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Abstract

A blender for a surface endomorphism is a hyperbolic basic set for which the union
of the local unstable manifolds contains robustly an open set. Introduced by Bon-
atti and Dı́az in the 90s, blenders turned out to have many powerful applications
to differentiable dynamics. In particular, a generalization in terms of jets, called
parablenders, allowed Berger to prove the existence of generic families displaying
robustly infinitely many sinks. In this paper, we introduce analogous notions in a
measurable point of view. We define an almost blender as a hyperbolic basic set
for which a prevalent perturbation has a local unstable set having positive Lebesgue
measure. Almost parablenders are defined similarly in terms of jets. We study
families of endomorphisms of R2 leaving invariant the continuation of a hyperbolic
basic set. When some inequality involving the entropy and the maximal contraction
along stable manifolds is satisfied, we obtain an almost blender or parablender. This
answers partially a conjecture of Berger. The proof is based on thermodynamic for-
malism: following works of Mihailescu, Simon, Solomyak and Urbański, we study
families of fiberwise unipotent skew-products and we give conditions under which
these maps have limit sets of positive measure inside their fibers.

Contents
1 Introduction 2

1.1 Blenders and almost blenders . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Parablenders and almost parablenders . . . . . . . . . . . . . . . . . 4

2 Example 6

3 Skew-product Formalism and Strategy 8
3.1 Skew-products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Strategy and Organization of the paper . . . . . . . . . . . . . . . . 10

4 Model: IFS of affine maps on the interval 11
4.1 Setting and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Proof of Theorem D . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 The unipotent case: Proof of Theorem C 14
5.1 Notations and immediate facts . . . . . . . . . . . . . . . . . . . . . 14
5.2 Distortion lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Choice of a probability measure µ . . . . . . . . . . . . . . . . . . . . 16
5.4 Proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Jets: Proof of Theorem B 19

7 Appendix 28

The author is supported by ERC project 818737 Emergence of wild differentiable dynamical systems.

1



1 Introduction
1.1 Blenders and almost blenders
Fractal sets have played a central role in the development of differentiable dynamics.
Among several examples, a central notion is that of blender, cast by Bonatti and
Dı́az in the 90s. It was first introduced in the invertible setting in [BD1] to construct
robustly transitive nonhyperbolic diffeomorphisms. A blender is a hyperbolic basic
set on which the dynamics has a special behavior: its unstable set forms an �im-
penetrable wall� in the sense that it intersects any perturbation of a submanifold of
dimension lower than the stable dimension. In the case of surface endomorphisms,
this notion takes the following simpler form:

Definition. A Cr-blender for a Cr-endomorphism F of a surface S is a hyperbolic
basic set K s.t. an union of its local unstable manifolds has Cr-robustly a non-empty
interior: there exists a non-empty open set U ⊂ S included in an union of local
unstable manifolds of the continuation K̃ of K for any map F̃ Cr-close to F .

This property turned out to have many other powerful applications: for example C1-
density of stable ergodicity [ACW], robust homoclinic tangencies [BD2, Bie1] and
thus Newhouse phenomenon, the existence of generic families displaying robustly in-
finitely many sinks [Be1], robust bifurcations in complex dynamics [Du, Taf, Bie2],
fast growth of the number of periodic points [Be2, AST] ... Thus the following ques-
tion is of fundamental interest: when do blenders appear ?

In this direction, Berger proposed the following conjecture:

Conjecture A (Berger [Be3]). Let F be a Cr-local diffeomorphism of a manifold
M, for r ≥ 2. Let K be a hyperbolic basic set for F . Suppose that the topological
entropy hF of F|K satisfies:

hF > dim Es · | logm(DF)| with m(DF) := min
z∈K,u∈Esz ,||u||=1

||DzF(u)|| ,

and Es the stable bundle of K. Then there exists a Cr-neighborhood U of F and an
infinite codimensional subset N ⊂ U such that for every F̃ ∈ U \N , the continuation
K̃ of K is a Cr-blender.

Note that we cannot hope that K is itself systematically a Cr-blender under the
assumptions of Conjecture A. Here is an easy counterexample.

Counterexample: Let us consider the doubling map f : x 7→ 2x mod 1 on the
circle S := R/Z. The whole circle is a hyperbolic basic set of repulsive type and f
is a C∞-local diffeomorphism. The topological entropy hf is equal to log 2 > 0. Let
us pick λ < 1 close to 1 s.t. hf > | log λ|. The map F : (x, y) ∈ S×R 7→ (f(x), λy) ∈
S×R leaves invariant the hyperbolic basic set of saddle type K := S×{0}. Moreover
F is a C∞-local diffeomorphism and hF = hf > | log λ|. However the unstable set
of K is included in S× {0} and thus has empty interior.

Conjecture A is also linked to a program proposed by Dı́az [Di] on the thermody-
namical study of blenders.

In this article, we give an answer to both questions, in a measurable point of view.
We are going to define a measurable variant of the notion of blender, called �almost
blender�. This will be a hyperbolic basic set having its unstable set of positive
Lebesgue measure instead of being with non-empty interior. Also, this property will
be asked to be � robust � in a measurable way instead of topological. Let us precise
this � measurable robustness �. We recall that this notion is tricky since there is
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no canonical measure on the space Cr(M,M) of Cr-endomorphisms of a manifold
M. But we need an analogous of the finite-dimensional notion of � Lebesgue almost
every � in an infinite-dimensional setting. Nevertheless, there are several notions of
prevalence or typicity which generalize this concept. A panorama has been drawn
by Hunt and Kaloshin in [HK], by Ott and Yorke in [OY] or by Ilyashenko and Li
in [IL]. Here is one of these notions of prevalence, particularly adapted to our case:

Definition ([HK] P.53). We say that a set E in a Banach space B is finite-
dimensionally prevalent if there exists a continuous family (vq)q∈Q of vectors vq ∈ B,
for q varying in a neighborhood Q of 0 in Rm with m > 0 and v0 = 0, s.t. for every
fixed v ∈ B, we have that v + vq ∈ E for Lebm a.e. q ∈ Q.

In other terms, we require that for some finite-dimensional family of perturbations,
if we start at any point in B, then by adding a perturbation randomly chosen with
respect to the Lebesgue measure, we are in E with probability 1. A similar notion,
simply called � prevalence �, has been designed by Sauer, Ott and Casdagli (see
Definition 3.5 in [OY], or also [SYC] and [HSY]), for completely metrizable topolog-
ical vector spaces and with the additive condition that vq is a linear function of q.
In our results, we will have this additional linearity but since we do not need it, we
will take inspiration from the above definition. See Remark 1 P.53 in [HK] for details.

We restrict ourselves in this article to the case where the manifoldM is equal to R2

and endowed with its usual Euclidean metric. The vector space Cr(R2,R2) of Cr-
endomorphisms of R2 is endowed with the topology given by the uniform Cr-norm:

||F||Cr := sup
0≤i≤r,z∈R2

||Di
zF||

when 0 ≤ r < ∞. The space of Cr-bounded Cr-endomorphisms endowed with this
norm is a Banach space. Since we are interested in properties depending only on
perturbations of a map on a compact set, we can restrict ourselves to Cr-bounded
Cr-endomorphisms if necessary and so the above definition of prevalence from [HK]
could fit to our setting. Similarly, for r =∞, we endow C∞(R2,R2) with the union
of uniform Cs-topologies on Kj among integers s and j, for an exhausting sequence
of compact sets Kj of R2, which gives to C∞(R2,R2) a complete metrizable topology.

However we cannot hope that a blender-like property, even in a weak sense, holds
true densely in Cr(R2,R2), even less in a prevalent way. This is why we introduce
the following immediate adaptation for perturbations of a map:

Definition. A property (P ) holds true for a prevalent Cr-perturbation of a Cr-
endomorphism F of R2 if there exists a Cr-neighborhood U of F and a continuous
family (Σq)q∈Q of Cr-endomorphisms Σq of R2, for q varying in a neighborhood Q
of 0 in Rm with m > 0 and Σ0 = 0, s.t. for every fixed G ∈ U , the map G + Σq
satisfies (P ) for Lebm a.e. q ∈ Q.
In particular, property (P ) holds true for an arbitrary small perturbation of F .

Here is now a new concept, which formalizes a measurable variant of blenders.

Definition. A hyperbolic basic set K for a Cr-endomorphism F of R2, with r ≥ 1,
is an almost Cr-blender if an union of local unstable manifolds of the continuation
K̃ of K has positive measure for a prevalent Cr-perturbation F̃ of F :

Leb2(Wu
loc(K̃)) > 0 .

A hyperbolic basic set for F is a compact, F-invariant, hyperbolic, transitive set K
s.t. periodic points of F|K are dense in K (basic notions about hyperbolic sets for
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endomorphisms are in the Appendix).

Our first result gives an answer to Conjecture A, in a measurable point of view:

Theorem A. Let F be a Cr-local diffeomorphism of R2, with 2 ≤ r ≤ ∞. Let K be
a hyperbolic basic set for F . Suppose that the topological entropy hF of F|K satisfies
hF > | logm(DF)|. Then K is an almost Cr-blender.

Conjecture A seems a very difficult problem in its full generality. A related question
is the following long-standing open problem:

Conjecture B ([Ho] Conj. 3.1). Let µ be the self similar measure associated to
some IFS Ψ = (ψa)a∈A formed by a finite number of contracting similarities ψa on
R. Suppose that there are no exact overlaps and that the similarity dimension of the
IFS is strictly larger than 1. Then µ is absolutely continuous with respect to Leb1.

One can refer to the survey of Hochman [Ho] for more details. Let us also point out
that the creation of blenders had also been investigated by Moreira and Silva [MS].

1.2 Parablenders and almost parablenders
Berger introduced in [Be1] a variant of blenders, defined for families of maps this
time, where not only the unstable set of a hyperbolic set, but also the set of jets
of points inside unstable manifolds contains an open set. Such sets were named
parablenders (� para � standing for � parameter �). Parablenders were introduced
to prove the existence of generic families displaying robustly infinitely many sinks,
which gave a counter-example to a conjecture of Pugh and Shub from the 90s [PS].

Definition ([Be1, BCP]). A Cr-parablender at p0 ∈ P for a Cr-family (Fp)p∈P
of endomorphisms of a surface S, r ≥ 1, parametrized by a parameter p in an open
subset P ⊂ Rd, is a continuation (Kp)p∈P of hyperbolic basic sets Kp for Fp s.t.:

• for every (γp)p∈P in a non-empty open set of Cr-families of points γp ∈ S,
• for every Cr-family (F̃p)p∈P of endomorphisms Cr-close to (Fp)p∈P ,

there exists a Cr-family (ζp)p∈P of points ζp ∈ S s.t.:
• there is a local unstable manifold of Kp0 whose continuation for F̃p contains

ζp, for any p ∈ P,
• the r-jets of ζp and γp at p0 are equal:

(ζp, ∂pζp, . . . , ∂rpζp)|p=p0 = (γp, ∂pγp, . . . , ∂rpγp)|p=p0 .

In particular, Kp0 is a Cr-blender for Fp0 if (Kp)p∈P is a Cr-parablender for (Fp)p∈P
at p0. In a subsequent work [Be2], Berger used parablenders to prove the existence of
generic families of maps displaying robustly a fast growth of the number of periodic
points, solving a problem of Arnold [Ar] in the finitely differentiable case.

From now on, we work with Cr-families (Fp)p of endomorphisms Fp of R2, with
2 ≤ r ≤ ∞, parametrized by a parameter p varying in P := (−1, 1)d with 1 ≤ d <∞.
In fact, we will need to work with families which admit some extension on a larger
parameter space. We therefore fix an open set P ′ ⊂ Rd s.t. P b P ′. We then define
a Cr-family (Fp)p of endomorphisms Fp of R2 as an element of Cr(P ′ × R2,R2).
We endow this space with the uniform Cr-topology when 0 ≤ r <∞, and with the
union of uniform Cs-topologies on Kj among integers s and j, for an exhausting
sequence of compact sets Kj of P ′ × R2 when r = ∞. Note that for simplicity we
denote often in the following (Fp)p∈P this family since we are interested mainly in
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the dynamics when p ∈ P but keep in mind that it admits such an extension. Let
(Kp)p∈P be the (hyperbolic) continuation of a hyperbolic basic set (extending to
P ′). Let Esp and Eup be the one-dimensional stable and unstable bundles of Kp.

Our main result deals with jets of points inside local unstable manifolds of Kp. Let
(Mp)p be a Cr-curve of points Mp in the continuation of one local unstable manifold
of Kp. For any integer s ≤ r, one can consider the s-jet of Mp at any p0 ∈ P:

Jsp0Mp := (Mp, ∂pMp, . . . , ∂
s
pMp)|p=p0 .

An interesting set is then the set Jsp0W
u
loc(Kp) of all the s-jets among such curves

(Mp)p. When this set has robustly a non-empty interior, (Kp)p∈P is a Cs-parablender
at p0. Let δd,s be the dimension of the set of jets in d variables of order s in one
dimension, which is that of the space Rs[X1, · · · , Xd] of polynomials in d variables
of degree at most s. In particular, notice that the space of jets of order s of maps
from P to R2 is of dimension 2δd,s.

Here is the counterpart for families of the definition of a prevalent Cr-perturbation:

Definition. A property (P ) holds true for a prevalent Cr-perturbation of a Cr-
family (Fp)p∈P of endomorphisms of R2 if there exists a Cr-neighborhood U of
(Fp)p∈P and a continuous family (Σq)q∈Q of Cr-families Σq of endomorphisms of
R2, for q in a neighborhood Q of 0 in Rm with m > 0 and Σ0 = (0)p∈P , s.t. for every
fixed family (Gp)p ∈ U , the family (Gp)p + Σq satisfies (P ) for Lebm a.e. q ∈ Q.

In particular, property (P ) holds true for an arbitrary small perturbation of (Fp)p∈P .

The following is an analogous of Cs-parablenders, in a measurable point of view:

Definition. The continuation (Kp)p∈P of a hyperbolic basic set for a Cr-family
(Fp)p∈P of endomorphisms of R2, with r ≥ 1, is an almost Cr,s-parablender,
with s an integer s.t. s ≤ r, if for a prevalent Cr-perturbation (F̃p)p∈P of (Fp)p∈P ,
the continuation (K̃p)p∈P of (Kp)p∈P satisfies:

Leb2δd,s(J
s
p0W

u
loc(K̃p)) > 0 for Lebd a.e. p0 ∈ P .

Note that if (Kp)p∈P is an almost Cr,s-parablender and p is a parameter in P, the
set Kp is an almost Cr-blender.

Here is our main result, which generalizes Theorem A in terms of jets:

Theorem B. Let (Fp)p∈P be a Cr-family of local diffeomorphisms of R2, with
2 ≤ r ≤ ∞. Let (Kp)p∈P be the continuation of a hyperbolic basic set for (Fp)p∈P .
Take an integer s ≤ r − 2 and suppose that the topological entropy hFp of Fp|Kp
satisfies:

(?) hFp > δd,s · | logm(DFp)| ∀p ∈ P ′ .
Then (Kp)p∈P is an almost Cr,s-parablender.

This second result also goes in the direction of Conjecture A, both in a measurable
point of view and in terms of jets this time. Let us mention that both Theorems A
and B still hold true if we assume that the maps involved are local diffeomorphisms
only in a neighborhood of the basic sets. Last but not least, we hope to use Theorem
B to solve the conjecture of Pugh and Shub [PS] in the smooth C∞ case which is
not handled by [Be1]. Finally, let us mention the following immediate question:
Question. Is it possible to generalize Theorems A and B to the case where M is
any surface (not necessarily equal to R2) and for the alternative notion of prevalence
defined by Kaloshin in this context ? We recall that this latter one is defined as
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follows: a subset E ⊂ Cr(M,M) is strictly n-prevalent if there exists an open
dense set of n-parameter families (Fp)p s.t. Fp ∈ E for a.e. p and if for every
F ∈ Cr(M,M), there exists such a family with F0 = F . A n-prevalent set is a
countable intersection of strictly n-prevalent sets.
Acknowledgements: The author would like to thank Pierre Berger for introducing
him this topic, and also for many invaluable encouragements and suggestions which
improved a lot this manuscript. The author is also grateful to François Ledrappier
for helpful discussions.

Combinatorics and notations
Let A be a finite alphabet of cardinality at least 2. Let

−→
A = AN , ←−A = AZ∗− and ←→A = AZ

be the sets of infinite forward, backward and bilateral words with letters in A. We
consider the left full shift on −→A or ←→A :

σ : α = (αi)i ∈
−→
A t

←→
A 7→ σ(α) = (αi+1)i ∈

−→
A t

←→
A

and the right full shift on ←−A :

σ : α = (αi)i ∈
←−
A 7→ σ(α) = (αi−1)i ∈

←−
A .

In particular these full shifts are of positive entropy and topologically mixing. We
also define A∗ as the set of finite words with letters in A and denote by e the
empty word. We endow ←→A with the distance given by d∞(α, β) = Dq for every
α = (αi)i ∈

←→
A and β = (βi)i ∈

←→
A , where D ∈ (0, 1) is a fixed number and q is the

largest integer such that αi = βi for every |i| < q if α 6= β. We endow −→A with a
metric defined similarly.

For α ∈ A∗ ∪−→A ∪←−A ∪←→A , let |α| ∈ N∪ {+∞} be the number of letters in α. When
|α| > n for some integer n > 0, we call αi the ith letter of α and denote α|n :=
(α0, · · · , αn−1) when α ∈ A∗ ∪

−→
A and α|n := (α−n, · · · , α−1) when α ∈

←−
A ∪

←→
A .

Finally, for α = (α−n, · · · , α−1) ∈ A∗, let [α] be the corresponding cylinder in ←→A :

[α] := {β ∈ ←→A : βi = αi ∀ − n ≤ i ≤ −1} .

We define similarly cylinders in←−A and −→A and use the same notation. Greek (resp.
gothic) letters will be used for finite or backward infinite (resp. forward
infinite) words. For a ∈

−→
A , α ∈ ←−A , β ∈ A∗, we denote by αa, βa, αβ their

concatenations. The topological closure of a set relatively to the Euclidean distance
is denoted with an overline. The notation � stands for the usual domination relation
and f � g means that f � g and g � f .

2 Example
We give here an application of our results. More precisely, we provide simple exam-
ples of almost blenders and parablenders.

Let us consider the segment X = [−1, 1]. We pick three integers n ≥ 2, d ≥ 1
and s ≥ 0. We choose n′ := (n + 1)dδd,se disjoint subsegments Xj b X and n′

numbers 0 < rj < 1− 1/n, for 1 ≤ j ≤ n′. Let gj be the affine preserving order map
sending Xj onto X. We pick a C∞-map g : R → R which is equal to gj on a small
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neighborhood of each interval Xj and also a C∞-map h : R → R which is equal to
rj on a small neighborhood of each interval Xj . The following C∞-endomorphism

F : (x, y) ∈ R2 7→ (g(x), y
n

+ h(x)) ∈ R2

is a local diffeomorphism on a small neighborhood of U :=
⊔

1≤j≤n′ Xj × X. It is
easy to verify that the set

K :=
⋂
n∈Z

Fn(U) (1)

is a compact, hyperbolic, invariant, locally maximal set, with stable and unstable
dimensions equal to 1. This remains true for any C∞-endomorphism F̃ which is
C∞-close to F , with the same formula.

We set A := {1, · · · , n′} and call Fj the restriction of F on Xj×X. For a = (ai)i≥0 ∈−→
A and α = (αi)i<0 ∈

←−
A , the following are local stable and unstable manifolds of K:

W a =
⋂
j≥0

Dom(Faj ◦ · · · ◦ Fa0) and Wα =
⋂
j<0

Im(Fαj ◦ · · · ◦ Fα−1) , (2)

where the domains Dom(Faj ◦ · · · ◦Fa0) and Dom(Fαj ◦ · · · ◦Fα−1) of Faj ◦ · · · ◦Fa0

and Fαj ◦ · · · ◦ Fα−1 are (gaj ◦ · · · ◦ ga0)−1(X)×X and (gαj ◦ · · · ◦ gα−1)−1(X)×X.

It is immediate that W a is a vertical segment of second coordinate projection X.
By hyperbolic continuation, for every C∞-endomorphism F̃ which is C∞-close to
F and every a ∈

−→
A , we can define a local stable manifold W̃ a which is a vertical

graph of class C∞ over y ∈ X with small slope. We notice that these local stable
manifolds are pairwise disjoint. We have analogous properties for local unstable
manifolds (except their disjointness) and W̃ a and W̃α intersect in exactly one point.

Let us now consider any d-unfolding (Fp)p∈P of F , i.e. a C∞-family of endomor-
phisms Fp s.t. F0 = F and P = (−1, 1)d. Up to restricting and then rescaling
the parameter space, this family leaves invariant the continuation (Kp)p∈P of the
hyperbolic set K and Fp is a local diffeomorphism on a neighborhood of Kp. We can
define families of local stable and unstable manifolds W a

p and Wα
p as above, and we

denote by φp the map sending β = αa ∈
←→
A (with α ∈ ←−A and a ∈

−→
A) to the unique

intersection point φp(αa) ∈ Kp between W a
p and Wα

p . We denote:

Φp : β ∈ ←→A 7→
(
φp(σi(β))

)
i
∈
←→
Kp .
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We notice that Φp conjugates the full shift (←→A , σ) to the dynamics (←→Kp,
←→
Fp) on the

inverse limit and so periodic points are dense in Kp and Kp is transitive, and thus
a hyperbolic basic set. The entropy hFp of Fp|Kp is equal to log(n′) and its stable
contraction is close to 1/n. We recall that:

log(n′)
|log(1/n)| = dδd,se ·

log(n+ 1)
log(n) > δd,s ≥ 1 .

Thus hF > |log(1/n)| and assumption (?) holds true for the family (Fp)p∈P . By
Theorems A and B, we conclude the following:
Proposition. The set K is an almost C∞-blender and for any d-unfolding (Fp)p∈P
of F , (Kp)p∈P is an almost C∞,s-parablender, up to restricting and rescaling P.

3 Skew-product Formalism and Strategy
Our method is based on a method introduced by Mihailescu, Simon, Solomyak
and Urbański. Let us give some details. For IFS without overlaps, the Hausdorff
dimension of the limit set is given by Bowen’s formula [Bo2]. In [SSU], Simon,
Solomyak and Urbański introduced a method to compute it even in the presence
of overlaps. The key ingredient in their proofs (see Section 4) is a transversality
property (see also [So] and [PeSo] for more on transversality). This also allows to get
parameters for which the limit set has positive measure, which is our interest. Later
these results were extended by Mihailescu and Urbański to the case of hyperbolic
and fiberwise conformal skew-products in [MU]. Here we extend these to the setting
of families of skew-products fiberwise unipotent.

3.1 Skew-products
We work with (N -dimensional) Cr-skew-products acting on −→A × [−1, 1]N , where
N > 0. Here A is a fixed finite alphabet of cardinality at least 2. For simplicity, we
denote X := [−1, 1]N . The regularity r of the maps is given by either an integer at
least 2 or +∞.

Definition 3.1.1. A pre-Cr-skew-product is a map of the form:

F : (a, x) ∈ −→A ×X 7→ (σ(a), fa(x)) ∈ −→A ×X

satisfying that there exists an open set X ′ ⊂ RN independent of a s.t. X b X ′ and
s.t. fa : X → X extends to a Cr-diffeomorphism from X ′ to fa(X ′) b X for every a.

The map F is a Cr-skew-product if moreover the two following maps

a ∈
−→
A 7→ fa ∈ C0(X ′,RN ) and a ∈

−→
A 7→ Dfa ∈ C0(X ′,L(RN ,RN ))

are Hölder with positive exponent, and the following third map is continuous:

a ∈
−→
A 7→ D2fa ∈ C0(X ′,L2(RN ,RN )) .

In the latter definition, −→A is endowed with its distance and the spaces of C0-maps
from X ′ to RN , to the space L(RN ,RN ) of linear maps from RN to RN and to the
space L2(RN ,RN ) of bilinear maps from RN ×RN to RN endowed with the uniform
C0-metric. In the following, we suppose that the extensions of the maps fa are fixed.

We are even more interested in families (Fp)p of (pre-)Cr-skew-products, indexed by
p varying in [−1, 1]d, for 1 ≤ d <∞. We define such a family as a family of maps:

Fp : (a, x) ∈ −→A ×X 7→ (σ(a), fp,a(x)) ∈ −→A ×X

8



s.t. F̂ : (a, (p, x)) 7→ (σ(a), (p, fp,a(x))) is a (N + d-dimensional) (pre-)Cr-skew-
product. In particular, there exist open neighborhoods X ′ and P ′ of X and P in
RN and Rd s.t. (p, x) 7→ (p, fp,a(x)) extends to a diffeomorphism from P ′ ×X ′ into
P ×X for each a and the map Fp is a (N -dimensional) (pre-)Cr-skew-product for
every p ∈ P ′. Again, we denote (Fp)p∈P this family since we are interested mainly
on the dynamics when p ∈ P but still keep in mind that it admits such an extension.

We will say that such a family (Fp)p∈P of (pre-)Cr-skew-products satisfies the
Unipotent assumption (U) when the following is satisfied:

(U): For any p ∈ P ′, a ∈ −→A and x ∈ X ′, the differential Dfp,a(x) is inferior unipo-
tent, that is an inferior triangular matrix with all its diagonal coefficients equal the
one other, and its unique eigenvalue is strictly bounded between 0 and 1 in modulus.

We will adopt the following formalism. For every p ∈ P ′, a ∈
−→
A , n > 0 and

α = (α−n, . . . , α−1) ∈ A∗, we set:

∀x ∈ X ′, ψαp,a(x) := fp,α−1a ◦ . . . ◦ fp,α−n···α−1a(x) .

We show below that a consequence of (U) is that ψαp,a is a Cr-contraction from X ′

to ψαp,a(X ′) b X when |α| is large enough. If we now take an infinite backward
sequence α = (. . . , α−n, . . . , α−1) ∈ ←−A , we see that the points ψα|np,a (0) converge to
a point πp,a(α) ∈ X. This defines a C0-map πp,a :←−A → X.

Definition 3.1.2. The limit set Kp,a of the skew-product Fp inside the a-fiber is:

Kp,a := πp,a(←−A) .

We will give conditions under which this set has positive measure.

For a C1-map f : X → X, let m(Df) and M(Df) be the respective minimum and
maximum of ||Df(x) · u|| among x ∈ X and u ∈ RN s.t. ||u|| = 1. We need the
following thermodynamical formalism:

Definition 3.1.3. The pressure at the parameter p in the a-fiber is the map:

Πp,a : s ∈ R+ 7→ lim
n→+∞

1
n

log
∑
α∈An

M(Dψαp,a)s .

When Πp,a has a unique zero, we call it the similarity dimension inside the a-fiber.

In Proposition 5.1.4, we show that both the pressure and the similarity dimension
are well-defined and independent of a. In particular, we denote them by Πp and ∆(p).

We adopt the following terminology to denote perturbations with special properties:
Definition 3.1.4. Let (Fp)p be a family of (pre-)Cr-skew-products and let us fix
neighborhoods X ′ and P ′ of X and P s.t. (p, x) 7→ (p, fp,a(x)) extends to a diffeomor-
phism from P ′×X ′ into P×X for every a ∈

−→
A . For any ϑ > 0, a ϑ-perturbation

of (Fp)p is a family of pre-Cr-skew-products (F̃p)p s.t. the map (p, x) 7→ (p, f̃p,a(x))
extends to a diffeomorphism from P ′ ×X ′ into P ×X for every a ∈

−→
A and:

sup
a∈
−→
A
||(p, x) ∈ X ′ × P ′ 7→ (fp,a − f̃p,a)(x)||Cr < ϑ .

The family (F̃p)p is a ϑ-U-perturbation when it satisfies assumption (U).
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For ϑ-U-perturbations with small ϑ, we will show that for any α ∈ ←−A , the points

f̃p,α−1a ◦ . . . ◦ f̃p,α−n···α−1a(0)

converge to π̃p,a(α) ∈ X s.t. p 7→ π̃p,a(α) is a Cr-map Cr-close to p 7→ πp,a(α).

We will consider also parameterized families of ϑ-perturbations (F̃t,p)p:

F := ((F̃t,p)p)t∈T .

Here t varies in T := (−1, 1)τ with τ > 0 and (t, p, x) 7→ f̃t,p,a(x) is Cr for every
a ∈
−→
A . When each (F̃t,p)p is a ϑ-U-perturbation, we say that F is a parameterized

families of ϑ-U-perturbations. When ϑ is small enough, we will denote by π̃t,p,a(α)
the limit point corresponding to any α ∈

←−
A and K̃t,p,a := π̃t,p,a(←−A), and then the

Cr-maps p 7→ π̃t,p,a(α) will be Cr-close to p 7→ πp,a(α), uniformly in (t, α). We will
set conditions under which K̃t,p,a has positive Lebesgue measure for a.e. t ∈ T .

3.2 Strategy and Organization of the paper
The strategy will be to focus on the dynamics restricted to the local stable mani-
folds, which allows us to reduce the dynamics to that one of a Cr-skew-product.

Hence we forget for some time families of endomorphisms and we work with families
of (pre-)Cr-skew-products. We say that such a family of (pre-)Cr-skew-products
(Fp)p∈P satisfying assumption (U) satisfies also the Transversality assumption
(T) when the following is satisfied:

(T): There exists C > 0 such that for every sequences a ∈ −→A and α, β ∈ ←−A satisfying
α−1 6= β−1, and for every r > 0, we have:

Lebd{p ∈ P : ||πp,a(α)− πp,a(β)|| < r} ≤ CrN ,

and moreover for every small ϑ > 0 and every family F of ϑ-U-perturbations, for
any t ∈ T , a ∈ −→A , α, β ∈ ←−A s.t. α−1 6= β−1 and r > 0 we have:

Lebd{p ∈ P : ||π̃t,p,a(α)− π̃t,p,a(β)|| < r} ≤ CrN .

The main technical result to prove Theorem B is the following. It sets conditions
under which a given family of skew-products intersects its fibers into a set of positive
measure, up to perturbations.

Theorem C. Let (Fp)p∈P be a family of Cr-skew-products satisfying (U), (T) and
∆(p) > N for any p ∈ P. Then for every a ∈

−→
A , we have:

LebN (Kp,a) > 0 for Lebd a.e. p ∈ P ,

and for every family F of ϑ-U-perturbations of (Fp)p∈P with small ϑ, it holds:

LebN (K̃t,p,a) > 0 for Lebd a.e. p ∈ P and Lebτ a.e. t ∈ T .

Here is the strategy to prove Theorem C. For every parameter p and a-fiber, we
define a probability measure νp,a supported on the limit set Kp,a. To show that
Kp,a has positive measure, it is enough to show that νp,a is absolutely continuous
relatively to the N -dimensional Lebesgue measure, and so to prove that its density
is finite almost everywhere. We compute the integral of the density relatively to the
parameter and the phase space. The trick is to use the Fubini Theorem to integer
first relatively to p. The finiteness of the integral is implied by the transversality
assumption (T) and the inequality ∆(p) > N . The same method will give the same
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results for families of ϑ-U-perturbations, with additional integration relatively to t.

To prove Theorem B, we go back to Cr-families (Fp)p of endomorphisms and we
restrict the dynamics to the local stable manifolds W a

p , which are tagged in exponent
by infinite forward sequences a in letters in an alphabet A. Since dim Esp = 1, we are
led to study families (Fp)p of Cr-skew-products acting on fibers which are segments.

We then look at the action induced by (Fp)p on s-jets (with s ≤ r − 2) and this
gives a new family of C2-skew-products (Gp0)p0 acting on fibers of dimension δd,s.
This new family satisfies assumption (U) (the assumption dim Esp = 1 is used here),
its similarity dimension is larger than δd,s by (?). We extend (Fp)p into a larger
Cr-family of endomorphisms so that the associated extended family of C2-skew-
products acting on s-jets satisfies moreover the transversality assumption (T).

To conclude, we pick a family (Γt,p)t,p of parallel segments Γt,p close to a local stable
manifold W a

p and s.t. the set of s-jets at any p0 ∈ P of the projection of Γt,p on a
fixed direction transversal to Γt,p when varying t has positive measure. The local
unstable set intersects each segment Γt,p in a set which is the limit set of a ϑ-U-
perturbation with small ϑ, at every parameter p. We then apply the second part
of Theorem C to get positive sets of s-jets for the intersection points between the
local unstable set and Γt,p for a.e. t at a.e. p0: in other terms we get positive sets of
s-jets in the direction of Γt,p for these values of t and p0. To conclude, we apply the
Fubini Theorem to find positive sets of bidimensional s-jets for points inside local
unstable manifolds at a.e. p0. The same extension scheme works for (Gp)p close to
(Fp)p, which proves that (Kp)p is an almost Cr,s-parablender.

Finally, Theorem A is an immediate consequence of Theorem B together with Re-
mark 6.0.4, by taking the constant family (F)p∈(−1,1) and the order s of the jets
equal to 0 (remark in particular that δ1,0 = 1).

In Section 4, we study a model given by families of IFS of affine maps on an interval.
We simplify the proof of Simon, Solomyak and Urbański [SSU] in this context and
introduce the strategy of the proof of Theorem C here. In Section 5, we prove
Theorem C. In each fiber, the behavior of the dynamics looks like the model. Finally,
we prove Theorem B in Section 6.

4 Model: IFS of affine maps on the interval
4.1 Setting and results
In this Section, we simplify the proof of a result of Simon, Solomyak and Urbański
about IFS on an interval. This can be seen as a model for the behavior of the dy-
namics inside the fibers of a skew-product, as we will see in Section 5.

Let us fix X := [−1, 1] and P := (−1, 1). We consider families (Ψp)p∈P , where,
for every p ∈ P, the IFS Ψp is a finite family Ψp = (ψap)a∈A of affine contractions
ψap : X → X s.t. ψap(X) b X. The absolute value of the linear coefficient of ψap is
denoted by Λp,a. We suppose that for every a ∈ A, the map ψap depends continu-
ously on p. In fact, we even suppose that the affine contraction ψap is still defined
for p in some open neighborhood of [−1, 1] and still depends continuously on p.

For every p ∈ P and α = (α−n, · · · , α−1) ∈ A∗, we denote by ψαp = ψ
α−1
p ◦· · ·◦ψα−np

the corresponding composition, which is an affine contraction of the segment X into
its own interior. When α = e, the map ψep is simply the identity. The absolute value
of the linear coefficient of ψαp is denoted by Λp,α.
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By continuity of the derivative of ψap relatively to p ∈ P, there exist 0 < γ′ < γ < 1
s.t. γ′ < Λp,a < γ for every p ∈ P and a ∈ A. Then Λp,α ≤ γ|α| for every α ∈ A∗.
If we now take α ∈ ←−A , the sequence of points ψα|np (0) tends to a point πp(α). This
defines for every p ∈ P a C0-map πp :←−A → X. Since this convergence is uniform in
p, the map p 7→ πp(α) is C2 for any α. Moreover the map p 7→ πp is continuous, the
set of C0-maps from ←−A to R being endowed with the uniform C0-norm. We set:

Kp := πp(
←−
A) .

We also suppose that the following assumption (Taff ) is satisfied by (Ψp)p∈P .

(Taff ): There exists C > 0 s.t. for every α, β ∈ ←−A satisfying α−1 6= β−1, we have:

Leb1{p ∈ P : |πp(α)− πp(β)| < r} ≤ Cr for any r > 0 .

It is immediate that for any p ∈ P, there exists exactly one number ∆(p) ≥ 0 s.t.:∑
a∈A

Λ∆(p)
p,a = 1 .

This is the similarity dimension of the IFS Ψp. We are now in position to state the
following result, which is a direct consequence of Theorem 3.1 of [SSU]:
Theorem D. (Simon, Solomyak, Urbański) Let (Ψp)p∈P be a family of IFS of affine
contractions satisfying (Taff ) and ∆(p) > 1 for any p ∈ P. Then it holds:

Leb1(Kp) > 0 for Leb1 a.e. p ∈ P .

4.2 Proof of Theorem D
Proof of Theorem D. Here is the strategy. Let p0 ∈ P such that ∆(p0) > 1 + ε for
a small ε > 0. To prove the result, it is enough to show that there exists δ > 0 s.t.
B := (p0 − δ, p0 + δ) is included in P and Leb1(Kp) > 0 for Leb1 a.e. p ∈ B.

We define a probability measure µ on ←−A by setting µ[α] = Λ∆(p0)
p0,α for every cylinder

defined by α ∈ A∗. For any p ∈ P, let νp be the pushforward of µ by πp, which is
supported on Kp. To conclude, it is enough to show that there exists δ > 0 s.t. for
Leb1 a.e. p ∈ B, the measure νp is absolutely continuous relatively to Leb1. We set

D(νp, x) := lim inf
r→0

νp(x− r, x+ r)
2r

for every p ∈ P and x ∈ R, which is the lower density of the measure νp at x.

Lemma 4.2.1. The map (p, x) ∈ P × R 7→ D(νp, x) is Borel measurable.

Proof. Since p ∈ P 7→ πp is continuous, it is also the case for p ∈ P 7→ νp (the set
of probability measures being endowed with the weak-∗ topology). Using this and
since x ∈ R 7→ νp(x − r, x + r) is Borel measurable for every p ∈ P and r > 0, the
map (p, x) ∈ P × R 7→ νp(x − r, x + r) is Borel measurable for every r > 0. Since
r 7→ νp(x − r, x + r) is monotonic and r 7→ 2r continuous, the lower limit D(νp, x)
does not change if r is restricted to positive rationals. Thus the measurability of
(p, x) ∈ P × R 7→ D(νp, x) reduces to that of the lower limit of countably many
measurable maps.

We prove below:

Proposition 4.2.2. There exists δ > 0 s.t. B ⊂ P and the following is finite:

I :=
∫
p∈B

∫
x∈R

D(νp, x)dνpdLeb1 < +∞ .

12



This is enough to show that for Leb1 a.e. p ∈ B, νp is absolutely continuous relatively
to Leb1. Indeed, then, for Leb1 a.e. p ∈ B, we will have D(νp, x) < +∞ for νp a.e.
x ∈ R and we apply the following result from the third item of Lemma 2.12 in [Ma].

Proposition 4.2.3. Let ν be a Radon measure on Rn, where n > 0, s.t. the density
D(ν, x) of ν relatively to Lebn is finite for ν a.e. x ∈ Rn. Then ν is absolutely
continuous relatively to Lebn.

This concludes the proof of Theorem D.

Proof of Proposition 4.2.2. For δ small enough, the interval B := (p0 − δ, p0 + δ) is
included in P. If necessary, we reduce δ so that Λ1+ε/2

p1,a ≤ Λp2,a for every p1, p2 ∈ B
and a ∈ A. In particular, this implies the following:

∀p1, p2 ∈ B, ∀α ∈ A∗, Λ1+ ε
2

p1,α ≤ Λp2,α . (3)

The strategy is to bound I by a new integral which will be easily shown to be finite
using (Taff ), for this specific choice of δ. First, by Fatou’s lemma, it holds:

I ≤ lim inf
r→0

1
2r

∫
p∈B

∫
x∈R

νp(x− r, x+ r)dνpdLeb1 . (4)

We can write νp(x − r, x + r) =
∫
y∈R 1{|x−y|<r}dνp as the integral of the indicator

function 1{|x−y|<r}, equal to 1 if |x− y| < r, and 0 if not. Using this and then the
definition of νp as the pushforward of µ by πp, we have:∫

x∈R
νp(x− r, x+ r)dνp =

∫
(α,β)∈←−A×←−A

1{|πp(α)−πp(β)|<r}dµ× µ , (5)

where 1{|πp(α)−πp(β)|<r} is equal to 1 if |πp(α) − πp(β)| < r and 0 if not. Then,
we inject Eq. (5) into Eq. (4) and use Fubini’s Theorem to reverse the order of
integration:

I ≤ lim inf
r→0

1
2r

∫
(α,β)∈←−A×←−A

Leb1{p ∈ B : |πp(α)− πp(β)| < r}dµ× µ . (6)

We are going to write the latter integral as a sum whose terms are all easier to
bound. For every finite word ρ ∈ A∗, we denote by Cρ the set of pairs (α, β) ∈ ←−A×←−A
such that α−|ρ| · · ·α−1 = β−|ρ| · · ·β−1 = ρ but α−|ρ|−1 6= β−|ρ|−1. We notice that
←−
A ×

←−
A =

⊔
n≥0

⊔
ρ∈An Cρ and so by Eq. (6) we have:

I ≤ lim inf
r→0

1
2r
∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

Leb1{p ∈ B : |πp(α)− πp(β)| < r}dµ× µ . (7)

We show below that a consequence of the transversality assumption (Taff ) is:

Lemma 4.2.4. For every n ≥ 0, ρ ∈ An and (α, β) ∈ Cρ, we have:

Leb1{p ∈ B : |πp(α)− πp(β)| < r} � r · Λ−1−ε/2
p0,ρ .

We can inject the bound of Lemma 4.2.4 into Eq. (7):

I �
∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

Λ−1−ε/2
p0,ρ dµ× µ . (8)

We use the equality µ[ρ] = Λ∆(p0)
p0,ρ , the inequality (1 + ε

2 )/∆(p0) < (1 + ε
2 )/(1 + ε) <

1− ε
3 and finally the inequality γ′ < Λp,a < γ to get:

Λ−1−ε/2
p0,ρ � µ[ρ]

−1−ε/2
∆(p0) ≤ µ[ρ]−(1− ε3 ) � γ

nε
3 · µ[ρ]−1 . (9)
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We now inject this bound into Eq. (8) to find:

I �
∑
n≥0

γ
nε
3
∑
ρ∈An

(µ× µ)(Cρ)
µ[ρ] ≤

∑
n≥0

γ
nε
3
∑
ρ∈An

µ[ρ] =
∑
n≥0

γ
nε
3 < +∞ ,

where we used the inequality (µ× µ)(Cρ) ≤ µ[ρ]2 (coming from Cρ ⊂ [ρ]2) to prove
the second inequality. This concludes the proof of Proposition 4.2.2.

Proof of Lemma 4.2.4. For every p ∈ P, n ≥ 0, ρ ∈ An and (α, β) ∈ Cρ, it holds:

|πp(α)− πp(β)| = Λp,ρ · |πp(σn(α))− πp(σn(β))| . (10)

Indeed, the points πp(α) and πp(β) are the respective images of πp(σn(α)) and
πp(σn(β)) by the map ψρp which is an affine contraction, and the absolute value of
the linear coefficient of ψρp is Λp,ρ. Thus, using Eq. (3), it holds:

Leb1{p ∈ B : |πp(α)− πp(β)| < r} = Leb1{p ∈ B : |πp(σn(α))− πp(σn(β))| < r

Λp,ρ
}

Leb1{p ∈ B : |πp(α)−πp(β)| < r} ≤ Leb1{p ∈ B : |πp(σn(α))−πp(σn(β))| < r

Λ1+ ε
2

p0,ρ

}

To conclude, by (Taff ) and since B ⊂ P the right-hand term of the latter is smaller
than C · r · Λ−1−ε/2

p0,ρ .

Example. Let us give a simple example of application of Theorem D. Let n ≥ 2 be
an integer. We set A := {0, 1, 2, . . . , n}, X := [0, 1] and P := (1/n, 1−1/n). Let c <
1/n be a real number close to 1/n. For a ∈ A, we put ψap(x) := cx+ 1

2 (1/n−c)+a/n
if 0 ≤ a < n and ψnp (x) := cx + p if a = n. Condition (Taff ) is clearly satisfied
when n is large. Moreover trivial computations show that the similarity dimension
is ∆(p) = −log(n + 1)/log(c) > 1 for any p ∈ P. By Theorem D, Kp has positive
one-dimensional Lebesgue measure for a.e. p ∈ P.

5 The unipotent case: Proof of Theorem C
We now extend Theorem D to the case of families of fiberwise unipotent skew-
products. The fibers are indexed by a ∈

−→
A and the dynamics on each fiber will look

like the one of the model previously introduced. Here are some differences:
• We will not restrain ourselves to fibers of dimension 1 and we will not suppose

that the dynamics on each fiber is conformal but we will suppose that its
differentials are unipotent with contracting eigenvalue (assumption (U)).

• We will need distortion results (Lemmas 5.2.1, 5.2.2, 5.2.3 and 5.2.4) since the
dynamics will not supposed to be affine this time.

5.1 Notations and immediate facts
We adopt from now the following formalism in order to prove Theorem C. Let
(Fp)p∈P be a family of Cr-skew-products satisfying (U) and (T). We recall that
there exist open neighborhoods X ′ and P ′ of X and P in RN and Rd s.t. each map
(p, x) 7→ (p, fp,a(x)) extends to a diffeomorphism from X ′ × P ′ into X × P and the
map Fp is a (N -dimensional) Cr-skew-product for every p ∈ P ′. We set:

∀p ∈ P ′, a ∈
−→
A , a ∈ A, x ∈ X ′, ψap,a(x) := fp,aa(x) (11)

and notice that ψap,a : X ′ → X is a C2-map depending continuously on (p, a). The
C2-norm of ψap,a on X is then bounded independently of p ∈ P, a ∈ −→A and a ∈ A.
We now define for any p ∈ P ′, a ∈ −→A , n > 0 and α = (α−n, · · · , α−1) ∈ A∗:

∀x ∈ X ′, ψαp,a(x) := ψ
α−1
p,a ◦ · · · ◦ψ

α−n
p,α−n+1···α−1a(x) = fp,α−1a ◦ · · · ◦fp,α−n···α−1a(x) .
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In particular, assumption (U) implies that for every p ∈ P ′, a ∈
−→
A , α ∈ A∗

and x ∈ X ′, the differential Dψαp,a(x) is unipotent inferior and thus has a unique
eigenvalue. This motivates the definition of the following contraction rate:
Definition 5.1.1. For any p ∈ P ′, a ∈ −→A , α ∈ A∗ and x ∈ X ′, let λp,a,α(x) be the
absolute value of the unique eigenvalue of the differential Dψαp,a(x) and:

Λp,a,α := maxx∈Xλp,a,α(x) . (12)
For any p ∈ P ′, a ∈ −→A , α = (α−n, . . . , α−1) ∈ A∗ and x ∈ X ′, we then have:

λp,a,α(x) =
n∏
k=1

λp,ak,α−k
(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
with ak := α|k−1a . (13)

By continuity of Dψap,a(x) relatively to p ∈ P, a ∈ −→A and x ∈ X and by compactness
of P, −→A and X, there exist 0 < γ′ < γ < 1 s.t. for any p, a, a, it holds:

∀x ∈ X, γ′ < λp,a,a(x) < γ . (14)
In particular for every α ∈ A∗ it holds:

γ′|α| < Λp,a,α < γ|α| . (15)
We will need later the following, whose proof is in the Appendix:
Lemma 5.1.2. There exists a real polynomial P positive on R+ s.t. for any p ∈ P,
a ∈

−→
A , α ∈ A∗, x ∈ X and (i, j) ∈ {1, · · · , N}2 with i > j, the modulus of the

(i, j)th coefficient of the differential Dψαp,a(x) is smaller than P (|α|) · λp,a,α(x).
In particular, for any p ∈ P, a ∈

−→
A and α ∈ A∗ of length sufficiently large, the

map ψαp,a is a contraction. For p ∈ P, a ∈ −→A and α ∈
←−
A , the diameter of ψα|np,a (X)

is then small when n is large. Thus the sequence of points ψα|np,a (0) converges to
πp,a(α) ∈ X. This defines for every p ∈ P and a ∈

−→
A a C0-map πp,a :←−A → X. The

map (p, a) ∈ P × −→A 7→ πp,a is then continuous, the set of C0-maps from ←−A to RN
being endowed with the uniform C0-norm. We set:

Kp,a := πp,a(←−A) .
For any family F := ((F̃t,p)p)t∈T of ϑ-U-perturbations with small ϑ > 0, the map
ψαt,p,a := f̃t,p,α−1a ◦ · · · ◦ f̃t,p,α−n···α−1a is also a contraction when |α| is large and so
the sequence of points ψα|nt,p,a(0) still converges to π̃t,p,a(α) ∈ X. This allows us to
define a C0-map π̃t,p,a :←−A → X for any t and p, and its limit set K̃t,p,a := π̃t,p,a(←−A).
Lemma 5.1.3. The map p 7→ πp,a(α) is Cr for every a ∈

−→
A and α ∈ ←−A . Moreover,

for every family F of ϑ-U-perturbations with small ϑ > 0, the map (t, p) 7→ π̃t,p,a(α)
is Cr and p 7→ π̃t,p,a(α) is Cr-close to p 7→ π̃p,a(α) uniformly in t ∈ T .

Proof. These maps are the respective uniform limits of the following Cr-maps
p 7→ ψ

α|n
p,a (0) and (t, p) 7→ ψ

α|n
t,p,a(0) .

To conclude, we remark that these convergences are both exponential and that the
maps fp,a and f̃t,p,a are (uniformly in t and a) Cr-close when ϑ is small.

As an immediate consequence of Lemma 5.1.2, the pressure function Πp,a defined in
Definition 3.1.3 is equal to:

Πp,a(s) = lim
n→+∞

1
n

log
∑
α∈An

Λsp,a,α for any s ≥ 0 . (16)

Moreover this map satisfies the following nice properties:
Proposition 5.1.4. The map s ∈ R+ 7→ Πp,a(s) ∈ R is well-defined, strictly de-
creasing, continuous, independent of a, Πp,a(0) > 0 and lims→+∞Πp,a(s) = −∞. In
particular, it has exactly one zero denoted by ∆(p), depending continuously on p.
From now on we suppose that ∆(p) > N for any p ∈ P.
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5.2 Distortion lemmas
We now state distortion results, whose proofs are given in the Appendix:
Lemma 5.2.1. (Bounded distortion w.r.t. x) There exists D1 > 1 s.t. for every
p ∈ P, a ∈ −→A , α ∈ A∗ and x, y ∈ X, it holds:

1/D1 <
λp,a,α(x)
λp,a,α(y) < D1 .

Lemma 5.2.2. (Distortion w.r.t. p) For every η > 0, there exists δ(η) > 0 and
D2 = D2(η) > 1 s.t. for every p1, p2 ∈ P and a ∈

−→
A , it holds the following:

||p1 − p2|| ≤ δ(η) =⇒ ∀α ∈ A∗, D−1
2 e−η|α| <

Λp1,a,α

Λp2,a,α
< D2e

η|α| .

Lemma 5.2.3. (Bounded distortion w.r.t. a) There exists D3 > 1 s.t. for any
p ∈ P, a, a′ ∈ −→A and α ∈ A∗, it holds:

1/D3 <
Λp,a,α
Λp,a′,α

< D3 .

Lemma 5.2.4. (Distortion w.r.t. ϑ-perturbations) For every ε′ > 1, there exists
D4 > 1 s.t. for every family F of ϑ-U-perturbations with ϑ small enough, we have
for every t ∈ T , a ∈ −→A , p ∈ P and α ∈ A∗:

Λε
′
p,a,α/D4 < Λ̃t,p,a,α < D4Λ1/ε′

p,a,α

where Λ̃t,p,a,α is the maximum among x ∈ X of the absolute value λ̃t,p,a,α(x) of the
unique eigenvalue of the differential Dψαt,p,a(x).

5.3 Choice of a probability measure µ

We will first need the following result of Bowen ([Bo1] thm 1.4 P7 and its proof P19)
about the existence of a Gibbs measure. We recall that σ is a full shift. We state
the result in this case but it remains true for subshifts of finite type topologically
mixing. We suppose that a parameter p0 has been fixed (the precise choice will be
made in the next subsection). We fix an arbitrary a0 ∈

−→
A .

Theorem E (Bowen). Let φ :←→A → R be a Hölder map with positive exponent (the
set ←→A being endowed with the distance d∞). Then there exists a unique σ-invariant
measure µ on ←→A s.t. for every A ∈ ←→A , it holds:

µ[A|n] � exp
(
−Πn+

n−1∑
k=0

φ(σk(A))
)

where Π = Π(φ) = limn→∞
1
n

logZn(φ), with

Zn(φ) :=
∑
x∈An

exp(Sx) and Sx = sup{
n−1∑
k=0

φ(σk(y)) : y ∈ [x]} .

Writing A = αa ∈
←→
A as the concatenation of α ∈ ←−A and a ∈

−→
A , we can apply the

previous result with the map

φ : A ∈ ←→A 7→ ∆(p0) · logλp0,a,α−1

(
πp0,α−1a(σ(α))

)
.

We show in the Appendix:
Lemma 5.3.1. The map φ is Hölder with positive exponent.
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Using Lemma 5.2.1 and 5.2.3, we note that Π = Π(φ) coincides with Πp0(∆(p0))
and thus vanishes by definition of ∆(p0) (see Proposition 5.1.4). Moreover, by Eq.
(13), for any A ∈ ←→A the sum

∑n−1
k=0 φ(σk(A)) is equal to:

∆(p0) · log
n∏
k=1

λp0,ak,α−k

(
πp0,ak+1(σk(α))

)
= ∆(p0) · logλp0,a,α|n

(
πp0,α|na(σn(α))

)
with ak := α|k−1a. By Theorem E, this gives us a σ-invariant measure µ on←→A such
that for every A = αa ∈

←→
A , we have:

µ[A|n] � λ∆(p0)
p0,a,α|n

(
πp0,α|na(σn(α))

)
when n→ +∞ .

Using successively Lemmas 5.2.1 and 5.2.3, for any A = αa ∈
←→
A , it holds:

µ[A|n] � Λ∆(p0)
p0,a,α|n � Λ∆(p0)

p0,a0,α|n when n→ +∞ . (17)

We then define a σ-invariant probability measure on ←−A , still denoted µ, by giving
to each cylinder in ←−A the same measure than the corresponding one in ←→A . Then:

µ[ρ] � Λ∆(p0)
p0,a0,ρ when ρ ∈ An and n→ +∞ . (18)

Remark 5.3.2. We will not need the σ-invariance property of µ in the following
but only the estimation from Eq. (18).

5.4 Proof of Theorem C
The strategy is the same as for the proof of Theorem D. Let us consider p0 ∈ P and
a ∈
−→
A . We have ∆(p0) > N + ε, where ε := 1

2 (min
p∈P ∆(p) − N) > 0. To prove

the result, we show that there exists δ > 0 s.t. the d-dimensional ball B of center
p0 of radius δ is included in P with LebN (Kp,a) > 0 and LebN (K̃t,p,a) > 0 for Lebd
a.e. p ∈ B and Lebτ a.e. t ∈ T , for every family F of ϑ-U-perturbations with small ϑ.

We endow ←−A with the probability measure µ defined in Subsection 5.3. For any
p ∈ P and t ∈ T , let νp,a and νt,p,a be the images of µ by the maps πp,a and π̃t,p,a.

As Proposition 4.2.2 implies Theorem D, Theorem C is a consequence of:
Proposition 5.4.1. There exists δ > 0 s.t. the ball B of center p0 and radius δ is
included in P and the two following integrals are finite:

I :=
∫
p∈B

∫
x∈RN

lim inf
r→0

νp,a(x+B(r))
cNrN

dνp,adLebd < +∞ ,

I′ :=
∫
p∈B

∫
t∈T

∫
x∈RN

lim inf
r→0

νt,p,a(x+B(r))
cNrN

dνt,p,adLebτdLebd < +∞ ,

for any family F of ϑ-U-perturbations with small ϑ, where B(r) ⊂ RN is the ball of
center 0 and radius r and the constant cN is defined by cNrN := LebN (B(r)).

Proof. Let us take a small δ s.t. B ⊂ P. The radius δ will be reduced one time so
that I and I′ are finite. We first begin by bounding I. The proof is similar to the
one of Proposition 4.2.2: we begin by using Fatou’s Lemma, the definition of νp,a
and the Fubini-Tonelli Theorem to find the following bound:

I ≤ lim inf
r→0

1
cNrN

∫
(α,β)∈←−A×←−A

Lebd{p ∈ B : ||πp,a(α)− πp,a(β)|| < r}dµ× µ .
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We write ←−A ×←−A =
⊔
n≥0

⊔
ρ∈An Cρ where Cρ is the set of pairs (α, β) ∈ ←−A ×←−A s.t.

α−|ρ| · · ·α−1 = β−|ρ| · · ·β−1 = ρ but α−|ρ|−1 6= β−|ρ|−1. Thus I is smaller than:

lim inf
r→0

1
cNrN

∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

Lebd{p ∈ B : ||πp,a(α)−πp,a(β)|| < r}dµ×µ . (19)

We show below that a consequence of the transversality assumption (T) is:

Lemma 5.4.2. We fix η := −εlogγ
2N+ε and reduce δ if necessary s.t. δ < δ(η) (where

δ(η) is defined in Lemma 5.2.2). Then for any n ≥ 0, ρ ∈ An, (α, β) ∈ Cρ, we have:

Lebd{p ∈ B : ||πp,a(α)− πp,a(β)|| < r} � rN · Λ−N−2ε/3
p0,a0,ρ .

For any family F of ϑ-U-perturbations of (Fp)p with small ϑ, for any t ∈ T , we have:

Lebd{p ∈ B : ||π̃t,p,a(α)− π̃t,p,a(β)|| < r} � rN · Λ−N−2ε/3
p0,a0,ρ .

Notice that when the similarity dimension is close to the dimension N of the fibers
(and so ε small), we need to work with a ball of small radius η. We can inject the
first bound of Lemma 5.4.2 into Eq. (19):

I �
∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

Λ−N−2ε/3
p0,a0,ρ dµ× µ . (20)

We use successively Eq. (18), the inequality (N + 2ε
3 )/∆(p0) < (N + 2ε

3 )/(N + ε) <
1− ε

4N and finally Eq. (15) (which gives µ[ρ] � γn) to get:

Λ−N−2ε/3
p0,a0,ρ � µ[ρ]

−N−2ε/3
∆(p0) ≤ µ[ρ]−(1− ε

4N ) � γ
nε
4N · µ[ρ]−1 . (21)

We now inject this bound into Eq. (20) to find:

I �
∑
n≥0

γ
nε
4N
∑
ρ∈An

(µ× µ)(Cρ)
µ[ρ] ≤

∑
n≥0

γ
nε
4N
∑
ρ∈An

µ[ρ] =
∑
n≥0

γ
nε
4N < +∞ ,

where we used the inequality (µ× µ)(Cρ) ≤ µ[ρ]2 (coming from Cρ ⊂ [ρ]2) to prove
the second inequality. To bound I′ for every family F of ϑ-U-perturbations of (Fp)p
with small ϑ, we just remark that the same proof works when ϑ is small enough,
with an additional integration relatively to t ∈ T .

Proof of Lemma 5.4.2. Let us begin with the following distortion lemma:

Lemma 5.4.3. There exists D5 > 0 s.t. for every p1, p2 ∈ P, a1, a2 ∈
−→
A and

ρ ∈ A∗, the following holds true:

||p1 − p2|| < δ =⇒ Λ1+ ε
2N

p1,a1,ρ ≤ D5 · Λp2,a2,ρ .

Proof. If ||p1 − p2|| < δ, then ||p1 − p2|| < δ(η). By Lemma 5.2.2, it holds:

Λ1+ε0
p1,a1,ρ ≤ D

1+ε0
2 e|ρ|η(1+ε0)Λ1+ε0

p2,a1,ρ ≤ D
1+ε0
2 e|ρ|η(1+ε0)γ|ρ|ε0Λp2,a1,ρ ,

with ε0 := ε/(2N). By Lemma 5.2.3, Λp2,a1,ρ � Λp2,a2,ρ when |ρ| → +∞, with
bounds independent of p2. The result follows since, by definition of η, it holds:

e|ρ|η(1+ε0)γ|ρ|ε0 = e|ρ|(η(1+ε0)+ε0logγ) with η(1 + ε0) + ε0logγ = 0 .
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Lemma 5.4.4. There exists a real polynomial R positive on R+ s.t. for every p ∈ P,
a ∈
−→
A , n ≥ 0, ρ ∈ An and (α, β) ∈ Cρ, it holds:

||πp,a(α)− πp,a(β)|| ≥ Λp,a,ρ
R(n) · ||πp,ρa(σn(α))− πp,ρa(σn(β))|| . (22)

Moreover for any ε′ > 1, for every family F of ϑ-U-perturbations of (Fp)p with ϑ > 0
small enough we have for every t ∈ T , p ∈ P, a ∈ −→A , n ≥ 0, ρ ∈ An and (α, β) ∈ Cρ:

||π̃t,p,a(α)− π̃t,p,a(β)|| ≥
Λε′p,a,ρ
R(n) · ||π̃t,p,ρa(σn(α))− π̃t,p,ρa(σn(β))|| . (23)

The proof is in the Appendix. Given a ∈
−→
A , n ≥ 0, ρ ∈ An, (α, β) ∈ Cρ, using Eq.

(22) and then Lemma 5.4.3 together with the fact that B is the ball of center p0 and
radius δ, it holds:

Lebd{p ∈ B : ||πp,a(α)−πp,a(β)|| < r} ≤ Lebd{p ∈ B : ||πp,ρa(σn(α))−πp,ρa(σn(β))|| <
R(n)r
Λp,a,ρ

} ≤ Lebd{p ∈ B : ||πp,ρa(σn(α))−πp,ρa(σn(β))|| <
D5R(n)r

Λ1+ ε
2N

p0,a0,ρ

}

To conclude, by (T) and since B ⊂ P the latter is smaller than:

rN ·Q(n) · Λ−N−ε/2p0,a0,ρ with Q(n) := C ·DN
5 · (R(n))N .

The result follows since Λp0,a0,ρ decreases exponentially with n, and ε/2 < 2ε/3.
The proof of the second item is similar, by taking ε′ close to 1 in Eq. (23).

6 Jets: Proof of Theorem B
We now prove Theorem B. The strategy is to study the dynamics of the family
(Fp)p inside the local stable manifolds to reduce the problem to the dynamics of a
family (Fp)p of Cr-skew-products (Step 1) with one-dimensional fibers, from which
we construct a family of C2-skew-products (Gp0)p0 acting on s-jets (Step 2). Then
we extend the latter one into a larger family (Gq0)q0 to satisfy the transversality
assumption (T) (Step 3). Finally, we look at the intersection between the unstable
set and a family of curves all close to a stable manifold. In each curve, this inter-
section is equal to the limit set of a perturbation of the skew-product. We then
apply successively Theorem C and the Fubini Theorem to conclude to a set of jets
of positive measure at a.e. parameter, which gives the parablender property (Step 4).

Step 1: Dynamically defined family of skew-products. We first need to
define local stable and unstable manifolds. Let us fix a small ε > 0 and an arbi-
trary parameter in P, taken arbitrarily equal to 0 for simplicity. We recall that
K0 is a hyperbolic basic set for F0. Up to a change of metric on the stable (resp.
unstable) bundles of K0, we suppose that DF0 strictly contracts (resp. expands)
the stable (resp. unstable) bundle by a factor λ < 1 (resp. 1/λ) uniform over z ∈ K0.

It has been shown by Qian and Zhang (see section 4 of [QZ]) that the limit inverse
←→
K0 can be endowed with a map [·] defined on a subset of←→K0×

←→
K0 with values in←→K0 so

that for every sufficiently closed orbits x, y ∈ ←→K0, the orbit z = [x, y] is well-defined
and the 0-coordinate projection π(z) ∈ K0 of z is the intersection of the local un-
stable manifold of x and the local stable manifold of y0. This map endows ←→K0 with
a structure of Smale space (see Ruelle [Ru], Chapter 7, for the definition of a Smale
space). This implies that←→K0 admits Markov partitions of arbitrarily small diameter
(see again Ruelle [Ru], Chapter 7, for this result and the definition and properties
of a Markov partition for a Smale space). We pick such a partition of ←→K0 by a finite
number of compact rectangles R1, . . . ,RM of diameter small compared to ε. Up to
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reducing ε, we can suppose that F0 is a local diffeomorphism when restricted to the
0-coordinate projection Ri := π(Ri) ⊂ K0 of any rectangle Ri.

The topological entropy of F0|K0 is larger than δd,s · | logm(DF0)| by (?). Then
for large ` we can pick Nε,` orbits xa = (xia)0≤i≤`−1 of length ` (with a ∈ A :=
{1, 2, . . . , Nε,`}) under F0 which are (`, ε)-separated (in the sense of Bowen) with:

(�) logNε,`
`

> δd,s · | logm(DF0)| .

In particular the cardinality Nε,` of A is at least 2. We can extend each of these
orbits xa of length ` into an infinite orbit in ←→K0, still denoted xa. Up to slightly
perturbating xa, we can suppose that for every 0 ≤ k ≤ `− 1, the orbit ←→F0

k(xa) is
in the interior of some rectangle Ri that we denote Ra,k. In particular xka = Fk0 (x0

a)
is in Ra,k = π(Ra,k). Since the rectangles Ri are in finite number M independent
of `, up to modifying Nε,` by a multiplicative constant (independent of ` large), we
can suppose that all orbits xa (a ∈ A) begin in the same Ri and end in the same
Rj , with (�) still true. For any a ∈ A, let us define:

Ra := Ra,0 ∩ F−1
0 (Ra,1) ∩ · · · ∩ F−(`−1)

0 (Ra,`−1) .

which is not empty by assumption. Since the `-orbits (xia)0≤i≤`−1 (with a ∈ A) under
F0 are (`, ε)-separated and since the diameter of each rectangle of the partition is
small compared to ε, the sets Ra (a ∈ A) are pairwise disjoint compact subsets of
Ri having their images by F`0 included in Rj . Up to adding a constant (independent
of ` large) to `, using the properties of Markov partitions, we can suppose moreover
that Ri and Rj are equal. We denote this set by R in the following and thus the
sets Ra are non empty pairwise disjoint compact subsets of R with images under
F`0 included in R. This does not change the number Nε,` of such sets Ra and so
inequality (�) is still true. For every non empty finite word β = β0 · · ·βp ∈ Ap+1,
we now set

Rβ := Rβ0 ∩ F
−`
0 (Rβ1) ∩ · · · ∩ F−`p0 (Rβp) .

which is a non empty compact set by the properties of Markov partitions, and the
sets Rβ among β ∈ Ap+1 are pairwise disjoint subsets of R for a fixed value of p.
Finally, for a ∈

−→
A , we define:

Ra :=
⋂
n>0

Ra|n

which is also a non empty compact subset of R, included in K0, and the sets Ra

(a ∈ −→A) are pairwise disjoint. Finally, we notice that since the partition admits a
continuation in a neighborhood of 0 in P, the sets Ra, Rβ and Ra admit continu-
ations Rp,a, Rp,β and Rp,a with the same dynamical properties when p varies in a
neighborhood of 0 in the parameter space. Up to taking a finite covering of P by
such neighborhoods and extending a finite number of times (Fp)p in Steps 2-3-4,
we can suppose that Rp,a, Rp,β and Rp,a vary continuously in a neighborhood of P,
that we can suppose equal to P ′ up to reducing it, and inequality (�) is satisfied in P.

Let us take a small ε′ > 0. For any infinite forward sequence a ∈
−→
A and any p ∈ P ′,

we notice that all the points in Rp,a are asymptotic (using the hyperbolicity) and
thus belong to a same stable manifold W of Kp (which is one-dimensional). We
define W a

p as the ε′-neighborhood in W of the maximal arc of W bounded by points
of Rp,a. We parameterize W a

p with X := [−1, 1] via a Cr-map sap s.t. (sap)p depends
Hölder in the Cr−1-topology on a by Remark 7.0.3.

Since Fp is a local diffeomorphism and since W a
p is injectively immersed, up to

decreasing ε′, the restriction of F`p to each W a
p is a diffeomorphism satisfying:

∀p ∈ P ′, ∀a ∈
−→
A , F`p(W a

p ) ⊂ W̊σ(a)
p := sσ(a)

p ((−1, 1))
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by hyperbolicity. We define the Cr-diffeomorphism fp,a := (sσ(a)
p )−1 ◦ F`p ◦ sap on a

small neighborhood X ′ of X independent of (p, a). Its image is s.t. fp,a(X ′) b X.
The differential DF`p strictly contracts (resp. expands) Esp,z (resp. Eup,z) by a factor
λ` < λ < 1 (resp. 1/λ) uniform over p ∈ P and z ∈ Kp. Up to modifying F`p outside
a neighborhood of Kp (this operation does not modify the local stable/unstable sets
of Kp in a neighborhood of Kp nor jets of points inside it), we can suppose that F`p
contracts strictly each W a

p by λ and so each map fp,a contracts by < λ. Moreover
the map (p, x) 7→ fp,a(x) is Cr. It extends on P ′ × X ′, up to reducing P ′ and
X ′. Easy computations show that the map a 7→ ((p, x) 7→ fp,a(x)) is Hölder for the
Cr−1-topology and continuous for the Cr-topology. We set

Fp : (a, x) ∈ −→A ×X 7→ (σ(a), fp,a(x)) ∈ −→A ×X ,

and (Fp)p is a family of fiberwise λ-contracting Cr-skew-products satisfying the
preliminary assumptions of Theorem C. We now show:

Lemma 6.0.1. The similarity dimension ∆(p) is larger than δd,s for any p ∈ P.

Proof. The fact that the similarity dimension does not depend on the fiber is a
consequence of Proposition 5.1.4. Moreover for a fixed fiber a, there are Nε,` con-
tractions fp,a which contract by at most m(DFp)`. Thus the result follows by the
definition of the similarity dimension and inequality (�).

Using backward sequences instead of forward sequences, we can define similarly
families (Wα

p )p of local unstable manifolds of Kp parameterized by maps sαp s.t. the
map F`p restricted to some subset of each W̊σ(α)

p := s
σ(α)
p ((−1, 1)) is a diffeomorphism

onto Wα
p which expands strictly by 1/λ. Moreover the local unstable manifold Wα

p

intersects the local stable manifold W a
p at a unique point.

Remark 6.0.2. For any Cr-family (Fq)q∈Q of endomorphisms which extends (Fp)p∈P
(by this, we mean that Q is a neighborhood of P), by hyperbolic continuation, we
can extend (Kp)p∈P into the continuation (Kq)q∈Q of a hyperbolic basic set of stable
dimension 1, up to reducing Q. Thus we can also extend the local stable and unstable
manifolds (using Theorem F in the Appendix) and so the family (Fp)p into a family
(Fq)q of fiberwise λ-contracting Cr-skew-products.
In the following, we prove Theorem B in the case ` = 1. The proof is the same when
` > 1, with a variant in the proof of Proposition 6.0.3 described in Remark 6.0.6.

Step 2: Maps acting on jets. From (Fp)p, we define a family of C2-skew-products
(Gp0)p0 acting on s-jets at any p0. We begin by performing this Step for d = 1 for
the sake of simplicity concerning the notations, and then treat the general case d ≥ 2.

For any p0 ∈ P ′ and a ∈
−→
A , we define from (fp,a)p the following map gp0,a acting

on s-jets:

gp0,a : (xp, ∂pxp, . . . , ∂spxp)|p=p0 7→ (fp,a(xp), ∂p(fp,a(xp)), . . . , ∂sp(fp,a(xp)))|p=p0 ,

when defined. Since (fp,a)p is a Cr-family of maps with s ≤ r−2, the family (gp0,a)p0

is itself a C2-family of maps. It depends continuously on a. Notice that

∂p(fp,a(xp))|p=p0 = Dfp0(xp0) · ∂p(xp)|p=p0 + ∂p(fp(xp0))|p=p0 .

We notice that ∂p(fp,a(xp))|p=p0 has possibly a non zero derivative relatively to xp0

(independent of ∂p(xp)|p=p0), a derivative Dfp0(xp0) relatively to ∂p(xp)|p=p0 and
derivatives equal to zero relatively to each ∂jp(xp)|p=p0 for 2 ≤ j ≤ s.

When 1 < k ≤ s, the term ∂kp (fp,a(xp))|p=p0 has possibly a non zero derivative
relatively to ∂jp(xp)|p=p0 for 0 ≤ j ≤ k−1 (independent of ∂kp (xp)|p=p0), a derivative
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Dfp0(xp0) relatively to ∂kp (xp)|p=p0 and derivatives equal to zero relatively to each
∂jp(xp)|p=p0 for k < j ≤ s. To see this, it is enough to write the map p 7→ fp,a(xp)
as the composition of p 7→ (p, xp) and (p, x) 7→ fp,a(x) and to apply the multidimen-
sional Faà di Bruno formula (see for example Theorem 2.1 in [CS]).

We recall that by assumption we have 0 < |Dfp0(xp0)| < λ < 1. Then for any
p0 ∈ P ′ and a ∈

−→
A , the map gp0,a has inferior unipotent differentials with eigenval-

ues uniformly bounded between 0 and 1 in modulus.

We recall that δ1,s = s + 1. We define a set of s-jets Y , identified with a subset of
Rs+1 as follows (the term of degree i corresponding to the ith-coordinate). We set:

Y := X × [−R1, R1]× · · · × [−Rs, Rs] .

We can choose R1 large compared to the diameter of X and Ri+1 large compared to
Ri for 1 ≤ i ≤ s−1. Since its differentials are unipotent with non zero contracting di-
agonal coefficients, an immediate induction shows that gp0,a is a C2-diffeomorphism
from a small neighborhood Y ′ of Y onto gp0,a(Y ′) b Y . Up to rescaling, we can
suppose that Y := [−1, 1]s+1. The map a 7→ ((p, x) 7→ fp,a(x)) is Hölder for the
Cr−1-topology and continuous for the Cr-topology and we have s ≤ r − 2. This
implies that the map a 7→ ((p0, y) 7→ gp0,a(y)) is Hölder for the C1-topology and
continuous for the C2-topology. To summarize, we just prove that (Gp0)p0 , with

Gp0 : (a, y) ∈ −→A × Y 7→ (σ(a), gp0,a(y)) ∈ −→A × Y ,

is a family of C2-skew-products satisfying the preliminary assumptions of Theorem
C, (U) and ∆(p0) > s+ 1 = δ1,s for any p0 ∈ P.

As already said, we get the same result with d ≥ 2 but with painful notations.
Indeed, it is enough to remark that the action of (fp,a)p on jets of multiorder
(k1, . . . , kd) with

∑
i
ki ≤ s only depends on jets of the same multiorder, with a lin-

ear coefficient Dfp0(xp0), and on jets of multiorder (k′1, . . . , k′d) with
∑

i
k′i <

∑
i
ki.

In particular, its differentials still satisfy assumption (U).

Step 3: Extending the family. We now extend (Gp0)p0 to satisfy the transversal-
ity assumption (T) inside a larger family. But we have to ensure that this extension
comes from an extension of (Fp)p, itself coming from an extension of (Fp)p.
Proposition 6.0.3. There exists a family of C2-skew-products (Gq0)q0∈Q:

Gq0 : (a, y) ∈ −→A × Y 7→ (σ(a), gq0,a(y)) ∈ −→A × Y ,

with Q := P × (−1, 1)m for some m > 0, satisfying the preliminary assumptions of
Theorem C, (U), (T), ∆(q0) > δd,s for q0 ∈ Q and:

G(p0,0) = Gp0 and g(p0,0),a = gp0,a for every p0 ∈ P and a ∈
−→
A .

Moreover there exists a Cr-family (Fq)q∈Q of local diffeomorphisms extending (Fp)p∈P
s.t. if (Fq)q = (fq,a)q is its associated family of Cr-skew-products, we have f(p0,0),a =
fp0,a and gq0,a is the map acting on the s-jets at p0 derived from (fq,a)q (here the jets
at p0 are taken varying p for fixed q′0 where q0 := (p0, q

′
0)). The family (Fq)q∈Q is of

the form Fq = F(p,q′) = Fp + Σp,q′ where (Σp,q′)(p,q′) is a Cr-family s.t. Σp,0 = 0.

We now finish the proof of Theorem B. We postpone the proof of Proposition 6.0.3
after it since it is technical.

Step 4: Conclusion. Let us pick the family (Gq0)q0 of C2-skew-products satisfying
the preliminary assumptions of Theorem C, (U), (T) and ∆(q0) > δd,s for every
q0 ∈ Q given by Proposition 6.0.3. We will pick well-chosen ϑ-U-perturbations and
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apply the second part of Theorem C. We will conclude by using the Fubini Theorem.

We pick the continuation (kq)q of a point kq ∈ Kq at the intersection of local stable
and unstable manifolds W a

q and Wα
q for arbitrary a ∈

−→
A and α ∈ ←−A . Up to working

locally in the parameter space Q, we can pick a Cr-family (Γt,q)t,q of segments of
same direction uΓ (these segments remain all parallel when varying t and q), which
do not intersect W s(Kq) and which intersect (Wα

q )t,q in a curve (zt,q)t,q C0-close
to (kq)t,q. Moreover we choose (Γt,q)t,q s.t. the vΓ-coordinate X (q, t) in the basis
(uΓ, vΓ) of Γt,q, for a fixed direction vΓ transversal to Γt,q, is of the form

X (q, t) :=
∑
|i|≤s

tip
i for t = (t1, · · · , tδd,s) ∈ T := (−1, 1)δd,s

which does not depend on q′ but only on p for q = (p, q′). In particular, for any
q0 ∈ Q, the map t ∈ T 7→ Jsq0X (q, t) sends diffeomorphically T to a non empty set
of s-jets in p (and thus a set of s-jets in p of positive δd,s-dimensional measure).

By the parametric inclination Lemma 7.0.4 (in the Appendix), up to taking an in-
verse iterate, for any t ∈ T , we can suppose that (Γt,q)q is (uniformly in t ∈ T )
close to the continuation (W a

q )q of a local stable manifold for some a ∈
−→
A . We can

parameterize it by the segment X with a Cr-family of charts Cr-close to (saq)q. Still
iterating backwards, for every a ∈ A, there is a family of submanifolds (Γat,q)q close
to (W aa

q )q (uniformly in t ∈ T ) s.t. Γat,q is sent by Fq into the interior of Γt,q. We can
parameterize (Γat,q)q by X with a family of charts close to (saaq )q and in these charts
the restriction of Fq from Γat,q into Γt,q defines a family of maps (f̃t,q,aa)q Cr-close to
(fq,aa)q. Iterating backwards by induction, we can define for every α ∈ A∗ families
of curves (Γαt,q)q which are (uniformly in α) Cr-close to (Wαa

q )q by Lemma 7.0.4 and
s.t. each Γaαt,q is sent into the interior of Γαt,q. This defines families of maps (f̃t,q,αa)q
Cr-close to (fq,αa)q (uniformly in t ∈ T and α ∈ A∗). We set f̃t,q,b := fq,b when b
is not of the form αa with α a non empty word. When looking at the action of the
families of maps (f̃t,q,a)q on s-jets (w.r.t. p) for fixed values of t and a, one obtains a
family of maps (g̃t,q0,a)q0 from Y into itself C2-close to (gq0,a)q0 (uniformly in t and
a). This defines a family (indexed by t) of ϑ-U-perturbations of the family (Gq0)q0
of C2-skew-products, with arbitrarily small ϑ.

By the second part of Theorem C, we have

Lebδd,s(K̃t,q0,a) > 0 for Lebd+m a.e. q0 ∈ Q and Lebδd,s a.e. t ∈ T ,

where the limit set K̃t,q0,a is formed by jets at p0 taken while varying p for fixed q′0
where q0 := (p0, q

′
0). By the Fubini Theorem, for a.e. q′0 we have:

Lebδd,s(K̃t,(p0,q′0),a) > 0 for Lebd a.e. p0 ∈ P and for Lebδd,s a.e. t ∈ T .

We fix such a q′0. We consider (F̃p)p := (F(p,q′0))p and Γ̃t,p := Γt,(p,q′0). We notice
that K̃t,(p0,q′0),a is (in the charts) the set of the s-jets at p0 of the intersection points
between the local unstable set of K̃p and Γ̃t,p. Moreover the set of s-jets at any p0
of the vΓ-coordinate of Γ̃t,p in the basis (uΓ, vΓ) when varying t in T has positive
δd,s-dimensional Lebesgue measure. Since we have a positive set of one-dimensional
s-jets in the direction of uΓ for a.e. t ∈ T , we just have to use the Fubini Theorem
to conclude to a set of bidimensional s-jets of positive measure for a.e. p0 ∈ P.

The same proof works for every family (Gp)p which is Cr-close to (Fp)p with the
extension (Gq)q∈Q given by Gq = Gp + Σp,q′ where (Σp,q′)(p,q′) is the Cr-family
given by Proposition 6.0.3. Indeed, the preliminary conditions of Theorem C, (U),
∆(q0) > δd,s are open conditions and the extension in Proposition 6.0.3 in order to
get (T) works for nearby families with the same additive perturbation since having
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a relative positive speed is an open property. Thus we can apply Theorem C to the
family of C2-skew-products derived from (Gq)q. This achieves the proof that (Kp)p
is an almost Cr,s-parablender and thus shows Theorem B.
Remark 6.0.4. When the family (Fp)p is of the form (F)p with F independent
of p and when the order s of the jets is equal to 0, the extension (Fq)q satisfying
the conclusions of Theorem B can be taken of the form (F + Σq′)(p,q′) with (Σq′)q′
independent of p. This will help to prove Theorem A from Theorem B.

Proof of Proposition 6.0.3. The proof is divided in two Steps. The goal and main
difficulty of the extension is about satisfying (T): we want to extend the family
(Fp)p∈P by adding finitely many new parameters, which will give a positive relative
speed to pairs of limit points with different combinatorics, inside each fiber. We set

Ω := {(a, α, β) ∈ −→A ×←−A ×←−A : α−1 6= β−1}

and by introducing new parameters, we will give a positive relative speed to the
points coded by α and β inside the fiber coded by a for any (a, α, β) ∈ Ω, and this
will give the transversality assumption (T) inside the extended family.

We begin by choosing a covering of Ω by small products of cylinders. The reason
why we are going to work with a covering by small products of cylinders is that this
will allow us to control precisely the relative movement of the two limit points. We
will then extend iteratively the original family (Fp)p∈P by adding new parameters
for each set of the covering.

We first pick an arbitrary number h > 0. The extended family (Fq)q∈Q will be taken
s.t. the families (F(p,q′))p∈P are (uniformly in q′) h-Cr-close to (Fp)p∈P . We pick
an integer M large enough so that λM/(1− λ) is small.

Step 1: Working locally. Let us pick any (a, α, β) ∈ Ω. If a is periodic of minimal
period p ∈ A∗, since α−1 6= β−1, we can choose β s.t. β−1 is different from the last
letter of p.

Fact 1. The sequences σk(a) where 0 ≤ k ≤M are all distinct from β−1a.

Fact 2. The sequences β|ka where 2 ≤ k ≤M are all distinct from β−1a.

Proof of Facts 1 and 2. If a is not periodic, this is immediate. If a is periodic, this is
due to the fact that β−1 is different from the last letter of its minimal period p.

From now, we distinguish two disjoint Cases which cover all possible tuples in Ω:

Case 1: the sequences α|ka where 1 ≤ k ≤M are all distinct from β−1a. In
this case, we consider the two cylinders [ρα] and [ρβ ] of ←−A of length M defined by
ρα := α|M and ρβ := β|M . We pick a small cylinder [ρa] of −→A s.t. a ∈ [ρa] and:

• The cylinders [α|kρa] where 1 ≤ k ≤M are all disjoint from [β−1ρa].
• The cylinders [β|kρa] where 2 ≤ k ≤M are all disjoint from [β−1ρa].

Case 2: a is periodic of minimal period p and there exists f > 0 s.t. the
last letters of α are of the form β−1 · pf . We consider two small cylinders [ρα]
and [ρβ ] of ←−A containing α and β, and a small cylinder [ρa] of −→A s.t. a ∈ [ρa] and:

• The cylinders σk([ρa]) where 0 ≤ k ≤M are all disjoint from [β−1ρa].
• The cylinders [β|kρa] where 2 ≤ k ≤M are all disjoint from [β−1ρa].
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We take these cylinders so that their lengths are large compared to M .

We notice that the compact set Ω is covered by the union of the (open) products of
cylinders [ρa]× [ρα]× [ρβ ] associated to any (a, α, β) ∈ Ω. We can find then a finite
covering of Ω by such products.

Step 2: Extension. We now construct an extension of (Fp)p obtained by ex-
tending successively a finite number of times the family, adding at each step δd,s
parameters corresponding to a product of cylinders [ρ]× [ρ′]× [ρ′′] ⊂ Ω in the finite
covering defined in Step 1. Here [ρ] is a cylinder in −→A and [ρ′] and [ρ′′] are cylinders
in ←−A s.t. ρ′−1 6= ρ′′−1. The δd,s parameters are intended to move the s-jet of the
limit point associated to α relatively to the one corresponding to β, inside the fiber
encoded by a, where (a, α, β) is any tuple in [ρ]× [ρ′]× [ρ′′].

The union of the points of Rp,a on the local stable manifolds W a
p for a ∈ [ρ′′−1ρ]

is disjoint from the union of the points of Rp,a on the local stable manifolds W a
p

for a /∈ [ρ′′−1ρ] at every parameter p ∈ P. We then pick a Cr-family (hp)p of
bump functions hp equal to h in a neighborhood of the first ones and equal to 0 in
a neighborhood of the second ones for every p ∈ P. We also pick a Cr-family of
maps vsp s.t. vsp(z) is close to the stable direction of Kp at Fp(z) for any point z ∈ Kp.

We now extend the family by setting for every q := (p, q′) with p ∈ P ′ and q′ =
(qi)i ∈ Rδd,s small:

Fq(z) = Fp(z) + hp(z) ·
(∑

i

qi · pi
)
· vsp(z) ∀z ∈ R2 , (24)

where we sum over i = (i1, . . . , id) s.t.
∑

k
ik ≤ s with pi = pi11 · · · p

id
d .

This defines a Cr-family of endomorphisms (Fq)q. For small values of q′, let us say
for q in some open neighborhood of P × {0}, these are still local diffeomorphisms.
Moreover, the family of hyperbolic basic sets admits a continuation as a family (Kq)q
(see the Appendix).

By Remark 6.0.2, we can define the associated family of Cr-skew-products (Fq)q
which extends (Fp)p and then the associated map (Gq0)q0 acting on the s-jets de-
rived from (Fq)q, defined as in Step 2 of the proof of Theorem B (let us recall that
the jets are taken while varying only p for fixed q′ if we set q := (p, q′)). In particu-
lar, (Gq0)q0 is a family of C2-skew-products satisfying the preliminary assumptions
of Theorem C and also (U). By Proposition 5.1.4, the map q 7→ ∆(q) is continuous.
Thus, up to restricting the parameter space, we have ∆(q0) > δd,s for any q0.

We now prove that (Gq0)q0 satisfies the property (T) restricted to any (a, α, β) ∈
[ρ]× [ρ′]× [ρ′′]. More precisely we show below the following technical lemma:

Lemma 6.0.5. Up to reducing Q, for every a ∈ [ρ], α ∈ [ρ′], β ∈ [ρ′′], p0 ∈ P and
r > 0, with q := (p, q′), the set of q′0 s.t. Jsp0πq,a(α) and Jsp0πq,a(β) are r-close is
of Lebesgue measure dominated by rδd,s , with an independent constant. Moreover
for every family of ϑ-perturbations of (Gq0)q0 with ϑ small enough, t ∈ T , a ∈ [ρ],
α ∈ [ρ′], β ∈ [ρ′′], p0 ∈ P and r > 0, the set of q′0 s.t. Jsp0 π̃t,q,a(α) and Jsp0 π̃t,q,a(β)
are r-close is of Lebesgue measure dominated by rδd,s , with the same constant.

We recall that the s-jets at p0 are taken while varying p around p0 for a fixed value of
q′ equal to q′0. In particular, by the Fubini Theorem, the set of (p0, q

′
0) s.t. Jsp0πq,a(α)

and Jsp0πq,a(β) are r-close is also of measure dominated by rδd,s and the same holds
for ϑ-perturbations. The proof of Lemma 6.0.5 is below. We first finish the proof of
Proposition 6.0.3.
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We extend iteratively the initial family (Fp)p a finite number of times by the same
method. At each step, we extend by adding δd,s new parameters corresponding to a
new product of cylinders [ρ]× [ρ′]× [ρ′′] in the finite covering of Ω defined in Step 1.
The adaptation of Lemma 6.0.5 is straightforward. This proves property (T) and so
(Gq0)q0∈Q is a family of C2-skew-products, with Q := P × (−1, 1)m for some m > 0
(up to rescaling). This concludes the proof.

Proof of Lemma 6.0.5. We first prove the result for the Case 1 in Step 1 of the proof
of Proposition 6.0.3. Let Πq,a(α) and Πq,a(β) be the points of the phase space R2

equal to πq,a(α) and πq,a(β) in the parametrization of W a
q . Both belong to W a

q .

We pick local coordinates in a neighborhood of Π0,a(α) centered at Π0,a(α) with a
basis given by R · es0 + R · eu0 , where we denoted by R · es0 and R · eu0 the stable and
unstable directions of ←→K0 at Π0,a(α). We write:

Jsp0Πq,a(α) =: J sp0Πq,a(α) · es0 + J up0Πq,a(α) · eu0 .

Take care that the s on the left hand term is the order of the jet and the s on the
right hand term just means � stable �. We can proceed similarly for Π0,a(β).

1. Easy case: 0-jets. We first perform the proof for 0-jets to show the general
idea. We fix the parameter p0 = 0. We begin by studying Πq,a(α), more precisely
the variations of the 0-jet of Π(0,q′),a(α), i.e. Π(0,q′),a(α) itself, when moving q′. In
order to do this, we set

Π0(q′) := Π(0,q′),a(α)

and denote by Πk(q′) its preimage by Fk(0,q′) on W
α|ka

(0,q′) (this is the point equal to
π(0,q′),α|ka(σk(α)) in the parametrization of the stable manifold). We pick local
coordinates centered at each Pk := Πk(0) with a basis given by the corresponding
preimages R · esk and R · euk of R · es0 and R · eu0 by Fk0 for k > 0. These are the stable
and unstable directions of ←→K0 at Pk. In the decomposition R · esk + R · euk , we write

Πk(q′) =: Πs
k(q′) · esk + Πu

k(q′) · euk .

In the coordinates given by Pk+1 + R · esk+1 + R · euk+1 and Pk + R · esk + R · euk with
Pk+1 = Pk = (0, 0), the map F0 restricted to a neighborhood of Pk+1 = (0, 0) sends
Pk+1 = (0, 0) to Pk = (0, 0) and is C1-close to its differential which is diagonal. In
particular, the (1, 1)-coefficient is a real number λk s.t. |λk| < λ < 1.

By hyperbolic continuation, there exists B > 0 independent of k and M s.t.:

Ck :=
∣∣∣∣dΠs

k

dq′
(0)
∣∣∣∣ < B .

We recall that Πk+1(q′) is sent onto Πk(q′) by F(0,q′). Moreover F(0,q′)(Πk+1(q′)) is
the sum of F0(Πk+1(q′)) and a term Σk(q′) = Σsk(q′) · esk + Σuk(q′) · euk coming from
Eq. (24). In particular, we notice that we have:∣∣∣∣dΣsk

dq′
(0)
∣∣∣∣ < 2h .

We have:
dΠs

k

dq′
(0) = λk ·

dΠs
k+1

dq′
(0) + dΣsk

dq′
(0) .

Ck < λk · Ck+1 + 2h .
We also notice that Σk(q′) is equal to zero when 0 ≤ k ≤M − 1 by the first item of
Case 1. This gives for every M ′ > M :

C0 < B · λM
′

+ 2h · (λM
′−1 + · · ·+ λM ) .
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By taking M ′ large, we get:

C0 ≤ 2h λM

1− λ ,

which is small compared to h by assumption. We finally get that the derivative of
Π(0,q′),a(α) = Π0(q′) at q′ = 0 in the stable direction R · es0 is small compared to h:

d

dq′
Πs

(0,q′),a(α) is small compared to h .

The same holds true when replacing Π(0,q′),a(α) by the preimage Π′1(q′) of Π(0,q′),a(β)
by F(0,q′) on W

β−1a
(0,q′) , using the second item of Case 1. By Eq. (24) and since es0 is

close to vs0(Π′1(0)), the derivative d
dq′Π

s
(0,q′),a(β) is then close to h. Thus:

d

dq′

(
Πs

(0,q′),a(α)−Πs
(0,q′),a(β)

)
is bounded away from (0, 0) .

In particular, up to reducing Q, the set of q′0 s.t. J0
0Πq,a(α) and J0

0Πq,a(β) are r-
close is of Lebesgue measure dominated by r with an independent constant. We
can proceed the same way for any p0, and the domination constant is independent.
Integrating using the Fubini Theorem, the set (p0, q

′
0) s.t. J0

p0Πq,a(α) and J0
p0Πq,a(β)

are r-close is of Lebesgue measure dominated by r, and thus it is also the case for
J0
p0πq,a(α) and J0

p0πq,a(β). The statement about ϑ-perturbations follows easily with
the same arguments when ϑ is small.

2. General Case: s-jets. Now we go to the general but more difficult case of
s-jets. This time, we vary also the parameter p. We fix p0 = 0. We investigate the
differentials of Js0Πq,a(α) and Js0Πq,a(β) when derivating relatively to q′.

We keep the same coordinates for each k: we keep expressing the point Πk(p, q′)
(depending also on p this time) in the coordinates Pk + R · esk + R · euk (independent
of (p, q′) small). Let J s0 Πk(q′) and J u0 Πk(q′) be the components in this basis of the
s-jet of Πk(p, q′) at p0 = 0 for q′ fixed. Note that by hyperbolic continuation, there
exists B′ > 0 independent of k and M s.t.:

C′k :=
∣∣∣∣dJ s0 Πk

dq′
(0)
∣∣∣∣ < B′ .

For q′ fixed the family (Πk(p, q′))p is the image of (Πk+1(p, q′))p by the family of
maps (F(p,q′))p. The family (F(p,q′)(Πk+1(p, q′)))p is the sum of (Fp(Πk+1(p, q′)))p
and of the family (Σp,k)p of perturbations coming from Eq. (24). In particular:∣∣∣∣dJ s0 Σk,p

dq′
(0)
∣∣∣∣ � 2δd,sh .

Again Σk,p(q′) is equal to zero when 0 ≤ k ≤ M − 1 by the second item of Case
1. However this time the action of (Fp)p on s-jets is more complicated than on
0-jets. For each k, we write the Taylor expansion of Fp in Pk+1 of order s. Then we
replace each of its coefficients by its s-jet in p, and the variables by J s0 Πk+1(q′) and
J u0 Πk+1(q′), and we expand this expression. This shows that

J s0 Πk(q′) =Mk · J s0 Πk+1(q′) +M′k · J u0 Πk+1(q′) + J s0 Σk,p(q′) .

The term J s0 Σk,p(q′) has its derivative at q′ = 0 bounded by 2δd,sh, and its coef-
ficients in pi depends only on qi. The matrix Mk is inferior triangular with all its
diagonal coefficients equal to λk with |λk| < λ < 1. On the other hand, the matrix
M′k is inferior triangular with all its diagonal coefficients equal to 0. Iterating, using
the first item of Step 1 and then taking the derivative at q′ = 0, we see that

d

dq′
J s0 Π(p,q′),a(α)
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is inferior triangular with all its diagonal coefficients bounded by

2δd,sh
λM

1− λ ,

which is small compared to h by assumption on M . Thus for every i = (i1, . . . , id)
s.t.

∑
k
ik ≤ s, the coordinate in pi of the stable component of the s-jet Js0Πq,a(α)

has small derivative compared to h while moving the parameter qi around 0.

The same holds for the preimage Π′1(p, q′) of Πq,a(β) by Fq. By Eq. (24) and since
R · es0 is close to R · vs0(Π′1(0, 0)), for every i = (i1, . . . , id) s.t.

∑
k
ik ≤ s, the coordi-

nate in pi of the stable component of the s-jet Js0Πq,a(β) has a derivative close to h
(up to a non zero independent multiplicative constant) while moving the parameter
qi. Thus the coordinate in pi of Js0Πq,a(α) − Js0Πq,a(β) has a non zero derivative
while moving qi around 0. The same still holds for other values of p0. Then, up
to reducing Q, the set of (p0, q

′
0) s.t. Jsp0Πq,a(α) and Jsp0Πq,a(β) are r-close is of

Lebesgue measure dominated by rδd,s , and thus it is also the case for Jsp0πq,a(α) and
Jsp0πq,a(β). This gives the result, using the Fubini Theorem. The statement about
ϑ-perturbations follows easily with similar arguments. This ends the proof in Case 1.

In Case 2, the proof is more simple. First take the original sequences α, β and a of
Case 2 around which the cylinders [ρα], [ρβ ] and [ρa] are centered. The coordinate
in pi of the stable component of the s-jet Js0Πq,a(β) has still a non zero derivative
while moving the parameter qi (this only needs the second item of Case 2 and not
the first item of Case 1 not present in Case 2). On the other hand, Πq,a(α) is
the image of Πq,a(β) by some iterate of Fq restricted on the M first images of W a

q

since a is periodic of period p and the last letters of α are of the form β−1 · pf for
some f > 0. These local stable manifolds do not depend on q′ by the first item of
Case 2. Moreover the action of (Fq)q restricted to these stable manifolds on stable
components of jets is inferior triangular with diagonal coefficients between 0 and 1.
Thus the coordinate in pi of Js0Πq,a(α)− Js0Πq,a(β) has again a non zero derivative
while moving qi. Since the lengths of the cylinders are large, this remains true for
any (α, β, a) in [ρα]× [ρβ ]× [ρa]. We conclude as in Case 1, which ends the proof.

Remark 6.0.6. When ` = 1, to give a relative movement inside the a-fiber to the
points encoded by α and β, we considered the preimages of these two points by Fp
(respectively on W

α−1a
p and W β−1a

p ). The second one was not periodic and distinct
from the first one. We then perturbed Fp in a neighborhood of this second preimage.

In the case when ` > 1, we shall look at the ` respective successive preimages of
these two points by Fp (respectively on W

α−1a
p and W β−1a

p and their `−1 successive
images by Fp) and take the first pair of preimages which are distinct. One of them
is not periodic, and we perform the same perturbation as before in a neighborhood of
this point. Then the proof is the same with the same distinction in two cases whether
the M successive preimages of the other preimage intersect this neighborhood or not.

7 Appendix
Proofs of Intermediate Lemmas 5.1.2, 5.3.1 and 5.4.4
Proof of Lemma 5.1.2. Let us fix p ∈ P, a ∈ −→A , x ∈ X and α = (α−n, · · · , α−1) ∈
An for some n > 0. We notice that the differential Dψαp,a(x) can be written as the
product of n factors:

Dψαp,a(x) =
n∏
k=1

Dψ
α−k
p,ak

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
with ak := α|k−1a (25)
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By (U), each of these n factors is unipotent inferior and then can be written as a
sum of N terms:

Dψ
α−k
p,ak

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
= M0 +M1 + · · ·+MN−1 . (26)

Here M0 is a diagonal matrix which has all its diagonal coefficients of absolute value
equal to the coefficient λp,ak,α−k

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
. On the other side, for

every 1 ≤ k ≤ N − 1, all the coefficients of Mk are equal to 0 except possibly on the
kth (small) diagonal line below the (great) diagonal line.

We can write each of the n factors of Eq. (25) as in Eq. (26) and then expand
Dψαp,a(x) as a sum of Nn factors of n terms. Among them, any such product with
≥ N matrices having zero coefficients on and above the great diagonal line vanishes.
Thus, between the Nn terms whose sum equals Dψαp,a(x), there are at most

P̃ (n) :=
(

n

N − 1

)
·(N−1)N−1 +

(
n

N − 2

)
·(N−1)N−2 + · · ·

(
n

1

)
·(N−1)+1 (27)

which are non zero, with P̃ polynomial. Each of these ≤ P̃ (n) terms M1 · · ·Mn is
a product of n factors Mk.

Let us consider such a productM1 · · ·Mn. At most N − 1 of theMk have all their
coefficients equal to 0 except possibly on one of the small diagonal lines below the
(great) diagonal line. The ≥ n − (N − 1) other factors are all diagonal matrices.
Each coefficient of the resulting product M1 · · ·Mn is then either zero or equal to
the product of n non zero coefficients ck, with ck a non zero coefficient of Mk. If
Mk is diagonal, |ck| is equal to λp,ak,α−k

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
. If not, |ck| is

bounded by some independent constant C1 since for every a ∈ A, the C1-bounded
map ψap,a depends continuously on p ∈ P and a ∈

−→
A . By Eq. (13), we have:

λp,a,α(x) =
n∏
k=1

λp,ak,α−k
(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
with ak := α|k−1a . (28)

Moreover, each of the coefficients λp,ak,α−k
(
ψ
α−k−1
p,ak+1 ◦· · ·◦ψ

α−n
p,an (x)

)
is larger than γ′.

Thus the resulting coefficient ofM1 · · ·Mn is smaller than λp,a,α(x)·(γ′)−N+1 ·CN−1
1

in modulus. Thus any coefficient of Dψαp,a(x) is bounded by P (n) · λp,a,α(x), where
P (n) := P̃ (n) · (γ′)−N−1 · CN−1

1 is a positive polynomial on R+.

Proof of Lemma 5.4.4. For every p ∈ P, a ∈ −→A , n ≥ 0, ρ ∈ An and (α, β) ∈ Cρ, the
points πp,a(α) and πp,a(β) are the respective images of πp,ρa(σn(α)) and πp,ρa(σn(β))
by ψρp,a. Let us denote by v = (v1, · · · , vN ) the vector v := πp,ρa(σn(α))−πp,ρa(σn(β)).
We denote by j ∈ {1, · · · , N} the maximal index s.t. |vj | > 2N ·P (n) · |vi| for every
i < j, where the polynomial P was defined in Lemma 5.1.2. Using this, it follows:

|vj | ≥ F · (2NP (n))−N · ||v|| (29)

for some positive constant F (depending only on N). The segment between the
two points πp,ρa(σn(α)) and πp,ρa(σn(β)) is fully included in X since X is convex.
Let χ : [0, 1] → R be the C1-map which sends x ∈ [0, 1] to the jth coordinate of
ψρp,a(πp,ρa(σn(β)) + xv). By the mean value equality, there exists x ∈ (0, 1) s.t.:

χ(1)− χ(0) = χ′(x) =
j∑
i=1

aj,i · vi (30)

where aj,i is the coefficient of index (j, i) of the differential Dψρp,a(y) with y :=
πp,ρa(σn(β)) + xv. The right-hand equality is due to the fact that Dψρp,a(y) is
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unipotent inferior by (U). We notice that |aj,j | = λp,a,ρ(y). By Lemma 5.1.2, |aj,i|
is smaller than P (n) · λp,a,ρ(y). By Eq. (30), we then have:

|χ(1)−χ(0)| ≥ λp,a,ρ(y)·|vj |−
∑
i<j

P (n)·λp,a,ρ(y)· |vj |
2N · P (n) ≥

λp,a,ρ(y) · |vj |
2 . (31)

Noticing that ||πp,a(α)−πp,a(β)|| ≥ |χ(1)−χ(0)| and injecting Eq. (29) in Eq. (31),
it then holds:

||πp,a(α)− πp,a(β)|| ≥ F

2 · (2NP (n))−N · λp,a,ρ(y) · ||πp,ρa(σn(α))− πp,ρa(σn(β))|| .
(32)

By Lemma 5.2.1 and noting R(n) := 2D1
F
· (2NP (n))N which is positive on R+, we

have:
||πp,a(α)− πp,a(β)|| ≥ Λp,a,ρ

R(n) · ||πp,ρa(σn(α))− πp,ρa(σn(β))|| . (33)

The proof of the second item is similar and we apply Lemma 5.2.4 to conclude.

Proof of Lemma 5.3.1. We notice that the coefficient λp,a,α−1

(
πp,α−1a(σ(α))

)
is pos-

itive and uniformly distant from 0 and +∞. Since log is C1 on ]0,+∞[, we just have
to show that the following map is Hölder with positive exponent on its domain:

(α, a) 7→ λp,a,α−1

(
πp,α−1a(σ(α))

)
.

Let us recall that the latter is the (1, 1) coefficient of Dψα−1
p,a (πp,α−1a(σ(α))) (up to

the sign). By assumption the map a ∈
−→
A 7→ Dfp,a is Hölder for the C0-topology

and so it is enough to show that the map (α, a) ∈ ←−A × −→A 7→ πp,a(α) ∈ X is itself
Hölder. By hyperbolicity, the map α ∈

←−
A 7→ πp,a(α) ∈ X is Hölder for any a ∈

−→
A ,

with exponent and constant independent of a. Thus it is enough to show that the
map a ∈

−→
A 7→ πp,a(α) ∈ X is Hölder for any α ∈

←−
A , with independent constants.

But using again both the hyperbolicity and that a 7→ fp,a and a 7→ Dfp,a are Hölder
for the C0-topology, we see that the maps a 7→ ψαnp,a(0) are Hölder, with exponent
and constant independent of p, α and n. But this sequence converges uniformly to
the map a 7→ πp,a(α), which concludes the proof.

Proof of Distortion Lemmas 5.2.1, 5.2.2, 5.2.3 and 5.2.4
Proofs of Lemma 5.2.1. The Lemma will follow easily from the two following:

Sublemma 7.0.1. There exists A > 0 s.t. for any p ∈ P, a ∈ −→A , a ∈ A, it holds:

1−A|x− y| ≤ λp,a,a(x)
λp,a,a(y) ≤ 1 +A|x− y| ∀ x, y ∈ X .

Proof. The non zero number λp,a,a(x) is the (1, 1) coefficient of the differential
Dψap,a(x) (up to the sign). Since the maps ψap,a are uniformly (in p, a and a) C2

bounded, denoting by Ã a uniform bound of the second differential of ψap,a on X

among p ∈ P, a ∈ −→A , a ∈ A, the coefficient λp,a,a(x) is between λp,a,a(y)− Ã|x− y|
and λp,a,a(y) + Ã|x − y|. We notice that γ′ < λp,a,a(y). Denoting A := Ã/γ′ and
taking the quotient, we get the desired inequality.

Sublemma 7.0.2. There exists A′ > 0 such that for every p ∈ P, a ∈
−→
A , n ≥ 0,

α ∈ An, x, y ∈ X, the points ψαp,a(x) and ψαp,a(y) are A′ · γn/2 distant.

Proof. It is an immediate consequence of the inequality Λp,a,α < γ|α| and of Lemma
5.1.2 that the diameter of ψαp,a(X) is dominated by γ|α|/2.
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We can now conclude. Using Eq. (13) we write both λp,a,α(x) and λp,a,α(y) as
products of n factors and thus their quotients as:

λp,a,α(x)
λp,a,α(y) =

n∏
k=1

λp,ak,α−k
(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
λp,ak,α−k

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (y)

)
where we set again ak := α|k−1a ∈

−→
A . Using the two Sublemmas, the previous

quotient is between
∏n

k=1(1−AA′ ·γn/2) and
∏n

k=1(1+AA′ ·γn/2). Since 0 < γ < 1,
the infinite products

∏
(1±AA′ · γn/2) converge and their limits are respectively in

(0, 1) and (1,+∞), which concludes the proof.

Proof of Lemma 5.2.2. Let us fix η > 0. By Sublemmas (7.0.1) and (7.0.2), there
exist n0 ∈ N s.t. for every p ∈ P, a ∈ −→A , n > n0, α ∈ An, a ∈ A and x, y ∈ ψαp,a(X),
we have e−η < λp,a,a(x)/λp,a,a(y) < eη. We recall that the map ψap,a depends
continuously in the C2-norm on a ∈

−→
A and p in P (both compact sets). Thus there

exists δ(η) > 0 such that for every a ∈
−→
A and p1, p2 ∈ P with ||p1 − p2|| < δ(η),

we have e−η < λp1,a,a(x)/λp2,a,a(y) < eη for every n > n0, α ∈ An, a ∈ A,
x ∈ ψαp1,a(X) and y ∈ ψαp2,a(X). We denote by D2 > 0 the maximum of the
quotients λp1,a,α(x)/λp2,a,α(y) among p1, p2 ∈ P, a ∈

−→
A , n ≤ n0, α ∈ An and

x, y ∈ X. We conclude by noticing that for every n > n0 and x, y ∈ X, we have:

λp1,a,α(x)
λp2,a,α(y) =

λp1,a,···α−n0 ···α−1(x)
λp2,a,α−n0 ···α−1(y) ·

n∏
k=n0+1

λp1,ak,α−k

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (x)

)
λp2,ak,α−k

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψ

α−n
p,an (y)

) .

Proof of Lemma 5.2.3. Let us fix p ∈ P. We saw in the proof of Lemma 5.3.1 that

(a, α) 7→ λp,a,α−1

(
πp,α−1a(σ(α))

)
is Hölder with positive exponent on its domain. We now fix an arbitrary β ∈

←−
A .

Let us take a, a′ ∈
−→
A . By Eq. (13) and proceeding as in the proof of Lemma 5.2.1,

we see that the quotient
λp,a,α(πp,αa(β))
λp,a′,α(πp,αa′(β))

is bounded between 0 and +∞, with constants independent of p, a, a′ and α. To
conclude, we just have to apply Lemma 5.2.1.

Proof of Lemma 5.2.4. By Sublemma (7.0.2), there exists n0 ∈ N s.t. for every
p ∈ P, n > n0, ρ ∈ An, a ∈ A and x, y ∈ ψρp,a(X), we have

λp,a,a(y)ε
′
< λp,a,a(x) < λp,a,a(y)1/ε′ .

Then up to taking ϑ-perturbations for small ϑ, for every t ∈ T , p ∈ P, a ∈
−→
A ,

n > n0, ρ ∈ An, a ∈ A, x ∈ ψρt,p,a(X) and y ∈ ψρp,a(X), we have

λp,a,a(y)ε
′
< λ̃t,p,a,a(x) < λp,a,a(y)1/ε′ .

Let D4 > 0 be the maximum of λ̃t,p,a,ρ(x)/λε′p,a,ρ(y) and λ
1/ε′
p,a,ρ(y)/λ̃t,p,a,ρ(x) among

t ∈ T , a ∈
−→
A , p ∈ P, n ≤ n0, ρ ∈ An, x, y ∈ X. We conclude as for Lemma

5.2.2.
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Pressure function: Proof of Proposition 5.1.4
For simplicity, we fix p ∈ P and denote for every s ≥ 0:

Zn(s) :=
∑
α∈An

Λsp,a,α > 0 .

For every s ≥ 0, the sequence n ∈ N+ 7→ logZn(s) is subadditive and so the limit
Πp,a(s) = limn→+∞

1
n

logZn(s) exists and is finite by Fekete’s Lemma. We notice that
Πp,a(0) is equal to the topological entropy of the shift σ which is positive since A has
at least two letters. An immediate consequence of Lemma 5.2.3 is that the pressure
Πp,a only depends on p. We denote it by Πp. We notice that s ∈ R+ 7→ Zn(s) is log
convex. Thus the map s ∈ R+ 7→ logZn(s) is convex. The limit map s 7→ Πp(s) is
then also convex and thus continuous. We remark that for s, s′ ≥ 0, it holds:

Zn(s+ s′) =
∑
α∈An

Λs+s
′

p,a,α ≤
∑
α∈An

Λsp,a,α · γns
′

and then Πp(s+ s′) ≤ Πp(s) + s′ · logγ. Since logγ < 0, the map s ∈ R+ 7→ Πp(s) is
strictly decreasing. Tending s → +∞, we see that Πp(s) tends to −∞. Finally, by
the intermediate value theorem, the map s ∈ R+ 7→ Πp(s) has a unique zero ∆(p).
It remains to prove the continuity of p 7→ ∆(p). By Eq. (16), we have:

Πp(s) = lim
n→+∞

1
n

log
∑
α∈An

Λsp,a,α for any s ≥ 0 . (34)

By Lemma 5.4.3 (whose proof does not need the continuity of p 7→ ∆(p)), we see
that for every p and ε′ > 1, there exists a neighborhood Up,ε′ of p and a constant
D5 > 0 s.t. for every p′ ∈ Up,ε′ and α ∈ A∗, the term Λp′,a,α is bounded between
Λε′p,a,α/D5 and D5Λ1/ε′

p,a,α. Injecting this in Eq (34), this implies that Πp(sε′) ≤
Πp′(s) ≤ Πp(s/ε′) for every s ≥ 0 and p′ ∈ Up,ε′ and so ∆(p)/ε′ ≤ ∆(p′) ≤ ∆(p)ε′
for every p′ ∈ Up,ε′ . This proves the continuity of p 7→ ∆(p).

Hyperbolicity theory
We recall here some background on hyperbolic compact sets of Cr-endomorphisms.
This subsection is mainly taken from Section 1 of the article [Be1] of Berger and
from Appendix C of the article [BB] of Berger and the author.

Let M be a manifold. A subset K ⊂ M is left invariant by a C1-endomorphim F
from M into M if F(K) = K. When F is a diffeomorphism, the invariant compact
set K ⊂M is hyperbolic if there exists a DF-invariant splitting TM|K = Es

⊕
Eu

so that Es is contracted by DF and Eu is expanded by DF :

∃λ < 1, C > 0, ∀k ∈ K, ∀n ≥ 0, ||DFn|Esk || ≤ Cλn and ||(DFn|Euk )−1|| ≤ Cλn .

When F is a local diffeomorphism, we shall study the inverse limit ←→K F of K:
←→
K F := {(ki)i ∈ KZ : F(ki) = ki+1, ∀i ∈ Z} .

It is a compact space for the topology induced by the product one of KZ. The dy-
namics induced by F on ←→K F is the shift ←→F and is invertible. Let π :←→K F → K be
the zero-coordinate projection. Let π∗TM be the bundle over ←→K F whose fiber at k
is Tπ(k)M. The map DF acts canonically on π∗TM as ←→F on the basis and as the
linear map Dπ(k)F on the fiber of k ∈ ←→K F .

The compact set K (or ←→K F ) is hyperbolic if there exists a DF-invariant splitting
π∗TM = Es

⊕
Eu s.t. Esk is contracted by Dπ(k)F and Euk is expanded by Dπ(k)F :

∃λ < 1, C > 0, ∀k ∈ ←→K F , ∀n ≥ 0, ||DFn|Esk || ≤ Cλn and ||(DFn|Euk )−1|| ≤ Cλn .
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Actually the definition of hyperbolicity for local diffeomorphisms is consistent with
the definition of hyperbolicity for diffeomorphisms when the dynamics is invertible.
Here is a useful result about structural stability:
Theorem (Przytycki). Let K be a hyperbolic set for a C1-local diffeomorphism
F of M. Then for every C1-local diffeomorphism F ′ which is C1-close to F , there
exists a continuous map iF′ :←→K F →M which is C0-close to π and so that:

1. iF′ ◦
←→
F = F ′ ◦ iF′ ,

2. KF′ := iF′(
←→
K F ) is hyperbolic for F ′.

Let us also recall the definition of a stable manifold in this context. For every k ∈ K
and η > 0, we define the stable manifold and local stable manifold of k by:

W s(k;F) := {k′ ∈M : d(Fn(k),Fn(k′)) −→
n→+∞

0} .

W s
η (k;F) := {k′ ∈M : η > d(Fn(k),Fn(k′)) −→

n→+∞
0} .

For k ∈ ←→K F and η > 0, the unstable manifold and local unstable manifold of k are:

Wu(k,F) = {k′0 ∈M : ∃(k′i)i<0 s.t. F(k′i−1) = k′i and d(kn, k′n) −→
n→−∞

0} .

Wu
η (k,F) = {k′0 ∈M : ∃(k′i)i<0 s.t. F(k′i−1) = k′i and η > d(kn, k′n) −→

n→−∞
0} .

These sets are properly embedded Cr-manifolds. For simplicity, we do not denote
F in the article when it is obvious: W s(k) for example.
Theorem F (Berger [Be1] Prop. 1.6, Theorem C.5 [BB]). Let r ≥ 1 and
let M be a manifold. Suppose that (Fp)p is a Cr-family of local diffeomorphisms
Fp of M leaving invariant the continuation of a compact hyperbolic set Kp. Then
there exists η > 0 s.t. the families (W s

η (kp;Fp))p∈P and (Wu
η (kp;Fp))p∈P of Cr-

submanifolds are of class Cr and depend C0 on respectively k0 ∈ K0 and k0 ∈
←→
K F0 .

Remark 7.0.3. An immediate adaptation of the proof of Theorem C.5 in Appendix
C of [BB] actually shows that the families (W s

η (kp;Fp))p∈P and (Wu
η (kp;Fp)p∈P

depend Hölder for the Cr−1-topology on respectively k0 ∈ K0 and k0 ∈
←→
K F0 .

We will need the following parametric inclination lemma:
Lemma 7.0.4. Let r ≥ 1 and U b Rm. Suppose that (Fp)p is a Cr-family of
local diffeomorphisms Fp of U leaving invariant a compact hyperbolic set Kp. Let
k = (ki0)i ∈

←→
K F0 and (Γp)p be a Cr-family of manifolds of the same dimension

as W s
η (kp;Fp). Suppose that Γp does not intersect the stable set of Kp and (Γp)p

intersects transversally (Wu
η (kp;Fp))p at a Cr-family of points (zp)p. Then for any

ε > 0 and n large there is a submanifold Γnp Cr-close to W s
η (k−np ;Fp), whose image by

Fnp is in a ε-neighborhood of zp in Γp and s.t. (Γnp )p is Cr-close to (W s
η (k−np ;Fp))p.

Proof. The proof is similar to the one of the parametric inclination Lemma C.6 of
[BB] but for inverse iterations this time: one extends Fp on a neighborhood U ′ of
U it in such a way that Γp is included in the stable manifold of some saddle point.
Then we apply Theorem F.
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