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This paper handles non-parametric estimation of a conditional cumulative distribution function (CCDF). Using a recursive approach, we set forward a multivariate recursive estimator dened by stochastic approximation algorithm. Our basic objective is to investigate the statistical inference of our estimator and compare it with that of non-recursive Nadaraya-Watson's estimator. From this perspective, we rst derive the asymptotic properties of the proposed estimator which highly depend on the choice of two parameters, the stepsize (γ n ) as well as the bandwidth (h n ). The second generation plug-in method, a method of bandwidth selection minimizing the Mean Weighted Integrated Squared Error (MW ISE) of the estimator in reference, entails the optimal choice of the bandwidth and therefore maintains an appropriate choice of the stepsize parameter. Basically, we demonstrate that, under some conditions, the Mean Squared Error (MSE) of the proposed estimator can be smaller than the one of Nadaraya Watson's estimator. We corroborate our theoretical results through simulation studies and two real dataset applications, namely the Insurance Company Benchmark (COIL 2000) dataset as well as the French Hospital Data of COVID-19 epidemic.

Introduction

Assume that we observe independent identically distributed vectors (X 1 , Y 1 ), ..., (X n , Y n ) of a bivariate random variable (X, Y ) with common cumulative distribution function π(x, y)

where one is interested in modeling the functional dependence of the observation Y on the covariable X by the conditional cumulative distribution function (CCDF) of Y given X = x, denoted by for all real y and x π(y|x)

:= P [Y y|X = x] .
We shall also assume that the bivariate random variable (X, Y ) (resp. the random variable X) has a density function f (X,Y ) (resp. f X ) with respect to the Lebesgue measure. Recall that for all real y and x such that f X (x) = 0, the CCDF of Y given X = x is expressed by

π(y|x) = R 1 {u y} f (X,Y ) (x, u)du f X (x) .
In a variety of non-parametric statistical problems, the estimation of a CCDF is a key aspect of inference. Remember that the CCDF has the merit of characterizing the conditional law of the considered bivariate random variables. Notably, the CCDF is often useful in reliability or survival analysis. More specically, the conditional survival function S (y|x) dened by, for all real y and x, S (y|x) := 1 -π(y|x) is of extreme interest, either by itself, or by its independence with the conditional hazard function h (y|x) indicated by, for all real y and x, h (y|x) := f (y|x) S (y|x) where f (y|x) denotes the conditional density of Y given X = x. Furthermore, conditional quantiles can also be deduced from the CCDF π by (pseudo)-inversion given x of the function y → π(y|x) and the same procedure may be applied to the estimator of CCDF to nd conditional quantile estimators. Several non-parametric estimators have been elaborated to estimate the CCDF. Many of them rely initially on estimating the R 1 {u y} f (X,Y )(x,u) du. The conditional cumulative distribution function was rst extensively explored by [START_REF] Stute | Conditional empirical processes[END_REF] using a nearest-neighbor-type conditional empirical process. Subsequently, [START_REF] Hall | Methods for estimating a conditional distribution function[END_REF], motivated by the problem of setting prediction intervals in time series analysis, developed a new non-parametric method for CCDF estimation resting on an adjusted form of NadarayaWatson estimator. Afterwards, [START_REF] Ferrigno | Certainty bands for the conditional cumulative distribution function and applications[END_REF] established uniform asymptotic certainty bands for the CCDF using the same strategy. For a general non-parametric regression model, [START_REF] Kiwitt | Estimating the conditional error distribution in nonparametric regression[END_REF] set up two estimators using a kernel approch, where the distribution of the error given the covariate is modeled by a CCDF provided by P ( ≤ y|X = x). On a given compact set, [START_REF] Brunel | Minimax estimation of the conditional cumulative distribution function[END_REF] constructed a minimax estimator of the CCDF. Thereafter, [START_REF] Veraverbeke | Preadjusted non-parametric estimation of a conditional distribution function[END_REF] built up a new estimator of CCDF investing a method of pre-adjusting the original observations non-parametrically. Recently, [START_REF] Bouanani | Local linear conditional cumulative distribution function with mixing data[END_REF] introduced a new method to settle CCDF estimation problem based on local polynomial technique. Many functional estimations are grounded on estimating the CCDF see e.g [START_REF] Laksaci | Conditional cumulative distribution estimation and its applications[END_REF], [START_REF] Laksaci | Note on the functional linear estimate of conditional cumulative distribution function[END_REF] and [START_REF] Almanjahie | kNN local linear estimation of the conditional cumulative distribution function: Dependent functional data case[END_REF]. The CCDF is involved in a wide range of applications, for instance, in medicine see [START_REF] Gannoun | Reference curves based on non-parametric quantile regression[END_REF], econometrics see [START_REF] Li | Optimal bandwidth selection for nonparametric conditional distribution and quantile functions[END_REF] or machine learning domain see the recent work of [START_REF] Chilinski | Neural likelihoods via cumulative distribution function. roeedings of the QTth gonferene on nertinty in erti[END_REF]. In a broader context, extensive state of art works including various non-parametric approaches tackled the conditional estimation. We can state for example [START_REF] Yu | Local linear quantile regression[END_REF], [START_REF] Fan | Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems[END_REF], Berlinet et al. (1998a,b), Honda (2000a,b) and [START_REF] Plancade | Adaptive estimation of the conditional cumulative distribution function from current status data[END_REF]. For recent references see [START_REF] Benziadi | Recursive kernel estimate of the conditional quantile for functional ergodic data[END_REF], [START_REF] Chowdhury | Nonparametric estimation of conditional distribution functions with longitudinal data and time-varying parametric models[END_REF], [START_REF] Al-Awadhi | Functional data analysis: local linear estimation of the L 1 -conditional quantiles[END_REF], [START_REF] Chikr-Elmezouar | FDA: strong consistency of the kNN local linear estimation of the functional conditional density and mode[END_REF] and [START_REF] Slaoui | Adaptive recursive kernel conditional density estimators under censoring data[END_REF].

Over the past decade, data streams have become an increasingly important area of research. Some of the most common data streams include Internet packet data, Twitter activity, Facebook newsfeed, credit card transactions and more recently COVID-19 epidemic data. In these situations, the data arrives regularly so that it is impossible to store it in a traditional database. In such a context, it is very interesting to build a recursive multivariate conditional cumulative distribution estimator that does not need to store all the data in memory and that can be easily updated to handle the online data. The basic target of this paper is to provide a non-parametric strategy to recursively estimate the CCDF. The paper is organized as follows. In section 2 we introduce our method for the estimation procedure of CCDF. The main results of our recursive estimator are displayed in section 3. Section 4 exhibits the asymptotic properties of non-recursive Nadaraya-Watson's estimator. A second generation plug-in scheme for constructing data-driven bandwidth selection procedures is elaborated in section 5. Section 6 highlights the performances of our estimator on simulated data as well as a real dataset. Finally, the conclusion is drawn in section 7.

Preliminaries

Let (X, Y ) ∈ R d × R q and (X 1 , Y 1 ), ..., (X n , Y n ) be independent random vectors identically distributed as (X, Y ) with joint density function f (X,Y ) and let f X denote the probability density of X. In this paper, our central focus is upon the problem of estimating the CCDF of Y given X = x provided by

π : R q × R d -→ R (y|x) -→ P[Y y|X = x] = R q 1 {u y} f (X,Y ) (x, u)du f X (x) .
Here, we introduce our recursive estimator π n specied by

π n (y|x) =    a n (x, y) f n (x) if f n (x) = 0 0 otherwise , (1) 
with

a n (x, y) = Π n n k=1 Π -1 k γ k χ k (y)h -d k K x -X k h k and f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k ,
where

K is a multivariate kernel satisfying R d K(t)dt = 1.
χ is a multivariate indicator function identied by χ k : R q -→ R, y -→ 1 {Y k y} .

(h n ) is the bandwidth: a sequence of positive real numbers that tends to zero.

(γ n ) is the stepsize: a positive sequence of real numbers decreasing towards zero and

Π n = n j=1
(1 -γ j ).

Our main purpose is to examine the asymptotic properties of the proposed multivariate estimator of the CCDF and to corroborate its performances.

We shall compare our estimator to the generalized kernel CCDF estimator of Nadaraya-Watson Nadaraya (1964) and [START_REF] Watson | Smooth regression analysis[END_REF] π n expressed by

π n (y|x) =    a n (x, y) f n (x) if f n (x) = 0 0 otherwise , (2) 
with

a n (x, y) = 1 nh d n n k=1 χ k (y) K x -X k h n and f n (x) = 1 nh d n n k=1 K x -X k h n .
The recursive estimator was constructed based on dint of stochastic approximation method. Indeed, incorporating stochastic approximation algorithms in the context of non-parametric statistics dates back to the papers of [START_REF] Robbins | A stochastic approximation method[END_REF] and [START_REF] Kiefer | Stochastic estimation of the maximum of a regression function[END_REF]. Their research works have been extended in several directions. We refer the reader to [START_REF] Blum | Multidimensional stochastic approximation methods[END_REF], [START_REF] Nadaraya | On estimating regression[END_REF], [START_REF] Ruppert | Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise[END_REF][START_REF] Duo | ndom itertive models, volume 34 of epplitions of wthemtis @xew orkA[END_REF]. Subsequently, in the paper of [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF], the multidimensional case was investigated in order to estimate of a multivariate probability density using the estimation by condence intervals. Additionally, [START_REF] Slaoui | The stochastic approximation method for estimation of a distribution function[END_REF] reused stochastic approximation methods to build an univariate distribution function estimator and lately [START_REF] Slama | Multivariate distribution function estimation using stochastic approximation method[END_REF] elaborated the multidimensional case in order to enhance the qualities of the multivariate distribution function estimator. Following the same recursive approach, we intend to establish a multivariate conditional cumulative distribution function estimator.

To build up a stochastic algorithm, which approaches the function

a : (x, y) -→ R q 1 {u y} f (X,Y ) (x, u)du
at a given couple of vectors (x, y), we dene an algorithm of search of the zero function φ : z -→ a(x, y) -z and we set:

(i) a 0 (x, y) ∈ R (ii) for all n ≥ 1, a n (x, y) = a n-1 (x, y) + γ n U n (x, y),
where U n (x, y) corresponds to an observation of the function φ at the point a n-1 (x, y).

Note that to dene U n (x, y), we adopt the approach of [START_REF] Révész | How to apply the method of stochastic approximation in the nonparametric estimation of a regression function[END_REF] and [START_REF] Tsybakov | Recurrent estimation of the mode of a multidimensional distribution[END_REF].

By considering U n (x, y) = χ n (y) h -d n K
x -X n h n -a n-1 (x, y), the stochastic approximation algorithm that is devoted to estimate recursively the function a at a couple of vectors (x, y) can be stated as follows :

a n (x, y) = (1 -γ n )a n-1 (x, y) + γ n χ n (y) h -d n K x -X n h n . (3) 
Throughout this paper, we consider that a 0 (x, y) = 0. Therefore, by recurrence, we get

a n (x, y) = Π n n k=1 Π -1 k γ k χ k (y)h -d k K x -X k h k . ( 4 
)
Within this framework, we use the recursive multivariate probability density estimator of the density function f X noted f n and dened in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]. It was constructed with the same tools of stochastic approximation algorithm and under the condition that f 0 (x) = 0, we have:

f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k . ( 5 
)
The following notations are highly useful as they are invested throughout the whole paper. * ∀ i, j ∈ {1, . . . , d}, a

i (., y) := ∂a ∂x i (., y), π

i (y|.) :=

∂π ∂x i (y|.), f (1) 
X i (.) := ∂f X ∂x i (.), a (2) 
ij (., y) := ∂ 2 a ∂x i ∂x j (., y), π

(2)

ij (y|.) := ∂ 2 π ∂x i ∂x j (y|.), f (2) 
X ij (.) := ∂ 2 f X ∂x i ∂x j (.), µ i (K) := R d z 2 i K(z)dz. * ξ := lim n→+∞ (nγ n ) -1 . * R(K) := R d K 2 (z) dz. * I 1 := R d+q d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π
(1) j (y|x)f

(1)

X j (x) 2 f X,Y (x, y)dxdy. * I 2 := R d+q π(y|x) (1 -π(y|x)) f X (x)f X,Y (x, y)dxdy. * ∀ x ∈ R d , y ∈ R q , Z n (x, y) := h -d n χ n (y) K x -X n h n and W n (x) := h -d n K
x -X n h n .

In the sequel, let us present the following denition of class of regularly varying sequences introduced by [START_REF] Galambos | Regularly varying sequences[END_REF].

Denition 1. vet (v n ) e nonrndom positive sequene nd γ ∈ RF e sy tht

(v n ) ∈ GS(γ) if lim n→+∞ n 1 - v n-1 v n = γ.
In what follows, we introduce a lemma that will be widely invested throughout the study of our estimator π n . It is worth noting that the proof of this lemma was recorded in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF].

Lemma 1. vet

(v n ) ∈ GS(v * ), (γ n ) ∈ GS(-α) nd let m > 0 suh tht m -v * ξ > 0. henD lim n→+∞ v n Π m n n k=1 Π -m k γ k v k = 1 m -v * ξ .
woreoverD for ny positive sequene (α n ) suh tht lim

n→+∞ α n = 0 nd ll C ∈ RD lim n→+∞ v n Π m n n k=1 Π -m k γ k v k α k + C = 0.
In order to introduce our theoretical main results, we need the following technical assumptions.

Assumptions:

(A 1 ) K : R d -→ R is a continuous bounded function satisfying:

R d K(u)du = 1 , ∀j ∈ {1, . . . , d}, R d u j K(u)du = 0 and R d u 2 j K(u)du < ∞. (A 2 ) (i) (γ n ) ∈ GS(-α), with α ∈ 1 2 , 1 . (ii) (h n ) ∈ GS(-a), with a ∈ (0, 1]. (iii) lim n→+∞ (nγ n ) ∈ min{2a, α-ad 2 }, ∞ . (A 3 ) (i) f X is
bounded, twice dierentiable with respect to x and for all i, j ∈ {1, . . . , d}, f

(2) X ij is bounded.

(ii) a is bounded, twice dierentiable with respect to x and for all i, j ∈ {1, . . . , d}, a

(2) ij is bounded.

(iii) f (X,Y ) is bounded and twice continuously dierentiable with respect to x.

Discussion of the assumptions:

All these assumptions are standard and are generally assumed within the context of nonparametric estimation. Classical assumption (A 1 ) provides regularity conditions on the kernel density estimator introduced by [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] and [START_REF] Parzen | On estimation of a probability density function and mode[END_REF].It is widely used in the non-parametric framework for the functional estimation. Assumption (A 2 ) on the stepsize and the bandwidth was used in the recursive framework for the estimation of the density function in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]; Slaoui (2014a) and for the distribution function estimation in [START_REF] Slaoui | The stochastic approximation method for estimation of a distribution function[END_REF]. Furthermore, assumption (A 2 )(iii) on the limit of (nγ n ) as n goes to innity is frequent in the framework of stochastic approximation algorithms. It implies, in particular, that the limit of (nγ n ) -1 is nite. Moreover, assumptions in (A3) are technical conditions imposed in order to ensure the reliability of proofs. Those conditions on the density of the couple (X, Y ) were applied in the non-recursive framework for the estimation of the regression function [START_REF] Nadaraya | On estimating regression[END_REF]; [START_REF] Watson | Smooth regression analysis[END_REF] and in the recursive framework Mokkadem et al. (2009a); [START_REF] Slaoui | Large and moderate deviation principles for averaged stochastic approximation method for the estimation of a regression function[END_REF].

In this section, we need to recall the following proposition which introduces the bias and the variance of f n . The proof of this result was depicted in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF].

Bias and variance of f n : Proposition 1. nder ssumptions (A 1 ) -(A 3 )D nd ssuming thtD for ll i, j ∈ {1, . . . , d}D f

(2)

X ij is ontinuous t xD we otin IF sf a ∈ 0, α d+4 D then E[f n (x)] -f X (x) = 1 2(1 -2aξ) d j=1 µ j (K)f X (2) jj (x) h 2 n + o h 2 n . (6) sf a ∈ α d+4 , 1 D then E[f n (x)] -f X (x) = o γ n h -d n . ( 7 
) PF sf a ∈ 0, α d+4 D then V ar[f n (x)] = o h 4 n . (8) sf a ∈ α d+4 , 1 D then V ar[f n (x)] = 1 2 -(α -ad)ξ f X (x)R(K) γ n h d n + o γ n h -d n . ( 9 
)
3 Main results

In order to explore the asymptotic properties of our estimator π n , we need rst to introduce the following proposition which provides the bias and the variance of a n .

3.1

Bias and variance of a n : Proposition 2. nder ssumptions

(A 1 ) -(A 3 )D nd ssuming thtD for ll i, j ∈ {1, . . . , d}D a (2) ij is ontinuous t xD we otin IF sf a ∈ 0, α d+4 D then E[a n (x, y)] -a(x, y) = 1 2(1 -2aξ) d j=1 µ j (K)a (2) jj (x, y) h 2 n + o h 2 n . (10) sf a ∈ α d+4 , 1 D then E[a n (x, y)] -a(x, y) = o γ n h -d n . ( 11 
) PF sf a ∈ 0, α d+4 D then V ar[a n (x, y)] = o h 4 n . ( 12 
) sf a ∈ α d+4 , 1 D then V ar[a n (x, y)] = 1 2 -(α -ad)ξ a(x, y)R(K) γ n h d n + o γ n h -d n . ( 13 
)
roofF We have

E[a n (x, y)] -a(x, y) = Π n n k=1 Π -1 k γ k (E[Z k (x, y)] -a(x, y)) + Π n [a 0 (x, y) -a(x, y)].
Relying upon the assumption (A 1 ), we have

R d K(z)dz = 1. Hence, it follows that E[Z k (x, y)] -a(x, y) = R d h -d k K x -t h k E[χ k (y)|X = t]f X (t)dt - R d K (t) a(x, y)dt = R d K (z) [a(x -zh k , y) -a(x, y)] dz.
Moreover, Taylor's expansion with integral remainder ensures that

E[Z k (x, y)] -a(x, y) = R d K(z) d i=1 ∂a ∂x i (x, y)z i h k + 1 0 (1 -t) d i,j=1 ∂ 2 a ∂x i ∂x j (x -tzh k , y)z i z j h 2 k dt dz = h 2 k 2 d j=1 µ j (K)a (2) jj (x, y) + h 2 k η k (x).
where,

η k (x) := d i,j=1 R d 1 0 (1 -t) a (2) ij (x -tzh k , y) -a (2) ij (x, y) z i z j K(z)dtdz. Hence, E[a n (x, y)] -a(x, y) = 1 2 d j=1 µ j (K)a (2) jj (x, y)Π n n k=1 Π -1 k γ k h 2 k + Π n n k=1 Π -1 k γ k h 2 k η k (x) + Π n [a 0 (x, y) -a(x, y)].
• For the case a α/(d + 4), we have lim n→+∞ (nγ n ) > 2a and then 1 -2aξ > 0. The application of lemma 1 enables us to write

E[a n (x, y)] -a(x, y) = 1 2(1 -2aξ) d j=1 µ j (K)a (2) jj (x, y) h 2 n + o h 2 n + o (1) + O (Π n ) .
We thus obtain the following desired result

E[a n (x, y)] -a(x, y) = 1 2(1 -2aξ) d j=1 µ j (K)a (2) jj (x, y) h 2 n + o h 2 n .
• For the case a > α/(d+4), we have lim

n→+∞ (nγ n ) > α-a 2 which yields that h 2 n = o γ n h -d n .
Then, the use of lemma 1 leads to

E[a n (x, y)] -a(x, y) = o γ n h -d n .
Therefore, the claimed result ( 11) is established.

For the variance, and owing to the independence of X i , for i = 1, . . . , n, it's obvious that

V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k V ar[Z k (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k E[Z 2 k (x, y)] -E[Z k (x, y)] 2 = Π 2 n n k=1 Π -2 k γ 2 k R d h -d k K 2 (z) a(x -zh k , y)dz - R d K (z) a(x -zh k , y)dz 2 .
As matter of fact, the Taylor's expansions theorem ensures that

V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k h -d k a(x, y) R d K 2 (z) dz + ν k (x) -h d k η k (x) ,
where,

ν k (x) = R d K 2 (z) [a(x -zh k , y) -a(x, y)]dz and η k (x) = R d K (z) a(x -zh k , y)dz 2 .
• For the case a α/(d + 4), we have lim

n→+∞ (nγ n ) > α-ad 2 and then 1 -2aξ > 0. Since we have lim k→+∞ ν k (x) = 0 and lim k→+∞ h k η k (x) = 0, then the application of lemma 1 ensures that V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ 2 k h -d k a(x, y)R(K) + ν k (x) -h d k η k (x) = 1 2 -(α -ad)ξ γ n h d n [a(x, y)R(K) + o (1)].
Thus, this leads to the result displayed in (13).

• For the case a < α/(d + 4), we have lim

n→+∞ (nγ n ) > 2a which provides that γ n h -d n = o (h 4 n ) . By applying lemma 1, we infer that V ar[a n (x, y)] = Π 2 n n k=1 Π -2 k γ k o h 4 k = o h 4 n .
In the following theorem, we introduce our main result which provides the bias and the variance of our CCDF multivariate estimator π n .

3.2

Bias and variance of π n : Theorem 1. vet ssumptions (A 1 ) -(A 3 ) hold nd ssume thtD for ll i, j ∈ {1, . . . , d}D

a (2) ij nd f (2) X ij re ontinuous t xD we otin IF sf a ∈ 0, α d+4 D then E[π n (y|x)] -π(y|x) = 1 2(1 -2aξ) 1 f X (x) d j=1 µ j (K) π (2) jj (y|x)f X (x) (14) 
+ 2π

(1) j (y|x)f

(1)

X j (x) h 2 n + o h 2 n . sf a ∈ α d+4 , 1 D then E[π n (y|x)] -π(y|x) = o γ n h -d n . ( 15 
) PF sf a ∈ 0, α d+4 D then V ar[π n (y|x)] = o h 4 n . ( 16 
) sf a ∈ α d+4 , 1 D then V ar[π n (y|x)] = R(K) 2 -(α -ad)ξ π(y|x)(1 -π(y|x)) f X (x) γ n h d n + o γ n h d n . ( 17 
)
It is noteworthy that the bias and the variance of the estimator π n dened by the stochastic approximation algorithm (1) mainly depend on the choice of the stepsize (γ n ).

roofF Our proof rests upon the following decomposition, for

f n = 0, n ≥ 0 π n (y|x) -π(y|x) = A n (x, y) f X (x) f n (x) , (18) 
with

A n (x, y) = 1 f X (x) (a n (x, y) -a(x, y)) - π(y|x) f X (x) (f n (x) -f X (x)) .
It follows from ( 18) that the asymptotic behavior of π n (y|x) -π(y|x) can be deduced from the one of A n (x, y).

For the bias of π n , we can state

E[A n (x, y)] = 1 f X (x) (E[a n (x, y)] -a(x, y)) - π(y|x) f X (x) (E[f n (x)] -f X (x)) .
Now, using the rst bias part of proposition 1 and proposition 2 and considering the fact that a(x, y) = π(y|x)f X (x), then by combining the assertions ( 6), ( 7),( 10) and ( 11); we obtain the relations ( 14) and ( 15). In order to conrm the variance of π n statement, we have

V ar[A n (x, y)] = 1 (f X (x)) 2 V ar[a n (x, y)] + (π(y|x)) 2 (f X (x)) 2 V ar[f n (x)] -2 π(y|x) (f X (x)) 2 Cov(a n (x, y), f n (x)). ( 19 
)
Given that the X k 's are independent, then for all i = 1, . . . , n, k = 1, . . . , n and i = k, we have Cov(Z k (x, y), W i (x)) = 0. Using Taylor's expansion with integral remainder and lemma 1, classical computations entail

Cov(a n (x, y), f n (x)) = R(K) 2 -(α -ad)ξ π(y|x)f X (x) γ n h d n + o γ n h d n . (20) 
Consequently, relations ( 16) and ( 17) follow from the combination of assertions ( 8), ( 9), ( 12), ( 13) and (20).

For the case a ≥ α/(d + 4), we deduce with (19) that

V ar[π n (y|x)] = R(K) 2 -(α -ad)ξ π(y|x)(1 -π(y|x)) f X (x) γ n h d n + o γ n h d n .
Proceeding with the same reasoning applied for the case a < α/(d + 4), we obtain the desired result ( 16).

In the sequel, let us present the following theorem which identies the asymptotic normality of our recursive estimator π n . Throughout this paper, we shall denote convergence in probability, convergence in distribution and the Gaussian distribution by 

3.3

Weak pointwise convergence rate of π n Theorem 2. vet ssumptions

(A 1 ) -(A 3 ) holdF IF sf there exists nonEnegtive rel c suh tht γ -1 n h d+4 n -→ n→+∞ cD then γ -1 n h d n (π n (y|x) -π(y|x)) D -→ n→+∞ N √ c m(x, y) , σ 2 (x, y) . (21) with m(x, y) = 1 2(1 -2aξ) 1 f X (x) d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π (1) j (y|x)f (1) X j (x) nd σ 2 (x, y) = R(K) 2 -(α -ad)ξ π(y|x)(1 -π(y|x)) f X (x) . PF sf γ -1 n h d+4 n -→ n→+∞ ∞D then 1 h 2 n (π n (y|x) -π(y|x)) P -→ n→+∞ m(x, y).
roofF We can write, for all n ≥ 0,

x ∈ R d , y ∈ R q , A n (x, y) -E[A n (x, y)] = 1 f X (x) [a n (x, y) -E[a n (x, y)]] - π(y|x) f X (x) [f n (x) -E[f n (x)]] = 1 f X (x) Π n n k=1 S k (x, y), (22) 
where

S k (x, y) := Π -1 k γ k (T k (x, y) -E[T k (x, y)]) and T k (x, y) = Z k (x, y) -π(y|x)W k (x).
This proof falls naturally into the application of Lyapunov's theorem for S k (x, y).

On the one hand, we can write

u 2 n := n k=1 V ar[S k (x, y)] = n k=1 Π -2 k γ 2 k V ar [Z k (x, y) -π(y|x)W k (x)] -2π(y|x) Cov (Z k (x, y), W k (x)) .
Therefore, by applying lemma 1, it can be deduced that

u 2 n = n k=1 Π -2 k γ 2 k h -d k R(K)f X (x)π(y|x) (1 -π(y|x)) + o(1) = f X (x) 2 Π 2 n γ n h d n [σ 2 (x, y) + o (1)]. (23) 
On the other hand, we can write

E[|T k (x, y)| 2+p ] = O 1 h d(1+p) k , ∀p > 0.
This yields,

n k=1 E[|S k (x, y)| 2+p ] = O n k=1 Π -(2+p) k γ 2+p k E |T k (x, y)| 2+p = O n k=1 Π -(2+p) k γ 2+p k 1 h d(1+p) k
.

For the application of lemma 1, let us assume that there exists a positive real p such that

lim n→+∞ (nγ n ) > 1 + p 2 + p (α -ad).
Then, we obtain

n k=1 E[|S k (x, y)| 2+p ] = O γ 1+p n Π 2+p n h d(1+p) n . It follows that 1 u 2+p n n k=1 E[|S k (x, y)| 2+p ] = O γ 1+p n u 2+p n Π 2+p n h d(1+p) n
.

As a sequel, with the assertion (23), we can write

1 u 2+p n n k=1 E[|S k (x, y)| 2+p ] = O γ n h d n p/2 = o (1) .
Moreover, since we have

lim n→+∞ 1 u 2+p n n k=1 E |S k (x, y) -E[S k (x, y)]| 2+p = lim n→+∞ 1 u 2+p n n k=1 E[|S k (x, y)| 2+p ] = 0,
then, by applying the Lyapunov theorem, we get

1 u n n k=1 (S k (x, y) -E[S k (x, y)]) D -→ n→+∞ N (0 , 1) . This implies 1 u n n k=1 S k (x, y) D -→ n→+∞ N (0 , 1) .
Additionally, the relations ( 18) and ( 22) ensure that

1 u n Π n f X (x) (π n (y|x) -E[π n (y|x)]) D -→ n→+∞ N (0 , 1) . ( 24 
)
Given that

u 2 n = f X (x) 2 Π 2 n γ n h d n [σ 2 (x, y) + o (1)],
and by replacing u n with its value in relation ( 24), we deduce that

γ -1 n h d n (π n (y|x) -E[π n (y|x)]) D -→ n→+∞ N 0 , σ 2 (x, y) . ( 25 
)
Since we have γ -1 n h d+4 n -→ n→+∞ √ c, then the convergence (21) follows from the combination of relations ( 14), ( 15) and convergence (25).

In order to assess the asymptotic quality of the CCDF recursive estimator π n , we set up the Mean Weighted Integrated Squared Error (M W ISE).

Asymptotic expressions of M W ISE[π n ]

We rst introduce the M W ISE expression:

M W ISE[π n ] = R d+q (E[π n (y|x)] -π(y|x)) 2 + V ar[π n (y|x)] f X 2 (x)f X,Y (x, y)dxdy. (26) Proposition 3. he M W ISE of the estimtor π n is mintined s followsF sf a ∈ 0, α d+4 D then M W ISE[π n ] = 1 4 I 1 (1 -2aξ) 2 h 4 n + o(h 4 n ). sf a = α d+4 D then M W ISE[π n ] = I 2 2 -(α -ad)ξ R(K)γ n h -d n + 1 4 I 1 (1 -2aξ) 2 h 4 n + o(h 4 n ). sf a ∈ α d+4 , 1 D then M W ISE[π n ] = I 2 2 -(α -ad)ξ R(K)γ n h -d n + o γ n h -d n .
Based on the relation ( 26) and by distinguishing the dierent possible cases according to the expressions of the Bias (( 14) and ( 15)) as well as the Variance (( 16) and ( 17)), one can prove this proposition and nd the required result.

The following corollary ensures that the bandwidth which minimizes the M W ISE of π n depends on the choice of the stepsize (γ n ). As a matter of fact, the corresponding M W ISE depends also on (γ n ).

Corollary 1. vet ssumptions

(A 1 ) -(A 3 ) holdF o minimize the M W ISE of π n , the ndwidth (h n ) must e equl to   d (1 -2aξ) 2 2 -(α -ad)ξ I 2 I 1 R(K) 1 d+4 γ 1 d+4 n   . reneD the orresponding M W ISE is determined y M W ISE[π n ] = d + 4 4d d d+4 I 1 (1 -2aξ) 2 d d+4 I 2 2 -(α -ad)ξ 4 d+4 R(K) 4 d+4 γ 4 d+4 n + o γ 4 d+4 n .
The following corollary holds in the special case where (γ n ) is chosen as

(γ n ) = (γ 0 n -1 ) in order to minimize the M W ISE[π n ]. Corollary 2. vet ssumptions (A 1 ) -(A 3 ) holdF o minimize the M W ISE of π n D we need to opt for the stepsize (γ n ) in GS(-1) suh tht lim n→∞ (nγ n ) = γ 0 F hen the ndwidth (h n ) must e equl to d (γ 0 (d + 4) -2) 2(d + 4) I 2 I 1 R(K) 1 d+4 n -1 d+4 . gonsequentlyD the orresponding M W ISE is identi(ed y M W ISE[π n ] = (d + 4) 3d+8 d+4 4 d + 6 d+4 d d d+4 γ 2 0 (γ 0 (d + 4) -2) -(2d+4) d+4 I d d+4 1 I 4 d+4 2 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .
In order to get the optimal choice of (γ n ), we deduce that the minimum of M W ISE[π n ] is achieved at γ 0 = 1. Hence, we introduce the following corollary.

Corollary 3. vet ssumptions

(A 1 ) -(A 3 ) holdF o minimize the M W ISE of π n D we must selet the stepsize (γ n ) in GS(-1) suh tht lim n→∞ (nγ n ) = 1F hereforeD the optiml ndwidth (h n ) must equl d(d + 2) 2(d + 4) I 2 I 1 R(K) 1 d+4 n -1 d+4 . ( 27 
)
es resultD the orresponding M W ISE is expressed y

M W ISE[π n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) 2d+4 d+4 I d d+4 1 I 4 d+4 2 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .
Remark 1. xote thtD for the prtiulr se where the stepsize

(γ n ) is in GS(-1) suh tht lim n→∞ (nγ n ) = 1 nd the ndwidth (h n ) is hosen suh tht lim n→∞ nh d+4 n
= 0 @whih orreE sponds to undersmoothingAD the symptoti normlity of our proposed estimtor is indited s follows

nh d n (π n (y|x) -π(y|x)) D -→ n→+∞ N 0 , d + 4 2(d + 2) R(K) π(y|x)(1 -π(y|x)) f X (x) . ( 28 
)
The statistical inference of the CCDF multivariate non-recursive estimator π n is addressed in our next section.

The following results can be handled in nearly the same way as π n . The unique dierence lies in the fact that it pertains to a non-recursive case. (See [START_REF] Hall | Methods for estimating a conditional distribution function[END_REF] for more details of the univariate case.)

Asymptotic properties of π n

In order to tackle the asymptotic properties of our estimator π n , we need rst to introduce the following proposition which provides the bias and the variance of π n .

4.1

Bias and variance of π n Proposition 4. vet ssumptions (A 1 ) nd (A 3 ) holdF hen the is nd vrine of xdryE tson9s estimtor re displyed s followsF

IF he is of π n X E[ π n (y|x)]-π(y|x) = 1 2f X (x) d j=1 µ j (K) π (2) jj (y|x)f X (x) + 2π (1) j (y|x)f X (1) j (x) h 2 n +o h 2 n . PF he vrine of π n X V ar[ π n (x)] = R(K) π(y|x)(1 -π(y|x)) f X (x) 1 nh d n + o 1 nh d n .
The following proposition yields the distribution convergence rate of the non-recursive estimator.

4.2

Asymptotic normality of π n Theorem 3. vet ssumptions

(A 1 ) -(A 3 ) hold nd suppose tht nh d+4 n -→ n→+∞ 0F henD nh d n ( π n (y|x) -π(y|x)) D -→ n→+∞ N 0 , R(K) π(y|x)(1 -π(y|x)) f X (x) . ( 29 
)
Remark 2. st is ovious to infer from the expressions (28) nd (29) tht our gghp proposed estimtor is etter thn nonEreursive one in terms of vrineF

In the next subsection, we exhibit the expression of the Mean Weighted Integrated Squared Error of Nadaraya-Watson's estimator. 

M W ISE[ π n ] = 1 4 I 1 h 4 n + I 2 R(K) 1 nh d n + o h 4 n + 1 nh d n .
Proposition 5. vet ssumptions

(A 1 ) nd (A 3 ) holdF o minimize the M W ISE of π n D the ndwidth (h n ) must e equl to d I 2 I 1 R(K) 1 d+4 n -1 d+4 . ( 30 
)
reneD the orresponding M W ISE is determined y

M W ISE[ π n ] = d + 4 4d d d+4 I 4 d+4 2 I d d+4 1 R(K) 4 d+4 n -4 d+4 + o n -4 d+4 .

Bandwidth selection

Although theoretical asymptotic study yields the optimal bandwidth, the fact that we do not know the density function makes it hard to interpret it in practice. Hence, kernel smoothing in non-parametric statistics requires the choice of a bandwidth parameter. This choice is crucial to obtain a good rate of consistency of the kernel estimators. It has a signicant inuence on the size of the bias. One has to nd an appropriate bandwidth that produces an estimator which has a good balance between the bias and the variance of the estimator of the function a(•, •) as well as f (•). It is worth noticing that the bandwidth selection methods reported in the literature can be divided into three broad classes: the cross-validation techniques, the plug-in ideas and the bootstrap procedure. In this investigation, we are basically interested in the plug-in method. [START_REF] Altman | Bandwidth selection for kernel distribution function estimation[END_REF] developed an ecient method of bandwidth selection, which minimizes an estimate of the mean weighted integrated squared error, using the density function as a weight function. For this reason, we followed the work of Slaoui (2014a) see appendix 5.1 for additional details.

Plug-in bandwidth selection

As a result to the plug-in procedure, based on the expression of the M W ISE, we estimate the unknown quantities I 1 and I 2 by elaborating asymptotic unbiased estimators. This process is known as a plug-in estimate. Basically, we introduce (b n ) ∈ GS(-δ), δ ∈ (0, 1) . In practice, [START_REF] Altman | Bandwidth selection for kernel distribution function estimation[END_REF] 

set b n = n -δ min s, Q 3 -Q 1 1.349
, with s being the sample standard deviation and Q 1 , Q 3 being the rst and third quartiles.

In the following and for the sake of simplicity, the kernel K we shall use is considered as a product of univariate kernels K satisfying R K(x)dx = 1.

In addition, we note:

I 1 = µ 2 (K) (J 1 -2J 2 + J 3 ) ,
where

J 1 = R d+q d j=1 a (2) jj (x, y) 2 f X,Y (x, y)dxdy, J 3 = R d+q d j=1 f X (2) jj (x) 2 π 2 (y|x)f X,Y (x, y)dxdy, J 2 = R d+q d j=1 a (2) jj (x, y) d j=1 f X (2) jj (x) π(y|x)f X,Y (x, y)dxdy, µ(K) = R z 2 K(z)dz.

5.2

Recursive estimator π n :

To estimate the optimal bandwidth (27), we need to estimate I 1 and I 2 . Here we can write

a n (x, y) = Π n n k=1 Π -1 k γ k h -d k χ k (y) K x -X k h k = Π n n k=1 Π -1 k γ k h -d k d i=1 K x -X k i h k χ k i (y)
and

f n (x) = Π n n k=1 Π -1 k γ k h -d k K x -X k h k = Π n n k=1 Π -1 k γ k h -d k d i=1 K x i -X k i h k .
Estimation of I 1 :

J 1 = Π 2 n n n i,j,k=1 i =j =k Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k    d v=1 K (2) b X iv -X jv b j d l=1 l =v K b X i l -X j l b j    ×    d v=1 K (2) b X iv -X kv b k d l=1 l =v K b X i l -X k l b k    q s=1 χ (j+1) s (Y is )χ (k+1) s (Y is ), J 2 = Π 2 n n n i,j,k=1 i =j =k Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k    d v=1 K (2) b X iv -X jv b j d l=1 l =v K b X i l -X j l b j    ×    d v=1 K (2) b X iv -X kv b k d l=1 l =v K b X i l -X k l b k    q s=1 χ (i+1) s (Y is )χ (j+1) s (Y is ), J 3 = Π 2 n n n i,j,k,m=1 i =j =k =m Π -1 j Π -1 k γ j γ k b -(d+2) j b -(d+2) k    d v=1 K (2) b X iv -X jv b j d l=1 l =v K b X i l -X j l b j    ×    d v=1 K (2) b X iv -X kv b k d l=1 l =v K b X i l -X k l b k    q s=1 χ (i+1) s (Y is )χ (m+1) s (Y is ),
where, K b stands for a kernel with bandwidth b n such that δ = -2 5 , and K

(2) b corresponds to the second derivative of a kernel K b with the associated bandwidth b n such that δ = -3 14 . Note that our choice of the parameter δ is based on the work of Slaoui (2014a). At this stage, we obtain

I 1 = µ 2 (K) J 1 -2 J 2 + J 3 .
Estimation of I 2 :

I 2 = Π n n n i,k=1 i =k Π -1 k γ k b -1 k d l=1 K b X i l -X k l b k q s=1 χ (i+1) s (Y is ) 1 -χ (k+1) s (Y is ) ,
where, K b is a kernel with bandwidth b n such that δ = -2 5 .

As a result, the plug-in estimator of ( 27) is determined by

(h n ) =   d(d + 2) 2(d + 4) 1 d+4 I 2 I 1 1 d+4 R(K) 1 d+4 n -1 d+4   , (31) 
Eventually, an estimator of M W ISE[π n ] is specied by

M W ISE[π n ] = (d + 4) 3d+8 d+4 4 d+6 d+4 d d d+4 (d + 2) d+6 d+4 I 1 d d+4 I 2 4 d+4 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 .

5.3

Non-Recursive estimator π n :

To estimate the optimal bandwidth (30), we need to estimate I 1 and I 2 .Therefore, we can state

a n (x, y) = 1 nh d n n k=1 χ k (y) K x -X k h n = 1 nh d n n k=1 d i=1 K x -X k i h k χ k i (y)
and

f n (x) = 1 nh d n n k=1 K x -X k h n = 1 nh d n n k=1 d i=1 K x i -X k i h k .
Estimation of I 1 :

J 1 = 1 n 3 b 6 n n i,j,k=1 i =j =k    d v=1 K (2) b X iv -X jv b n d l=1 l =v K b X i l -X j l b n    ×    d v=1 K (2) b X iv -X kv b n d l=1 l =v K b X i l -X k l b n    q s=1 χ (j+1) s (Y is )χ (k+1) s (Y is ), J 2 = 1 n 3 b 6 n n i,j,k=1 i =j =k    d v=1 K (2) b X iv -X jv b n d l=1 l =v K b X i l -X j l b n    ×    d v=1 K (2) b X iv -X kv b n d l=1 l =v K b X i l -X k l b n    q s=1 χ (i+1) s (Y is )χ (j+1) s (Y is ), J 3 = 1 n 4 b 6 n n i,j,k,m=1 i =j =k =m    d v=1 K (2) b X iv -X jv b n d l=1 l =v K b X i l -X j l b n    ×    d v=1 K (2) b X iv -X kv b n d l=1 l =v K b X i l -X k l b n    q s=1 χ (i+1) s (Y is )χ (m+1) s (Y is ),
where, K b is a kernel with bandwidth b n such that δ = -2 5 , and K

(2) b

is the second derivative of a kernel K b with the associated bandwidth b n such that δ = -3 14 . Then, we obtain

I 1 = µ 2 (K) J 1 -2 J 2 + J 3 .
Estimation of I 2 :

I 2 = 1 n 2 b n n i,k=1 i =k d l=1 K b X i l -X k l b n q s=1 χ (i+1) s (Y is ) 1 -χ (k+1) s (Y is ) ,
where, K b is a kernel with bandwidth b n such that δ = -2 5 .

As a result, the plug-in estimator of ( 30) is denoted by

(h n ) =   I 2 I 1 1 d+4 R(K) 1 d+4 n -1 d+4   , (32) 
Finally, a non-recursive estimator of M W ISE[π n ] is provided by

M W ISE[ π n ] = 5 4 I 2 4 d+4 I 1 1 d+4 R(K) 1 d+4 n -4 d+4 + o n -4 d+4 .
The major aim of our next section lies in comparing the performance of our recursive estimator (1) with that of non-recursive Nadaraya-Watson one (2).

Numerical applications

Let's start our numerical studies with some simulations with dierent dimensions Models.

Simulation studies

In order to compare the proposed recursive estimator with the Nadaraya-Watson non-recursive one, we consider three sample sizes: n = 100, 200 and 500, a xed number of simulations: N = 500 and four distribution models:

• Model 1: (X, Y ) ∈ R × R: Y = 2 sin(πX) +
, where X follows the binomial distribution B (2, 1/3) and follows the normal distribution N (0, 1) .

• Model 2: (X, Y ) ∈ R 2 × R: Y = exp(-X/2) +
, where X follows the exponential distribution P (1/2) and follows the normal distribution N (0, 1/2) .

• Model 3:

(X, Y ) ∈ R 3 × R 2 : Y = AX + with A = 1 1 1 1 -2 1 , X = 0 × 1 Z<=0.5 + 1 Z>0.5 where Z follows the uniform distribution U 0 0 0 , 1 1 1
and follows the normal distribution N (0, 1/2) .

• Model 4: (X, Y ) ∈ R 10 × R 10 : Y = exp(X) + , with X = Z where Z follows the 10-dimensional normal distribution N (0 10 , I 10 ) and follows the normal distribution N (0, 1) .

We denote by π * i the reference CCDF and by π i the test CCDF. Then, we calculate the following two measures:

• Mean squared error: M SE = 1 n n i=1 (π i -π * i ) 2 .
• The linear correlation:

Cor = Cov(π i , π * i ) σ(π i )σ(π * i )
.

In what follows, we portray the dierent steps of the simulation algorithm in the multivariate case.

Simulation Algorithm

Algorithm 1 K is the Gaussian kernel, d the dimension size, n the simple size, N p the number of observations and N the number of iterations.

Input: K, d, n, N p and N .

1: A random initialization of Π (0) (resp. Π (0) .)

2: for l = 1, . . . , N do 3:

A random sample vectors X 1 , . . . , X d and Y of length n.

4:

A choice value for the recursive bandwidth vectors h 1 , . . . , h n . (resp. the non-recursive bandwidth values h n ) using the plug-in approach given in (31) (resp. ( 32)).

5:

The choice of the stepsize (γ n ) = (n -1 ).

6:

We x x 1 , . . . , x d and consider an arbitrary sampling vector T of y of length N p .

7:

π l (y|x) = n k=1 kγ k 1 {Y k y} h -d k d i=1 K x i -X k i h k n k=1 kγ k h -d k d i=1 K x i -X k i h k
for the multivariate recursive CCDF estimator. (resp. π l (y|x) = n k=1

1 {Y k y} d i=1 K x i -X k i h k n k=1 d i=1 K x i -X k i h k
for the multivariate nonrecursive CCDF estimator). Π (l) = π l (T |x). (resp. Π (l) = π l (T |x).)

8: end for l) .)

9: π = N -1 N l=1 Π (l) (resp. π = N -1 N l=1 Π ( 
output: The vectors π and π. Table 3: Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γ n ) = (n -1 ) through a plug-in method for Model 3.

x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) Departing from Tables 1, 2, 3 and 4, we conclude that:

1. The MSE of the proposed recursive estimator with stepsize (γ n ) = (n -1 ) through a plug-in method is smaller than that of Nadaraya-Watson's non-recursive estimator.

2. The estimators get closer to the true CCDF function as sample size increases, i.e., the M SE decreases as the simple size increases and therefore the Cor increases as the sample size increases. 

6.3

Real Datasets:

In this section, our focal point is to examine two real datasets Models, namely the Insurance Company Benchmark (COIL 2000) dataset as well as the French Hospital Data of COVID-19.

6.3.1 Application 1: The Insurance Company Benchmark (COIL 2000) dataset

The (COIL 2000) dataset is found in data.world website https://data.world/uci/insurance-company-benchmark-coil-2000). As far as our application is concerned, we shall consider the following two models:

• Model 1: X corresponds to the sociodemographic data attribute number 16 and Y stands for the whole 5822 observations of customer records.

• Model 2: X corresponds to the sociodemographic 5-dimensional data attributes number 6,8,11,12 and 13 and Y stands for the whole 5822 observations of customer records.

x=0 x=1 (0, 0, 0, 0, 0).

Application 2: French Hospital Data of COVID19

The French Hospital data of the COVID-19 epidemic are extracted from https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/.

The Santé publique France's mission is to improve and protect the health of populations.

During the health crisis linked to the COVID-19 epidemic, Santé publique France has taken in charge monitoring and understanding the dynamics of the epidemic, anticipating the dierent scenarios and implementing actions to prevent and limit the transmission of this virus on the national territory.

Description of the dataset

This dataset provides information on the hospital situation regarding the COVID-19 epidemic. We have opted for the rst proposed le: Hospital data related to the COVID-19 epidemic by department (dep), sex of the patient (sex), number of hospitalized patients (hosp), number of persons currently in intensive care or resuscitation (rea), number of persons currently in follow-up and rehabilitation care (SSR) or long-term care units (USLD), number of persons currently in conventional hospitalization (HospConv), number of persons currently hospitalized in another type of service (autres), cumulative number of persons returning home (rad) or cumulative number of dead persons (dc).

The data have been daily updated. For the current application, we considered the data of 28/07/2021, with a total of 150894 observations. For simplicity reason, we have chosen to just study the department of 'Vienne' database. Therefore, for our application, we served of a dataframe of 1494 observations and 6 variables. Hence, we shall consider the following three models:

• Model 1: X = dc and Y = hosp.

• Model 2: X1 = sex, X2 = rea, X3 = dc and Y = hosp.

• Model 3: X1 = sex, X2 = rea, X3 = dc, Y 1 = hosp and Y 2 = rad.

x=119 x=17 

Data interpretation:

Referring to Tables 5, 6 and Figures 11, 12, 13 and 14 , we conclude that:

1. For all considered Models, the proposed recursive estimator with stepsize (γ n ) = (n -1 ) through a plug-in method outperformed the non-recursive one in terms of estimation error M SE and Cor.

2. The proposed recursive estimator is closer to the true CCDF function, compared with Nadaraya-Watson's non-recursive estimator.

Concerning the COVID-19 epidemic Model 1, we can infer that, for a xed number of deaths x = 17, the proportion of hospitalized cases less then 20 is 50% and the proportion of hospitalized cases less then 50 is 85%. Moreover, 99% of the population have a number of hospitalized cases less than 100.

Likewise, the COVID-19 epidemic Model 2 yielded the same results as model 1. Indeed, we recorded for the women gender a xed value of sex x 1 = 2, a xed number of REA persons x 2 = 0 and deaths x 3 = 17.

Conclusion and Perspectives

In this work, we elaborated a multivariate recursive CCDF estimator. We tackled the asymptotic properties of the proposed estimator by providing the bias as well as the variance in order to demonstrate that our estimator asymptotically follows a normal distribution. Subsequently, we revealed that the use of our recursive estimator with an appropriate choice of the bandwidth and the stepsize enables us to get closer to the true conditional cumulative distribution function rather than non-recursive one. The basic merit of recursive estimators resides in the fact that one can update the estimation with each additional new observation. Therefore, instead of re-running the data each time, it is possible to rewrite our considered estimator as a combination of two (or more) estimators, where each estimator is based on separate datasets, which can be very interesting to keep the computational cost reasonably low. It is noteworthy that all computation and simulation have been done using the R statistical software.

A future research direction would be to extend our ndings to the setting of serially dependent observations, α-mixing framework like in [START_REF] Khardani | Recursive kernel density estimation and optimal bandwidth selection under alpha-mixing data[END_REF]. Another outstanding direction lies in recursively estimating the modal regression, which requires non trivial mathematics. This would go well beyond the scope of the present paper.
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 1 Figure 1: The reference CCDF for Model 1 for one simple simulation.
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 2 Figure 2: The recursive CCDF estimator for Model 1 for one simple simulation.
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 3 Figure 3: The non-recursive CCDF estimator for Model 1 for one simple simulation.
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 4 Figure 4: Qualitative comparison between the recursive estimator and the non-recursive one for Model 1 with n = 200, N = 500 and x = 0.
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 5 Figure 5: Qualitative comparison between the recursive estimator and the non-recursive one for Model 1 with n = 500, N = 500 and x = 0.
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 6 Figure 6: Qualitative comparison between the recursive estimator and the non-recursive one for Model 2 with n = 100, N = 500 and x = (0, 0).
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 7 Figure 7: Qualitative comparison between the recursive estimator and the non-recursive one for Model 2 with n = 500, N = 500 and x = (0, 0).
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 8 Figure 8:The reference CCDF for Model 3 for one simple simulation with n = 500 and x = (1, 1, 1).
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 9 Figure 9: The recursive CCDF estimator for Model 3 for one simple simulation with n = 500 and x = (1, 1, 1).
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 10 Figure 10: The non-recursive CCDF estimator for Model 3 for one simple simulation with n = 500 and x = (1, 1, 1).

Figure 11 :

 11 Figure 11: Qualitative comparison between the recursive estimator and Nadara Watson's non-recursive one for the dataset Model 1 with x = 1.

Figure 12 :

 12 Figure 12: Qualitative comparison between the recursive estimator and the non-recursive one for the dataset Model 2 with x =

Figure 13 :

 13 Figure 13: Qualitative comparison between the recursive estimator and the non-recursive one for the COVID-19 epidemic dataset Model 1 with x = 17.

Figure 14 :

 14 Figure 14: Qualitative comparison between the recursive estimator and the non-recursive one for the COVID-19 dataset Model 2 with x = (2, 0, 17).

Table 1 :

 1 Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γ n ) = (n -1 ) through a plug-in method for Model 1.

	x = 0	x = 2

Table 2 :

 2 Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γ n ) = (n -1 ) through a plug-in method for Model 2.

	x = (0, 0, 0)	x = (1, 1, 1)

Table 4 :

 4 Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γ n ) = (n -1 ) through a plug-in method for Model 4.

  Information about customers consists of 86 variables and includes product usage data and sociodemographic data derived from zip area codes. The data are supplied by the Dutch data mining company Sentient Machine Research and rest on a real world business problem. The training set involves over 5000 descriptions of customers, including the information of whether or not they have a caravan insurance policy. A test set includes 4000 customers whom only the organizers know if they have a caravan insurance policy. This corresponds to a Dataset to train and validate prediction models and build up a description (5822 customer records). Each record consists of 86 attributes, incorporating sociodemographic data (attribute 1-43) and product ownership (attributes 44-86). The sociodemographic data are derived from zip codes. All customers living in areas with the same zip code have the same sociodemographic attributes.

Table 5 :

 5 Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (γ n ) = (n -1 ) through a plug-in method for the Insurance Company Benchmark (COIL 2000) dataset case.

		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 1 M SE	0.006979541	0.004748803	0.001999743	0.001390595
	Cor	0.987112335	0.990653245	0.995770041	0.996574025
		x=(0,0,0,0,0)	x=(1,1,1,2,2)
		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 2 M SE	0.000708417	0.0005969373	0.00414241	0.003705582
	Cor	0.996664739	0.9979940979	0.97540614	0.976614363

Table 6 :

 6 Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (γ n ) = (n -1 ) through a plug-in method for the COVID-19 epidemic dataset case.

		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 1 M SE	0.02538461	0.01900265	0.008079359	0.007509241
	Cor	0.86514927	0.88894736	0.781752320	0.789593904
		x = (2, 0, 17)	x = (1, 0, 0)
		Nadaraya's estimator	Recursive estimator	Nadaraya's estimator	Recursive estimator
	Model 2 M SE	0.02176777	0.01416798	0.01026319	0.005681196
	Cor	0.55644221	0.63197054	0.74621610	0.819493783
	Model 3 M SE	0.02107916	0.009991914	0.04130757	0.03504694
	Cor	0.85362436	0.920385555	0.61896604	0.64659332