the Cartesian coordinate system to the
polar coordinate system. By analogy with Eq. (1), we
define the following transformation{

r = R

θ = ϑ0f(R) + ϑ
, (7)

where f(R) is an arbitrary continuous function and ϑ0
the rotating angle of the device. Instead of the trans-
lation at fixed angle θ achieved by the waveshifter (Fig.
1a), this new coordinate transform rotates by an angle
ϑ0 the wavefront incident from any direction, as it pen-
etrates an annular region a ≤ r ≤ b. When the wave
exits the annulus, the rotation effect is reversed and the
wavefront direction is restored. A necessary condition on
f(R) is therefore f(b) = 0 and f(a) = 1. To push the
analogy with the waveshifter a step further and allow a
direct transposition of the design method proposed ear-
lier, we assume that the Jacobian matrix associated with
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FIG. 3. Modal analysis before and after the bend at frequency 16 kHz. (a) Mode profiles (y-dependence) of the
first two even (left panel) and odd (right panel) flexural eigenmodes. Black and red colors correspond to the 0th and 2nd even
modes, while cyan and magenta correspond to the 1st and 3rd odd modes. Modal components ηi(X) (i = 0, 1, 2, 3) along the
waveguide, before and after the bent (X = 0), (b) for measured results, (c) for numerical simulations and (d) for the empty bent
waveguide without corrugations. The left panels describe even modes, while the right panels are for the odd modes. (Black)
zeroth-order modes; (red) second-order modes; (cyan) first-order modes; (magenta) third-order modes; Each row is normalized
with the maximum amplitude of the 0th-order even mode, η0(X). Note the magnified (×20) vertical axis for odd modes in
right panel (b).

this new coordinate transform has the same form as in
Eq. (2), but defined this time in polar coordinate system:

F =

(
∂r
∂R

1
R
∂r
∂ϑ

−R ∂θ
∂R

∂θ
∂ϑ

)
=

(
1 0
t′ 1

)
(8)

where t′ is a constant to be defined. A necessary condi-
tion to satisfy this equality is

−R ∂θ

∂R
= t′. (9)

From this condition, we obtain{
f(R) = ln(b/R)

ln(b/a)

t′ = ϑ0

ln(b/a)

(10)

For given rotating angle ϑ0 and radii a and b, the Ja-
cobian matrix F is constant, independent of space coor-
dinates and its determinant is unity so that the trans-
formation preserves the volumes. Under these condi-
tions, the change of material parameters which realizes

the distortion of the wave of Eq. (7), is obtained by fol-
lowing step by step the procedure proposed to design
the waveshifter. The rigidity tensor D is again given
by Eq. (3), while the mass density remains unchanged
ρ = ρ0. The anisotropy is introduced in the same way, by
alternating layers with different flexural rigidities. The
angle α formed by these layers with the local polar frame
is constant, as it was with the tilted Cartesian frame of
the waveshifter. By definition, the curve defined in polar
coordinate by a constant tangential angle α is a logarith-
mic spiral, r = a.ek(θ−β), with k = − tanα, and β is an
arbitrary initial angle for r = a. The angle α is given by
Eq. (5), where t must be replaced by t′ = ϑ0

ln(b/a) . The

subwavelength anisotropic structure is realized by choos-
ing N = 24 initial angles

β = 0,
2π

N
, ...(N − 1)

2π

N
, (11)

which defines N logarithmic spirals. Regions between 2



7

FIG. 4. Cloaking flexural waves with 4 waveshifters.
Full-3D elastic-wave transient simulations of elastic field dis-
tribution resulting from the propagation of a pulsed plane
wave (Ricker pulse centered at 20 kHz) with 160 mm-wide
Gaussian transverse profile, at times t=0.15 ms, t=0.25 ms,
t=0.38 ms. (left panel) Bare diamond-shaped hole; (right
panel) diamond cloak. The cloak is composed of 4 corrugated
regions around a diamond-shaped hole with θ=20◦, as defined
in the figure. Geometric parameters of the corrugated region
1 are identical to those of the waveshifter of Fig. 1. Region 3
is the mirror image of Region 1 with respect with the horizon-
tal axis. Regions 2 and 4 are mirror images of Region 1 and
3 with respect to the vertical axis. One notes that scattering
off the hole is nearly suppressed by the corrugated regions
at time step t = 0.38ms: The cloak flattens the concentric
wavefronts emanating from the hole. See Fig. S4 in [Sup-
plementary Information] for same simulations performed for
holes and diamond-shape cloaked holes with larger θ.

successive spirals define regions with alternating flexural
rigidities Da and Db, as defined in Eq. (5). Following the
method used for the design of the waveshifter, this is im-
plemented practically by varying the thicknesses ha and
hb of the plate in these regions. The resulting structure
is similar to [16, 42–44].

The rotator has been 3D-printed on a stiff photo-resin
in a 18 cm × 18 cm square plate with thickness h0=1 mm.

The inner and outer radius for the rotating annulus are
a= 15 mm and b= 30 mm, respectively. A close-up on
the rotator (Fig. 5(b)) shows the spiral-like corrugation
with alternating thicknesses ha=2 mm and hb=0.5 mm.
We propagate a short pulsed plane wave (Ricker pulse
centered at 4kHz) across the rotating device. Figure 5(c)
presents successive snapshots of the wavefield vertical ve-
locity at three different times, while a complete movie is
available in [Supplementary Information]. This shows
clearly how the incident wave acquires a 30◦ anticlock-
wise twist as it penetrates the rotator. As it exits the
device, the wavefront is rapidly restored after about one
wavelength and the plane wave continues its journey as if
nothing happened. Note that this illusion of total invis-
ibility is also achieved in the backward direction where
almost no perceptible energy is being scattered. Besides,
rotational symmetry ensures that invisibility is achieved
from any direction the device is looked at. Full-3D time-
domain simulations confirms this behavior (Fig. 5(d)).
Actually, not only the wavefront is preserved but the tem-
poral shape of the pulse does not experience any spatial
or temporal distortion. This is demonstrated in Fig. 5(e)
and 5(f) where we compare the temporal pulse profile
measured at three different positions, on both sides and
inside the rotator, as marked by the colored dots in Fig.
5(a). By time-shifting the peaks, we show good temporal
overlap for the experiment and excellent coincidence for
the numerical simulations: the pulse profile has been pre-
served. Even more striking, we found that no phase de-
lay is accumulated during propagation across the rotating
device. This is shown by comparing the pulse after cross-
ing the rotator (full red line) to a pulse measured at the
same position in a plain plate without the rotator device
(dashed red line). The perfect overlap of the two time
signals demonstrates that cloaking provided by the rota-
tor is perfect. This is in stark contrast with other cloaks
based on resonant dispersive structures, where pulse ex-
periments would inevitably disclose the presence of the
device [25].

Actually, the wave rotator is not a cloaking device as
it can not hide an object. It presents however the sur-
prising ability to create a mirage effect, by giving the
illusion that the object inside the device is located in a
deceptive position. This is tested numerically here for
flexural waves in the time domain, based on the pro-
posed design. We clamp a rectangular obstacle at an an-
gle θ = 30◦ with respect to the wavefront of the incident
pulsed plane wave. The field distribution of the flexural
mode is recorded at different times, as shown in Fig. 6(a).
The tilted obstacle preferentially reflects back the elastic
field at an angle −2θ. When the rotator is added around
the obstacle, the field is now backscattered horizontally,
as if the rectangular object was perfectly aligned with
the incident wavefront (Fig. 6(b)). This is confirmed by
comparing the field reflected by the tilted obstacle in the
presence of the cloak (Fig. 6(b)) and the field reflected
by the obstacle in a vertical position without the cloak
(Fig. 6(c)), which shows the same spatial distribution. A
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FIG. 5. Dynamics of pulse propagation in the rotator. (a) Top view and (b) magnified view of the 3D-printed rotator of
uniform plate thickness h0=1 mm inside and outside the rotating annulus (inner radius a=15 mm, outer radius b=30 mm. The
ring consists of spiraled corrugations of alternate heights ha=2 mm and hb=0.5 mm. (c) Experiment: Snapshots at time t=
0.4 ms (left), 0.55 ms (middle), and 0.65 ms (right) of the measured out-of-plane velocity field, which shows the plane wavefront
of the Ricker pulse propagating before (left), during (middle) and after (right) the rotator swing. The red dashed-circles outline
the interior and exterior boundaries of the rotator. (d) Numerical simulations. (e) Experiment: temporal velocities at three
spatial positions before, inside and after the rotator, marked by colored dots in (a). The red and blue curves in the lower panel
are time-shifted to bring the three peaks in coincidence. (f) Same as (e) for numerical simulation: rotator plate (solid lines)
and plain plate (dashed lines).

more quantitative analysis is proposed in Fig. 7 by com-
paring the scattering diagrams at time step 1.3 ms and
at a distance of 60 mm from the center of the rectan-
gular scatterer. Good overlap is found in the backward
direction (0◦) of the scattered-field distributions induced
by the bare vertical scatterer (blue line) and the cloaked
tilted scatterer (blue) , while in contrast, the bare tilted
scatterer reflects the wave at −2θ = −60◦. One can say
that the object has deceitfully been straightened in ver-
tical position by the rotator, with the impression for a
distant observer that scattered light comes from an un-
expected direction.

In conclusion, we have shown that coordinate trans-
formation can be adapted to design new devices for flex-
ural waves. This leads us to an interesting strategy for
the design of transformed elastic devices. We proposed
and successfully tested experimentally a waveshifter and
a wave rotator. To shape the anisotropic transformed

space, we have taken the option to carefully engineer a
single material by corrugating the surface of the plate
on a subwavelength scale, a design well-suited for practi-
cal realization. The magic of the coordinate transforma-
tion manifests itself in the simply-designed reflectionless
waveshifter, where the 0th-order elastic mode maintains
the direction of its wavefront beyond the bend, while
its energy flow is deviated in a different direction. We
demonstrate that both devices work for short pulses, with
virtually no spatial or temporal dispersion. The rota-
tor turns out to be a truly transparent device since the
phase delay accumulated across the device is the same as
it would be in free space. To the best of our knowledge,
this has never been observed, with supposedly invisible
devices. The usefulness of analogies with flexural waves
in plates, but also with wave optics and water waves for
the control of surface seismic waves was pointed out in
[45]. We believe that our design approach can offer an
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FIG. 6. Dynamic mirage effect in transient regime. Full 3D elastic-wave simulations showing the propagation across
the wave rotator of a flexural plane wave (Ricker pulse centered at 4 kHz) launched from left edge. (a) Homogeneous plate
with a clamped rectangular scatter tilted at 30◦ with respect to the wavefront of the incident plane wave; (b) Plate with the
transformed rotator enclosing the same tilted scatter; (c) Plate with a scatter in vertical position with no rotator.

interesting route to the control of e.g. surface Rayleigh
waves in soils, structured in a similar fashion, using an al-
ternation of trenches and walls, in order to control quakes
in the time domain.
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Appendix A: Experimental setup

A 3D-printer based on nanoparticle jetting technol-
ogy (Xjet, Carmel 1400) has been used to fabricate the
waveshifter waveguide of Fig. 1a. The device was printed
on zirconia (ZrO2), a ceramic with the following elastic
parameters: Young’s modulus E=207 GPa, mass density
ρ=6040 kg/m3 and Poisson’s ratio ν = 0.32. A piezoelec-
tric diaphragm (Murata 7BB-12-9) located on the flat
arm of the waveguide is used to excite the fundamental

mode of the waveguide. Both ends of the waveguide are
covered with blu-tack on both sides to reduce reflections.

The rotator was manufactured using PolyJet (Strata-
sys Objet 24), a technology based on photo-polymer 3D
printing. Here we used Vero PureWhite RGD837, a stiff
resin with Young’s Modulus E= 2.5GPa, mass density
ρ= 1180 kg/m3 and Poisson’s ratio ν = 0.25. Eigh-
teen piezoelectric diaphragms (Murata 7BB-12-9) were
bonded along one edge of the 180 cm × 180 cm square
plate. All transducers are excited simultaneously with
the same signal to generate a plane wave. Blu-tack was
also used to reduce reflection at the edge on the plate.
In both cases, a Ricker pulse was generated at each
transducer by an arbitrary function generator (Agilent
33220A) with the addition of a high-voltage amplifier. A
laser vibrometer (Polytec sensor head OFV534, controller
OFV2500) was scanned on the flat surface of the device
to measure the spatio-temporal velocity field of the flex-
ural waves (1mm step grid for the waveshifter and 2 mm
step grid for the wave rotator). The images are processed
using a Hampel filter and a cubic interpolation.

We recall that a Ricker pulse is the second derivative
of a Gaussian function and is defined in the time domain
by:

A =
[
1− 2π2f0

2(t− 1/f0)2
]
e−π

2f0
2(t−1/f0)2 . (A1)

Note that this zero-mean symmetric pulse is solely de-
fined by a single parameter, its most energetic frequency
f0.
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FIG. 7. Scattering diagram of the mirage effect.
Scattered-field angular distribution calculated from Fig. 6 at
time step 1.3ms and at a distance of 60 mm from the cen-
ter of the scatterer for (blue line) the bare vertical scatterer;
(red line) the cloaked scatterer tilted at 30◦ with respect to
the wavefront of the incident plane wave; and (black line) the
bare tilted scatterer. 0◦ represents the backward direction.

Appendix B: Numerical simulations

All 3D full-wave simulations were conducted with the
Solid Mechanic Module of the finite element software
COMSOL Multiphysics 5.3. Low-reflection boundary
were imposed in the frequency domain, on the left and
right ends of the waveshifter and rotator plate, and on
the outer boundaries of the cloaking plate. The largest
mesh-element was set to be smaller than one-tenth of
the lowest wavelength. A finer mesh was used where the
domain geometry changes abruptly.

Appendix C: Eigenmodes of the waveguide

Here we provide a short explanation on calculating
the flexural eigenmodes supported by homogeneous plate
with stress-free boundaries. The details can be found in
ref. [46]. As Kirchhoff-Love plate equation is of fourth
order, there exist two sets of modes at each frequency

w(e)(y) = A
[

cosh

(
χmW

2

)
cosh(χpy)

−
k2ν − χ2

p

k2ν − χ2
m

cosh

(
χpW

2

)
cosh(χmy)

]
(C1)

w(o)(y) = A
[

sinh

(
χmW

2

)
sinh(χpy)

−
k2ν − χ2

p

k2ν − χ2
m

sinh

(
χpW

2

)
sinh(χmy)

]
(C2)

Where χp =
√
k2 +K2, χm =

√
k2 −K2, K2 =

ω
√
ρh/D, and A is a normalization constant such that∫W/2

−W/2 dy | w
(o,e)(y) |2= 1. The dispersion relations ω(k)

can be derived by solving the following transcendental
equations

[
K2 + (1− ν)k2

]2
χm tanh (χmW/2)

=
[
K2 − (1− ν)k2

]2
χp tanh (χpW/2) (C3)

for even modes, and

[
K2 + (1− ν)k2

]2
χm coth (χmW/2)

=
[
K2 − (1− ν)k2

]2
χp coth (χpW/2) (C4)

for odd modes.

It yields the wavenumber k
(o,e)
i associated to each

mode w(o,e) at frequency ω. The y-dependence of the
first two even and odd eigenmodes is shown in Fig. 3(a).
The mode profile of first even mode (mode 0) is close to
a plane wavefront.
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