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Existence of minimizers for Dirac-Kohn-Sham
models in quantum chemistry

Long Meng∗

Abstract

This article is concerned with the mathematical analysis of the Dirac-Kohn-
Sham models in the local density approximation (LDA) frameworks. The difficulty
is that the functional is not of class C1,1, no critical point theory can be used to
handle with this kind of problem. Nevertheless, the existence of solutions of Dirac-
Koshn-Sham model can be solved in the spherical symmetric situation. Then we
can redefine the ground state: instead of defining it on the whole space H1{2 by
the critical point theory, we define it on the set of the solutions. Based on an
energy criteria, we can prove the existence of minimizers.

1 Introduction
Density functional theory (DFT) of non-relativistic many particle system has progressed
steadily over the last fifty years, and it has emerged as the most widely used method
of electronic structure in both quantum chemistry and condensed matter physics. Akin
to the Hartree-Fock approximation, the Kohn-Sham model [KS65], which relies on a
representation of the density terms of single particle orbitals, is one of the most powerful
tools among the DFT. However, these quantum chemical studies were restricted to
rather light elements [JGP93]. When the heavier atoms are involved, it is expected
that electrons located close to the nucleus will move at high velocities, thus requiring a
relativistic treatment.

The relativistic density functional theory (rDFT), first laid out by A,K. Rajagopal
and J. Callaway, can be rigorously derived from quantum electrodynamics [RC73,Raj78,
MV79]. Then the frequently-used Dirac-Kohn-Sham model was derived by A.K. Ra-
jagopal [Raj78] and independently by A.H. MacDonald and S.H. Vosko [MV79] after
making several physically reasonable approximations. Roughly speaking, similar to the
relationship between Hartree-Fock and Dirac-Fock, the Dirac-Kohn-Sham model can
be obtained directly from the Kohn-Sham model by replacing Schrödinger kinetic term
with Dirac kinetic term.

Based on concentration-compactness principle, the mathematical theory of Kohn-
Sham model has been done in [AC09]. And then several different models were studied
by different authors, see for example [AM12,EL13,Gon14,CM16,FG20].

Nevertheless, the mathematical theory of rDFT is still vague and there is no mathe-
matical literature about it. As a critical point problems, the Dirac-Kohn-Sham model is
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indeed much more complicated than the non-relativistic one. Generally, critical point
problems in quantum chemistry such as Hartree-Fock model and Dirac-Fock model
can be solved by the Lions-Fang-Ghoussoub critical point method which works on a
complete, C2-Hilbert-Riemann manifold, see [Lio87,ES99,FG92,Gho93,FG94]. Unfor-
tunately, the functional of Dirac-Kohn-Sham model is no longer of class C2, and to the
author’s knowledge, no method in modern critical points theory can be used to handle
with this kind of functional.

On the other hand, in most situations of chemical interest, the negative energy states
of Dirac-Fock models and Dirac-Kohn-Sham models are neglected. Mathematically
this means that one should consider the Dirac-Fock and Dirac-Kohn-Sham operator
projected onto their positive spectral subspaces. The ground energy and ground state
can thus be defined on the positive spectral subspaces of the corresponding Dirac-Fock
operator [ES01, ES02]. Based on this definition of the ground state, some retraction
methods and fixed point theories have been introduced to handle with the problem of
Dirac-Fock model, see [HS07, Sér21]. Furthermore, the retraction methods in [Sér21]
can be utilized to deal with the Dirac-Fock models for crystals [CMPS21] which is more
delicate due to the compactness issues.

However, in order to use the retraction methods, the functional should be at least
of class C1,1. Unfortunately, the Dirac-Kohn-Sham model functional is at most of class
C1,1{3 because of the exchange-correlation term and Sobolev inequality.

Nevertheless, following the idea of [WOL72, Lio87], on account of the spherical
symmetry we can prove the existence of solutions of Dirac-Kohn-Sham equations by
using the Schauder’s fixed-point theorem. Furthermore, our result shows that the non-
relativistic LDA type exchange functional can be reached.

As mentioned above, we can not use the critical point theory to prove the ground
state. Now, we use the second definition. For the standard DFT theory with integer oc-
cupation number, the minimizer is indeed one of the solutions of the Dirac-Kohn-Sham
equations. Thus we redefine the ground state of the Dirac-Kohn-Sham model on the
set of solutions which is non empty under the spherical symmetry condition. Inspired
by the work [HS07] and the binding condition of the models in quantum chemistry (see
for example [HLS09]), we proposed a stronger energy criteria for the Dirac-Kohn-Sham
model under which any minimizing sequence is precompact in H1{2. It is showed that
the when the non relativistic LDA type exchange functional is small enough, we can
calculate at least one electrons for some proper nuclear charges.

2 Mathematical foundations of Dirac-Kohn-Sham model
and main results

2.1 Foundations of the model

In relativistic quantum mechanics, the Dirac operator can be written as

D0 :“ ´i
3
ÿ

k“1

αkBk ` β :“ ´iα ¨∇` β
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where α “ pα1, α2, α3q and

β “

ˆ

I2 0
0 ´I2

˙

, αk “

ˆ

0 σk
σk 0

˙

,

with
σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

.

Throughout the paper, we choose units for which m “ c “ ~ “ 1, where m is the mass
of the electron, c the speed of light, and ~ the Plank constant.

The operatorD0 acts on 4-spinors, i.e. functions from R3 to C4. And it is self-adjoint
on L2pR3;C4q, with domain H1pR3;C4q and form domain H1{2pR3;C4q. Its spectrum
is σpD0q “ p´8,´1s Y r1,8q. Moreover, it is defined to ensure

pD0
q
2
“ ´4` 1.

Following the notation in [Tha13,ES99], we denote by Λ` and Λ´ :“ 1L2 ´Λ` respec-
tively the two orthogonal projectors on L2 corresponding to the positive and negative
eigenspace of D0, and such that

#

D0Λ` “ Λ`D0 “ Λ`
?

1´4 “
?

1´4Λ`;

D0Λ´ “ Λ´D0 “ ´Λ´
?

1´4 “ ´
?

1´4Λ´.

Indeed,

Λ` “
1

2
`

D0

2|D0|
, Λ´ “

1

2
´

D0

2|D0|
.

Even though we only consider the standard models, the density matrix is still fre-
quently utilised. They are operators defined on trace class σ1pL

2q. Before going further,
now let us introduce some useful functional spaces and the corresponding norms:

•
Hα :“ tu P L2; }|D0

|
αu}L2 ă 8u

endowed with the norm
}u}Hα “ }|D0

|
αu}L2 .

•

BpW,Y q :“

#

L : W Ñ Y ; sup
uPW,}u}W“1

}Lu}Y ă 8

+

,

endowed with the norm

}Lu}BpW,Y q :“ sup
uPW,}u}W“1

}Lu}Y .

And if W “ Y , we also denote BpW q :“ BpW,W q.

•
X :“ tγ P BpL2

q; γ “ γ˚, |D0
|
1{2γ|D0

|
1{2
P σ1pL

2
qu,

endowed with the norm

}γ}X :“ }|D0
|
1{2γ|D0

|
1{2
}σ1 .
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For every density of matrix γ P X, there exists a complete set of eigenfunctions
punqně1 of γ in L2 corresponding to the non-decreasing sequence of eigenvalues λn ě 0
(counted with their multiplicity) such that un P H1{2pR3,C4q. Then the kernel γpx, yq
of γ can be written as

γpx, yq “
ÿ

ně1

λnunpxqu
˚
npyq.

And the one-particle density associated with γ is

ργpxq :“ TrC4 γpx, xq “
ÿ

ně1

λn|un|
2
pxq.

Let
Γ :“ tγ P X; 0 ď γ ď 1L2u,

and
ΓN :“ tγ P Γ; Tr γ “ Nu.

For an atom system composed of a nucleus of charges Z (Z P Nzt0u in atomic units)
and N electrons, the energy of Dirac-Kohn-Sham model without considering the spin
state can be written as

EDKS
pZ,Nqpγq “ TrpD0γq ´ αTrpV γq `

α

2
TrpVργγq ` Excpργq.

where γ P ΓN is the density matrix of the totally anti-symmetric wavefunction and V
is the electrostatic potential generated by the nuclei defined by

V pxq “ ´
Z

|x|
.

In addition, Vργ represents the electrostatic energy of a classical charge distribution of
density ργpxq

Vργ “
1

| ¨ |
˚ ργ “

ż

R3

1

|x´ y|
ργpyq dy.

and Excpργq is the exchange-correlation functional of the form

Excpργq :“

ż

R3

gpργqpxq dx.

The so-called fine structure constant α is a dimensionless positive constant (the physical
value is approximately 1{137). And the corresponding Dirac-Kohn-Sham operator is
defined by:

DDKS
ργ pZq :“ D0

´ αV ` αVργ ` g
1
pργq.

2.2 The definition of ground state

In relativistic quantum chemistry, there are three methods to define the ground state of
models like (multi-configuration) Dirac-Fock: via the critical point theory [ES99,Lev14],
via the fixed point theory [HS07], or via a retraction technique [Sér21,CMPS21]. For
the sake of critical point theory, in [Lev14] the ground state can be written as

EDF :“ min
Ψ`PΣ`

max
Ψ´PpΛ´H1{2qN

EDF
pgpΨ`

`Ψ´
qq “ min

Ψ`PΣ`
EDF

pgpΨ`
` hpΨ`

qqq (2.1)
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with
Σ` :“ tΨ`

P pΛ`H1{2
q
N ,GramΨ`

“ 1u,

and
gpΨq “ pGramΨq´1{2Ψ.

Here hpΨ`q is the unique minimizer of the functional χ´ P pΛ´H1{2qN Ñ EDFpgpΨ` `

χ´qq because of the concavity in pΛ´H1{2qN directions. And in order to obtain the
existence of minimizers of the Dirac-Fock equation, hpΨ`q is supposed to be of class
C1, and EDF be of class C2.

The other methods are based on the fact that the ground state is defined on the
positive spectral sub-space of the corresponding Dirac-Fock operator DDF

γ [ES01,ES02]:

EDF :“ min
γPΓ`DF,N

EDF
pγq

with
Γ`DF,N :“ tγ P Γ;1r0,8qpD

DF
γ qγ “ γ,TrL2 γ “ Nu.

When the fine structure constant α is small enough and αZ fixed, the Dirac-Fock model
can be regarded as a perturbed operator in terms of the unperturbed operator Dirac-
Coulomb operator D0`V . Based on this idea and simple fixed point theory, Huber and
Siedentop [HS07] constructed the minimizer directly. However, they only considered the
closed shell case.

Recently in [Sér21], Séré proposed a retraction θpγq “ limnÑ8 T
npγq with

T pγq “ 1r0,8qpD
DF
γ qγ1r0,8qpD

DF
γ q.

By the Lieb’s relaxed functional and under some simple assumptions, the ground state
can be written as

EDF
´N :“ min

γPΓď,N

`

EDF
pθpγqq ´ TrL2 θpγq

˘

,

with
ΓDF,ď,N :“ tγ P Γ; TrL2 γ ď Nu.

Wherein θpγq is of class C1, and because of the good structure of Dθpγq, the mini-
mization problem can be linearized. As a result, the existence of minimizers can be
proved.

However, the energy of Dirac-Kohn-Sham model is at most of class C1,1{3, thus we
can not use the critical point theory to construct the ground state. And we can not
use the Séré’s retraction neither, since there is no retraction for the Dirac-Kohn-Sham
models because of the exchange-correlation energy.

Nevertheless, in quantum chemistry the ground state of Dirac-Kohn-Sham model
could be defined by

EDKS
pZq :“ min

γPΓ`N

EDKS
pZqpγq

with
Γ`N :“ tγ P Γ;1r0,8qpD

DKS
ργ pZqqγ “ γ,TrL2 γ “ Nu.
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Herein, we only consider the standard Dirac-Kohn-Sham models with integer occupation
numbers. If the minimizer γ˚ exists, it can be written as

γ˚ :“
N
ÿ

k“1

|uk〉 〈uk|

with
puk, ulqL2 “ δk,l,

and
DDKS
ργ pZquk “ νkuk with νk ą 0.

Now for the standard Kohn-Sham models, we only need to find the minimizer in a
subset of Γ`N :

Γ`ps,Z,N :“ tγ P Γ; γ “
N
ÿ

k“1

|uk〉 〈uk| , puk, ulqL2 “ δk,l, D
DKS
ργ pZquk “ νkuk with νk ą 0u.

This set is indeed the set of solutions of Dirac-Kohn-Sham equation. Now, the ground
state can be defined by

EDKS :“ inftEDKS
pργqpZq, γ P Γ`ps,Z,Nu. (2.2)

Remark 2.1. In rDFT, sometimes the ground state is defined on the set

rΓ :“ tγ P Γ; γ “
N
ÿ

k“1

|uk〉 〈uk| , puk, ulqL2 “ δk,l, D
DKS
ργ pZquk “ νkuk with νk ą ´1u.

But under our assumptions in Section 2.4, indeed Γ`ps,Z,N and rΓ are equivalent since
there are no eigenvalues in p´1, 0s according to Lemma 2.4 which will be mentioned
below.

2.3 The spherical symmetric solutions of Dirac-Kohn-Sham equa-
tion

This new definition of the ground state relies on the set of solutions of Dirac-Kohn-
Sham equations. Consequently, our first aim is to prove the existence of solutions of
Dirac-Kohn-Sham equations. Even though it is hopeless for the author to use critical
point theory to prove the existence of solutions, inspired by the work [WOL72,Lio87]
we can still prove the existence of solutions in the spherical symmetric situation.

Before going further, we introduce the partial wave decomposition and its orthonor-
mal basis pΨmj ,j˘1{2qpl,m,sqPJ of L2pS2q. The C2 functions Ψmj ,j˘1{2 are called spherical
spinors and are given by

Ψmj ,j´1{2 “
1
?

2j

ˆa

j `mjYmj´1{2,j´1{2
a

j ´mjYmj`1{2,j´1{2

˙

and
Ψmj ,j`1{2 “

1
?

2j ` 2

ˆ a

j ` 1´mjYmj´1{2,j`1{2

´
a

j ` 1`mjYmj`1{2,j`1{2

˙

6



where the Ym,lpθ, φq are normalised spherical harmonics on S2, given in terms of the
associated Legendre polynomials

Pm
l pxq “

p´1qm

2ll!
p1´ x2

q
m{2 dm`l

dxm`l
px2

´ 1ql

by

Ym,lpθ, φq “

d

p2l ` 1q

4π

pl ´mq!

pl `mq!
eimφPm

l pcosθq, m ě 0,

and
Y´m,lpθ, φq “ p´1qmYm,lpθ, φq.

And the set of admissible indices J is defined by

J :“ tpj,mj, κjq : j “
1

2
,
3

2
,
5

2
, ¨ ¨ ¨ , mj “ ´j,´j ` 1, ¨ ¨ ¨ ,`j, κj “ ˘pj `

1

2
qu.

Set
Φ`mj ,¯pj`1{2q “

ˆ

iΨmj ,j¯1{2

0

˙

, Φ´mj ,¯pj`1{2q “

ˆ

0
Ψmj ,j˘1{2

˙

.

There is a natural unitary isomorphism U between the Hilbert spaces L2pR3,C4q and
L2pR`, r2 drq

Â

L2pS2,C4q, and L2pS2,C4q is the orthogonal sum of the 2-dimensional
spaces Hmj ,κj spanned by Φ`mj ,κj and Φ´mj ,κj . Any f P L

2pS2,C4q has the representation

pUfqpr, θ, φq “
ÿ

pj,mj ,κjqPJ

pUmj ,κjfqpθ, φq,

where

pUmj ,κjfqpθ, φq “ r´1f`mj ,κjprqΦ
`
mj ,κj

pθ, φq ` r´1f´mj ,κjprqΦ
´
mj ,κj

pθ, φq.

and f`mj ,κj , f
´
mj ,κj

P L2pR`q. And operators L may be decomposed into a direct sum of
operators Lmj ,κj acting on L2pR`q

Â

Hmj ,κj according to

Lmj ,κjpUmj ,κjfq “ Umj ,κjpLfq,

for every f P L2pR3,C4q. The operator L is then denoted by

L :“
à

pj,mj ,κjqPJ
Lmj ,κj .

In particular, the free Dirac operator D0 is unitary equivalent to the Dirac sum of
self-adjoint operator D0,l,s on L2pR`q

Â

Hmj ,κj , with

D0,mj ,κj :“

ˆ

1 ´ d
dr
`

κj
r

d
dr
`

κj
r

´1

˙

“ ´iσ2
d

dr
` σ1

κj
r
` σ3

and the Dirac operator can be written as

D0
“

à

pj,mj ,κjqPJ
D0,mj ,κj .
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Now for any density matrix γ with ργpxq “ ργp|x|q, it follows from the partial wave
decomposition that the relativistic Kohn-Sham operator can be written as

DDKS
ργ “

à

pj,mj ,κjqPJ
DDKS,mj ,κj
ργ .

with operator DDKS,mj ,κj
ργ acting on L2pR`q

Â

Hmj ,κj and

DDKS,mj ,κj
ργ pZq :“ D0,mj ,κj ´

Z

r
`
α

r
fργ prq ´ g

1
ργ prq

as well as
fργ prq “

ż r

0

ργpsqds` r

ż 8

r

ργpsq

s
ds, g1ργ prq “ g1pργprqq.

And we will study the existence of solutions of the Dirac-Kohn-Sham equation in
L2pR`q

Â

Hmj ,κj in Section 5, namely for 1 ď i ď N

D
DKS,mji ,κji
ργ pZquki,mji ,κji “ λki,mji ,κjiuki,mji ,κji (2.3)

with

γ :“
N
ÿ

i“1

ˇ

ˇuki,mji ,κji
〉 〈
uki,mji ,κji

ˇ

ˇ .

In addition, the normalization conditions

puki,mji ,κji1
, uki1 ,mji1 ,κji1

qL2 “ δi,i1 , for i, i1 “ 1, ¨ ¨ ¨ , N (2.4)

must be satisfied.
Additional functional space related to the partial wave decomposition will be used

for the above problem:

L2
mj ,κj :“ L2

X pL2
pR`q

â

Hmj ,κjq,

endowed with the norm

}u}L2
mj,κj

“ }r´1u`Φ`mj ,κj ` r
´1u´Φ´mj ,κj}L2 .

for any u :“ pu`, u´q P L2pR`q. And

Hα
mj ,κj

:“ Hα
X pL2

pR`q
â

Hmj ,κjq,

with the norm
}u}Hα

mj,κj
:“ }r´1u`Φ`mj ,κj ` r

´1u´Φ´mj ,κj}Hα .

For the convenience, we do not distinguish between u P L2
mj ,κj and u P L2pR`q.
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2.4 Main results

Before stating the results, we need some assumptions about the exchange-correction
functional and the charges of nucleus and electron:
Assumption 2.2. The function g is a C1 function from R` to R such that

gp0q “ 0, (2.5a)
g1 ď 0, (2.5b)

D 0 ă β´ ď β` ď
1

3
s.t. sup

ρPR`

|g1pρq|

ρβ´ ` ρβ`
ď Cg,1, (2.5c)

and sup
ρPR`

|gpρq ´ ρg1pρq|

ρ1`β´ ` ρ1`β`
ď Cg,2, (2.5d)

|g1pρq ´ g1pρ1q| ď Cg,3|g
1
p|ρ´ ρ1|q| (2.5e)

Assumption 2.3. Let

Csob,β :“ inf
uPH3β{2zt0u

}u}H3β{2

}u}
L

2
1´β

.

be the sharp constant for the corresponding Sobolev inequality. And let CexpNq :“

Cg,1

´

Nβ`C2
sob,β`

`Nβ´C2
sob,β´

¯

. We assume that

• κ :“ πα
2
pZ `Nq ` CexpNq ă 1,

• τ :“
´

απ
4
N ` Cg,2

´

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´

¯¯

p1´ απ
2
pZ `Nq ´CexpNqq

´1 ă 1.

Our method is based on the spectral analysis. The following lemma is the essential
ingredient:

Lemma 2.4. Under the Assumption 2.2 and 2.3, and assume that 0 ď ρ, }ρ}L1 “ N ,
N ă Z and F is a subspace of H1{2 such that F “ Λ`F ‘ Λ´F . Then

• (Negative eigenvalues) There is no eigenvalues in p´1, 0s.

• (Positive eigenvalues) There are constants 0 ă σF ,kpZ,Nq ď 1 and 0 ă σkFpZ,Nq ď
1 independent of ρ such that the k-th eigenvalue (counted with multiplicity) of
the mean-field operator DDKS

ρ pZq in F if it exists is situated in the interval
rσF ,kpZ,Nq, σ

k
FpZ,Nqs.

In addition, σF ,kpZ,Nq, σkFpZ,Nq are continuous with respect to Z and N , and
non-decreasing with respect to k.

• (Positive essential spectrum) Let σF ,esspZ,Nq “ limkÑ8 σF ,kpZ,Nq and σessF pZ,Nq “
limkÑ8 σ

k
FpZ,Nq. And let b :“ infpσF ,esspD

DKS
ρ pZqqqX r0,8q be the bottom of the

positive essential spectrum on the subspace F . Then b P rσF ,esspZ,Nq, σessF pZ,Nqs.
Furthermore, for any ν ă σF ,esspZ,Nq, there is a constant M P Z`, such that
there are at most M eigenvalues in the interval r0, νs.

The proof is situated in Section 4.
Unlike the Dirac-Fock model, we can not guarantee the existence of the N -th eigen-

value in the interval p0, σH1{2,essspZ,Nq according to Lemma 2.4 if the bottom of the
positive essential spectrum b ą σH1{2,ess. And by Lemma 4.1, σH1{2,ess “ 1 ´ CexpNq.
Thus for the existence of solutions, we need the following assumption:

9



Assumption 2.5. Let N˚pZ,Nq “ maxtk P Z`;σk
H1{2pZ,Nq ď 1´CexpNqu. We assume

N ď N˚pZ,Nq.

Now, we obtained the following theorem about the existence of solutions under the
spherical symmetric condition:

Theorem 2.6. Under Assumptions 2.2, 2.3 and 2.5, there is a set pji,mji , κjiq1ďiďN Ă
J , such that there exists an orthonormal solution set puki,mji ,κji , λki,mji ,κji q1ďiďN of equa-
tions 2.3 under the conditions (2.4). In addition, for any 1 ď i ď N

σ
H

1{2
mji

,κji
,ki
pZ,Nq ď λki,mji ,κji ď σki

H
1{2
mji

,κji

pZ,Nq.

In particular, we can choose the set pji,mji , κjiq1ďiďN Ă J such that λki,mji ,κji are the
first N eigenvalues of the operator DDKS

ρ pZq on the space H1{2, and for any 1 ď i ď N

σH1{2,ipZ,Nq ď λki,mji ,κji ď σiH1{2pZ,Nq.

The proof is situated in Section 5

Remark 2.7. The Assumption 2.5 implies N ď Z by the definition of σk
H1{2pZ,Nq in the

proof of Lemma 3.2.

We proved that under the spherical symmetry condition the set Γ`ps,Z,N is non-empty.
Now, we consider the existence of minimizer.

Theorem 2.8. Under the Assumption 2.2 and Assumption 2.3, if Γ`ps,Z,N “ H and
under the following energy criteria

EDKS
pZ,Nq ă p1´ τqp

N´1
ÿ

k“1

σH1{2,kpZ,Nq ` σH1{2,esspZ,Nqq, (2.6)

the minimization problem (2.2) admits a minimizer in Γ`ps,Z,N .

The proof is situated in Section 6.

Remark 2.9. Even though in this paper we only considered the spherical symmetric
situation, the Theorem 2.8 still works for the non spherical symmetric cases. And the
external potential of the atom V “ Z

|x|
can be replaced by the one of the molecules.

Remark 2.10. The conditions (2.5a)-(2.5e) are obviously fulfilled by the non-relativistic
LDA type exchange functional, namely gpρq “ ´αCgρ4{3 for some constant Cg. This
exchange functional is critical because of the Sobolev inequality. And in this case,
indeed our problem is a critical Dirac equation for orthonormal functions.

Remark 2.11. If we do not consider the exchange-correlation energy (i.e. Excpρq “ 0),
we will get the reduced Dirac-Fock model. In this case, the energy inequality 2.6 can be
satisfied for N “ 1 and 26 ď Z ď 81. The proof is detailed in Appendix B. Thus with
the non-relativistic LDA exchange energy, the inequality 2.6 will still hold for N “ 1
and some proper nuclear charges Z if Cg is small enough.

Remark 2.12. The similar energy criteria can be used to prove the existence of min-
imizers for the Dirac-Fock models. And for the Dirac-Fock model, the corresponding
criteria energy inequality (2.6) still holds for N “ 1 and some proper nuclear charges
Z.
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3 Preliminaries
In this section, we will provide some useful estimates about Dirac-Kohn-Sham models.

Lemma 3.1. Let γ P X. Then,

1. For u P H1{2, pu, |x|´1uq ď π
2
}u}2

H1{2 and }Vγ}BpL2q ď
π
2
}γ}X .

2. For u P H1{2, and γ P ΓN ,

pu, |g1pργq|uq ď CexpNq}u}
2
H1{2 , (3.1)

where
CexpNq :“ Cg,1

`

Nβ`C2
sob,β`

`Nβ´C2
sob,β´

˘

,

Proof. The first inequality is just the Kato inequality. And for the second one, as
0 ă β´ ď β` ď

1
3
, we yield

}pg1pργqq
1{2u}2L2 ďCg,1

`

}ρβ`{2γ u}2L2 ` }ρβ´{2γ u}2L2

˘

ďCg,1

ˆ

}ργ}
β`
L1 }u}

2

L
2

1´β`

` }ργ}
β´
L1 }u}

2

L
2

1´β´

˙

ďCg,1
`

Nβ`C2
sob,β`

}|D0
|
3β`{2u}2L2 `Nβ´C2

sob,β´q
}|D0

|
3β´{2u}2L2

˘

ďCg,1
`

Nβ`C2
sob,β`

`Nβ´C2
sob,β´

˘

}|D0
|
1{2u}2L2

“CexpNq}u}
2
H1{2 .‘

Now,

Lemma 3.2. Let γ P X. Then,

1. If γ P ΓN , then

}|Dργ |
1{2
|D0
|
´1{2

}BpL2q ď p1`
πα

2
pZ `Nq ` CexpNqq

1{2,

and if πα
2
pZ `Nq ` CexpNq ă 1, then

}|D0
|
1{2
|Dργ |

´1{2
}BpL2q ď p1´

πα

2
pZ `Nq ´ CexpNqq

´1{2.

2. For γ P Γ`Z,N , if
πα
2
pZ `Nq ` CexpNq ă 1 we have

p1´ τqTrL2pDργγq ď EDKS
pZ,Nqpγq ď p1` τqTrL2pDργγq

where

τ :“
´απ

4
N ` Cg,2

`

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´
˘

¯

p1´
πα

2
pZ `Nq ´ CexpNqq

´1,

3. If γ P ΓN , then

inf |σpDργ q| ě h0 :“ 1´maxt
pπ{2` 2{πqαZ

2
´ αCexpNq,

pπ{2` 2{πqαN

2
u.

11



Proof. For the first estimate, as

|D0
| ´ α|V | ´ α|Vγ| ´ |g

1
pργq| ď |Dργ | ď |D

0
| ` α|V | ` α|Vγ| ` |g

1
pργq|,

and by the above estimate and the first estimates, we know

|Dργ | ď |D
0
| ` p

απ

2
pZ `Nq ` CexpNqq|D

0
|,

and
|D0
| ´ p

απ

2
pZ `Nq ` CexpNqq|D

0
ď |Dργ |.

Thus,
}|Dργ |

1{2
|D0
|
´1{2

}BpL2q ď p1`
απ

2
αpZ `Nq ` CexpNqq

1{2

and
}|D0

|
1{2
|Dργ |

´1{2
}BpL2q ď p1´

απ

2
pZ `Nq ´ CexpNqq

´1.

Now for the estimates of the energy, note

TrL2 Dργγ “ EDKS
pZ,Nqpγq `

α

2
TrL2pVγγq ` TrL2pg1pργqγq ´ Eexpργq.

By Assumption 2.2 and Gagliardo–Nirenberg interpolation inequality, we know

|TrL2pg1pργqγq ´ Eexpργq|

ďCg,2
`

}ρ1`β`
γ }L1 ` }ρ1`β´

γ }L1

˘

ďCg,2

´

C2
sob,β`

}ρ1{2
γ }

2β`
L2 }|D

0
|
3β`{2ρ1{2

γ }
2
L2 ` C2

sob,β´
}ρ1{2
γ }

2β´
L2 }|D

0
|
3β´{2ρ1{2

γ }
2
L2

¯

ďCg,2
`

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´
˘

}|D0
|
1{2ρ1{2

γ }
2
L2 .

In virtue of the convexity inequality for the relativistic kinetic energy [LL01], we have

|TrL2pg1pργqγq ´ Eexpργq| ď Cg,2
`

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´
˘

}γ}X .

As
}Vγ}BpL2q ď

π

2
}γ}X ,

we have

|TrL2 Dργγ ´ EDKS
pZ,Nqpγq|

ď

´απ

4
N ` Cg,2

`

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´
˘

¯

TrL2 |D0
|γ

ď

´απ

4
N ` Cg,2

`

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´
˘

¯

p1´
πα

2
pZ `Nq ´ CexpNqq

´1 TrL2 |Dργ |γ.

Letting

τ :“
´απ

4
N ` Cg,2

`

C2
sob,β`

Nβ` ` C2
sob,β´

Nβ´
˘

¯

p1´
πα

2
pZ `Nq ´ CexpNqq

´1,

as γ P Γ`N , we have

p1´ τqTrDργγ ď ErKSpγq ď p1` τqTrL2 Dργγ.

12



For the last estimate, let u` :“ Λ`u and u´ :“ Λ´u. Now, we know
$

’

’

&

’

’

%

`

u`, Dργu
`
˘

H1{2ˆH1{2˚ ě

ˆ

1´
pπ{2` 2{πqαZ

2
´ CexpNq

˙

}u`}2H1{2 ,

´
`

u´, Dργu
´
˘

H1{2ˆH1{2˚ ěp1´
pπ{2` 2{πqαN

2
q}u´}2H1{2 .

Let us choose h0 :“ 1´maxt pπ{2`2{πqαZ
2

´ αCexpNq,
pπ{2`2{πqαN

2
u, we get

}u}H1{2}Dργu}H1{2˚ ě<pu` ´ u´, DργuqH1{2ˆH1{2˚

“
`

u`, Dργu
`
˘

H1{2ˆH1{2˚ ´
`

u´, Dργu
´
˘

H1{2ˆH1{2˚

ěh0}u}
2
H1{2 .

4 Spectral analysis
proof of Lemma 2.4. The proof is based on the min-max principle in [DES00, Theorem
1.1]. By Lemma 3.2, we know that inf |σpDρq| ą 0, thus 0 is not the eigenvalue.

For any V Ă Λ`F , we have V ‘ Λ´F Ă Λ`F ‘ Λ´F “ F . Thus the definition of
the k-th positive eigenvalue if it exists can be formulated by

σF ,kpD
DKS
ρ pZqq “ inf

V subspace of Λ`F
dimV“k

sup
uPpV

À

Λ´Fqzt0u

pDDKS
ρ pZqu, uq

}u}2L2

, (4.1)

and the k1-th negative eigenvalue can be written as

σ1F ,k1pD
DKS
ρ pZqq “ sup

V subspace of Λ´F
dimV“k1

inf
uPpV

À

Λ`Fqzt0u

pDDKS
ρ pZqu, uq

}u}2L2

. (4.2)

First we will check the assumptions for the min-max principle in [DES00]. Obviously,

σF ,1pD
DKS
ρ pZqq ě inf

V subspace of Λ`Fzt0u

pDDKS
ρ pZqu, uq

}u}2L2

“: a`,

and

σ1F ,1pD
DKS
ρ pZqq “ sup

V subspace of Λ´Fzt0u

pDDKS
ρ pZqu, uq

}u}2L2

“: a´.

The min-max principle can be used if a´ ă a`. According to Newton’s Theorem, we
have

Vρpxq ď
N

|x|
ă

Z

|x|
.

Consequently,

Λ´pD0
´
αZ

|x|
` αVρ ´ g

1
pρqqΛ´ ď ´|D0

|Λ´ ď ´Λ´,

13



and according to the Assumption 2.3 and Lemma 3.1,

Λ`pD0
´
αZ

|x|
` αVρ ´ g

1
pρqqΛ` ě p1´ κq|D0

|Λ` ą 0.

Thus, a´ ď ´1 ă 0 ă a`.
Now we can use the min-max principle. First we consider the non-positive eigenval-

ues. As σ1F ,1pDDKS
ρ pZqq ď a´ ď ´1, we know that there is no eigenvalues in p´1, 0s.

Next we consider the positive eigenvalues. By the formula (4.1), we know that

σF ,kpD
DKS
ρ pZ,Nqq ď inf

V subspace ofΛ`F
dimV“k

sup
uPpV

À

Λ´Fqzt0u

ppD0 ´
αpZ´Nq
|x|

qu, uq

}u}2L2

:“ σkFpZ,Nq.

Similarly, by Lemma 3.1, we know

DDKS
ρ pZq ě D0

´
αZ

|x|
´ CexpNq|D

0
|.

Thus,

σF ,kpD
DKS
ρ pZqq ě inf

V subspace ofΛ`F
dimV“k

sup
uPpV

À

Λ´Fqzt0u

ppD0 ´ αZ
|x|
´ CexpNq|D

0|qu, uq

}u}2L2

:“ σF ,kpZ,Nq.

For the sake of the continuity of CexpNq and the eigenvalues of the Dirac-Coulomb
operator, we know that σF ,kpZ,Nq and σkFpZ,Nq are continuous with respect to Z and
N . Besides, they are bounded and non-decreasing with respect to k.

Finally , we consider the positive essential spectrum. According to the Monotone
Convergence Theorem, we know that σF ,esspZ,Nq and σessF pZ,Nq are the unique limits
of σF ,kpZ,Nq and σkFpZ,Nq respectively.

For any k P Z` such that σF ,kpDDKS
ρ pZqq ă σF ,esspZ,Nq, the k-th eigenvalue of

operator DDKS
ργ pZq exists and lies on the discrete spectrum. Thus b ě σF ,esspZ,Nq. On

the other hand, for any eigenvalue σ, we know that σ ď σessF pZ,Nq. Now, we have
proved b P rσF ,esspZ,Nq, σessF pZ,Nqs.

As a result, by the property of the essential spectrum, for any ν ă σF ,esspZ,Nq,
there exists a constant q P Z`, such that

ν ă σM`1pZ,Nq,

which means there are at most M eigenvalues in the interval p0, νs. This ends the
proof.

Lemma 4.1.
σF ,esspZ,Nq ě 1´ CexpNq.

Furthermore,
σH1{2,esspZ,Nq “ 1´ CexpNq.

Proof. Note

σF ,kpZ,Nq ě inf
V subspace of Λ`F

dimV“k

sup
uPV zt0u

ppD0 ´ αZ
|x|
´ CexpNq|D

0|qu, uq

}u}2L2

ě inf
V subspace of Λ`H1{2

dimV“k

sup
uPV zt0u

pΛ`pp1´ CexpNqqD
0 ´ αZ

|x|
qΛ`u, uq

}u}2L2

.
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The operator Λ`pp1 ´ CexpNqqD
0 ´ αZ

|x|
qΛ` consists of an infinite number of isolated

eigenvalues of finite multiplicity which accumulate at 1´CexpNq, see [BE11, Theorem
3.3.1]. Thus, we know

σF ,esspZ,Nq ě 1´ CexpNq.

On the other hand, we have

D0
´
αZ

|x|
´ CexpNq|D

0
| “p1´ CexpNqqΛ

`
|D0
|Λ` `

αZ

|x|
´ p1` CexpNqqΛ

´
|D0
|Λ´

ďp1´ CexpNqqΛ
`
|D0
|Λ` `

αZ

|x|
´ p1´ CexpNqqΛ

´
|D0
|Λ´

“p1´ CexpNqqD
0
`
αZ

|x|
.

Thus, if F “ H1{2

σF ,kpZ,Nq ď inf
V subspace of Λ`H1{2

dimV“k

sup
uPpV

À

Λ´H1{2qzt0u

ppp1´ CexpNqqD
0 ´ αZ

|x|
qu, uq

}u}2L2

The operator p1 ´ CexpNqqD
0 ´ αZ

|x|
consists equally of an infinite number of isolated

eigenvalues of finite multiplicity accumulating at 1´CexpNq, see [BE11, Theorem 3.1.5].
Therefore,

σH1{2,esspZ,Nq ď 1´ CexpNq.

It immediately yields the claimed equation.

5 Existence of solutions
Now, we follow the ideas of [WOL72,Lio87]. Set

SpNq :“ tρ P L1
pR`q X Cp0,8q; 0 ď ρ,

ż 8

0

ρpsq ds “ Nu,

and consider the following problem:

DDKS,mj ,κj
ρ pZqu :“ pD0,mj ,κj ´

Z

r
`
α

r
fρprq ´ g

1
ρprqqu “ λu, (5.1)

with the normalizing conditions
ż 8

0

|u|2psq ds “ 1. (5.2)

Here λ is the eigenvalue and ρ P SpNq.

Lemma 5.1. For any ρ P SpNq and for each positive integer pj,mj, κjq P J , there
are constants 0 ď σ

H
1{2
mj,κj

,k
ď 1 and 0 ď σk

H
1{2
mj,κj

ď 1 independent of ρ such that the

k-th eigenvalue σmj ,κjρ,k pZq of equation (5.1) satisfying (5.2) if it exists is situated in
the interval rσ

H
1{2
mj,κj

,k
pZ,Nq, σk

H
1{2
mj,κj

pZ,Nqs. And if σmj ,κjρ,k pZq ă 1 ´ CexpNq, it is an

eigenvalue.
Furthermore, for fixed pj,mj, κjq P J , any eigenvalue is single.
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Proof. It is an application of the Lemma 2.4, let F “ H
1{2
mj ,κj . First we prove H1{2

mj ,κj “

Λ`H
1{2
mj ,κj ‘ Λ´H

1{2
mj ,κj . For any u P H

1{2
mj ,κj , we know Umj ,κju “ u, and D0u “

Umj ,κjD
0,mj ,κju. Thus,

Λ˘u “ Umj ,κj

ˆ

1

2
˘

D0,mj ,κj

|D0,mj ,κj |

˙

u P H1{2
mj ,κj

.

Consequently, H1{2
mj ,κj “ Λ`H

1{2
mj ,κj ‘ Λ´H

1{2
mj ,κj . Note

σ
H

1{2
mj,κj

,k
pZ,Nq :“ σkpD

0,mj ,κj ´
αZ

|r|
´ CexpNq|D

0,mj ,κj |q,

and
σk
H

1{2
mj,κj

pZ,Nq :“ σkpD0,mj ,κj ´
αpZ ´Nq

|r|
q.

Thus by Lemma 2.4 we get

σ
mj ,κj
ρ,k pZq “ σ

H
1{2
mj,κj

,k
pDDKS

ρ pZqq ě σ
H

1{2
mj,κj

,k
pZ,Nq

and
σ
mj ,κj
ρ,k pZq “ σ

H
1{2
mj,κj

,k
pDDKS

ρ pZqq ď σk
H

1{2
mj,κj

pZ,Nq.

As H1{2
mj ,κj Ă H1{2, by Lemma 4.1 we know

σ
H

1{2
mj,κj

,ess
pZ,Nq “ σesspD

0,mj ,κj ´
αZ

|r|
´ CexpNq|D

0,mj ,κj |q ě 1´ CexpNq.

Thus, if σk
H

1{2
mj,κj

pZ,Nq ă 1 ´ CexpNq, then σ
mj ,κj
ρ,k pZq is an eigenvalue for the operator

D
DKS,mj ,κj
ρ .
Now, we prove the simplicity of the eigenvalues. It follows from the ODE theories.

If not, we assume that u and v are two solutions of the equation (5.1) satisfying (5.2)
with the same real eigenvalue λ and 〈u, v〉L2 “ 0. We fix a point r0 P p0,8q. Now, note
that by integration by parts〈

DDKS,mj ,κj
ρ u, v

〉
L2rr0,rs

´
〈
u,DDKS,mj ,κj

ρ v
〉
L2rr0,rs

“ 〈iσ2u, v〉C2 pr0q ´ 〈iσ2u, v〉C2 prq,

where 〈σ2u, v〉C2 “ vTσ2u is the inner product for vectors. On the other hand, as they
are the eigenfunctions of the same eigenvalue λ we know〈

DDKS,mj ,κj
ρ u, v

〉
L2rr0,rs

´
〈
u,DDKS,mj ,κj

ρ v
〉
L2rr0,rs

“ 0.

Thus, 〈iσ2u, v〉C2 prq “ C. Assume that u “ pu1, u2q
T and v “ pv1, v2q

T . Considering
the condition (5.2), we know C “ 0, and u2v1´u1v2 “ 0. As a result, there is a function
cprq such that

u2 “ cprqu1, v2 “ cprqv1. (5.3)

Let F prq “ ´Z
r
` α

r
fρprq ´ g

1
ρprq ´ p1` λq. Thus, according to equation (5.1), we get

d

dr
u1 `

κj
r
u1 ` cprqF pxqu1 “ 0
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and
d

dr
v1 `

κj
r
v1 ` cprqF prqv1 “ 0.

Thus,
u1prq “ Cue

´
şr
r0
κj{t´cptqF ptq dt

,

and
v1prq “ Cve

´
şr
r0
κj{t´cptqF ptq dt

.

As F “ F and κj “ κj, by the expression of u1 and v1, we know that there is a constant
C 1, such that

v1 “ C 1u1. (5.4)

As a result v2 “ C 1u2 and v “ C 1u. Hence, u is a solution of equation (5.1) satisfying
(5.2) with the eigenvalue λ and 〈u, u〉L2 “ 0. Thus, <u ‰ 0 and =u ‰ 0. Otherwise, as
〈<u,=u〉L2 “ 0,

}<u}2L2 ´ }=u}2L2 “ 〈u, u〉L2 “ 0.

Thus, =u “ <u “ 0 and u “ 0 which is impossible.
As a result, up1q :“ <u

}<u}L2
and up2q :“ =u

}=u}L2
are two real eigenfunctions satisfying

(5.2) with the same eigenvalue λ and〈
up1q, up2q

〉
L2 “

1

2
= 〈u, u〉L2 “ 0. (5.5)

Repeating the above process and considering the condition (5.2), like equation (5.4) we
have up2q “ ˘up1q. Thus by equation (5.5), up2q “ up1q “ 0 reaching a contradict. Now,
we know the eigenfunction is unique.

Recall that σk
H1{2pZ,Nq defined in Lemma 2.4 is the upper bound of the k-th eigen-

value of operator operator DDKS
ρ pZq. Let N˚pZ,Nq “ maxtk P Z`;σk

H1{2pZ,Nq ă
1´ CexpNqu. By virtue of the partial wave decomposition,

DDKS
0 pZ ´Nq “

à

pj,mj ,κjqPJ
D

DKS,mj ,κj
0 pZ ´Nq,

and
YkPZ`tσ

k
H1{2pZ,Nqu “

ď

pj,mj ,κjqPJ

YkPZ`tσ
k

H
1{2
mj,κj

pZ,Nqu.

Thus, for any N ď N˚pZ,Nq there exists a set pki, ji,mji , κjiq1ďiďN Ă Z` ˆ J such
that for any 1 ď i ď N

σki
H

1{2
mji

,κji

pZ,Nq ď σN
˚

H1{2pZ,Nq ă 1´ CexpNq.

In particular, pki, ji,mji , κjiq1ďiďN could be such that pσki
H

1{2
mji

,κji

pZ,Nqq1ďiďN are the

first N eigenvalues of the operator DDKS
0 pZ ´Nq.

Let umji ,κjiρ,ki
be solution of equation (5.1) satisfying the conditions (5.2) with λ :“

σ
mji ,κji
ρ,ki

pZq. Now, we define the operators T pρq and ρT pρq respectively by

T pρq :“
N
ÿ

i“1

ˇ

ˇu
mji ,κji
ρ,ki

〉 〈
u
mjiκji
ρ,ki

ˇ

ˇ ,
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and

ρT pρq :“
N
ÿ

i“1

|u
mji ,κji
ρ,ki

|
2.

Obviously,
ρT pSpNqq Ă SpNq.

As SpNq is convex and closed, in order to utilise the Schauder’s fixed-point theory we
only need the continuity and relative compactness of operator ρT .

Before going further, let σpP q be the spectrum of the operator P .

Lemma 5.2. T is continuous on SpNq.

Proof. We prove first that the eigenvalues σmji ,κjiρ,ki
pZq are continuous in terms of ρ. For

any u P H1{2 , for ρn ÝÝÝÑ
nÑ8

ρ in L1 we have

p|Vρ´ρn |u, uq ď
π

2
}ρ´ ρn}L1}|D0

|
1{2u}2L2 Ñ 0. (5.6)

Now, we consider the exchange-correlation functional. By virtue of the assumption
(2.5e) and inequality (3.1), we know

}|g1pρq ´ g1pρnq|
1{2u}L2 ď C

1{2
g,3 }|g

1
p|ρ´ ρn|q|

1{2u}L2 ď C
1{2
g,3Cexp}ρ´ ρn}L1q}u}H1{2 . (5.7)

Thus,
}|g1pρnq ´ g

1
pρq|1{2|D0

|
´1{2

}BpL2q Ñ 0. (5.8)

Now, combing with the inequality (5.6), (5.7) and Lemma 3.2, we get

DDKS
ρ pZq ď DDKS

ρn pZq ` p
π

2
}ρ´ ρn}L1 ` Cg,3Cexp}ρ´ ρn}L1q

2
qp1´ κq´1

|DDKS
ρn pZq|

By virtue of the formula (4.1),

σ
mji ,κji
ρ,ki

pZq ď p1` p
π

2
}ρ´ ρn}L1 ` Cg,3Cexp}ρ´ ρn}L1q

2
qqp1´ κq´1σ

mji ,κji
ρn,ki

pZq.

Similarly, we have

σ
mji ,κji
ρn,ki

pZq ď p1` p
π

2
}ρ´ ρn}L1 ` Cg,3Cexp}ρ´ ρn}L1q

2
qqp1´ κq´1σ

mji ,κji
ρ,ki

pZq.

Thus,

|σ
mji ,κji
ρ,ki

pZq´σ
mji ,κji
ρn,ki

pZq| ď p
π

2
}ρ´ρn}L1`Cg,3Cexp}ρ´ρn}L1q

2
qp1´κq´1

p1´CexpNqq Ñ 0.

Hence we conclude that σmji ,κjiρ,ki
pZq is continuous with respect to ρ P SpNq.

By Lemma 5.1, the corresponding eigenfunction umji ,κjiρ,ki
to the eigenvalue σmji ,κjiρ,ki

pZq
under the condition (5.2) is unique. Thus, by Cauchy’s integral formula, there is a
constant εi small enough satisfying

Bpσ
mji ,κji
ρ,ki

pZq, εiq X σpD
DKS,mji ,κji
ρ pZqq “ σ

mji ,κji
ρ,ki

pZq,

and
distpσpD

DKS,mji ,κji
ρ pZqq, BBpσ

mji ,κji
ρ,ki

pZq, εiqq “ εi,
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such that T pρq “
řN
i“1 Tipρq with

Tipρq “ ´p2πiq
´1

ż

BBpσ
mji

,κji
ρ,ki

pZq,εiq

pD
DKS,mji ,κji
ρ pZq ´ zq´1 dz.

And as σmji ,κjiρ,ki
pZq is continuous with respect to ρ P SpNq, for any sequence ρn P SpNq

such that ρn Ñ ρ in L1, we have that for n ě n0 large enough,

Bpσ
mji ,κji
ρ,ki

pZq, εiq X σpD
DKS,mji ,κji
ρn pZqq “ σ

mji ,κji
ρn,ki

pZq,

and
εi{2 ď dispσpD

DKS,mji ,κji
ρn pZqq, BBpσ

mji ,κji
ρ,ki

pZq, εiqq ď εi.

Consequently, we yield T pρnq “
řN
i“1 Tipρnq with

T pρnq “ ´p2πiq
´1

N
ÿ

i“1

ż

BBpσ
mji

,κji
ρ,ki

pZq,εiq

pD
DKS,mji ,κji
ρn pZq ´ zq´1 dz.

As dim rangepTiq “ 1 and by Theorem A.1, we have

}ρT pρq ´ ρT pρnq}L1 ď }Tρ ´ Tρn}σ1 ď
N
ÿ

i“1

}Tipρq ´ Tipρnq}BpL2
mji

,κji
q.

Note

}Tipρq ´ Tipρnq}BpL2
mji

,κji
q

ď
1

2π

ż

BBpσ
mji

,κji
ρ,ki

pZq,εiq

dz}pDDKS
ρn pZq ´ zq´1Vρ´ρpD

DKS
ρ pZq ´ zq´1

}BpL2
mji

,κji
q

`
1

2π

ż

BBpσ
mji

,κji
ρ,ki

pZq,εiq

dz}pDDKS
ρn pZq ´ zq´1

pg1pρq ´ g1pρnqqpD
DKS
ρ pZq ´ zq´1

}BpL2
mji

,κji
q.

By Lemma 3.2, for the first term on the right hand side and for z P BBpσmji ,κjiρ,ki
pZq, εiq,

we have

}pDDKS
ρn pZq ´ zq´1Vρ´ρpD

DKS
ρ pZq ´ zq´1

}BpL2
mji

,κji
q

ď
π

2
}ρn ´ ρ}L1

`

}pDDKS
ρn pZq ´ zq´1

|D0
|
1{2
}BpL2q}pD

DKS
ρ pZq ´ zq´1

|D0
|
1{2
}BpL2q

˘

ďp1´ κq´1π

2
}ρn ´ ρ}L1}pDDKS

ρn pZq ´ zq´1
|DDKS

ρn pZq|1{2}BpL2q

ˆ }pDDKS
ρ pZq ´ zq´1

|DDKS
ρ pZq|1{2}BpL2q

ďp1´ κq´1π

2
}ρn ´ ρ}L1pε

´1{2
i ` ε´1

i |z|
1{2
qp
?

2ε
´1{2
i ` ε´1

i 2|z|1{2q

ďC}ρn ´ ρ}L1 .

(5.9)

Analogously, for the second term on the right hand side and z P BBpσmji ,κjiρ,ki
pZq, εiq

}pDDKS
ρn pZq ´ zq´1

pg1pρq ´ g1pρnqqpD
DKS
ρ pZq ´ zq´1

}BpL2
mji

,κji
q

ďCC2
exp}ρ´ ρn}L1q.

(5.10)
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Given
|BBpσ

mji ,κji
ρ,ki

pZq, εiq| ă 8,

by Equation (5.6) and (5.8) for any ρn Ñ ρ in L1 we have

}Tipρq ´ Tipρnq}BpL2
mji

,κji
q Ñ 0.

Now we have proved that T is continuous on SpNq.

Lemma 5.3. T is compact on SpNq.

Proof. It is sufficient to prove that T pρnq is relatively compact in SpNq. As N ď

N˚pZ,Nq, we have that for 1 ď i ď N

σ
mji ,κji
ρn,ki

pZq ď σN
˚

H1{2pZ,Nq ă 1´ CexpNq.

and
}u

mji ,κji
ρn,ki

}
H

1{2
mji

,κji

ď C.

Up to a subsequence, we have that for 1 ď i ď N

σ
mji ,κji
ρn,ki

pZq Ñ σ
mji ,κji
ρ,ki

pZq P r0, 1´ CexpNqq

and
u
mji ,κji
ρn,ki

á u
mji ,κji
ρ,ki

in H1{2
mji ,κji

.

This implies umji ,κjiρn,ki
Ñ u

mji ,κji
ρ,ki

in L2
loc.

We pick a smooth cut-off function 0 ď χp|x|q ď 1 which equals 1 on the ball
Bp0, 1q and 0 outside the ball Bp0, 2q. Let up1qn,R,i :“ χp|x|{Rqu

mji ,κji
ρn,ki

and u
p2q
n,R,i :“

p1 ´ χp|x|{p4Rqqqu
mji ,κji
ρn,ki

, and up3qn,R,i :“ pχp|x|{p4Rqq ´ χp|x|{Rqqu
mji ,κji
ρn,ki

. Obviously, we
have

u
p1q
n,R,i Ñ u

p1q
˚,R,i :“ χp|x|{Rqu

mji ,κji
ρ,ki

inL2,

and
u
p3q
n,R,i Ñ u

p3q
˚,R,i :“ pχp|x|{p4Rqq ´ χp|x|{Rqqu

mji ,κji
ρ,ki

inL2.

Thus, we have

pD
DKS,mji ,κji
ρn pZq ´ σ

mji ,κji
ρn,ki

pZqqpu
p1q
n,R,i ` u

p2q
n,R,iq “ fn,R,i

with fn,R,i :“ pD
DKS,mji ,κji
ρn pZq ´ σ

mji ,κji
ρn,ki

pZqqu
p3q
n,R,i. By virtue of the fact that suppu

p1q
nl,i

and suppu
p2q
nl,i

are disjoint,

}u
p2q
n,R,i}L2

mji
,κji

ď}pD
DKS,mji ,κji
ρn p0q ´ σ

mji ,κji
ρn,ki

pZqq´1
pZr´1u

p2q
n,R,i ` fn,R,iq}L2

mji
,κji

.

According to Lemma 2.4, Lemma 4.1 and Lemma 5.1, σpDDKS,mji ,κji
ρn p0qq X R` Ă r1 ´

CexpNq,8q for any γn P ΓN . This and the fact σmji ,κjiρnl ,ki
pZqσ

mji ,κji
ρ˚,ki

pZq ă 1´CexpNq imply

that the operators pDDKS,mji ,κji
ρn p0q ´ σ

mji ,κji
ρnl ,ki

pZqq´1 are uniformly bounded. Hence,

}u
p2q
n,R,i}L2

mji
,κji

ď }u
p3q
n,R,i}L2

mji
,κji

`
ZC

R
}u
p2q
n,R,i}L2

mji
,κji

20



As a result,

}u
mji ,κji
ρn,ki

´ u
mji ,κji
ρ,ki

}L2
mji

,κji

ď }u
p2q
n,R,i}L2

mji
,κji

` }u
p3q
n,R,i}L2

mji
,κji

` }u
p1q
n,R,i ´ u

mji ,κji
ρ,ki

}L2
mji

,κji

ď 2}u
p3q
n,R,i}L2

mji
,κji

` }u
p1q
n,R,i ´ u

mji ,κji
ρ,ki

}L2
mji

,κji

`
C

R

ÝÝÝÑ
nÑ8

2}u
p3q
˚,R,i}L2

mji
,κji

` }p1´ χp|x|{Rqqu
mji ,κji
ρ,ki

}L2
mji

,κji

`
C

R
ÝÝÝÑ
RÑ8

0.

Thus, T is compact.

Proof of Theorem 2.6. Now, combing Lemma 5.2 and 5.3 according to the Schauder’s
fixed point theory, we have proved the existence of a solution set puki,mji ,κji , λki,mji ,κji q1ďiďN
for the case N ď N˚pZ,Nq “ maxtk P Z`;σk

H1{2pZ,Nq ă 1´CexpNqu. By Lemma 5.1,
for any 1 ď i ď N ,

σ
H

1{2
mji

,κji
,ki
pZ,Nq ď λki,mji ,κji ď σki

H
1{2
mji

,κji

pZ,Nq.

In particular, pki, ji,mji , κjiq1ďiďN could be such that pσki
H

1{2
mji

,κji

pZ,Nqq1ďiďN are the

first N eigenvalues of the operator DDKS
0 pZ ´Nq. Thus,

σH1{2,ipZ,Nq ď λki,mji ,κji ď σiH1{2pZ,Nq.

Now, we consider the assumption N ď N˚pZ,Nq “ maxtk P Z`;σk
H1{2pZ,Nq ď

1´ CexpNqu. We follow the idea of the proof of Theorem III.3 in [Lio87]. In this case,
we approximate Z by Z ` ε. Thus, as σk

H1{2pZ ` ε,Nq ă σk
H1{2pZ,Nq, we know N ď

N˚pZ`ε,Nq “ maxtk P Z`;σk
H1{2pZ`ε,Nq ă 1´CexpNqu. Let puε1, λε1, ¨ ¨ ¨ , uεN , λεNq be

the solution set. Then we have uεi
˚
á ui in H1{2. If

ř

}ui}
2
L2 :“ N 1 ă N , then the limit

operator has at least N eigenvalues since σk
H1{2pZ,N

1q ă σk
H1{2pZ,Nq ď 1 ´ CexpNq.

In particular, λεi Ñ λi ă 1 ´ CexpNq. By virtue of Lemma 5.3 we deduce the strong
convergence of uεi to ui in L2 reaching a contradiction. Therefore, uεi Ñ ui strongly in
L2. This ends the proof of Theorem 2.6.

6 Existence of minimizers
Proof of Theorem 2.8. From now on, we can prove the existence of minimizers. The
following theorem is inspired by the work [HS07]:

Theorem 6.1. Under the Assumptions 2.2 and 2.3 and with the same assumption as
in Theorem 2.8, there is a constant ν ă σH1{2,esspZ,Nq, such that

EDKS
pZ,Nq “ inftEDKS

pZqpγq, γ P Γ`ps,Z,N,νu

with

Γ`ps,Z,N,ν :“ tγ P Γ`ps,Z,N ; γ “
N
ÿ

k“1

|uk〉 〈uk| , DDKS
ρ pZquk “ νkuk with 0 ă ν1 ď ¨ ¨ ¨ ď νN ă νu.
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Proof. Under the assumption (2.6), obviously there is a constant ν ă σH1{2,esspZ,Nq,
such that

EDKS
pZ,Nq ă p1´ τqp

N´1
ÿ

k“1

σH1{2,kpZ,Nq ` νq.

By the definition of Γ`ps,Z,N , there are at leastN eigenfunctions for the operatorDDKS
ργ pZq

if γ P Γ`ps,Z,N . Thus the contradiction can be constructed. We assume otherwise that
γ1 “

řN
k“1 |uk〉 〈uk| minimizes EDKSpZqpγq in Γ`ps,Z,N and there is a constant 1 ď l ď N ,

such that for k ě l, DDKS
ρ pZqul “ νlul with ν ď νk.

Now, by Lemma 3.2, we know

EDKS
pZqpγ1q ěp1´ τqTrL2 DDKS

ρ1 pZ,Nqγ1

“p1´ τq
l´1
ÿ

k“1

νk ` p1´ τq
N
ÿ

k“l

νk.

By Lemma 2.4 again, we know

νk ě σH1{2,kpZ,Nq.

Hence,

EDKS
pZqpγ1q ě p1´ τqp

N´1
ÿ

k“1

σH1{2,kpZ,Nq ` νq ą EDKS
pZ,Nq.

This is a contradiction. This ends the proof.

For any minimizing sequence γn :“
řN
k“1 |un,k〉 〈un,k| P Γ`ps,Z,N,ν , we have

DDKS
ργn

pZqun,k “ νn,kun,k.

By Lemma 3.2, we know that pun,kqně1 is uniformly bounded in H1{2 from above, and
h0 ď νn,k ă ν. Thus, we have that up to a subsequence, there is a γ˚ :“

řN
k“1 |uk〉 〈uk|

such that
pνn,kq1ďkďN ÝÝÝÑ

nÑ8
pνkq1ďkďN P rh0, νs,

and
νk ď νl if k ď l,

and
pun,kq1ďkďN á

nÑ8
pukq1ďkďN in H1{2, (6.1)

as well as
pun,kq1ďkďN ÝÝÝÑ

nÑ8
pukq1ďkďN in L2

loc. (6.2)

Lemma 6.2. For all 1 ď k ď N , up to a subsequence un,k Ñ uk strongly in H1{2.

Proof. Arguing as in the proof of Lemma 5.3, we know that up to a subsequence

}un,k ´ uk}L2 Ñ 0,

thus
}ργn ´ ργ˚}L1 Ñ 0.
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Now, we are going to prove that un,k Ñ uk in H1{2. Indeed, we have

}un,k ´ uk}H1{2 “}νn,kpD
DKS
ργn

pZqq´1un,k ´ νkpD
DKS
ργ˚

pZqq´1uk}H1{2

ďC|νk ´ νn,k| ` νk}ppD
DKS
ργn

pZqq´1
´ pDDKS

ργ˚
pZqq´1

qun,k}H1{2

` νk}pD
DKS
ργ˚

pZqq´1
pun,k ´ ukq}H1{2

ďC|νk ´ νn,k| ` νk}pD
DKS
ργn

pZq´1Vργn´ργ˚ pD
DKS
ργ˚

pZqq´1
qun,k}H1{2

` νk}pD
DKS
ργn

pZqq´1
pg1pργnq ´ g

1
pργ˚qqpD

DKS
ργ˚

pZqq´1un,k}H1{2

` νkp1´ κq
´1
}|D0

|
´1{2

pun,k ´ ukq}L2 .

Similar to the estimates (5.9) and (5.10), we have

}|D0
|
1{2
pDDKS

ργn
pZqq´1Vργn´ργ˚ pD

DKS
ργ˚

pZqq´1un,k}L2

ď
π

2
}ργn ´ ργ˚}L1}|D0

|
1{2
pDDKS

ργn
pZqq´1

|D0
|
1{2
}BpL2q}|D

0
|
1{2
pDDKS

ργ˚
pZqq´1un,k}L2

ďp1´ κq´2π

2
}ργn ´ ργ˚}L1}|D0

|
´1{2un,k}L2 ,

and
}pDDKS

ργn
pZqq´1

pg1pργ˚q ´ g
1
pργnqqpD

DKS
ρ pZqq´1un,k}L2

ďp1´ κq´2Cg,3C
2
exp}ρ´ ρn}L1q}|D0

|
´1{2un,k}L2 .

Consequently, by equations (5.6) and (5.8), we know

}un,k ´ uk}H1{2 Ñ 0.

Now, we have proved that γ˚ P Γ`ps,Z,N . The existence of minimizers will be proved
if we show

Eexpργnq Ñ Eexpργ˚q.

Given
}ργ˚ ` tpργn ´ ργ˚q}L1 ď p1´ tq}ργ˚}L1 ` t}ργn}L1 “ N,

using again the equation (3.1), we yield

|Eexpργnq ´ Eexpργ˚q| “

ˇ

ˇ

ˇ

ˇ

ż 1

0

〈g1pργ˚ ` tpργn ´ ργ˚qq, ργn ´ ργ˚〉 dt

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

k“1

sup
tPr0,1s

〈|g1pργ˚ ` tpργn ´ ργ˚qq||un,k ´ uk|, |un,k ` uk|〉

ďCexpNq
N
ÿ

k“1

}|D0
|
1{2
pun,k ´ ukq}L2}|D0

|
1{2
pun,k ` ukq}L2

Ñ0.

Finally, we proved

EDKS
pZqpγ˚q “ lim

nÑ8
EDKS

pZqpγnq “: EDKS
pZ,Nq.

The conclusion follows.
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A Inequality
We are going to prove the following inequality:

Theorem A.1.
}ργ1 ´ ργ2}L1 ď }γ1 ´ γ2}σ1 .

Proof. Let h “ γ1 ´ γ2, then

ρhpxq “ hpx, xq “ γ1px, xq ´ γ2px, xq “ ργ1pxq ´ ργ2pxq.

Thus, we only need to consider the problem

}ρh}L1 ď Tr |h|.

As γ1, γ2 P X is self-adjoint, thus h is self-adjoint, with ´1L2 ď h ď 1L2 . Now, we
have a complete set of eigenfunctions punqně1 of h in L2 corresponding to a sequence of
eigenvalues λn with |λn| non-decreasing, such that

h “
8
ÿ

n“1

λn |un〉 〈un| .

Thus, we have

}ρh}L1 “

ż

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“1

λn|un|
2
pxq

ˇ

ˇ

ˇ

ˇ

ˇ

dx ď
8
ÿ

n“1

|λn| “ TrL2 |h|.

B More about the energy criteria (2.6)
In this part, we would like to explain more about the energy criteria.

Lemma B.1. If

p1` τq
N
ÿ

k“1

σkH1{2pZ,Nq ă p1´ τq
N´1
ÿ

k“1

σH1{2,kpZ,Nq ` 1´ CexpNq, (B.1)

then the energy criteria (2.6) holds.

Proof. By Lemma 3.2 and Theorem 2.6, we obtain

EDKS
pZ,Nq ď p1` τq inf

γPΓ`ps,Z,N

TrL2pDργγq ď p1` τq
N
ÿ

k“1

σkH1{2pZ,Nq. (B.2)

On the other hand, by Lemma 4.1, we know σH1{2,ess “ 1 ´ CexpNq, thus the energy
criteria holds if

p1` τq
N
ÿ

k“1

σkH1{2pZ,Nq ă p1´ τq
N´1
ÿ

k“1

σH1{2,kpZ,Nq ` 1´ CexpNq.

This ends the proof.

24



Now we are going to check whether we could bind one electron (N “ 1) in our
theory for some proper nuclear charges Z. For simplicity, we only consider the reduced
Dirac-Fock model which means Excpρq “ 0 for the Dirac-Kohn-Sham model. In this
case,

σH1{2,1pZ,Nq “ σ1pD
0
´
αZ

|x|
q “

`

1´ α2Z2
˘1{2

,

σ1
H1{2pZ,Nq “ σ1pD

0
´
αpZ ´ 1q

|x|
q “

`

1´ α2
pZ ´ 1q2

˘1{2

and
τ “

απ

4´ 2απpZ ` 1q
.

We are going to check the inequality:

p1´ α2
pZ ´ 1q2q1{2

ˆ

1`
απ

4´ 2απpZ ` 1q

˙

ă 1´
απ

4´ 2απpZ ` 1q

After simple calculation, this inequality holds for 26 ď Z ď 81.
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