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Boundary controllability of a simplified stabilized

Kuramoto-Sivashinsky system∗∗

Vı́ctor Hernández-Santamaŕıa∗ Alberto Mercado† Piero Visconti†

December 29, 2020

Abstract

In this paper, we study the controllability of a nonlinear system of coupled second- and
fourth-order parabolic equations. This system can be regarded as a simplification of the well-
known stabilized Kuramoto-Sivashinsky system. Using only one control applied on the boundary
of the second-order equation, we prove that the local-null controllability of the system holds if
the diffusion coefficient of the second-order equation is a quadratic irrational number.
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1 Introduction

The study of controllability of systems of coupled partial differential equations has deserved a lot of
attention in the literature of the past recent years. For systems of second order equations we refer
the reader to the classical work [1, 2, 3], and the references within. For systems involving fourth-
and second-order differential equations, we refer to [8], [9], [6], and [11]. Particularly, in [7], the
authors study controllability properties of a linear cascade system coupling a bilaplacian operator
to a heat equation with a single boundary control, obtaining positive and negative controllability
results depending of the diffusion coefficient.

The interest in the study of systems involving fourth order parabolic equations comes from
models of front propagation in reaction-diffusion phenomena. Indeed, in [14] a system was pro-
posed as a model for such phenomena with both dissipative and dispersive features and allowing a
stable solitary-pulse. The system consists in a one-dimensional Kuramoto-Sivashinsky-KdV (KS-
KdV) equation, linearly coupled to an extra dissipative equation, under the name of the stabilized
Kuramoto-Sivashinsky system, and given by{

ut + γuxxxx + uxxx + auxx + uux = vx,
vt − dvxx + cvx = ux,

(1.1)
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where γ > 0 accounts for the long-wave instability, a is the short-wave dissipation, d > 0 is the
dissipative parameter and c ∈ R is the group-velocity mismatch between wave modes. Notice that
the coupling is through first order terms, which is harder to deal with than zero order couplings.

The objective of this work is to perform one step in the direction of studying the boundary
controllability of system (1.1), by considering the controllability of the non-linear version of the
system studied in [7]. That is, we consider the problem given by

ut + uxxxx + uux = v, t ∈ (0, T ), x ∈ (0, π),
vt − dvxx = 0, t ∈ (0, T ), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (0, T ),
u(t, π) = uxx(t, π) = 0, t ∈ (0, T ),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (0, T ),

(1.2)

where u = u(t, x) and v = v(t, x) are the state variables and h = h(t) is the control. Observe that
the control acts only on the heat equation and influences indirectly the first equation by means of
the coupling. The parameter d > 0 is the diffusion of the heat equation and will play a crucial role
in the analysis of controllability properties for the system.

The controllability problem we are interested can be formulated as follows.

Definition 1.1. We say system (1.2) is locally null-controllable at time T if there exists R > 0
such that for any state (u0, v0) ∈ L2(0, π)×H−1(0, π) satisfying

‖(u0, v0)‖L2(0,π)×H−1(0,π) ≤ R,

there exists a control h ∈ L2(0, T ) such that the solution of (1.2) with initial condition

u(0, ·) = u0 and v(0, ·) = v0

satisfies
u(T, ·) = 0 and v(T, ·) = 0.

In [7], the global null-controllability of the linear version of system (1.2) (see (3.1) below) is
proved, depending on the diffusion coefficient d > 0. More precisely, if

√
d is not a Liouville number

(see [5]), then the system (3.1) is null-controllable at time T for any T > 0 and any initial datum
(u0, v0) ∈ L2(0, π)×H−1(0, π).

In this spirit, the main result of this work is the following.

Theorem 1.2. If
√
d is a quadratic irrational number, then system (1.2) is locally null controllable.

Remark 1.3. We recall that x ∈ R is a quadratic irrational number if it is irrational and there
exists a quadratic polynomial with rational coefficients q such that q(x) = 0. In particular, these
numbers can be written as q1 + q2

√
c with q1, q2 rationals and c > 0 and they are a proper subset of

the algebraic numbers.

The proof of Theorem 1.2 follows from a precise estimate of the cost of the control of the linear
system (3.1) and an application of the so called source term method, introduced by Y. Liu, T.
Takahashi and M. Tucsnak [13]. It is important to mention that we are able to prove such precise
estimate only in the case where

√
d is a quadratic irrational number. Even though a more general

result is known in the linear case, where the global controllability of the linear system (3.1) holds
for any irrational number with finite Liouville-Roth constant (see [7, Theorem 1.5] and Section 3
below), here we use strongly the fact that

√
d is a quadratic irrational number in order to deduce

the required cost of the control.
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Remark 1.4. As in other works relying on the source term method for deducing controllability
properties of nonlinear systems (see e.g., [12, 10] for recent works), the a priori well-posedness
of the nonlinear system (1.2) is not a prerequisite to study the problem. In fact, while proving
Theorem 1.2, the existence and uniqueness of the controlled solution will be a byproduct of the
methodology.

The rest of the paper is organized as follows. In Section 2 we establish some basic results
of well-posedness and we apply the source term method to our system. In Section 3 we obtain
adequate bounds for the cost of the control of the linear system under correspondent hypothesis of
the diffusion coefficient. Finally, in Section 4 we prove Theorem 1.2.

2 The source term method

In [13], the authors introduced the so-called source term method, a quite general methodology to
deduce local controllability results for semilinear problems based on the controllability properties
of the underlying linear system perturbed by an external force with some decay properties.

By adapting this methodology to our case, we are reduced to study the controllability of the
linear system 

ut + uxxxx = v + f1, t ∈ (0, T ), x ∈ (0, π),
vt − dvxx = f2, t ∈ (0, T ), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (0, T ),
u(t, π) = uxx(t, π) = 0, t ∈ (0, T ),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (0, T ),

(2.1)

where f = (f1, f2) is a suitable source term.
We begin by stating a general well-posedness result for system (2.1).

Proposition 2.1. Let t1 < t2 be any arbitrary positive times. If f ∈ L2(t1, t2; (H2(0, π) ∩
H1

0 (0, π))′)2, h ∈ L2(t1, t2) and (u1, v1) ∈ L2(0, π) × H−1(0, π), then (2.1) admits a unique so-
lution (u, v) ∈ C([t1, t2], L

2(0, π)×H−1(0, π))∩L2(t1, t2; (H2(0, π)∩H1
0 (0, π))×L2(0, π)) satisfying

(u, v)(t1, ·) = (u1, v1). Moreover, we have the following bound

‖(u, v)‖2L2(t1,t2;(H2∩H1
0 )×L2) + ‖(u, v)‖2C([t1,t2],L2×H−1)

≤ C
(
‖h‖2L2(t1,t2)

+ ‖(u1, v1)‖2L2×H−1 + ‖f‖2L2(t1,t2;(H2∩H1
0 )
′)2

)
,

where C does not depend on t1, t2.

The proof of this result is classical and relies on well-known arguments. For the sake of com-
pleteness, we present it in Appendix A.

Now, we recall the method introduced in [13] that will allow us to deal with the controllability
of the nonlinear system (1.2). We consider a function ρ verifying the following properties

ρ : [0, T ]→ [0,+∞) continuous, non-increasing, positive on [0, T ), with ρ(T ) = 0.

We denote by L2
ρ(0, T ;X) the weighted L2 space with values on X and with measure mT /ρ

2, where
mT denotes the Lebesgue measure of the interval (0,T). In the spirit of [13], we have the following
controllability result for (2.1) in weighted spaces.
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Proposition 2.2. Assume that system (2.1) with f ≡ 0 is null controllable in any time τ , with
control cost K(τ), which is a continuous and non increasing function of τ . Suppose that q > 1 and
ρ1 : [0, T ]→ R is a continuous, non-increasing function with ρ1(T ) = 0 and such that

ρ0(t) := ρ1(q
2t+ (1− q2)T )K((q − 1)(T − t)),

(
t ∈

[(
1− 1

q2

)
T, T

])
,

is non-increasing and verifies ρ0(T ) = 0.
Then, for each f ∈ L2

ρ1(0, T ; (H2 ∩ H1
0 )′)2 and any initial condition (u0, v0) ∈ L2(0, π) ×

H−1(0, π), there exists a control h ∈ L2
ρ0(0, T ) such that the solution (u, v) to (2.1) satisfies

‖(u, v)‖2L2
ρ0

(0,T ;(H2∩H1
0 )×L2) +

∥∥∥∥(u, v)

ρ0

∥∥∥∥2
C([0,T ],L2×H−1)

+ ‖h‖2L2
ρ0

(0,T )

≤ C2

(
‖(u0, v0)‖2L2×H−1 + ‖f‖2L2

ρ1
(0,T ;(H2∩H1

0 )
′)2

)
,

(2.2)

where C2 > 0 is uniform with respect to f , y0 and h.

The proof of this result is very close to [13, Proposition 2.3], therefore we only give a brief sketch
of the proof in Appendix B.

Remark 2.3. • Although the original weight ρ0(t) is defined only for t ∈
[(

1− 1
q2

)
T, T

]
, it is

possible to define an extension (still denoted by ρ0) which is continuous and non-increasing
on the whole interval (0, T ). Thus estimate (2.2) is meaningful.

• Since ρ0 verifies in particular ρ0(T ) = 0, it is clear that (u, v)(T, ·) = 0.

3 Bounds on control cost for the linear system

As we anticipated in Section 1, one of the key ingredients of the proof of Theorem 1.2 is a precise
bound of the cost of the control of a liner version of (1.2). Actually, the importance of this bound
can be already seen in the statement of Proposition 2.2, where the cost of control is assumed
to behave as a continuous and non-increasing function K(·). In this section, we give sufficient
conditions on d such that the control cost has bounds that allow us to deal with the controllability
of the non-linear problem.

We begin by recalling the known results on the linear control problem, which is given by the
following system. 

ut(t, x) + uxxxx(t, x) = v(t, x), t ∈ (0, T ), x ∈ (0, π),
vt(t, x)− dvxx(t, x) = 0, t ∈ (0, T ), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (0, T ),
u(t, π) = uxx(t, π) = 0, t ∈ (0, T ),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (0, T ).

(3.1)

Definition 3.1. Let T > 0. System (3.1) is said to be null-controllable in time T if for any state
(u0, v0) ∈ L2(0, π) ×H−1(0, π), there exists a control h ∈ L2(0, T ) such that the solution of (3.1)
with initial condition

u(0, ·) = u0 and v(0, ·) = v0

satisfies
u(T, ·) = 0 and v(T, ·) = 0.
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We have the following.

Theorem 3.2 (Theorem 1.5 of [7]). If
√
d is an irrational number with finite Liouville-Roth con-

stant, then system (3.1) is null-controllable in time T for any T > 0.

Theorem 3.2 indeed tell us that system (3.1) is null-controllable at time T for a wide class of
diffusion coefficients d. In particular, this means that for every (u0, v0) ∈ L2(0, π)×H−1(0, π) the
set of admissible controls

C(T, u0, v0) :=
{
h ∈ L2(0, T ) : (u, v)(T, ·) = 0

}
(3.2)

is non-empty. Thus the control cost in time T is given by

K(T ) := sup

({
inf

h∈C(T,u0,v0)
‖h‖L2(0,T ) : ‖(u0, v0)‖L2×H−1 ≤ 1

})
. (3.3)

The techniques used in [7] to prove Theorem 3.2 do not allow to directly obtain an estimation
of (3.3) in all the cases where the system (3.1) is null-controllable. We will see that, under an extra
assumption on the coefficient d, we can obtain a suitable estimation of the control cost for system
(3.1). The result is the following.

Theorem 3.3. If
√
d is an irrational algebraic number of degree 2, then there exist positive con-

stants C and M such that the control cost for system (3.1) satisfies

K(T ) ≤ C exp (M/T ).

In order to prove Theorem 3.3, we begin by rewriting system (3.1) in a more compact way, that
is,

yt = Ay +Bh, (3.4)

where y = (u, v), A : D(A) := {u ∈ H2(0, π) ∩H1
0 (0, π) : ∂xxu ∈ H2(0, π) ∩H1

0 (0, π)} ×H1
0 (0, π) ⊂

L2(0, π)×H−1(0, π)→ L2(0, π)×H−1(0, π) is given by

A = −
(

(−∂xx)2 −1
0 −d∂xx

)
, (3.5)

and B ∈ L(C, ((H2(0, π) ∩H1
0 (0, π))2)′) is given by

(Bh)(φ1, φ2) = hφ2x(0). (3.6)

According to Proposition 2.1, for each y0 ∈ L2(0, π)×H−1(0, π), equation (3.4) admits a unique
solution y ∈ C([0, T ], L2(0, π) × H−1(0, π)) ∩ L2(0, T ; (H2(0, π) ∩ H1

0 (0, π)) × L2(0, π)) satisfying
y(0) = y0. Furthermore

‖y‖2L2(0,T ;(H2∩H1
0 )×L2) + ‖y‖2C([0,T ],L2×H−1) ≤ C

(
‖h‖2L2(0,T ) + ‖y0‖2L2×H−1

)
. (3.7)

In [7, Section 3.2] it was found that there is exists a Riesz basis made up of eigenfunctions of
A, these are

Φ1,k =

(
1
0

)
ϕk, Φ2,k = k

(
(k4 − dk2)−1

1

)
ϕk, (3.8)
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where ϕk(x) =

√
2

π
sin (kx). The eigenfunction Φ1,k is associated to the eigenvalue −k4 while Φ2,k

is associated to the eigenvalue −dk2.
The biorthogonal basis corresponding to this Riesz basis is given by

Ψ1,k =

(
1

(dk2 − k4)−1
)
ϕk, Ψ2,k = k

(
0
1

)
ϕk. (3.9)

It is clear that, if
√
d is irrational, the positive real numbers {k4, dk2 : k ∈ N} are all distinct.

We denote them by {λj}j∈N, indexed in increasing order. For each j, we denote by φj and ψj the
eigenvector and the biorthogonal eigenvector, respectively, associated with the eigenvalue −λj .

We have the following auxiliary result.

Lemma 3.4. If
√
d is an irrational algebraic number of degree 2, there exist positive constants

C,M (independent of T ) such that

∑
|aj |2 exp(−λjT ) ≤ C exp(M/T )

∫ T

0

∣∣∣∑ aj exp(−λjt)
∣∣∣2 dt (3.10)

for any {aj}j∈N ∈ `2(C).

Proof. Notice that if the inequality is true for a set of exponents larger than {k4, dk2 : k ∈ N}, it
is in particular true for {k4, dk2 : k ∈ N} (just by making the remaining coefficients null). We will
show that we have (3.10) for {k2, dk2 : k ∈ N}.

Hence, we denote {µj}j∈N = {k2, dk2 : k ∈ N} indexed in increasing order. By [16, Corollary
3.6], in order to prove Lemma 3.4 it is enough to show

• the gap property |µj+1 − µj | ≥ γ > 0 for each j ∈ N, and that

• there exist constants r,R such that ∣∣µj − rj2∣∣ ≤ Rj. (3.11)

Having shown this, [16, Corollary 3.6] yields (3.10) with any M >
3π2

2r
and some K depending

on R and γ, however not explicitly.
We first show that {k2, dk2 : k ∈ N} admits a gap. Since

√
d is an irrational algebraic number

of degree 2, Liouville’s Theorem implies that there exists a positive constant δ such that∣∣∣∣√d− p

q

∣∣∣∣ ≥ δ

q2
(3.12)

for all integers p, q with q > 0. Hence∣∣dk2 −m2
∣∣ =

∣∣∣√d− m

k

∣∣∣ k ∣∣∣√dk +m
∣∣∣ ≥ ∣∣∣√d− m

k

∣∣∣√dk2 ≥ √dδ. (3.13)

Since |dk2 − dm2| ≥ d and |k2 − m2| ≥ 1 for k 6= m, a gap condition is satisfied, with gap
γ = min{1, d,

√
dδ}.
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In order to prove (3.11), we write bxc for the floor function of x, given by max{n : n ∈ Z, n ≤ x}.

Suppose µj = k2, then dm2 ≤ µj ⇐⇒ m ≤ k√
d

, which is true for m = 1, . . . ,

⌊
k√
d

⌋
. With this

j = k +

⌊
k√
d

⌋
=

⌊
k

√
d+ 1√
d

⌋
. Notice that

j =

⌊
k

√
d+ 1√
d

⌋
⇐⇒ j ≤

√
d+ 1√
d

< j + 1

⇐⇒ k < (j + 1)

√
d√

d+ 1
< j

√
d√

d+ 1
+ 1 ≤ k + 1,

(3.14)

with this k =

⌊
(j + 1)

√
d√

d+ 1

⌋
, take r =

d

(
√
d+ 1)2

, we have

∣∣µj − rj2∣∣ =

∣∣∣∣k2 − dj2

(
√
d+ 1)2

∣∣∣∣ =

∣∣∣∣∣k − j
√
d√

d+ 1

∣∣∣∣∣ ·
∣∣∣∣∣k + j

√
d√

d+ 1

∣∣∣∣∣
≤

(
1 +

√
d√

d+ 1

)(
2
√
d√

d+ 1
+ 1

)
j.

(3.15)

On the other hand, if µj = dk2, m2 ≤ µj ⇐⇒ m ≤
√
dk, which is true for m = 1, . . . ,

⌊√
d
⌋
.

With this j = k +
⌊√

dk
⌋

=
⌊
(
√
d+ 1)k

⌋
.

j =
⌊
(
√
d+ 1)k

⌋
⇐⇒ j ≤ (

√
d+ 1)k < j + 1

⇐⇒ k <
j + 1√
d+ 1

<
j√
d+ 1

+ 1 ≤ k + 1
(3.16)

meaning k =

⌊
j + 1√
d+ 1

⌋
, with this

∣∣µj − rj2∣∣ =

∣∣∣∣dk2 − dj2

(
√
d+ 1)2

∣∣∣∣ =

∣∣∣∣∣√dk − j
√
d√

d+ 1

∣∣∣∣∣ ·
∣∣∣∣∣√dk + j

√
d√

d+ 1

∣∣∣∣∣
≤

(
√
d+

√
d√

d+ 1

)(
2
√
d√

d+ 1
+
√
d

)
j.

(3.17)

To conclude, taking

R = max

{(
1 +

√
d√

d+ 1

)(
2
√
d√

d+ 1
+ 1

)
,

(
√
d+

√
d√

d+ 1

)(
2
√
d√

d+ 1
+
√
d

)}
, (3.18)

we deduce (3.11).

Proof of theorem 3.3. We begin by writing the moment problem associated to the null controlla-
bility of system (3.4). We know that A is diagonalizable and it is the generator of a strongly
continuous semigroup {exp(tA)}t≥0. Then

y(T ) = exp (TA)y0 +

∫ T

0
exp ((T − t)A)Bhdt. (3.19)

7



Since {ψj}j∈N is a Riesz basis, y(T ) = 0 if and only if, for each j ∈ N we have∫ T

0
(exp ((T − t)A)Bh,ψj) dt = − (exp (TA)y0, ψj) , (3.20)

i.e. ∫ T

0
(h,B∗ exp ((T − t)A∗)ψj) dt = − (y0, exp (TA∗)ψj) , (3.21)

applying the spectral decomposition

B∗ψj

∫ T

0
h(T − s) exp (−λjs)dt = − exp (−λjT )(y0, ψj). (3.22)

This motivates writing h as the formal sum

h(t) =
∑
j∈N

− exp (−λjT )

B∗ψj
(y0, ψj)qj(T − t), (3.23)

where {qj}j∈N is a set of functions biorthogonal to {exp(−λjt)}j∈N in L2(0, T ).

It suffices to prove that such family {qj}j∈N exists and (3.23) is absolutely convergent.

We denote pj = exp (−λjt) and Πj = span{pi : i 6= j} for each j ∈ N, and by Pj the orthogonal
projection on Πj .

For each f ∈ span{pi : i 6= j} we can write pj − f as a finite linear combinaton
∑

i∈I aipi of
exponentials {pi}i∈N∗ with I finite and j ∈ I, such that aj = 1, therefore, due to lemma 3.4, we
have

‖pj − f‖L2(0,T ) ≥ C
−1/2 exp(−λjT/2−M/2T ). (3.24)

By the continuity of the norm, we have (3.24) for f ∈ Πj , in particular, this shows us that
pj /∈ Πj .

We define

qj :=
pj − Pjpj

‖pj − Pjpj‖2L2(0,T )

. (3.25)

With this {qj}j∈N is biorthogonal to {pj}j∈N, and

‖qj‖L2(0,T ) =
1

‖pj − Pjpj‖L2(0,T )

≤ C1/2 exp (λjT/2 +M/2T ). (3.26)

We seek to bound the series ∑
j∈N

exp(−λjT )

|B∗ψj |2
. (3.27)

We explicitly compute

B∗Ψ1,k =

√
2

π

dk

dk2 − k4
, B∗Ψ2,k =

√
2

π
dk2. (3.28)
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On one side, since k ≤ k2 and exp (−dTx) is decreasing∑
k∈N

exp(−dk2T )

|B∗Ψ2,k|2
≤ π

2d2

∑
k∈N

exp (−dkT ) ≤ π

2d2

∫ ∞
0

exp (−dTx)dx =
π

2d3T
=:

R1

T
, (3.29)

for the other branch of eigenvalues we need to be more careful, since |B∗Ψ1,k| is not bounded by
below.

We define L =
π

2d2
maxk<

√
d

(d− k2)2

k4
, then |B∗Ψ1,k|2 ≥

1

Lk6
. Denoting m =

⌊(
12

7T

)2/7
⌋

, we

get ∑
k∈N

exp(−k4T )

|B∗Ψ2,k|2
≤ L

∑
k∈N

exp(−k7/2T )k6

= L

∑
k<m

exp(−k7/2T )k6 + exp(−m7/2T )m6 +
∑

k≥m+1

exp(−k7/2T )k6

 ,

(3.30)

since the function exp (−Tx7/2)x6 is increasing for x <

(
12

7T

)2/7

and decreasing for x >

(
12

7T

)2/7

,

we have ∑
k<m

exp(−k7/2T )k6 + exp(−m7/2T )m6 +
∑

k≥m+1

exp(−k7/2T )k6

≤
∫ m

0
exp (−Tx7/2)x6 + exp (−Tm7/2)m6 +

∫ ∞
m

exp (−Tx7/2)x6

≤
∫ ∞
0

exp (−Tx7/2)x6 + exp (−12/7)

(
12

7T

)12/7

=
2

7T

∫ ∞
0

exp(−Tx7/2)7T/2x5/2x7/2 + exp (−12/7)

(
12

7T

)12/7

=
2

7T

∫ ∞
0

exp(−Tx7/2)7/2x5/2 + exp (−12/7)

(
12

7T

)12/7

=
2

7T 2

∫ ∞
0

exp(−Tx7/2)7T/2x5/2 + exp (−12/7)

(
12

7T

)12/7

=
2

7T 2
+ exp (−12/7)

(
12

7T

)12/7

,

(3.31)

which means ∑
k∈N

exp(−k4T )

|B∗Ψ2,k|2
≤ L

7/2T 2
+ L exp (−12/7)

(
12

7T

)12/7

. (3.32)

Taking R2 =
2L

7
and R3 = L exp(−12/7) we have

∑
j∈N

exp(−λjT )

|B∗ψj |2
≤ R1

1

T
+R2

(
1

T

)2

+R3

(
1

T

)12/7

≤ R1 exp (1/T ) +R2 exp (2/T ) +R3 exp (12/7T )

≤ (R1 +R2 +R3) exp (2/T ) =: R2
0 exp (2/T ).

(3.33)
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Finally, since {ψj}j∈N is a Riesz basis of L2(0, π) ×H−1(0, π), there exists a constant Q such
that

|(y0, ψj)|`2 ≤ Q |y0|L2×H−1 . (3.34)

Putting this all together we have∑
j∈N

∣∣∣∣− exp (−λjT )

B∗ψj
(y0, ψj)qj(T − t)

∣∣∣∣
L2(0,T )

=
∑
j∈N

∣∣∣∣exp (−λjT/2)

B∗ψj
(y0, ψj)

∣∣∣∣ |exp (−λjT/2)qj(T − t)|L2(0,T )

≤ C1/2 expM/2T
∑
j∈N

∣∣∣∣exp (λjT/2)

B∗ψj
(y0, ψj)

∣∣∣∣ ≤ C1/2 expM/2T

∣∣∣∣exp (−λjT/2)

B∗ψj

∣∣∣∣
`2

· |(y0, ψj)|`2

≤ C1/2R0Q exp ((M/2 + 1)/T ) |y0|L2×H−1 .

(3.35)

Taking new constants C̃ = C1/2R0Q and M̃ = M/2 + 1, this concludes the proof.

4 Controllability of the nonlinear system

We introduce a weak formulation for system (1.2).

Taking into account that uux =

(
u2

2

)
x

, formally multiplying by a test function ϕ (which is R2

valued) and integrating by parts we get∫ π

0
yt · ϕdx =

∫ π

0
(Ay +Bh) · ϕdx+

∫ π

0

(
u2

2

)
ϕ1x dx,

where we have used the notation introduced in Section 3. This motivates us to define F : L2(0, π)→
(H2(0, π) ∩H1

0 (0, π))′ in the following way

〈F (u), φ〉(H2(0,π)∩H1
0 (0,π))

′,H2(0,π)∩H1
0 (0,π)

=

∫ π

0

(
u2

2

)
φxdx,

Using Hölder inequality and since H1(0, π) ↪→ L∞(0, π), we deduce

〈F (u), φ〉(H2(0,π)∩H1
0 (0,π))

′,H2(0,π)∩H1
0 (0,π)

≤
∥∥∥∥u22

∥∥∥∥
L1(0,π)

‖φx‖L∞(0,π)

≤ C3

2
‖u‖2L2(0,π) ‖φ‖H2(0,π)∩H1

0 (0,π)
,

meaning ‖F (u)‖(H2(0,π)∩H1
0 (0,π))

′ ≤
C3

2
‖u‖2L2(0,π) for some C3 > 0.

We say that y ∈ C([0, T ], L2(0, π) × H−1(0, π)) ∩ L2(0, T ;H2(0, π) ∩ H1
0 (0, π) × L2(0, π)) is a

solution of (1.2) if it satisfies
yt = Ay +Bh+ (F (u), 0).
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Note that

‖(F (u), 0)‖2
L2(0,T ;(H2∩H1

0 )
′)
2 = ‖F (u)‖2L2(0,T ;(H2∩H1

0 )
′) =

∫ T

0
‖F (u)‖2(H2∩H1

0 )
′

≤ C2
3

4

∫ T

0
‖u‖4L2(0,π) ≤

TC2
3

4
‖u‖4C([0,T ],L2(0,π))

≤ TC2
3

4
‖y‖4C([0,T ],L2(0,π)×H−1(0,π)) <∞.

Therefore (F (u), 0) ∈ L2(0, T ; (H2(0, π)∩H1
0 (0, π))′)2, and it makes sense to put f = (F (u), 0)

in (2.1).

Theorem 4.1. Suppose (3.1) is null-controllable in time τ for all τ > 0, and also suppose that
there exist constants C1,M > 0 such that the control cost is bounded by K(T ) = C1 exp (M/T ).
Then (1.2) is locally null-controllable at time T .

Proof. We consider ρ0 and ρ1, as in [15], given by

ρ1(t) = exp

(
− α

(T − t)2

)
,

ρ0(t) = C1 exp

(
− α

q4(T − t)2
+

M

(q − 1)(T − 1)

)
,

(4.1)

where K(T ) = C1 exp (M/T ) is a strict upper bound for the control cost, 1 < q < 21/4 and

α >
MTq4

2(q − 1)
. Then we may directly check that (4.1) are continuous, non increasing functions,

which vanish at t = T , and verify
1

ρ1
≤ C1

ρ20
, (4.2)

and for t ∈
[(

1− 1
q2

)
T, T

]
, we can write

ρ0(t) = ρ1(q
2t+ (1− q2)T )K((q − 1)(T − t)).

In this way, the weights (4.1) verify the hypotheses in Proposition 2.2. Also, as we have mentioned
in Remark 2.3, it is possible to extend the weight ρ0 to the whole interval [0, T ]. We still denote it
by ρ0.

We now prove that if the initial data (u0, v0) is sufficiently small, there exists a control h and
a solution (u, v) of (1.2) such that (u, v)(T, ·) = 0. Denoting Z = L2

ρ1(0, T ; (H2 ∩H1
0 )′)2, we define

F : Z −→ Z,
f 7→ (F (u), 0)

where (u, v) solves (2.1). Clearly, in view of Proposition 2.2, finding a fixed point of the map F
will gives us a controlled solution to (1.2) which in addition satisfies (u, v)(T, ·) = 0.

We begin by showing that F is well defined.

‖F(f)‖2Z = ‖F (u)‖2L2
ρ1

(0,T :(H2∩H1
0 )
′) =

∫ T

0

‖F (u)‖2(H2∩H1
0 )
′

ρ1(t)2
dt

≤ C1C
2
3

4

∫ T

0

‖u(t)‖4L2(0,π)

ρ0(t)4
dt ≤ TC1C

2
3

4

∥∥∥∥ uρ0
∥∥∥∥4
C([0,T ],L2)

≤ TC1C
2
3

4

∥∥∥∥(u, v)

ρ0

∥∥∥∥4
C([0,T ],L2×H−1)

≤ TC1C
2
3C

2
2

4

(
‖(u0, v0)‖2L2×H−1 + ‖f‖2Z

)2
< +∞,

(4.3)
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where C2 > 0 is the constant coming from Proposition 2.2.

Taking C4 =

√
TC1C2C3

2
, we get that

‖F(f)‖Z ≤ C4

(
‖y0‖2L2×H−1 + ‖f‖2Z

)
.

We define R =
1

4C4
. For any y0 such that ‖y0‖L2×H−1 ≤ R we have

‖F(f)‖Z ≤ 2C4R
2 ≤ R

2
≤ R.

Therefore, F maps B(0, R) ⊂ Z into itself.
To conclude, we need to show that F is a contraction on B(0, R). To this end, take f (1), f (2) ∈

B(0, R) and consider y(1) = (u(1), v(1)), y(2) = (u(2), v(2)) and h(1), h(2) the respective solutions and
controls given by Proposition 2.2.

Since y and h depend continuously on the pair (y0, f), y(1)−y(2) and h(1)−h(2) are the solution
and control associated with f = f (1) − f (2) and y0 = 0. A straightforward computation yields

∥∥∥F(f (1))−F(f (2))
∥∥∥2
Z

=
∥∥∥F (u(1))− F (u(2))

∥∥∥2
L2
ρ1

(0,T :(H2∩H1
0 )
′)

=

∫ T

0

∥∥F (u(1))− F (u(2))
∥∥2
(H2∩H1

0 )
′

ρ1(t)2
dt =

C2
3

4

∫ T

0

∥∥(u(1))2 − (u(2))2
∥∥2
L2(0,π)

ρ1(t)2
dt

≤ C1C
2
3

4

∫ T

0

∥∥u(1) + u(2)
∥∥2
L2(0,π)

∥∥u(1) − u(2)∥∥2
L2(0,π)

ρ0(t)4
dt,

where we have used property (4.2). Whence,∥∥∥F(f (1))−F(f (2))
∥∥∥2
Z

≤ TC1C
2
3

4

∥∥∥∥∥u(1) + u(2)

ρ0

∥∥∥∥∥
2

C([0,T ],L2)

∥∥∥∥∥u(1) − u(2)ρ0

∥∥∥∥∥
2

C([0,T ],L2)

≤ TC1C
2
3C

2
2

4

(
‖2y0‖2L2×H−1 +

∥∥∥f (1) + f (2)
∥∥∥2
Z

)∥∥∥f (1) − f (2)∥∥∥2
Z

≤ 8C2
4R

2
∥∥∥f (1) − f (2)∥∥∥2

Z
,

where we have taken into account the smallness of the initial datum and the source terms. From
the above expression and using the definition of R, we get∥∥∥F(f (1))−F(f (2))

∥∥∥
Z
≤ 2
√

2C4R
∥∥∥f (1) − f (2)∥∥∥

Z
=

√
2

2

∥∥∥f (1) − f (2)∥∥∥
Z
,

and the proof follows immediately.

Once we have established Theorem 4.1, the proof of Theorem 1.2 is a direct application of such
result and the bound for the control cost obtained in Theorem 3.3.
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A A general well-posedness result

Here, we give a proof of Proposition 2.1.

Proof. Since (−∂xx)2 : H2(0, π) ∩H1
0 (0, π) ⊂ (H2(0, π) ∩H1

0 (0, π))′ → (H2(0, π) ∩H1
0 (0, π))′ and

−d∂xx : L2(0, π) ⊂ (H2(0, π) ∩H1
0 (0, π))′ → (H2(0, π) ∩H1

0 (0, π))′ are strictly positive self-adjoint
operators, we have the following two results due to [4, Thm. 3.1, pp. 143].

If f1 ∈ L2(t1, t2; (H2(0, π) ∩H1
0 (0, π))′) and u1 ∈ L2(0, π), then

ut(t, x) + uxxxx(t, x) = f1, t ∈ (t1, t2), x ∈ (0, π),
u(t, 0) = uxx(t, 0) = 0, t ∈ (t1, t2),
u(t, π) = uxx(t, π) = 0, t ∈ (t1, t2),

(A.1)

admits a unique solution u ∈ C([t1, t2], L
2(0, π)) ∩ L2(t1, t2;H

2(0, π) ∩H1
0 (0, π)) satisfying u(t1) =

u1, and we have

‖u‖2L2(t1,t2;H2∩H1
0 )

+ ‖u‖2C([t1,t2],L2) ≤ K1

(
‖u1‖2L2 + ‖f1‖2L2(t1,t2;(H2∩H1

0 )
′)

)
, (A.2)

for some K1 > 0 independent of t1, t2.
The second result tells that if f2 ∈ L2(t1, t2; (H2(0, π) ∩H1

0 (0, π))′) and v1 ∈ H−1(0, π), then{
vt(t, x)− dvxx(t, x) = f2, t ∈ (t1, t2), x ∈ (0, π),
v(t, 0) = h(t), v(t, π) = 0, t ∈ (t1, t2),

(A.3)

admits a unique solution v ∈ C([t1, t2], H
−1(0, π))∩L2(t1, t2;L

2(0, π)) satisfying v(t1) = v1. More-
over, we have the following energy estimate

‖v‖2L2(t1,t2;L2) + ‖v‖2C([t1,t2],H−1) ≤ K2

(
‖h‖2L2(t1,t2)

+ ‖v1‖2H−1 + ‖f2‖2L2(t1,t2;(H2∩H1
0 )
′)

)
,

with K2 > 0 independent of t1, t2.
We will now exploit the cascade structure of the system. Notice that if v ∈ L2(t1, t2;L

2(0, π)),
then in particular v ∈ L2(t1, t2; (H2(0, π) ∩H1

0 (0, π))′) and

‖v‖2L2(t1,t2;(H2∩H1
0 )
′) ≤ ‖v‖

2
L2(t1,t2;L2) .

We take v to be the solution of (A.3), with right hand side f2, and u to be the solution of (A.1)
with right hand side f1 + v, since

‖v + f1‖2L2(t1,t2;(H2∩H1
0 )
′) ≤ 2

(
‖f1‖2L2(t1,t2;(H2∩H1

0 )
′) + ‖v‖2L2(t1,t2;(H2∩H1

0 )
′)

)
,

We get

‖v‖2L2(t1,t2;L2) + ‖v‖2C([t1,t2],H−1) ≤ K2

(
‖h‖2L2(t1,t2)

+ ‖v1‖2H−1 + ‖f2‖2L2(t1,t2;(H2∩H1
0 )
′)

)
, (A.4)

and

‖u‖2L2(t1,t2;H2∩H1
0 )

+ ‖u‖2C([t1,t2],L2) ≤ K1

(
‖u1‖2L2 + ‖f1 + v‖2L2(t1,t2;(H2∩H1

0 )
′)

)
≤ 2K1

(
‖u1‖2L2 + ‖f1‖2L2(t1,t2;(H2∩H1

0 )
′)

)
+ 2K2K1

(
‖h‖2L2(t1,t2)

+ ‖v1‖2H−1 + ‖f2‖2L2(t1,t2;(H2∩H1
0 )
′)

)
,

(A.5)

13



where we have used (A.4) in the last line. Writing y = (u, v) and y1 = (u1, v1), we can combine
(A.4) and (A.5) and take C = max{K2, (2K1 + 1)K2} to deduce

‖y‖2L2(t1,t2;(H2∩H1
0 )×L2) + ‖y‖2C([t1,t2],L2×H−1)

≤ C
(
‖h‖2L2(t1,t2)

+ ‖y1‖2L2×H−1 + ‖f‖2L2(t1,t2;(H2∩H1
0 )
′)2

)
.

This concludes the proof.

B Sketch of the proof of Proposition 2.2

We define Tk = T

(
1− 1

qk

)
. Notice that with this

ρ0(Tk+2) = ρ1(Tk)K(Tk+2 − Tk+1).

We recursively define yk+1 as z(Tk+1), where z = (z1, z2) solves (2.1) on (Tk, Tk+1) with initial
condition z(Tk) = 0 and control h = 0. By Proposition 2.1 we have

‖z‖2L2(Tk,Tk+1;(H2∩H1
0 )×L2) + ‖z‖2C([Tk,Tk+1],L2×H−1) ≤ C ‖f‖

2
L2(Tk,Tk+1;(H2∩H1

0 )
′)2 ,

with this

‖yk+1‖2L2×H−1 = ‖z(Tk+1)‖2L2×H−1 ≤ ‖z‖2C([Tk,Tk+1],L2×H−1) ≤ C ‖f‖
2
L2(Tk,Tk+1;(H2∩H1

0 )
′)2 .

Define h on (Tk, Tk+1) as the control that drives (2.1) to zero in time Tk+1 with initial condition
yk at time Tk and source term f ≡ 0. We denote the corresponding solution by w. Since we have
assumed that system (2.1) with f ≡ 0 is null-controllable with control cost K(·), we have

‖h‖2L2(Tk,Tk+1)
≤ K2(Tk+1 − Tk) ‖yk‖2L2×H−1

and therefore

‖h‖2L2(Tk+1,Tk+2)
≤ K2(Tk+2 − Tk+1) ‖yk+1‖2L2×H−1 ≤ CK2(Tk+2 − Tk+1) ‖f‖2L2(Tk,Tk+1;(H2∩H1

0 )
′)2 .

We define y = z + w. Since z(T−k ) + w(T−k ) = z(T+
k ) + w(T+

k ), y is continuous at Tk for every
k ≥ 0. With this definition, it is also clear that y solves (2.1) for t ∈ [0, T ).

Notice that

‖h‖2L2
ρ0

(Tk+1,Tk+2)
≤ 1

ρ20(Tk+2)
‖h‖2L2(Tk+1,Tk+2)

≤ CK
2(Tk+2 − Tk+1)

ρ20(Tk+2)
‖f‖2L2(Tk,Tk+1;(H2∩H1

0 )
′)2

=
C

ρ21(Tk)
‖f‖2L2(Tk,Tk+1;(H2∩H1

0 )
′)2 ≤ C ‖f‖

2
L2
ρ1

(Tk,Tk+1;(H2∩H1
0 )
′)2 ,

(B.1)

and

‖h‖2L2
ρ0

(0,T1)
≤ 1

ρ20(T1)
‖h‖2L2(0,T1)

≤ K2(T1)

ρ20(T1)
‖y0‖2L2×H−1 . (B.2)

Proposition 2.1 yields

‖(u, v)‖2L2
ρ0

(Tk+1,Tk+2;(H2∩H1
0 )×L2) +

∥∥∥∥(u, v)

ρ0

∥∥∥∥2
C([Tk+1,Tk+2],L2×H−1)

≤ C2

(
1 +

1

K2(Tk+2 − Tk+1)

)
‖f‖2L2

ρ1
(Tk,Tk+1;(H2∩H1

0 )
′)2

+
C

K2(Tk+2 − Tk+1)
‖f‖2L2

ρ1
(Tk+1,Tk+2;(H2∩H1

0 )
′)2 (B.3)
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and also

‖(u, v)‖2L2
ρ0

(0,T1;(H2∩H1
0 )×L2) +

∥∥∥∥(u, v)

ρ0

∥∥∥∥2
C([0,T1],L2×H−1)

≤ C(K2(T1) + 1)

ρ20(T1)
‖y0‖2L2×H−1 +

Cρ21(0)

ρ20(T1)
‖f‖2L2

ρ1
(0,T1;(H2∩H1

0 )
′)2 .

(B.4)

Combining estimates (B.1)–(B.2) with (B.3)–(B.4) and taking into accouht Remark 2.3, we can do

a limit process to deduce that
y

ρ0
is continuous on [0, T ], and equals 0 at t = T . Furthermore, we

can deduce the existence of a constant C2 > 0 such that (2.2) holds. This ends the proof.
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