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Boundary controllability of a simplified stabilized

Kuramoto-Sivashinsky system**

Vı́ctor Hernández-Santamaŕıa* Alberto Mercado� Piero Visconti�

December 8, 2023

Abstract

In this paper, we study the controllability of a nonlinear system of coupled second- and
fourth-order parabolic equations. This system can be regarded as a simplification of the well-
known stabilized Kuramoto-Sivashinsky system. Using only one control applied on the boundary
of the second-order equation, we prove that the local-null controllability of the system holds if
the square root of the diffusion coefficient of the second-order equation is an irrational number
with finite Liouville-Roth constant.
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1 Introduction

The study of controllability of systems of coupled partial differential equations has deserved a lot of
attention in the literature of the past recent years. For systems of second-order equations, we refer
the reader to the classical works [1, 2, 3], and the references within. For systems involving fourth-
and second-order differential equations, we refer to [8], [9], [6], and [12]. Particularly, in [7], the
authors study controllability properties of a linear cascade system coupling a bilaplacian operator
to a heat equation with a single boundary control, obtaining positive and negative controllability
results depending of the diffusion coefficient.

The interest in the study of systems involving fourth-order parabolic equations comes from
models of front propagation in reaction-diffusion phenomena. Indeed, in [17] a system was pro-
posed as a model for such phenomena with both dissipative and dispersive features and allowing a
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stable solitary-pulse. The system consists of a one-dimensional Kuramoto-Sivashinsky-KdV (KS-
KdV) equation, linearly coupled to an extra dissipative equation, under the name of the stabilized
Kuramoto-Sivashinsky system, and given by{

ut + γuxxxx + uxxx + auxx + uux = vx,
vt − dvxx + cvx = ux,

(1.1)

where γ > 0 accounts for the long-wave instability, a is the short-wave dissipation, d > 0 is the
dissipative parameter and c ∈ R is the group-velocity mismatch between wave modes. Notice that
the coupling is through first-order terms, which is harder to deal with than zero-order couplings.

The objective of this work is to perform one step in the direction of studying the boundary
controllability of system (1.1), by considering the controllability of the nonlinear version of the
system studied in [7]. That is, we consider the problem given by

ut + uxxxx + uux = v, t ∈ (0, T ), x ∈ (0, π),
vt − dvxx = 0, t ∈ (0, T ), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (0, T ),
u(t, π) = uxx(t, π) = 0, t ∈ (0, T ),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (0, T ),

(1.2)

where u = u(t, x) and v = v(t, x) are the state variables and h = h(t) is the control. Observe that
the control acts only on the heat equation and influences indirectly the first equation by means of
the coupling. The parameter d > 0 is the diffusion of the heat equation and will play a crucial role
in the analysis of controllability properties for the system.

The controllability problem we are interested in can be formulated as follows.

Definition 1.1. We say system (1.2) is locally null-controllable at time T if there exists R > 0
such that for any state (u0, v0) ∈ L2(0, π)×H−1(0, π) satisfying

∥(u0, v0)∥L2(0,π)×H−1(0,π) ≤ R,

there exists a control h ∈ L2(0, T ) such that the solution of (1.2) with initial condition

u(0, ·) = u0 and v(0, ·) = v0

satisfies
u(T, ·) = 0 and v(T, ·) = 0.

In [7], the global null-controllability (i.e., without imposing any constraint on the size of the
initial data) of the linear version of system (1.2) (see (3.1) below) is proved, depending on the
diffusion coefficient d > 0. To be more precise, we recall the following.

Definition 1.2. The Liouville-Roth constant of a real number x is the least upper bound of the set
of positive real numbers µ such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qµ

is satisfied by infinitely many integer pairs (p, q) with q > 0. A real number is said to be a Liouville
number if it has infinite Liouville-Roth constant.

Remark 1.3 ([5, Theorem E.3]). The set of Liouville numbers has null Lebesgue measure in R.
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In this regard, if
√
d is not a Liouville number, then corresponding linear version of (1.2) (see

(3.1)) is null-controllable at time T for any T > 0 and any initial datum (u0, v0) ∈ L2(0, π) ×
H−1(0, π).

In this same spirit, the main result of this work is the following.

Theorem 1.4. If
√
d is an irrational number with finite Liouville-Roth constant, then system (1.2)

is locally null controllable.

The proof of Theorem 1.4 follows from a precise estimate of the cost of the control of the
linear system (3.1), which is based on bounds for the norm of biorthogonal families to exponential
functions associated to sequences with condensation index, which have been recently found in [11],
and an application of the so-called source term method, introduced by Y. Liu, T. Takahashi and
M. Tucsnak [16]. It is important to mention that we are able to prove such a precise estimate only
in the case where

√
d has finite Liouville-Roth constant (see Definition 1.2). As we have mentioned,

in [7, Theorem 1.5], the global controllability of the linear system (3.1) is established also when√
d satisfies the same condition. Nonetheless, such result does not provide enough information on

the control cost which is crucial to perform the source term method and extend the result to the
nonlinear case. Therefore, one of our main contributions is Theorem 3.4 which improves the result
in [7].

Remark 1.5. In Definition 1.1 there is an implicit well-posedness assumption, as we refer to “the
solution of (1.2)”. Like in other works concerning the source term method (see e.g., [14, 10]), the a
priori well-posedness of the nonlinear system (1.2) is not a prerequisite to study the controllability
problem, since the existence and local uniqueness of the controlled solution can be obtained as a
byproduct of the proof of Theorem 1.4. However, in our case, (1.2) enjoys uniqueness and, for
initial data and control with small enough norms, existence. These features are made precise in
Proposition 4.1 and Proposition 4.2. See also Remark 4.3.

The rest of the paper is organized as follows. In Section 2 we establish some basic results
of well-posedness and we apply the source term method to our system. In Section 3 we obtain
adequate bounds for the cost of the control of the linear system under suitable hypothesis of the
diffusion coefficient. Finally, in Section 4 we prove Theorem 1.4.

2 The source term method

In [16], the authors introduced the so-called source term method, a quite general methodology to
deduce local controllability results for semilinear problems based on the controllability properties
of the underlying linear system perturbed by an external force with some decay properties.

By adapting this methodology to our case, we are reduced to study the controllability of the
linear system 

ut + uxxxx = v + f, t ∈ (0, T ), x ∈ (0, π),
vt − dvxx = 0, t ∈ (0, T ), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (0, T ),
u(t, π) = uxx(t, π) = 0, t ∈ (0, T ),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (0, T ),

(2.1)

where f is a suitable source term acting only in the first equation, since this is where the nonlinearity
appears.

We begin by stating a general well-posedness result for system (2.1).
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Proposition 2.1. Let t1 < t2 be any arbitrary positive times. Assume

f ∈ L2(t1, t2; (H
2(0, π) ∩H1

0 (0, π))
′), h ∈ L2(t1, t2), (u1, v1) ∈ L2(0, π)×H−1(0, π).

Then (2.1) admits a unique solution (u, v) ∈ C([t1, t2], L
2(0, π)×H−1(0, π))∩L2(t1, t2; (H

2(0, π)∩
H1

0 (0, π))× L2(0, π)) satisfying (u, v)(t1, ·) = (u1, v1). Moreover, we have the following bound

∥(u, v)∥2L2(t1,t2;(H2∩H1
0 )×L2) + ∥(u, v)∥2C([t1,t2],L2×H−1)

≤ C1

(
∥h∥2L2(t1,t2)

+ ∥(u1, v1)∥2L2×H−1 + ∥f∥2L2(t1,t2;(H2∩H1
0 )

′)

)
,

where C1 does not depend on t1, t2.

The proof of this result is classical and relies on well-known arguments. For the sake of com-
pleteness, we present it in Appendix A.

Now, we recall the method introduced in [16] that will allow us to deal with the controllability
of the nonlinear system (1.2).

We introduce the following weighted spaces: consider a measurable function ρ : [0, T ] 7→ R
which is nonzero a.e. on [0, T ]. We denote by L2

ρ(0, T ;X) the weighted L2 space with values on X
and with measure mT /ρ

2, where mT denotes the Lebesgue measure of the interval (0,T). Notice
that when ρ is bounded from above, L2

ρ(0, T ;X) injects continuously into L2(0, T ;X), this happens,
for example if ρ is continuous.

In the spirit of [16], we have the following controllability result for (2.1) in weighted spaces.

Proposition 2.2. Assume that system (2.1) with f ≡ 0 is null controllable in any time τ , with
control cost C(τ) bounded from above by a continuous and nonincreasing function K(τ). Suppose
that q > 1 and ρ0, ρ1 : [0, T ] → R are continuous, nonincreasing functions which are positive on
[0, T ), satisfy ρ0(T ) = ρ1(T ) = 0 and verify the identity

ρ0(t) = ρ1(q
2t+ (1− q2)T )K((q − 1)(T − t)),

(
t ∈

[(
1− 1

q2

)
T, T

])
.

Then, for each f ∈ L2
ρ1(0, T ; (H

2∩H1
0 )

′) and any initial condition (u0, v0) ∈ L2(0, π)×H−1(0, π),
there exists a control h ∈ L2

ρ0(0, T ) driving the state to zero at time T such that the solution (u, v)
to (2.1) satisfies

∥(u, v)∥2L2
ρ0

(0,T ;(H2∩H1
0 )×L2) +

∥∥∥∥(u, v)ρ0

∥∥∥∥2
C([0,T ],L2×H−1)

+ ∥h∥2L2
ρ0

(0,T )

≤ C2

(
∥(u0, v0)∥2L2×H−1 + ∥f∥2L2

ρ1
(0,T ;(H2∩H1

0 )
′)

) (2.2)

where C2 > 0 is uniform with respect to f , y0 and h.

The proof of this result is very close to [16, Proposition 2.3], where it is assumed that the
underlying operator is self-adjoint, which is not fulfilled for our system. Therefore we only give a
brief sketch of the proof in Appendix B.

3 Bounds on control cost for the linear system

As we anticipated in Section 1, one of the key ingredients of the proof of Theorem 1.4 is a precise
bound of the cost of the control of a linear version of (1.2), which allow us to prove the hypotheses
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of Proposition 2.2. In this section, we give sufficient conditions on d such that the control cost has
bounds that allow us to deal with the controllability of the nonlinear problem.

We begin by recalling the known results on the linear control problem, which is given by the
following system. 

ut + uxxxx = v, t ∈ (0, T ), x ∈ (0, π),
vt − dvxx = 0, t ∈ (0, T ), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (0, T ),
u(t, π) = uxx(t, π) = 0, t ∈ (0, T ),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (0, T ).

(3.1)

Definition 3.1. Let T > 0. System (3.1) is said to be globally null-controllable in time T if for
any state (u0, v0) ∈ L2(0, π)×H−1(0, π), there exists a control h ∈ L2(0, T ) such that the solution
of (3.1) with initial condition

u(0, ·) = u0 and v(0, ·) = v0

satisfies
u(T, ·) = 0 and v(T, ·) = 0.

We have the following.

Theorem 3.2 (Theorem 1.5 of [7]). If
√
d is an irrational number with finite Liouville-Roth con-

stant, then system (3.1) is null-controllable in time T for any T > 0.

Theorem 3.2 indeed tell us that system (3.1) is null-controllable at time T for a wide class of
diffusion coefficients d. In particular, this means that for every (u0, v0) ∈ L2(0, π)×H−1(0, π) the
set of admissible controls

H(T, u0, v0) :=
{
h ∈ L2(0, T ) : (u, v)(T, ·) = 0

}
(3.2)

is nonempty. Thus the control cost in time T is defined as

C(T ) := sup

{
inf

h∈H(T,u0,v0)
∥h∥L2(0,T ) : ∥(u0, v0)∥L2×H−1 ≤ 1

}
. (3.3)

If (3.1) is not null controllable in time T , we set C(T ) = ∞.

Remark 3.3. For fixed (u0, v0), it follows from the linearity and well-posedness of (3.1), that
H(T, u0, v0) is a closed affine subspace of L2(0, T ), which is a translation of H(T, 0, 0) whenever
the former is nonempty. If system (3.1) is null controllable, since L2(0, T ) is Hilbert, H(T, u0, v0)
contains a unique element with minimal norm. Denoting N as the map which sends the initial data
(u0, v0) to this null control, due to the linearity of (3.1), it follows that N is a linear operator with
norm ∥N∥ = C(T ), making clear the use of the term control cost.

The techniques used in [7] to prove Theorem 3.2 do not allow to directly obtain an estimation of
(3.3) in all the cases where the system (3.1) is null-controllable. We will see that using the bounds
recently found in [11], we can obtain a suitable estimation of the control cost for the existence of a
control h for system (3.1). The result is the following.

Theorem 3.4. Let 0 < T ≤ 1. If
√
d is an irrational number with finite Liouville-Roth constant,

then there exist positive constants C and M , independent of T , such that the control cost for system
(3.1) satisfies

C(T ) ≤ C exp (M/T ).
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In order to prove Theorem 3.4, we begin by rewriting system (3.1) in a more compact way, that
is,

yt = Ay +Bh, (3.4)

where y = (u, v), D(A) := {u ∈ H4(0, π) : u(0) = u(π) = u′′(0) = u′′(π) = 0} × H1
0 (0, π) and

A : D(A) ⊂ L2(0, π)×H−1(0, π) → L2(0, π)×H−1(0, π) is given by

A = −
(
∂xxxx −I
0 −d∂xx

)
, (3.5)

and B ∈ L(C, ((H2(0, π) ∩H1
0 (0, π))

2)′) is given by

(Bh)(ϕ1, ϕ2) = dhϕ2x(0). (3.6)

Notice that with this we have for the adjoint operator,

D(A∗) = {u ∈ H4(0, π) : u(0) = u(π) = u′′(0) = u′′(π) = 0}

×{u ∈ H3(0, π) : u(0) = u(π) = u′′(0) = u′′(π) = 0}

and A∗ : D(A∗) ⊂ L2(0, π)×H1
0 (0, π) → L2(0, π)×H1

0 (0, π) is given by

A∗ = −
(
∂xxxx 0
−I −d∂xx

)
. (3.7)

In [7, Section 3.2] it was found that there exists a Riesz basis of L2(0, π)×H−1(0, π) made up
of eigenfunctions of A, these are

Φ1,k =

(
1
0

)
φk, Φ2,k = k

(
(k4 − dk2)−1

1

)
φk, k ∈ N, (3.8)

where φk(x) =

√
2

π
sin (kx) and N denotes the set of positive integers. The eigenfunction Φ1,k is

associated to the eigenvalue −k4 while Φ2,k is associated to the eigenvalue −dk2.
The biorthogonal basis (of L2(0, π)×H1

0 (0, π)) corresponding to this Riesz basis is given by

Ψ1,k =

(
1

(dk2 − k4)−1

)
φk, Ψ2,k = k−1

(
0
1

)
φk, k ∈ N. (3.9)

The vectors Ψ1,k and Ψ2,k are then the eigenvectors for the operator A∗, associated with −k4
and −dk2, respectively.

We have the following auxiliary result.

Lemma 3.5. If
√
d is an irrational number with finite Liouville-Roth constant, then there exist pos-

itive constants γ, δ, ϵ, ζ (independent of T ) such that for each T > 0 there exists a family {q1,k, q2,k}
biorthogonal to {exp(−k2t), exp(−dk2t) : k ∈ N} in L2(0, T ) such that

∥qi,k∥L2(0,T ) ≤ C exp(γ/T ) exp((δ
√
T + ϵ)k)kζ , i = 1, 2, k ∈ N. (3.10)

Remark 3.6. Notice that since {exp(−k4t), exp(−dk2t)} ⊂ {exp(−k2t), exp(−dk2t)}, the subset
{q1,k2 , q2,k} is biorthogonal to {exp(−k4t), exp(−dk2t)}.
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Proof of Lemma 3.5. Let us consider the sequence Λ = {k2}k≥1 ∪ {dk2}k≥1. Since
√
d is an irra-

tional number, it is clear that k2 ̸= dn2 for any k, n ≥ 1. Thus, the sequence Λ = {k2}k≥1∪{dk2}k≥1

can be rearranged as an increasing sequence Λ = {Λj}j≥1 which verifies all the hypothesis from
[11, Definition 1.4] (see [11, Proposition 2.13]). In turn, [11, Theorem 1.7] yields the existence of
a family of functions {qj}j≥1 ⊂ L2(0, T ) which are biorthogonal to e−Λjt, t ∈ (0, T ), and positive
constants γ, δ0 and ϵ0 such that

∥qj∥L2(0,T ) ≤ C exp(γ/T ) exp
(
(δ0

√
T + ϵ0)

√
Λj

)
Pj , ∀j ≥ 1

where

Pj :=
1

|Λj − Λj−1| |Λj − Λj+1|
, j ≥ 2, P1 =

1

|Λ1 − Λ2|
(3.11)

Now, we claim that there exist C > 0 and r > 2, depending only on d, satisfying

Pj ≤ Ck2(r−2) (3.12)

for each j ≥ 1 such that Λj = k2 or Λj = dk2.
In order to prove (3.12), we begin by noting from Definition 1.2 that for an irrational number

x with Liouville-Roth constant µ, there exists a constant C > 0 such that∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qr
(3.13)

for each fixed r > µ and any integers p, q with q > 0. On the other hand, any number has the same
Liouville-Roth constant as their reciprocal. This is proven in Appendix C. Hence we can take

r > µ(
√
d) = µ(1/

√
d). (3.14)

From (3.11), note that for estimating each Pj we only have to bound the difference between
two consecutive elements of the sequence {Λj}. Assuming that j ≥ 2, we have four different cases:

� If Λj = dk2 and Λj±1 = d(k ± 1)2, then

|Λj − Λj±1| = d|k2 − (k ± 1)2| ≥ dk (3.15)

� If Λj = dk2 and Λj±1 = m2, we have from (3.13) with x =
√
d that

|Λj − Λj±1| = |dk2 −m2| =
∣∣∣√dk −m

∣∣∣ ∣∣∣√dk +m
∣∣∣ =

≥
√
dk2

∣∣∣√d− m

k

∣∣∣ ≥ c1k
2−r (3.16)

where c1 > 0 depends only on µ, r and d.

� If Λj = k2 and Λj±1 = (k ± 1)2, we have

|Λj − Λj±1| = |k2 − (k ± 1)2| ≥ k (3.17)
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� Λj = k2 and Λj±1 = dm2, we have from (3.13) for x = 1/
√
d that

|Λj − Λj±1| = |k +
√
dm||k −

√
dm|

= |k +
√
dm|k

√
d

∣∣∣∣ 1√
d
− m

k

∣∣∣∣ (3.18)

≥
√
dk2

∣∣∣∣ 1√
d
− m

k

∣∣∣∣ (3.19)

≥ c2k
2−r (3.20)

for some c2 > 0 only depending on µ, r and d.

Finally, we have the corresponding estimates concerning |Λ1 − Λ2|, and then we have proved
(3.12).

Then, for each k, we set q1,k = qj where j is the only index satisfying Λj = k2, and q2,k = ql where
Λl = dk2. Then (3.10) follows with ζ = 2(r − 2), δ = δ0max{1,

√
d} and ϵ = ϵ0max{1,

√
d}.

According to Proposition 2.1, for each y0 ∈ L2(0, π)×H−1(0, π) and h ∈ L2(0, T ), equation (3.4)
admits a unique solution y ∈ C([0, T ], L2(0, π)×H−1(0, π))∩L2(0, T ; (H2(0, π)∩H1

0 (0, π))×L2(0, π))
satisfying y(0) = y0. Furthermore

∥y∥2L2(0,T ;(H2∩H1
0 )×L2) + ∥y∥2C([0,T ],L2×H−1) ≤ C

(
∥h∥2L2(0,T ) + ∥y0∥2L2×H−1

)
. (3.21)

Now, we are in position to prove the main result of this section.

Proof of Theorem 3.4. We know that A is diagonalizable and it is the generator of a strongly
continuous semigroup {exp(tA)}t≥0 (see [19, Section 2.6]). Write X = L2(0, π)×H−1(0, π), X ′ =
L2(0, π) × H1

0 (0, π) and Y = ((H2(0, π) ∩ H1
0 (0, π))

2)′, Y ′ = (H2(0, π) ∩ H1
0 (0, π))

2, with this
⟨·, ·⟩X,X′ = ⟨·, ·⟩Y,Y ′ on X × Y ′, since X,X ′ are both primal-dual pairs with respect to the same
pivot space (namely, (L2(0, π))2).

By standard interpolation arguments, the semigroup {exp(tA)}t≥0 can be extended to the space
Y (see [15, Theorem 5.1, pp. 27] and [19, Proposition 10.2.4]). Hence, since Bh ∈ L2(0, T ;Y ), the
mild solution formula

y(T ) = exp (TA)y0 +

∫ T

0
exp ((T − t)A)Bhdt. (3.22)

holds in Y , and because of [13, Prop. 0.1, pp. 4], also in X.
Similarly, A∗ generates {exp(tA∗)}t≥0 = {exp(tA)∗}t≥0 that shares the eigenfunctions of A∗

and its eigenvalues are exponentials of those of A∗ (which, in this case match those of A, see [19,
Sections 2.6 & 2.8]).

Now, let us write the moment problem associated with the null controllability of system (3.4).
It is clear that, if

√
d is irrational, the positive real numbers {k4, dk2 : k ∈ N} are all distinct.

We denote them by {λj}j∈N, indexed in increasing order. For each j, we denote by ϕj and ψj

the eigenvector and the biorthogonal eigenvector, respectively, associated with the eigenvalue −λj .
Since {ψj}j∈N is a Riesz basis of X ′, y(T ) = 0 if and only if for each j ∈ N we have

⟨y(T ), ψj⟩X,X′ = 0,

i.e. 〈∫ T

0
exp ((T − t)A)Bhdt, ψj

〉
X,X′

= −⟨exp (TA)y0, ψj⟩X,X′ . (3.23)
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In that case, since {ψj} ⊂ Y ′ ⊂ X ′ and exp ((T − ·)A)Bh ∈ L2(0, T ;Y ) we have〈∫ T

0
exp ((T − t)A)Bhdt, ψj

〉
X,X′

=

〈∫ T

0
exp ((T − t)A)Bhdt, ψj

〉
Y,Y ′

=

∫ T

0
⟨exp ((T − t)A)Bh,ψj⟩Y,Y ′ dt,

(3.24)

so that ∫ T

0
⟨exp ((T − t)A)Bh,ψj⟩Y,Y ′ dt = −⟨exp (TA)y0, ψj⟩X,X′ , (3.25)

i.e. ∫ T

0
(h,B∗ exp ((T − t)A∗)ψj)C dt = −⟨y0, exp (TA∗)ψj⟩X,X′ , (3.26)

applying the spectral decomposition of exp(tA∗)

B∗ψj

∫ T

0
h(T − s) exp (−λjs)ds = − exp (−λjT )⟨y0, ψj⟩X,X′ . (3.27)

This motivates writing h as the formal sum

h(t) =
∑
j∈N

− exp (−λjT )
B∗ψj

⟨y0, ψj⟩X,X′qj(T − t), (3.28)

where {qj}j∈N is a set of functions biorthogonal to {exp(−λjt)}j∈N in L2(0, T ).

By Lemma 3.5 such a family {qj}j∈N exists. It suffices to prove that (3.28) is absolutely con-
vergent.

Notice that

∥h∥L2(0,T ) ≤
∑
j∈N

exp (−λjT )
|B∗ψj |

|⟨y0, ψj⟩X,X′ | ∥qj∥L2(0,T )

≤

∑
j∈N

exp (−2λjT )

|B∗ψj |2
∥qj∥2L2(0,T )

1/2∑
j∈N

|⟨y0, ψj⟩X,X′ |2
1/2

,

(3.29)

since {ψj}j∈N is a Riesz basis of L2(0, π)×H−1(0, π), there exists a constant Q such that∥∥⟨y0, ψj⟩X,X′
∥∥
ℓ2

≤ Q ∥y0∥X , (3.30)

so that

∥h∥L2(0,T ) ≤ Q

∑
j∈N

exp (−2λjT )

|B∗ψj |2
∥qj∥2L2(0,T )

1/2

∥y0∥X . (3.31)

We seek to bound the series ∑
j∈N

exp (−2λjT )

|B∗ψj |2
∥qj∥2L2(0,T ) . (3.32)
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We explicitly compute

B∗Ψ1,k =

√
2

π

dk

dk2 − k4
, B∗Ψ2,k =

√
2

π
d. (3.33)

Now, using the bound found in Lemma 3.5 we find that, letting ω = δ+ε+(6+2ζ) and recalling
that 0 < T ≤ 1, we have∑

k∈N

exp (−2k4T )

|B∗Ψ1,k|2
∥∥q1,k2∥∥2L2(0,T )

≤ C
∑
k∈N

exp (−2k4T ) exp(2γ/T ) exp(2(δ
√
T + ε)k2)k6+2ζ

≤ Ĉ exp(2γ/T )
∑
k∈N

exp(2(ωk2 − k4T ))

≤ Ĉ exp(2γ/T )

 ∑
k2<⌈ω+1

T
⌉

exp(2(ωk2 − k4T )) +
∑

k2≥⌈ω+1
T

⌉

(exp(2(ωk − k3T )))k


≤ Ĉ exp(2γ/T )

[⌈√
ω + 1

T

⌉
exp(ω2/2T ) +

e

1− e

]
≤ C̃ exp(2(γ + ω2/4 + 1)/T )

(3.34)

and ∑
k∈N

exp (−2dk2T )

|B∗Ψ2,k|2
∥q2,k∥2L2(0,T )

≤ C
∑
k∈N

exp (−2dk2T ) exp(2γ/T ) exp(2(δ
√
T + ε)k)k2ζ

≤ Ĉ exp(2γ/T )
∑
k∈N

exp(2(ωk − dk2T ))

≤ Ĉ exp(2γ/T )

 ∑
k<⌈ω+1

dT
⌉

exp(2(ωk − dk2T )) +
∑

k≥⌈ω+1
dT

⌉

(exp(2(ω − dkT )))k


≤ Ĉ exp(2γ/T )

[⌈
ω + 1

dT

⌉
exp(ω2/2dT ) +

e

1− e

]
≤ C̃ exp(2(γ + ω2/4d+ 1)/T )

(3.35)

plugging (3.34) and (3.35) into (3.31) we get Theorem 3.4 with M = γ + 1 + ω2

4 max{1, 1d}.

4 Controllability of the nonlinear system

We will obtain a weak formulation for system (1.2), which, using the notation introduced in Sec-
tion 3, has to be something like

yt = Ay +Bh− (uux, 0).
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Taking into account that uux =

(
u2

2

)
x

, formally multiplying the previous equation by a test

function Φ =

(
ϕ1
ϕ2

)
(which is R2 valued) and integrating by parts we get

∫ π

0
yt · Φdx =

∫ π

0
(Ay +Bh) · Φdx+

∫ π

0

(
u2

2

)
ϕ1x dx.

This motivates us to define F : L2(0, π) → (H2(0, π) ∩H1
0 (0, π))

′ by

⟨F (u), ϕ⟩(H2(0,π)∩H1
0 (0,π))

′,H2(0,π)∩H1
0 (0,π)

=

∫ π

0

(
u2

2

)
ϕx dx,

and we would like to define that y = (u, v) is a solution of (1.2) if it satisfies the system (2.1) with
f = F (u). In order to do this, we show that F (u) has enough regularity such that the corresponding
mild solution (3.22) is well defined.

Using Hölder inequality and since H1(0, π) ↪→ L∞(0, π), we deduce that, for all ϕ ∈ H2(0, π) ∩
H1

0 (0, π), we have

⟨F (u), ϕ⟩(H2(0,π)∩H1
0 (0,π))

′,H2(0,π)∩H1
0 (0,π)

≤
∥∥∥∥u22

∥∥∥∥
L1(0,π)

∥ϕx∥L∞(0,π)

≤ 1

2

∥∥u2∥∥
L1(0,π)

C3 ∥ϕ∥H2(0,π)∩H1
0 (0,π)

≤ C3

2
∥u∥2L2(0,π) ∥ϕ∥H2(0,π)∩H1

0 (0,π)
,

meaning ∥F (u)∥(H2(0,π)∩H1
0 (0,π))

′ ≤
C3

2

∥∥u2∥∥
L1(0,π)

=
C3

2
∥u∥2L2(0,π) for some C3 > 0, by definition

of the dual norm.
Moreover, note that

∥(F (u), 0)∥2
L2(0,T ;(H2∩H1

0 )
′)
2 = ∥F (u)∥2L2(0,T ;(H2∩H1

0 )
′) =

∫ T

0
∥F (u)∥2(H2∩H1

0 )
′

≤ C2
3

4

∫ T

0
∥u∥4L2(0,π) ≤

TC2
3

4
∥u∥4C([0,T ],L2(0,π))

≤ TC2
3

4
∥y∥4C([0,T ],L2(0,π)×H−1(0,π)) <∞.

Therefore F (u) ∈ L2(0, T ; (H2(0, π) ∩H1
0 (0, π))

′), and it makes sense to put f = F (u) in (2.1).
Accordingly, we say that y ∈ C([0, T ], L2(0, π)×H−1(0, π)) is a solution of (1.2) if it satisfies

yt = Ay +Bh+ (F (u), 0).

In the following result, we show that the local existence of solutions of the nonlinear problem
(1.2): for data with small enough norms, there exists a solution.

Proposition 4.1. Let T > 0. There exists R1 > 0 such that for all (u0, v0) ∈ L2 × H−1 and
h ∈ L2(0, T ) satisfying

∥(u0, v0)∥2L2×H−1 + ∥h∥2L2(0,T ) ≤ R2
1, (4.1)

system (1.2) has a solution (u, v) ∈ C([0, T ], L2 ×H−1) ∩ L2(0, T ;H2(0, π) ∩H1
0 (0, π) × L2(0, π))

such that u(0, ·) = u0 and v(0, ·) = v0.
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Proof. Fix T > 0 and let (u0, v0) ∈ L2 ×H−1 and h ∈ L2(0, T ) verifying (4.1) for some R1 > 0 to
be determined. Denoting Z = L2(0, T ; (H2 ∩H1

0 )
′), we define

F : Z −→ Z,
f 7→ F (u)

where (u, v) solves (2.1). By definition, the fixed points of F correspond exactly to the solutions
of (1.2).

From the previous estimations of F , we obtain

∥F(f)∥2Z = ∥F (u)∥2L2(0,T ;(H2∩H1
0 )

′) =

∫ T

0
∥F (u)∥2(H2∩H1

0 )
′ dt

≤ C2
3

4

∫ T

0
∥u(t)∥4L2(0,π) dt ≤

TC2
3

4
∥u∥4C([0,T ],L2) ≤

TC2
3

4
∥(u, v)∥4C([0,T ],L2×H−1)

≤ TC2
3C

2
1

4

(
∥(u0, v0)∥2L2×H−1 + ∥h∥2L2(0,T ) + ∥f∥2Z

)2
< +∞,

(4.2)

and taking C4 =

√
TC1C3

2
, we get that

∥F(f)∥Z ≤ C4

(
∥y0∥2L2×H−1 + ∥h∥2L2(0,T ) + ∥f∥2Z

)
,

and then F is well defined.

Moreover, if we define R1 =
1

4C4
, we have

∥F(f)∥Z ≤ 2C4R
2
1 ≤ R1

2
≤ R1 ∀f ∈ B(0, R1) ⊂ Z.

Therefore, F maps B(0, R1) ⊂ Z into itself.
To conclude, we will show that F is a contraction on B(0, R1) and use the Banach fixed point

theorem. To this end, take f (1), f (2) ∈ B(0, R1) and consider y(1) = (u(1), v(1)), y(2) = (u(2), v(2))
the respective solutions.

A straightforward computation yields

∥∥∥F(f (1))−F(f (2))
∥∥∥2
Z
=

∥∥∥F (u(1))− F (u(2))
∥∥∥2
L2(0,T ;(H2∩H1

0 )
′)

=

∫ T

0

∥∥∥F (u(1))− F (u(2))
∥∥∥2
(H2∩H1

0 )
′
dt ≤ C2

3

4

∫ T

0

∥∥∥(u(1))2 − (u(2))2
∥∥∥2
L1(0,π)

dt

≤ C2
3

4

∫ T

0

∥∥∥u(1) + u(2)
∥∥∥2
L2(0,π)

∥∥∥u(1) − u(2)
∥∥∥2
L2(0,π)

dt.

Whence, for f (1), f (2) such that
∥∥f (1)∥∥Z ,∥∥f (2)∥∥Z ≤ R1, we get∥∥∥F(f (1))−F(f (2))

∥∥∥2
Z

≤ TC2
3

4

∥∥∥u(1) + u(2)
∥∥∥2
C([0,T ],L2)

∥∥∥u(1) − u(2)
∥∥∥2
C([0,T ],L2)

≤ TC2
3C

2
2

4

(
∥2y0∥2L2×H−1 + ∥2h∥2L2(0,T ) +

∥∥∥f (1) + f (2)
∥∥∥2
Z

)∥∥∥f (1) − f (2)
∥∥∥2
Z

≤ 8C2
4R

2
1

∥∥∥f (1) − f (2)
∥∥∥2
Z
,
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where we have taken into account the smallness of the initial condition, the control and the source
terms.

From the above expression and using R1 =
1

4C4
, we get∥∥∥F(f (1))−F(f (2))

∥∥∥
Z
≤ 2

√
2C4R1

∥∥∥f (1) − f (2)
∥∥∥
Z
=

√
2

2

∥∥∥f (1) − f (2)
∥∥∥
Z
,

and the existence of a unique fixed point of F in B(0, R1) follows from the Banach fixed point
theorem.

The following result gives us the global uniqueness of the nonlinear problem.

Proposition 4.2. Let y(1) ∈ C([0, T (1)), L2 ×H−1) and y(2) ∈ C([0, T (2)), L2 ×H−1) be solutions
of (1.2) with the same data (u0, v0) and h. Let T̃ = min{T (1), T (2)}. Then y(1)|[0,T̃ ) = y(2)|[0,T̃ ).

Proof. Assume that y(1)|[0,T̃ ) ̸= y(2)|[0,T̃ ), we may define T (0) = inf{t ∈ [0, T̃ ) : y(1)(t) ̸= y(2)(t)},
we then have y(1)(T (0)) = y(2)(T (0)) and T (0) < T̃ , let 0 < ϵ < T̃ − T (0).

Due to Proposition 2.1, for t ∈ [T (0), T (0) + ϵ] we have

∥∥∥y(1)(t)− y(2)(t)
∥∥∥2
L2×H−1

≤ C1

∥∥∥F (u(1))− F (u(2))
∥∥∥2
L2(T (0),t;(H2∩H1

0 )
′)

≤ C1C
2
3

2

∫ t

T (0)

∥∥∥(u(1)(s))2 − (u(2)(s))2
∥∥∥2
L1(0,π)

ds

≤ C1C
2
3

2

∫ t

T (0)

∥∥∥u(1)(s) + u(2)(s)
∥∥∥2
L2(0,π)

∥∥∥u(1)(s)− u(2)(s)
∥∥∥2
L2(0,π)

ds

≤ C1C
2
3

2

∥∥∥u(1) + u(2)
∥∥∥2
C([T (0),T (0)+ϵ],L2)

∫ t

T (0)

∥∥∥u(1)(s)− u(2)(s)
∥∥∥2
L2(0,π)

ds,

≤ C1C
2
3

2

∥∥∥u(1) + u(2)
∥∥∥2
C([T (0),T (0)+ϵ],L2)

∫ t

T (0)

∥∥∥y(1)(s)− y(2)(s)
∥∥∥2
L2×H−1

ds,

so that the Grönwall Lemma implies y(1)(t) = y(2)(t) on [T (0), T (0) + ϵ], which contradicts the
definition of T (0).

Remark 4.3. As a consequence of Propositions 4.1 and 4.2, we deduce the local well-posedness of
the nonlinear system (1.2): for data with small enough norm, there exists a unique solution. Hence,
the property of local null-controllability given in Definition 1.1 is a-priori well defined, in the sense
that, given an initial condition and a control (with small enough norms), there is only one solution
that needs to vanish at t = T . Although the technique of the proof of Proposition 4.1 is quite similar
to that of the proof of Theorem 4.4, where we will prove the existence of both a null-control h and
a controlled solution, we include both results and their proofs for the sake of completeness.

Theorem 4.4. Let 0 < T ≤ 1. Suppose (3.1) is null-controllable in time τ for all τ > 0, and also
suppose that there are uniform constants (w.r.t. τ) C5,M > 0 such that the control cost is bounded
by K(τ) = C5 exp (M/τ) for all τ ∈ (0, 1]. Then (1.2) is locally null-controllable at time T .

Proof. We consider ρ0 and ρ1, as in [18], given by

ρ1(t) = exp

(
− α

(T − t)2

)
,

ρ0(t) = C5 exp

(
− α

q4(T − t)2
+

M

(q − 1)(T − t)

)
,

(4.3)
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where K(T ) = C5 exp (M/T ) is an upper bound for the control cost,

1 < q < 21/4, and α >
2MTq4

(q − 1)(2− q4)
.

Then we may directly check that (4.3) define continuous and nonincreasing functions, which are
positive in [0, T ), vanish at t = T , and verify

1

ρ1
≤ C2

5

ρ20
, (4.4)

and for t ∈
[(

1− 1
q2

)
T, T

]
, we have

ρ0(t) = ρ1(q
2t+ (1− q2)T )K((q − 1)(T − t)).

In this way, the weights (4.3) verify the hypotheses in Proposition 2.2.
We now prove that if the initial data (u0, v0) is sufficiently small, there exists a control h and a

solution (u, v) of (1.2) such that (u, v)(T, ·) = 0. Denoting Zρ1 = L2
ρ1(0, T ; (H

2 ∩H1
0 )

′), and given
y0 ∈ L2 ×H−1, we define

Fρ1 : Zρ1 −→ Zρ1 ,

f 7→ F (u)

where (u, v) solves (2.1) with h given by Proposition 2.2. Clearly, in view of Proposition 2.2, finding
a fixed point of the map Fρ1 will gives us a controlled solution to (1.2) which in addition satisfies
(u, v)(T, ·) = 0.

We begin by showing that Fρ1 is well defined.

∥Fρ1(f)∥
2
Zρ1

= ∥F (u)∥2L2
ρ1

(0,T ;(H2∩H1
0 )

′) =

∫ T

0

∥F (u)∥2(H2∩H1
0 )

′

ρ1(t)2
dt

≤ C4
5C

2
3

4

∫ T

0

∥u(t)∥4L2(0,π)

ρ0(t)4
dt ≤ TC4

5C
2
3

4

∥∥∥∥ uρ0
∥∥∥∥4
C([0,T ],L2)

≤ TC4
5C

2
3

4

∥∥∥∥(u, v)ρ0

∥∥∥∥4
C([0,T ],L2×H−1)

≤ TC4
5C

2
3C

2
2

4

(
∥(u0, v0)∥2L2×H−1 + ∥f∥2Zρ1

)2
< +∞,

(4.5)

where C2 > 0 is the constant coming from Proposition 2.2.

Taking C6 =

√
TC2

5C2C3

2
, we get that

∥Fρ1(f)∥Zρ1
≤ C6

(
∥y0∥2L2×H−1 + ∥f∥2Zρ1

)
.

We define R2 = min{ 1

4C6
,

R1√
2C2ρ0(0)2 + 1

}. For any y0 such that ∥y0∥L2×H−1 ≤ R2 we have

∥Fρ1(f)∥Zρ1
≤ 2C6R

2
2 ≤ R2

2
≤ R2 ∀f ∈ B(0, R2) ⊂ Zρ1 .

Therefore, Fρ1 maps B(0, R2) ⊂ Zρ1 into itself.
To conclude, we will show that Fρ1 is a contraction on B(0, R2) and use the Banach fixed point

theorem. To this end, take f (1), f (2) ∈ B(0, R2) and consider y(1) = (u(1), v(1)), y(2) = (u(2), v(2))
and h(1), h(2) the respective solutions and controls given by Proposition 2.2.
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Since y and h depend linearly and continuously on the pair (y0, f), y
(1) − y(2) and h(1) − h(2)

are the solution and control associated with f = f (1) − f (2) and y0 = 0. Using property (4.4),
straightforward computations yields∥∥∥Fρ1(f

(1))−Fρ1(f
(2))

∥∥∥2
Zρ1

=
∥∥∥F (u(1))− F (u(2))

∥∥∥2
L2
ρ1

(0,T ;(H2∩H1
0 )

′)

=

∫ T

0

∥∥F (u(1))− F (u(2))
∥∥2
(H2∩H1

0 )
′

ρ1(t)2
dt ≤ C2

3

4

∫ T

0

∥∥(u(1))2 − (u(2))2
∥∥2
L1(0,π)

ρ1(t)2
dt

≤ C4
5C

2
3

4

∫ T

0

∥∥u(1) + u(2)
∥∥2
L2(0,π)

∥∥u(1) − u(2)
∥∥2
L2(0,π)

ρ0(t)4
dt.

Whence, for f (1), f (2) such that
∥∥f (1)∥∥Zρ1

,
∥∥f (2)∥∥Zρ1

≤ R,

∥∥∥Fρ1(f
(1))−Fρ1(f

(2))
∥∥∥2
Zρ1

≤ TC4
5C

2
3

4

∥∥∥∥∥u(1) + u(2)

ρ0

∥∥∥∥∥
2

C([0,T ],L2)

∥∥∥∥∥u(1) − u(2)

ρ0

∥∥∥∥∥
2

C([0,T ],L2)

≤ TC4
5C

2
3C

2
2

4

(
∥2y0∥2L2×H−1 +

∥∥∥f (1) + f (2)
∥∥∥2
Zρ1

)∥∥∥f (1) − f (2)
∥∥∥2
Zρ1

≤ 8C2
6R

2
2

∥∥∥f (1) − f (2)
∥∥∥2
Zρ1

,

where we have taken into account the smallness of the initial datum and the source terms. From
the above expression and using R2 ≤ 1

4C6
, we get

∥∥∥Fρ1(f
(1))−Fρ1(f

(2))
∥∥∥
Zρ1

≤ 2
√
2C6R2

∥∥∥f (1) − f (2)
∥∥∥
Zρ1

=

√
2

2

∥∥∥f (1) − f (2)
∥∥∥
Zρ1

,

and the existence of a unique fixed point f of Fρ1 in B(0, R2) follows from the Banach fixed point
theorem.

Notice that Proposition 2.2 implies

∥h∥2L2
ρ0

(0,T ) ≤ C2

(
∥(u0, v0)∥2L2×H−1 + ∥f∥2Zρ1

)
so that R2 ≤

R1√
1 + 2C2ρ0(0)2

yields

∥(u0, v0)∥2L2×H−1 + ∥h∥2L2(0,T ) ≤ ∥(u0, v0)∥2L2×H−1 + ρ0(0)
2 ∥h∥2L2

ρ0
(0,T ) ≤ (1 + 2C2ρ0(0)

2)R2
2 ≤ R1,

so that (u0, v0) and h satisfy the hypotheses of Proposition 4.1.

Once we have established Theorem 4.4, the proof of Theorem 1.4 for T ≤ 1 is a direct application
of such result and the bound for the control cost obtained in Theorem 3.4. For T > 1, we can write
[0, T ] = [0, 1] ∪ [1, T ]. For the first time interval, we control as in the previous case obtaining that
u(·, 1) = v(·, 1) = 0. Then, setting h(t) ≡ 0 for [1, T ], we extend the solution (u, v) by zero, thus
yielding the desired control result.
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A A well-posedness result

Here, we give a proof of Proposition 2.1.

Proof. Since (−∂xx)2 : H2(0, π) ∩H1
0 (0, π) ⊂ (H2(0, π) ∩H1

0 (0, π))
′ → (H2(0, π) ∩H1

0 (0, π))
′ and

−d∂xx : L2(0, π) ⊂ (H2(0, π) ∩H1
0 (0, π))

′ → (H2(0, π) ∩H1
0 (0, π))

′ are strictly positive self-adjoint
operators, we have the following two results due to [4, Thm. 3.1, pp. 143].

If f ∈ L2(t1, t2; (H
2(0, π) ∩H1

0 (0, π))
′) and u1 ∈ L2(0, π), then

ut(t, x) + uxxxx(t, x) = f, t ∈ (t1, t2), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (t1, t2),
u(t, π) = uxx(t, π) = 0, t ∈ (t1, t2),

(A.1)

admits a unique solution u ∈ C([t1, t2], L
2(0, π))∩L2(t1, t2;H

2(0, π)∩H1
0 (0, π)) satisfying u(t1, ·) =

u1, and we have

∥u∥2L2(t1,t2;H2∩H1
0 )

+ ∥u∥2C([t1,t2],L2) ≤ K1

(
∥u1∥2L2 + ∥f∥2L2(t1,t2;(H2∩H1

0 )
′)

)
, (A.2)

for some K1 > 0 independent of t1, t2.
The second result tells that if h ∈ L2(t1, t2) and v1 ∈ H−1(0, π), then{

vt(t, x)− dvxx(t, x) = 0, t ∈ (t1, t2), x ∈ (0, π),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (t1, t2),

(A.3)

admits a unique solution v ∈ C([t1, t2], H
−1(0, π)) ∩ L2(t1, t2;L

2(0, π)) satisfying v(t1, ·) = v1.
Moreover, we have the following energy estimate

∥v∥2L2(t1,t2;L2) + ∥v∥2C([t1,t2],H−1) ≤ K2

(
∥v1∥2H−1 + ∥h∥2L2(t1,t2)

)
,

with K2 > 0 independent of t1, t2.
We will now exploit the cascade structure of the system. Notice that if v ∈ L2(t1, t2;L

2(0, π)),
then in particular v ∈ L2(t1, t2; (H

2(0, π) ∩H1
0 (0, π))

′) and

∥v∥2L2(t1,t2;(H2∩H1
0 )

′) ≤ ∥v∥2L2(t1,t2;L2) .

We take v to be the solution of (A.3), and u to be the solution of (A.1) with right hand side
f + v. Since

∥v + f∥2L2(t1,t2;(H2∩H1
0 )

′) ≤ 2
(
∥f∥2L2(t1,t2;(H2∩H1

0 )
′) + ∥v∥2L2(t1,t2;(H2∩H1

0 )
′)

)
,

we get

∥v∥2L2(t1,t2;L2) + ∥v∥2C([t1,t2],H−1) ≤ K2

(
∥h∥2L2(t1,t2)

+ ∥v1∥2H−1

)
, (A.4)

and

∥u∥2L2(t1,t2;H2∩H1
0 )

+ ∥u∥2C([t1,t2],L2) ≤ K1

(
∥u1∥2L2 + ∥f + v∥2L2(t1,t2;(H2∩H1

0 )
′)

)
≤ 2K1

(
∥u1∥2L2 + ∥f∥2L2(t1,t2;(H2∩H1

0 )
′)

)
+ 2K2K1

(
∥h∥2L2(t1,t2)

+ ∥v1∥2H−1

)
, (A.5)
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where we have used (A.4) in the last line. Writing y = (u, v) and y1 = (u1, v1), we can combine
(A.4) and (A.5) and take C1 = max{K2, (2K1 + 1)K2} to deduce

∥y∥2L2(t1,t2;(H2∩H1
0 )×L2) + ∥y∥2C([t1,t2],L2×H−1)

≤ C
(
∥h∥2L2(t1,t2)

+ ∥y1∥2L2×H−1 + ∥f∥2L2(t1,t2;(H2∩H1
0 )

′)

)
.

This concludes the proof.

B Sketch of the proof of Proposition 2.2

We define Tk = T

(
1− 1

qk

)
. Notice that with this

ρ0(Tk+2) = ρ1(Tk)K(Tk+2 − Tk+1).

Consider the notation y = (u, v). We recursively define yk+1 as z(Tk+1), where z = (z1, z2)
solves (2.1) on (Tk, Tk+1) with initial condition z(Tk) = 0 and control h = 0. By Proposition 2.1
we have

∥z∥2L2(Tk,Tk+1;(H2∩H1
0 )×L2) + ∥z∥2C([Tk,Tk+1],L2×H−1) ≤ C1 ∥f∥2L2(Tk,Tk+1;(H2∩H1

0 )
′) ,

with this

∥yk+1∥2L2×H−1 = ∥z(Tk+1)∥2L2×H−1 ≤ ∥z∥2C([Tk,Tk+1],L2×H−1) ≤ C1 ∥f∥2L2(Tk,Tk+1;(H2∩H1
0 )

′) .

Define h on (Tk, Tk+1) as the minimal norm control that drives (2.1) to zero at time Tk+1 with
initial condition yk at time Tk and source term f ≡ 0. We denote the corresponding solution by w.
Since we have assumed that system (2.1) with f ≡ 0 is null-controllable with control cost K(·), we
have, because of Remark 3.3,

∥h∥2L2(Tk,Tk+1)
≤ K2(Tk+1 − Tk) ∥yk∥2L2×H−1

and therefore

∥h∥2L2(Tk+1,Tk+2)
≤ K2(Tk+2 − Tk+1) ∥yk+1∥2L2×H−1 ≤ C1K

2(Tk+2 − Tk+1) ∥f∥2L2(Tk,Tk+1;(H2∩H1
0 )

′) .

We define y = z + w. Since z(T−
k ) + w(T−

k ) = z(T+
k ) + w(T+

k ), y is continuous at Tk for every
k ≥ 0. With this definition, it is also clear that y solves (2.1) for t ∈ [0, T ).

Notice that, due to the fact that ρ0 and ρ1 are nonincreasing

∥h∥2L2
ρ0

(Tk+1,Tk+2)
≤ 1

ρ20(Tk+2)
∥h∥2L2(Tk+1,Tk+2)

≤ C1
K2(Tk+2 − Tk+1)

ρ20(Tk+2)
∥f∥2L2(Tk,Tk+1;(H2∩H1

0 )
′)

≤ C1

ρ21(Tk)
∥f∥2L2(Tk,Tk+1;(H2∩H1

0 )
′) ≤ C1 ∥f∥2L2

ρ1
(Tk,Tk+1;(H2∩H1

0 )
′) ,

(B.1)

and

∥h∥2L2
ρ0

(0,T1)
≤ 1

ρ20(T1)
∥h∥2L2(0,T1)

≤ K2(T1)

ρ20(T1)
∥y0∥2L2×H−1 . (B.2)
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Proposition 2.1 yields

∥y∥2L2
ρ0

(Tk+1,Tk+2;(H2∩H1
0 )×L2) +

∥∥∥∥ yρ0
∥∥∥∥2
C([Tk+1,Tk+2],L2×H−1)

≤ C2
1

(
1 +

1

K2(Tk+2 − Tk+1)

)
∥f∥2L2

ρ1
(Tk,Tk+1;(H2∩H1

0 )
′)

+
C1

K2(Tk+2 − Tk+1)
∥f∥2L2

ρ1
(Tk+1,Tk+2;(H2∩H1

0 )
′) (B.3)

and also

∥y∥2L2
ρ0

(0,T1;(H2∩H1
0 )×L2) +

∥∥∥∥ yρ0
∥∥∥∥2
C([0,T1],L2×H−1)

≤ C1(K
2(T1) + 1)

ρ20(T1)
∥y0∥2L2×H−1 +

C1ρ
2
1(0)

ρ20(T1)
∥f∥2L2

ρ1
(0,T1;(H2∩H1

0 )
′) .

(B.4)

It follows from Proposition 2.1 that y is continuous on [0, T ], with values in L2×H−1. Because
ρ0 is positive on [0, T ), y

ρ0
is also continuous on [0, T ). Since the right hand side of (B.3) converges

to 0 as k → ∞, it follows that y(t)
ρ0

→ 0 in L2 × H−1 as t → T−. With this, we may extend y
ρ0

to [0, T ] and it remains continuous, in particular, this implies that (u(T ), v(T )) = 0. This tells us
that the control h constructed drives the state to zero, and also gives a bound on how quickly the
convergence takes place, namely, faster than ρ0 approaches 0.

Combining estimates (B.1)–(B.2) with (B.3)–(B.4) we can deduce the existence of a constant
C2 > 0 such that (2.2) holds. This ends the proof.

C Liouville-Roth constant of the reciprocal of a number

Lemma C.1. Let x > 0. Then x and 1/x have the same Liouville-Roth constant.

Proof. Assume without loss of generality that the Liouville-Roth constant of 1/x is strictly greater
than that of x (this implies x has finite Liouville-Roth constant). Fix r strictly in between both
Liouville-Roth constants and ε > 0 such that r+ ε is also in this interval. By definition, there exist
infinitely many pairs (p, q) ∈ Z2 with q > 0 such that

0 <

∣∣∣∣1x − p

q

∣∣∣∣ < 1

qr+ε
,

so we may construct a sequence (pn, qn) of distinct such pairs. Since for a given qn, only finitely
many values of pn can satisfy the equation, we know by the pigeonhole principle that qn → ∞ as
n→ ∞. With this, pn

qn
→ 1

x , which implies pn → ∞ and qn
pn

→ x. Notice that

0 <

∣∣∣∣x− qn
pn

∣∣∣∣ prn =
xqn
pn

∣∣∣∣pnqn − 1

x

∣∣∣∣ qr+ε
n

(
pn
qn

)r+ε 1

pεn
→ 0,

since xqn
pn

(
pn
qn

)r+ε
→ x2−r−ε,

∣∣∣pnqn − 1
x

∣∣∣ qr+ε
n < 1 and 1

pεn
→ 0. It follows that there are infinitely

many pairs (p, q) such that

0 <

∣∣∣∣x− q

p

∣∣∣∣ < 1

pr
,

which contradicts the fact that r is greater that the Liouville-Roth constant of x.
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