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Existence of minimizers for Dirac-Kohn-Sham models in quantum chemistry

This article is concerned with the mathematical analysis of the Dirac-Kohn-Sham models in the local density approximation (LDA) frameworks. The difficulty is that the functional is not of class C 1,1 , no critical point theory can be used to handle with this kind of problem. Nevertheless, the existence of solutions of Dirac-Koshn-Sham model can be solved in the spherical symmetric situation. Then we can redefine the ground state: instead of defining it on the whole space H 1{2 by the critical point theory, we define it on the set of the solutions. Based on an energy criteria, we can prove the existence of minimizers.

Introduction

Density functional theory (DFT) of non-relativistic many particle system has progressed steadily over the last fifty years, and it has emerged as the most widely used method of electronic structure in both quantum chemistry and condensed matter physics. Akin to the Hartree-Fock approximation, the Kohn-Sham model [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF], which relies on a representation of the density terms of single particle orbitals, is one of the most powerful tools among the DFT. However, these quantum chemical studies were restricted to rather light elements [START_REF] Benny G Johnson | The performance of a family of density functional methods[END_REF]. When the heavier atoms are involved, it is expected that electrons located close to the nucleus will move at high velocities, thus requiring a relativistic treatment.

The relativistic density functional theory (rDFT), first laid out by A,K. Rajagopal and J. Callaway, can be rigorously derived from quantum electrodynamics [START_REF] Callaway | Inhomogeneous electron gas[END_REF][START_REF]Inhomogeneous relativistic electron gas[END_REF][START_REF] Macdonald | A relativistic density functional formalism[END_REF]. Then the frequently-used Dirac-Kohn-Sham model was derived by A.K. Rajagopal [START_REF]Inhomogeneous relativistic electron gas[END_REF] and independently by A.H. MacDonald and S.H. Vosko [START_REF] Macdonald | A relativistic density functional formalism[END_REF] after making several physically reasonable approximations. Roughly speaking, similar to the relationship between Hartree-Fock and Dirac-Fock, the Dirac-Kohn-Sham model can be obtained directly from the Kohn-Sham model by replacing Schrödinger kinetic term with Dirac kinetic term.

Based on concentration-compactness principle, the mathematical theory of Kohn-Sham model has been done in [START_REF] Anantharaman | Existence of minimizers for kohnsham models in quantum chemistry[END_REF]. And then several different models were studied by different authors, see for example [START_REF] Argaez | Existence of a minimizer for the quasirelativistic kohn-sham model[END_REF][START_REF] Weinan | The Kohn-Sham equation for deformed crystals[END_REF][START_REF] Gontier | Existence of minimizers for kohn-sham within the local spin density approximation[END_REF][START_REF] Cancès | Existence of a type of optimal normconserving pseudopotentials for kohn-sham models[END_REF][START_REF] Friesecke | Existence and nonexistence of homo-lumo excitations in kohn-sham density functional theory[END_REF].

Nevertheless, the mathematical theory of rDFT is still vague and there is no mathematical literature about it. As a critical point problems, the Dirac-Kohn-Sham model is indeed much more complicated than the non-relativistic one. Generally, critical point problems in quantum chemistry such as Hartree-Fock model and Dirac-Fock model can be solved by the Lions-Fang-Ghoussoub critical point method which works on a complete, C 2 -Hilbert-Riemann manifold, see [START_REF] Lions | Solutions of hartree-fock equations for coulomb systems[END_REF][START_REF] Séré | Solutions of the dirac-fock equations for atoms and molecules[END_REF][START_REF] Fang | Second order information on palais-smale sequences in the mountain pass theorem[END_REF][START_REF] Ghoussoub | Duality and perturbation methods in critical point theory[END_REF][START_REF] Fang | Morse-type information on palais-smale sequences obtained by min-max principles[END_REF]. Unfortunately, the functional of Dirac-Kohn-Sham model is no longer of class C 2 , and to the author's knowledge, no method in modern critical points theory can be used to handle with this kind of functional.

On the other hand, in most situations of chemical interest, the negative energy states of Dirac-Fock models and Dirac-Kohn-Sham models are neglected. Mathematically this means that one should consider the Dirac-Fock and Dirac-Kohn-Sham operator projected onto their positive spectral subspaces. The ground energy and ground state can thus be defined on the positive spectral subspaces of the corresponding Dirac-Fock operator [START_REF] Séré | Nonrelativistic limit of the dirac-fock equations[END_REF][START_REF] Séré | A max-min principle for the ground state of the dirac-fock[END_REF]. Based on this definition of the ground state, some retraction methods and fixed point theories have been introduced to handle with the problem of Dirac-Fock model, see [START_REF] Huber | Solutions of the dirac-fock equations and the energy of the electron-positron field[END_REF][START_REF] Séré | A new definition of the dirac-fock ground state[END_REF]. Furthermore, the retraction methods in [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF] can be utilized to deal with the Dirac-Fock models for crystals [START_REF] Catto | Existence of minimizers for dirac-fock models in crystals[END_REF] which is more delicate due to the compactness issues.

However, in order to use the retraction methods, the functional should be at least of class C 1,1 . Unfortunately, the Dirac-Kohn-Sham model functional is at most of class C 1,1{3 because of the exchange-correlation term and Sobolev inequality.

Nevertheless, following the idea of [START_REF] Jay H Wolkowisky | Existence of solutions of the hartree equations for n electrons an application of the schauder-tychonoff theorem[END_REF][START_REF] Lions | Solutions of hartree-fock equations for coulomb systems[END_REF], on account of the spherical symmetry we can prove the existence of solutions of Dirac-Kohn-Sham equations by using the Schauder's fixed-point theorem. Furthermore, our result shows that the nonrelativistic LDA type exchange functional can be reached.

As mentioned above, we can not use the critical point theory to prove the ground state. Now, we use the second definition. For the standard DFT theory with integer occupation number, the minimizer is indeed one of the solutions of the Dirac-Kohn-Sham equations. Thus we redefine the ground state of the Dirac-Kohn-Sham model on the set of solutions which is non empty under the spherical symmetry condition. Inspired by the work [START_REF] Huber | Solutions of the dirac-fock equations and the energy of the electron-positron field[END_REF] and the binding condition of the models in quantum chemistry (see for example [START_REF] Hainzl | Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics[END_REF]), we proposed a stronger energy criteria for the Dirac-Kohn-Sham model under which any minimizing sequence is precompact in H 1{2 . It is showed that the when the non relativistic LDA type exchange functional is small enough, we can calculate at least one electrons for some proper nuclear charges.

2 Mathematical foundations of Dirac-Kohn-Sham model and main results

Foundations of the model

In relativistic quantum mechanics, the Dirac operator can be written as

D 0 :" ´i 3 ÿ k"1 α k B k `β :" ´iα ¨∇ `β
where α " pα 1 , α 2 , α 3 q and

β " ˆI2 0 0 ´I2 ˙, α k " ˆ0 σ k σ k 0 ˙, with σ 1 " ˆ0 1 1 0 ˙, σ 2 " ˆ0 ´i i 0 ˙, σ 3 " ˆ1 0 0 ´1˙.
Throughout the paper, we choose units for which m " c " " 1, where m is the mass of the electron, c the speed of light, and the Plank constant.

The operator D 0 acts on 4-spinors, i.e. functions from R 3 to C 4 . And it is self-adjoint on L 2 pR 3 ; C 4 q, with domain H 1 pR 3 ; C 4 q and form domain H 1{2 pR 3 ; C 4 q. Its spectrum is σpD 0 q " p´8, ´1s Y r1, 8q. Moreover, it is defined to ensure pD 0 q 2 " ´ `1.

Following the notation in [START_REF] Thaller | The dirac equation[END_REF][START_REF] Séré | Solutions of the dirac-fock equations for atoms and molecules[END_REF], we denote by Λ `and Λ ´:" 1 L 2 ´Λ`r espectively the two orthogonal projectors on L 2 corresponding to the positive and negative eigenspace of D 0 , and such that

# D 0 Λ `" Λ `D0 " Λ `?1 ´ " ? 1 ´ Λ `; D 0 Λ ´" Λ ´D0 " ´Λ´? 1 ´ " ´?1 ´ Λ ´.
Indeed,

Λ `" 1 2 `D0 2|D 0 | , Λ ´" 1 2 ´D0 2|D 0 | .
Even though we only consider the standard models, the density matrix is still frequently utilised. They are operators defined on trace class σ 1 pL 2 q. Before going further, now let us introduce some useful functional spaces and the corresponding norms:

• H α :" tu P L 2 ; }|D 0 | α u} L 2 ă 8u endowed with the norm }u} H α " }|D 0 | α u} L 2 . • BpW, Y q :" # L : W Ñ Y ; sup uPW,}u} W "1 }Lu} Y ă 8 + , endowed with the norm }Lu} BpW,Y q :" sup uPW,}u} W "1 }Lu} Y .
And if W " Y , we also denote BpW q :" BpW, W q.

• X :" tγ P BpL 2 q; γ " γ ˚, |D 0 | 1{2 γ|D 0 | 1{2 P σ 1 pL 2 qu, endowed with the norm

}γ} X :" }|D 0 | 1{2 γ|D 0 | 1{2 } σ 1 .
For every density of matrix γ P X, there exists a complete set of eigenfunctions pu n q ně1 of γ in L 2 corresponding to the non-decreasing sequence of eigenvalues λ n ě 0 (counted with their multiplicity) such that u n P H 1{2 pR 3 , C 4 q. Then the kernel γpx, yq of γ can be written as γpx, yq "

ÿ ně1 λ n u n pxqu npyq.
And the one-particle density associated with γ is

ρ γ pxq :" Tr C 4 γpx, xq " ÿ ně1 λ n |u n | 2 pxq. Let Γ :" tγ P X; 0 ď γ ď 1 L 2 u,
and Γ N :" tγ P Γ; Tr γ " N u.

For an atom system composed of a nucleus of charges Z (Z P Nzt0u in atomic units) and N electrons, the energy of Dirac-Kohn-Sham model without considering the spin state can be written as

E DKS pZ, N qpγq " TrpD 0 γq ´α TrpV γq `α 2 TrpV ργ γq `Exc pρ γ q.
where γ P Γ N is the density matrix of the totally anti-symmetric wavefunction and V is the electrostatic potential generated by the nuclei defined by V pxq " ´Z |x| .

In addition, V ργ represents the electrostatic energy of a classical charge distribution of density ρ γ pxq

V ργ " 1 | ¨| ˚ργ " ż R 3 1 |x ´y| ρ γ pyq dy.
and E xc pρ γ q is the exchange-correlation functional of the form

E xc pρ γ q :" ż R 3 gpρ γ qpxq dx.
The so-called fine structure constant α is a dimensionless positive constant (the physical value is approximately 1{137). And the corresponding Dirac-Kohn-Sham operator is defined by: D DKS ργ pZq :" D 0 ´αV `αV ργ `g1 pρ γ q.

The definition of ground state

In relativistic quantum chemistry, there are three methods to define the ground state of models like (multi-configuration) Dirac-Fock: via the critical point theory [START_REF] Séré | Solutions of the dirac-fock equations for atoms and molecules[END_REF][START_REF] Levitt | Solutions of the multiconfiguration dirac-fock equations[END_REF], via the fixed point theory [START_REF] Huber | Solutions of the dirac-fock equations and the energy of the electron-positron field[END_REF], or via a retraction technique [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF][START_REF] Catto | Existence of minimizers for dirac-fock models in crystals[END_REF]. For the sake of critical point theory, in [START_REF] Levitt | Solutions of the multiconfiguration dirac-fock equations[END_REF] the ground state can be written as

E DF :" min Ψ `PΣ `max Ψ ´PpΛ ´H 1{2 q N E DF pgpΨ ``Ψ ´qq " min Ψ `PΣ `E DF pgpΨ ``hpΨ `qqq (2.1)
with Σ `:" tΨ `P pΛ `H 1{2 q N , GramΨ `" 1u, and gpΨq " pGramΨq ´1{2 Ψ.

Here hpΨ `q is the unique minimizer of the functional χ ´P pΛ ´H 1{2 q N Ñ E DF pgpΨ `χ ´qq because of the concavity in pΛ ´H 1{2 q N directions. And in order to obtain the existence of minimizers of the Dirac-Fock equation, hpΨ `q is supposed to be of class C 1 , and E DF be of class C 2 .

The other methods are based on the fact that the ground state is defined on the positive spectral sub-space of the corresponding Dirac-Fock operator D DF γ [ES01,ES02]:

E DF :" min γPΓ DF,N
E DF pγq with Γ DF,N :" tγ P Γ; 1 r0,8q pD DF γ qγ " γ, Tr L 2 γ " N u. When the fine structure constant α is small enough and αZ fixed, the Dirac-Fock model can be regarded as a perturbed operator in terms of the unperturbed operator Dirac-Coulomb operator D 0 `V . Based on this idea and simple fixed point theory, Huber and Siedentop [START_REF] Huber | Solutions of the dirac-fock equations and the energy of the electron-positron field[END_REF] constructed the minimizer directly. However, they only considered the closed shell case.

Recently in [START_REF] Séré | A new definition of the dirac-fock ground state[END_REF], Séré proposed a retraction θpγq " lim nÑ8 T n pγq with T pγq " 1 r0,8q pD DF γ qγ1 r0,8q pD DF γ q.

By the Lieb's relaxed functional and under some simple assumptions, the ground state can be written as

E DF ´N :" min γPΓ ď,N `EDF pθpγqq ´Tr L 2 θpγq ˘, with Γ DF,ď,N :" tγ P Γ; Tr L 2 γ ď N u.
Wherein θpγq is of class C 1 , and because of the good structure of Dθpγq, the minimization problem can be linearized. As a result, the existence of minimizers can be proved. However, the energy of Dirac-Kohn-Sham model is at most of class C 1,1{3 , thus we can not use the critical point theory to construct the ground state. And we can not use the Séré's retraction neither, since there is no retraction for the Dirac-Kohn-Sham models because of the exchange-correlation energy.

Nevertheless, in quantum chemistry the ground state of Dirac-Kohn-Sham model could be defined by E DKS pZq :" min γPΓ Ǹ E DKS pZqpγq with Γ Ǹ :" tγ P Γ; 1 r0,8q pD DKS ργ pZqqγ " γ, Tr L 2 γ " N u.

Herein, we only consider the standard Dirac-Kohn-Sham models with integer occupation numbers. If the minimizer γ ˚exists, it can be written as

γ ˚:" N ÿ k"1 |u k u k | with pu k , u l q L 2 " δ k,l ,
and D DKS ργ pZqu k " ν k u k with ν k ą 0. Now for the standard Kohn-Sham models, we only need to find the minimizer in a subset of Γ Ǹ :

Γ ps,Z,N :" tγ P Γ; γ " N ÿ k"1 |u k u k | , pu k , u l q L 2 " δ k,l , D DKS ργ pZqu k " ν k u k with ν k ą 0u.
This set is indeed the set of solutions of Dirac-Kohn-Sham equation. Now, the ground state can be defined by

E DKS :" inftE DKS pρ γ qpZq, γ P Γ ps,Z,N u. (2.2)
Remark 2.1. In rDFT, sometimes the ground state is defined on the set r Γ :" tγ P Γ; γ "

N ÿ k"1 |u k u k | , pu k , u l q L 2 " δ k,l , D DKS ργ pZqu k " ν k u k with ν k ą ´1u.
But under our assumptions in Section 2.4, indeed Γ ps,Z,N and r Γ are equivalent since there are no eigenvalues in p´1, 0s according to Lemma 2.4 which will be mentioned below.

The spherical symmetric solutions of Dirac-Kohn-Sham equation

This new definition of the ground state relies on the set of solutions of Dirac-Kohn-Sham equations. Consequently, our first aim is to prove the existence of solutions of Dirac-Kohn-Sham equations. Even though it is hopeless for the author to use critical point theory to prove the existence of solutions, inspired by the work [START_REF] Jay H Wolkowisky | Existence of solutions of the hartree equations for n electrons an application of the schauder-tychonoff theorem[END_REF][START_REF] Lions | Solutions of hartree-fock equations for coulomb systems[END_REF] we can still prove the existence of solutions in the spherical symmetric situation. Before going further, we introduce the partial wave decomposition and its orthonormal basis pΨ m j ,j˘1{2 q pl,m,sqPJ of L 2 pS 2 q. The C 2 functions Ψ m j ,j˘1{2 are called spherical spinors and are given by

Ψ m j ,j´1{2 " 1 ? 2j ˆaj `mj Y m j ´1{2,j´1{2 a j ´mj Y m j `1{2,j´1{2 ȧnd 
Ψ m j ,j`1{2 " 1 ? 2j `2 ˆaj `1 ´mj Y m j ´1{2,j`1{2 ´aj `1 `mj Y m j `1{2,j`1{2
where the Y m,l pθ, φq are normalised spherical harmonics on S 2 , given in terms of the associated Legendre polynomials

P m l pxq " p´1q m 2 l l! p1 ´x2 q m{2 d m`l dx m`l px 2 ´1q l by Y m,l pθ, φq " d p2l `1q 4π 
pl ´mq! pl `mq! e imφ P m l pcosθq, m ě 0, and Y ´m,l pθ, φq " p´1q m Y m,l pθ, φq.

And the set of admissible indices J is defined by

J :" tpj, m j , κ j q : j " 1 2 , 3 2 , 5 2 , ¨¨¨, m j " ´j, ´j `1, ¨¨¨, `j, κ j " ˘pj `1 2 qu. Set Φ mj ,¯pj`1{2q " ˆiΨ m j ,j¯1{2 0 ˙, Φ ḿj ,¯pj`1{2q " ˆ0 Ψ m j ,j˘1{2 ˙.
There is a natural unitary isomorphism U between the Hilbert spaces L 2 pR 3 , C 4 q and L 2 pR `, r 2 drq  L 2 pS 2 , C 4 q, and L 2 pS 2 , C 4 q is the orthogonal sum of the 2-dimensional spaces H m j ,κ j spanned by Φ mj ,κ j and Φ ḿj ,κ j . Any f P L 2 pS 2 , C 4 q has the representation pU f qpr, θ, φq " ÿ pj,m j ,κ j qPJ pU m j ,κ j f qpθ, φq, where pU m j ,κ j f qpθ, φq " r ´1f mj ,κ j prqΦ mj ,κ j pθ, φq `r´1 f ḿj ,κ j prqΦ ḿj ,κ j pθ, φq. and f mj ,κ j , f ḿj ,κ j P L 2 pR `q. And operators L may be decomposed into a direct sum of operators L m j ,κ j acting on L 2 pR `q  H m j ,κ j according to L m j ,κ j pU m j ,κ j f q " U m j ,κ j pLf q, for every f P L 2 pR 3 , C 4 q. The operator L is then denoted by

L :" à pj,m j ,κ j qPJ L m j ,κ j .
In particular, the free Dirac operator D 0 is unitary equivalent to the Dirac sum of self-adjoint operator D 0,l,s on L 2 pR `q  H m j ,κ j , with D 0,m j ,κ j :"

ˆ1 ´d dr `κj r d dr `κj r ´1 ˙" ´iσ 2 d dr `σ1 κ j r `σ3
and the Dirac operator can be written as

D 0 " à pj,m j ,κ j qPJ D 0,m j ,κ j .
Now for any density matrix γ with ρ γ pxq " ρ γ p|x|q, it follows from the partial wave decomposition that the relativistic Kohn-Sham operator can be written as

D DKS ργ " à pj,m j ,κ j qPJ D DKS,m j ,κ j ργ .
with operator D DKS,m j ,κ j ργ acting on L 2 pR `q  H m j ,κ j and D DKS,m j ,κ j ργ pZq :" D 0,m j ,κ j ´Z r `α r f ργ prq ´g1 ργ prq as well as

f ργ prq " ż r 0 ρ γ psqds `r ż 8 r ρ γ psq s ds, g 1 ργ prq " g 1 pρ γ prqq.
And we will study the existence of solutions of the Dirac-Kohn-Sham equation in

L 2 pR `q  H m j ,κ j in Section 5, namely for 1 ď i ď N D DKS,m j i ,κ j i ργ pZqu k i ,m j i ,κ j i " λ k i ,m j i ,κ j i u k i ,m j i ,κ j i (2.3) with γ :" N ÿ i"1 ˇˇu k i ,m j i ,κ j i u k i ,m j i ,κ j i ˇˇ.
In addition, the normalization conditions

pu k i ,m j i ,κ j i 1 , u k i 1 ,m j i 1 ,κ j i 1 q L 2 " δ i,i 1 , for i, i 1 " 1, ¨¨¨, N (2.4) 
must be satisfied. Additional functional space related to the partial wave decomposition will be used for the above problem:

L 2 m j ,κ j :" L 2 X pL 2 pR `q â H m j ,κ j q, endowed with the norm }u} L 2 m j ,κ j " }r ´1u `Φm j ,κ j `r´1 u ´Φḿ j ,κ j } L 2 .
for any u :" pu `, u ´q P L 2 pR `q. And

H α m j ,κ j :" H α X pL 2 pR `q â H m j ,κ j q,
with the norm }u} H α m j ,κ j :" }r ´1u `Φm j ,κ j `r´1 u ´Φḿ j ,κ j } H α . For the convenience, we do not distinguish between u P L 2 m j ,κ j and u P L 2 pR `q.

Main results

Before stating the results, we need some assumptions about the exchange-correction functional and the charges of nucleus and electron:

Assumption 2.2. The function g is a C 1 function from R `to R such that gp0q " 0, (2.5a)

g 1 ď 0, (2.5b) D 0 ă β ´ď β `ď 1 3 s.t. sup ρPR `|g 1 pρq| ρ β ´`ρ β `ď C g,1 ,
(2.5c)

and sup ρPR `|gpρq ´ρg 1 pρq| ρ 1`β ´`ρ 1`β `ď C g,2 ,
(2.5d)

|g 1 pρq ´g1 pρ 1 q| ď C g,3 |g 1 p|ρ ´ρ1 |q| (2.5e) Assumption 2.3. Let C sob,β :" inf uPH 3β{2 zt0u }u} H 3β{2 }u} L 2 1´β
. be the sharp constant for the corresponding Sobolev inequality. And let C ex pN q :"

C g,1 ´N β `C 2 sob,β ``N β ´C 2 sob,β ´¯.
We assume that • κ :" πα 2 pZ `N q `Cex pN q ă 1,

• τ :" ´απ 4 N `Cg,2 ´C2 sob,β `N β ``C 2 sob,β ´N β ´¯¯p 1 ´απ 2 pZ `N q ´Cex pN qq ´1 ă 1.
Our method is based on the spectral analysis. The following lemma is the essential ingredient:

Lemma 2.4. Under the Assumption 2.2 and 2.3, and assume that 0 ď ρ, }ρ} L 1 " N , N ă Z and F is a subspace of H 1{2 such that F " Λ `F ' Λ ´F . Then

• (Negative eigenvalues) There is no eigenvalues in p´1, 0s.

• (Positive eigenvalues) There are constants 0 ă σ F ,k pZ, N q ď 1 and 0 ă σ k F pZ, N q ď 1 independent of ρ such that the k-th eigenvalue (counted with multiplicity) of the mean-field operator D DKS ρ pZq in F if it exists is situated in the interval rσ F ,k pZ, N q, σ k F pZ, N qs. In addition, σ F ,k pZ, N q, σ k F pZ, N q are continuous with respect to Z and N , and non-decreasing with respect to k.

• (Positive essential spectrum) Let σ F ,ess pZ, N q " lim kÑ8 σ F ,k pZ, N q and σ ess F pZ, N q " lim kÑ8 σ k F pZ, N q. And let b :" infpσ F ,ess pD DKS ρ pZqqq X r0, 8q be the bottom of the positive essential spectrum on the subspace F. Then b P rσ F ,ess pZ, N q, σ ess F pZ, N qs. Furthermore, for any ν ă σ F ,ess pZ, N q, there is a constant M P Z `, such that there are at most M eigenvalues in the interval r0, νs.

The proof is situated in Section 4. Unlike the Dirac-Fock model, we can not guarantee the existence of the N -th eigenvalue in the interval p0, σ H 1{2 ,ess spZ, N q according to Lemma 2.4 if the bottom of the positive essential spectrum b ą σ H 1{2 ,ess . And by Lemma 4.1, σ H 1{2 ,ess " 1 ´Cex pN q. Thus for the existence of solutions, we need the following assumption: Assumption 2.5. Let N ˚pZ, N q " maxtk P Z `; σ k H 1{2 pZ, N q ď 1 ´Cex pN qu. We assume N ď N ˚pZ, N q. Now, we obtained the following theorem about the existence of solutions under the spherical symmetric condition: Theorem 2.6. Under Assumptions 2.2, 2.3 and 2.5, there is a set pj i , m j i , κ j i q 1ďiďN Ă J , such that there exists an orthonormal solution set pu k i ,m j i ,κ j i , λ k i ,m j i ,κ j i q 1ďiďN of equations 2.3 under the conditions (2.4). In addition, for any

1 ď i ď N σ H 1{2 m j i ,κ j i ,k i pZ, N q ď λ k i ,m j i ,κ j i ď σ k i H 1{2 m j i ,κ j i pZ, N q.
In particular, we can choose the set pj i , m j i , κ j i q 1ďiďN Ă J such that λ k i ,m j i ,κ j i are the first N eigenvalues of the operator D DKS ρ pZq on the space H 1{2 , and for any

1 ď i ď N σ H 1{2 ,i pZ, N q ď λ k i ,m j i ,κ j i ď σ i H 1{2 pZ, N q.
The proof is situated in Section 5

Remark 2.7. The Assumption 2.5 implies N ď Z by the definition of σ k H 1{2 pZ, N q in the proof of Lemma 3.2.

We proved that under the spherical symmetry condition the set Γ ps,Z,N is non-empty. Now, we consider the existence of minimizer.

Theorem 2.8. Under the Assumption 2.2 and Assumption 2.3, if Γ ps,Z,N " H and under the following energy criteria E DKS pZ, N q ă p1 ´τ qp

N ´1 ÿ k"1 σ H 1{2 ,k pZ, N q `σH 1{2 ,ess pZ, N qq, (2.6)
the minimization problem (2.2) admits a minimizer in Γ ps,Z,N .

The proof is situated in Section 6.

Remark 2.9. Even though in this paper we only considered the spherical symmetric situation, the Theorem 2.8 still works for the non spherical symmetric cases. And the external potential of the atom V " Z |x| can be replaced by the one of the molecules. Remark 2.10. The conditions (2.5a)-(2.5e) are obviously fulfilled by the non-relativistic LDA type exchange functional, namely gpρq " ´αC g ρ 4{3 for some constant C g . This exchange functional is critical because of the Sobolev inequality. And in this case, indeed our problem is a critical Dirac equation for orthonormal functions.

Remark 2.11. If we do not consider the exchange-correlation energy (i.e. E xc pρq " 0), we will get the reduced Dirac-Fock model. In this case, the energy inequality 2.6 can be satisfied for N " 1 and 26 ď Z ď 81. The proof is detailed in Appendix B. Thus with the non-relativistic LDA exchange energy, the inequality 2.6 will still hold for N " 1 and some proper nuclear charges Z if C g is small enough.

Remark 2.12. The similar energy criteria can be used to prove the existence of minimizers for the Dirac-Fock models. And for the Dirac-Fock model, the corresponding criteria energy inequality (2.6) still holds for N " 1 and some proper nuclear charges Z.

Preliminaries

In this section, we will provide some useful estimates about Dirac-Kohn-Sham models.

Lemma 3.1. Let γ P X. Then, 1. For u P H 1{2 , pu, |x| ´1uq ď π 2 }u} 2 H 1{2 and }V γ } BpL 2 q ď π 2 }γ} X .

2. For u P H 1{2 , and

γ P Γ N , pu, |g 1 pρ γ q|uq ď C ex pN q}u} 2 H 1{2 , (3.1) 
where

C ex pN q :" C g,1 `N β `C 2 sob,β ``N β ´C 2 sob,β ´˘,
Proof. The first inequality is just the Kato inequality. And for the second one, as 0 ă β ´ď β `ď 1 3 , we yield

}pg 1 pρ γ qq 1{2 u} 2 L 2 ďC g,1 `}ρ β `{2 γ u} 2 L 2 `}ρ β ´{2 γ u} 2 L 2 ďC g,1 ˆ}ρ γ } β L1 }u} 2 L 2 1´β ``}ρ γ } β Ĺ1 }u} 2 L 2 1´β ´ďC g,1 `N β `C 2 sob,β `}|D 0 | 3β `{2 u} 2 L 2 `N β ´C 2 sob,β ´q}|D 0 | 3β ´{2 u} 2 L 2 ďC g,1 `N β `C 2 sob,β ``N β ´C 2 sob,β ´˘}|D 0 | 1{2 u} 2 L 2 "C ex pN q}u} 2 H 1{2 .' Now,
Lemma 3.2. Let γ P X. Then,

1. If γ P Γ N , then }|D ργ | 1{2 |D 0 | ´1{2 } BpL 2 q ď p1 `πα 2 pZ `N q `Cex pN qq 1{2 ,
and if πα 2 pZ `N q `Cex pN q ă 1, then

}|D 0 | 1{2 |D ργ | ´1{2 } BpL 2 q ď p1 ´πα 2 pZ `N q ´Cex pN qq ´1{2 .
2. For γ P Γ Z,N , if πα 2 pZ `N q `Cex pN q ă 1 we have p1 ´τ q Tr L 2 pD ργ γq ď E DKS pZ, N qpγq ď p1 `τ q Tr L 2 pD ργ γq where τ :"

´απ 4 N `Cg,2 `C2 sob,β `N β ``C 2 sob,β ´N β ´˘¯p 1 ´πα 2 pZ `N q ´Cex pN qq ´1, 3. If γ P Γ N , then inf |σpD ργ q| ě h 0 :" 1 ´maxt pπ{2 `2{πqαZ 2 ´αC ex pN q, pπ{2 `2{πqαN 2 u.
Proof. For the first estimate, as

|D 0 | ´α|V | ´α|V γ | ´|g 1 pρ γ q| ď |D ργ | ď |D 0 | `α|V | `α|V γ | `|g 1 pρ γ q|,
and by the above estimate and the first estimates, we know

|D ργ | ď |D 0 | `p απ 2 pZ `N q `Cex pN qq|D 0 |, and 
|D 0 | ´p απ 2 pZ `N q `Cex pN qq|D 0 ď |D ργ |.
Thus,

}|D ργ | 1{2 |D 0 | ´1{2 } BpL 2 q ď p1 `απ 2 αpZ `N q `Cex pN qq 1{2 and }|D 0 | 1{2 |D ργ | ´1{2 } BpL 2 q ď p1 ´απ 2 pZ `N q ´Cex pN qq ´1.
Now for the estimates of the energy, note

Tr L 2 D ργ γ " E DKS pZ, N qpγq `α 2 Tr L 2 pV γ γq `Tr L 2 pg 1 pρ γ qγq ´Eex pρ γ q.
By Assumption 2.2 and Gagliardo-Nirenberg interpolation inequality, we know

|Tr L 2 pg 1 pρ γ qγq ´Eex pρ γ q| ďC g,2 `}ρ 1`β γ } L 1 `}ρ 1`β γ } L 1 ďC g,2 ´C2 sob,β `}ρ 1{2 γ } 2β L2 }|D 0 | 3β `{2 ρ 1{2 γ } 2 L 2 `C2 sob,β ´}ρ 1{2 γ } 2β Ĺ2 }|D 0 | 3β ´{2 ρ 1{2 γ } 2 L 2 ďC g,2 `C2 sob,β `N β ``C 2 sob,β ´N β ´˘}|D 0 | 1{2 ρ 1{2 γ } 2 L 2 .
In virtue of the convexity inequality for the relativistic kinetic energy [START_REF] Elliott | Analysis[END_REF], we have

|Tr L 2 pg 1 pρ γ qγq ´Eex pρ γ q| ď C g,2 `C2 sob,β `N β ``C 2 sob,β ´N β ´˘}γ } X . As }V γ } BpL 2 q ď π 2 }γ} X ,
we have

| Tr L 2 D ργ γ ´EDKS pZ, N qpγq| ď ´απ 4 N `Cg,2 `C2 sob,β `N β ``C 2 sob,β ´N β ´˘¯T r L 2 |D 0 |γ ď ´απ 4 N `Cg,2 `C2 sob,β `N β ``C 2 sob,β ´N β ´˘¯p 1 ´πα 2 pZ `N q ´Cex pN qq ´1 Tr L 2 |D ργ |γ. Letting τ :" ´απ 4 N `Cg,2 `C2 sob,β `N β ``C 2 sob,β ´N β ´˘¯p 1 ´πα 2 pZ `N q ´Cex pN qq ´1,
as γ P Γ Ǹ , we have p1 ´τ q Tr D ργ γ ď E r KSpγq ď p1 `τ q Tr L 2 D ργ γ.

For the last estimate, let u `:" Λ `u and u ´:" Λ ´u. Now, we know

$ ' ' & ' ' % `u`, D ργ u `˘H 1{2 ˆH1{2 ˚ě ˆ1 ´pπ{2 `2{πqαZ 2 ´Cex pN q ˙}u `}2 H 1{2 , ´`u ´, D ργ u ´˘H 1{2 ˆH1{2 ˚ěp1 ´pπ{2 `2{πqαN 2 q}u ´}2 H 1{2 .
Let us choose h 0 :" 1 ´maxt pπ{2`2{πqαZ 2 ´αC ex pN q, pπ{2`2{πqαN 2 u, we get

}u} H 1{2 }D ργ u} H 1{2 ˚ě pu `´u ´, D ργ uq H 1{2 ˆH1{2 " `u`, D ργ u `˘H 1{2 ˆH1{2 ˚´`u ´, D ργ u ´˘H 1{2 ˆH1{2 ěh 0 }u} 2 H 1{2 .
4 Spectral analysis proof of Lemma 2.4. The proof is based on the min-max principle in [DES00, Theorem 1.1]. By Lemma 3.2, we know that inf |σpD ρ q| ą 0, thus 0 is not the eigenvalue.

For any V Ă Λ `F , we have V ' Λ ´F Ă Λ `F ' Λ ´F " F. Thus the definition of the k-th positive eigenvalue if it exists can be formulated by

σ F ,k pD DKS ρ pZqq " inf V subspace of Λ `F dim V "k sup uPpV À Λ ´F qzt0u pD DKS ρ pZqu, uq }u} 2 L 2 , ( 4.1) 
and the k 1 -th negative eigenvalue can be written as

σ 1 F ,k 1 pD DKS ρ pZqq " sup V subspace of Λ ´F dim V "k 1 inf uPpV À Λ `F qzt0u pD DKS ρ pZqu, uq }u} 2 L 2 . (4.2)
First we will check the assumptions for the min-max principle in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. application to dirac operators[END_REF]. Obviously,

σ F ,1 pD DKS ρ pZqq ě inf V subspace of Λ `F zt0u pD DKS ρ pZqu, uq }u} 2 L 2 ": a `, and 
σ 1 F ,1 pD DKS ρ pZqq " sup V subspace of Λ ´F zt0u pD DKS ρ pZqu, uq }u} 2 L 2 ": a ´.
The min-max principle can be used if a ´ă a `. According to Newton's Theorem, we have

V ρ pxq ď N |x| ă Z |x| .
Consequently,

Λ ´pD 0 ´αZ |x| `αV ρ ´g1 pρqqΛ ´ď ´|D 0 |Λ ´ď ´Λ´,
and according to the Assumption 2.3 and Lemma 3.1,

Λ `pD 0 ´αZ |x| `αV ρ ´g1 pρqqΛ `ě p1 ´κq|D 0 |Λ `ą 0.
Thus, a ´ď ´1 ă 0 ă a `.

Now we can use the min-max principle. First we consider the non-positive eigenvalues. As σ 1 F ,1 pD DKS ρ pZqq ď a ´ď ´1, we know that there is no eigenvalues in p´1, 0s. Next we consider the positive eigenvalues. By the formula (4.1), we know that

σ F ,k pD DKS ρ pZ, N qq ď inf V subspace ofΛ `F dim V "k sup uPpV À Λ ´F qzt0u ppD 0 ´αpZ´Nq |x| qu, uq }u} 2 L 2 :" σ k F pZ, N q.
Similarly, by Lemma 3.1, we know

D DKS ρ pZq ě D 0 ´αZ |x| ´Cex pN q|D 0 |. Thus, σ F ,k pD DKS ρ pZqq ě inf V subspace ofΛ `F dim V "k sup uPpV À Λ ´F qzt0u ppD 0 ´αZ |x| ´Cex pN q|D 0 |qu, uq }u} 2 L 2 :" σ F ,k pZ, N q.
For the sake of the continuity of C ex pN q and the eigenvalues of the Dirac-Coulomb operator, we know that σ F ,k pZ, N q and σ k F pZ, N q are continuous with respect to Z and N . Besides, they are bounded and non-decreasing with respect to k.

Finally , we consider the positive essential spectrum. According to the Monotone Convergence Theorem, we know that σ F ,ess pZ, N q and σ ess F pZ, N q are the unique limits of σ F ,k pZ, N q and σ k F pZ, N q respectively. For any k P Z `such that σ F ,k pD DKS ρ pZqq ă σ F ,ess pZ, N q, the k-th eigenvalue of operator D DKS ργ pZq exists and lies on the discrete spectrum. Thus b ě σ F ,ess pZ, N q. On the other hand, for any eigenvalue σ, we know that σ ď σ ess F pZ, N q. Now, we have proved b P rσ F ,ess pZ, N q, σ ess F pZ, N qs. As a result, by the property of the essential spectrum, for any ν ă σ F ,ess pZ, N q, there exists a constant q P Z `, such that ν ă σ M `1pZ, N q, which means there are at most M eigenvalues in the interval p0, νs. This ends the proof.

Lemma 4.1.

σ F ,ess pZ, N q ě 1 ´Cex pN q.

Furthermore, σ H 1{2 ,ess pZ, N q " 1 ´Cex pN q.

Proof. Note

σ F ,k pZ, N q ě inf V subspace of Λ `F dim V "k sup uPV zt0u ppD 0 ´αZ |x| ´Cex pN q|D 0 |qu, uq }u} 2 L 2 ě inf V subspace of Λ `H 1{2 dim V "k sup uPV zt0u pΛ `pp1 ´Cex pN qqD 0 ´αZ |x| qΛ `u, uq }u} 2 L 2 .
The operator Λ `pp1 ´Cex pN qqD 0 ´αZ |x| qΛ `consists of an infinite number of isolated eigenvalues of finite multiplicity which accumulate at 1 ´Cex pN q, see [BE11, Theorem 3.3.1]. Thus, we know σ F ,ess pZ, N q ě 1 ´Cex pN q.

On the other hand, we have ´Cex pN qqD 0 `αZ |x| .

Thus, if F " H 1{2 σ F ,k pZ, N q ď inf V subspace of Λ `H 1{2 dim V "k sup uPpV À Λ ´H 1{2 qzt0u ppp1 ´Cex pN qqD 0 ´αZ |x| qu, uq }u} 2 L 2
The operator p1 ´Cex pN qqD 0 ´αZ |x| consists equally of an infinite number of isolated eigenvalues of finite multiplicity accumulating at 1´C ex pN q, see [BE11, Theorem 3.1.5]. Therefore, σ H 1{2 ,ess pZ, N q ď 1 ´Cex pN q.

It immediately yields the claimed equation.

Existence of solutions

Now, we follow the ideas of [START_REF] Jay H Wolkowisky | Existence of solutions of the hartree equations for n electrons an application of the schauder-tychonoff theorem[END_REF][START_REF] Lions | Solutions of hartree-fock equations for coulomb systems[END_REF]. Set SpN q :" tρ P L 1 pR `q X Cp0, 8q; 0 ď ρ,

ż 8 0 ρpsq ds " N u,
and consider the following problem:

D DKS,m j ,κ j ρ pZqu :" pD 0,m j ,κ j ´Z r `α r f ρ prq ´g1 ρ prqqu " λu, (5.1) with the normalizing conditions

ż 8 0 |u| 2 psq ds " 1. (5.2)
Here λ is the eigenvalue and ρ P SpN q.

Lemma 5.1. For any ρ P SpN q and for each positive integer pj, m j , κ j q P J , there are constants 0 ď σ H 1{2 m j ,κ j ,k ď 1 and 0 ď σ k H 1{2 m j ,κ j ď 1 independent of ρ such that the k-th eigenvalue σ m j ,κ j ρ,k pZq of equation (5.1) satisfying (5.2) if it exists is situated in the interval rσ H 1{2 m j ,κ j ,k pZ, N q, σ k H 1{2 m j ,κ j pZ, N qs. And if σ m j ,κ j ρ,k pZq ă 1 ´Cex pN q, it is an eigenvalue. Furthermore, for fixed pj, m j , κ j q P J , any eigenvalue is single.

Proof. It is an application of the Lemma 2.4, let F " H 1{2 m j ,κ j . First we prove

H 1{2 m j ,κ j " Λ `H 1{2 m j ,κ j ' Λ ´H 1{2
m j ,κ j . For any u P H 1{2 m j ,κ j , we know U m j ,κ j u " u, and D 0 u " U m j ,κ j D 0,m j ,κ j u. Thus,

Λ ˘u " U m j ,κ j ˆ1 2 ˘D0,m j ,κ j |D 0,m j ,κ j | ˙u P H 1{2 m j ,κ j .
Consequently,

H 1{2 m j ,κ j " Λ `H 1{2 m j ,κ j ' Λ ´H 1{2
m j ,κ j . Note σ H 1{2 m j ,κ j ,k pZ, N q :" σ k pD 0,m j ,κ j ´αZ |r| ´Cex pN q|D 0,m j ,κ j |q, and

σ k H 1{2 m j ,κ j
pZ, N q :" σ k pD 0,m j ,κ j ´αpZ ´N q |r| q.

Thus by Lemma 2.4 we get

σ m j ,κ j ρ,k pZq " σ H 1{2 m j ,κ j ,k pD DKS ρ pZqq ě σ H 1{2 m j ,κ j ,k pZ, N q and σ m j ,κ j ρ,k pZq " σ H 1{2 m j ,κ j ,k pD DKS ρ pZqq ď σ k H 1{2 m j ,κ j pZ, N q.
As H 1{2 m j ,κ j Ă H 1{2 , by Lemma 4.1 we know σ H 1{2 m j ,κ j ,ess pZ, N q " σ ess pD 0,m j ,κ j ´αZ |r| ´Cex pN q|D 0,m j ,κ j |q ě 1 ´Cex pN q.

Thus, if σ k H 1{2 m j ,κ j pZ, N q ă 1 ´Cex pN q, then σ

m j ,κ j ρ,k
pZq is an eigenvalue for the operator D DKS,m j ,κ j ρ . Now, we prove the simplicity of the eigenvalues. It follows from the ODE theories.

If not, we assume that u and v are two solutions of the equation (5.1) satisfying (5.2) with the same real eigenvalue λ and u, v L 2 " 0. We fix a point r 0 P p0, 8q. Now, note that by integration by parts

D DKS,m j ,κ j ρ u, v L 2 rr 0 ,rs ´ u, D DKS,m j ,κ j ρ v L 2 rr 0 ,rs " iσ 2 u, v C 2 pr 0 q ´ iσ 2 u, v C 2 prq,
where σ 2 u, v C 2 " v T σ 2 u is the inner product for vectors. On the other hand, as they are the eigenfunctions of the same eigenvalue λ we know

D DKS,m j ,κ j ρ u, v L 2 rr 0 ,rs ´ u, D DKS,m j ,κ j ρ v L 2 rr 0 ,rs " 0.
Thus, iσ 2 u, v C 2 prq " C. Assume that u " pu 1 , u 2 q T and v " pv 1 , v 2 q T . Considering the condition (5.2), we know C " 0, and u 2 v 1 ´u1 v 2 " 0. As a result, there is a function cprq such that u 2 " cprqu 1 , v 2 " cprqv 1 .

(5.3) Let F prq " ´Z r `α r f ρ prq ´g1 ρ prq ´p1 `λq. Thus, according to equation (5.1), we get

d dr u 1 `κj r u 1 `cprqF pxqu 1 " 0 and d dr v 1 `κj r v 1 `cprqF prqv 1 " 0.
Thus, u 1 prq " C u e ´şr r 0 κ j {t´cptqF ptq dt , and v 1 prq " C v e ´şr r 0 κ j {t´cptqF ptq dt .

As F " F and κ j " κ j , by the expression of u 1 and v 1 , we know that there is a constant

C 1 , such that v 1 " C 1 u 1 . (5.4)
As a result v 2 " C 1 u 2 and v " C 1 u. Hence, u is a solution of equation (5.1) satisfying (5.2) with the eigenvalue λ and u, u L 2 " 0. Thus, u ‰ 0 and u ‰ 0. Otherwise, as u, u L 2 " 0, } u} 2 L 2 ´} u} 2 L 2 " u, u L 2 " 0. Thus, u " u " 0 and u " 0 which is impossible.

As a result, u p1q :" u } u} L 2 and u p2q :" u } u} L 2 are two real eigenfunctions satisfying (5.2) with the same eigenvalue λ and

u p1q , u p2q L 2 " 1 2 u, u L 2 " 0. (5.5) 
Repeating the above process and considering the condition (5.2), like equation (5.4) we have u p2q " ˘up1q . Thus by equation (5.5), u p2q " u p1q " 0 reaching a contradict. Now, we know the eigenfunction is unique.

Recall that σ k H 1{2 pZ, N q defined in Lemma 2.4 is the upper bound of the k-th eigenvalue of operator operator D DKS ρ pZq. Let N ˚pZ, N q " maxtk P Z `; σ k H 1{2 pZ, N q ă 1 ´Cex pN qu. By virtue of the partial wave decomposition,

D DKS 0 pZ ´N q " à pj,m j ,κ j qPJ D DKS,m j ,κ j 0 pZ ´N q, and Y kPZ `tσ k H 1{2 pZ, N qu " ď pj,m j ,κ j qPJ Y kPZ `tσ k H 1{2 m j ,κ j pZ, N qu.
Thus, for any N ď N ˚pZ, N q there exists a set pk i , j i , m j i , κ j i q 1ďiďN Ă Z `ˆJ such that for any

1 ď i ď N σ k i H 1{2 m j i ,κ j i pZ, N q ď σ N H 1{2 pZ, N q ă 1 ´Cex pN q.
In particular, pk i , j i , m j i , κ j i q 1ďiďN could be such that pσ k i H 1{2 m j i ,κ j i pZ, N qq 1ďiďN are the first N eigenvalues of the operator D DKS 0 pZ ´N q. Let u m j i ,κ j i ρ,k i be solution of equation (5.1) satisfying the conditions (5.2) with λ :" σ m j i ,κ j i ρ,k i pZq. Now, we define the operators T pρq and ρ T pρq respectively by T pρq :"

N ÿ i"1 ˇˇu m j i ,κ j i ρ,k i u m j i κ j i ρ,k i ˇˇ, and ρ T pρq :" N ÿ i"1 |u m j i ,κ j i ρ,k i | 2 .
Obviously, ρ T pSpN qq Ă SpN q.

As SpN q is convex and closed, in order to utilise the Schauder's fixed-point theory we only need the continuity and relative compactness of operator ρ T . Before going further, let σpP q be the spectrum of the operator P .

Lemma 5.2. T is continuous on SpN q.

Proof. We prove first that the eigenvalues σ

m j i ,κ j i ρ,k i pZq are continuous in terms of ρ. For any u P H 1{2 , for ρ n Ý ÝÝ Ñ nÑ8 ρ in L 1 we have p|V ρ´ρn |u, uq ď π 2 }ρ ´ρn } L 1 }|D 0 | 1{2 u} 2 L 2 Ñ 0.
(5.6) Now, we consider the exchange-correlation functional. By virtue of the assumption (2.5e) and inequality (3.1), we know

}|g 1 pρq ´g1 pρ n q| 1{2 u} L 2 ď C 1{2 g,3 }|g 1 p|ρ ´ρn |q| 1{2 u} L 2 ď C 1{2 g,3 C ex p}ρ ´ρn } L 1 q}u} H 1{2 . (5.7) Thus, }|g 1 pρ n q ´g1 pρq| 1{2 |D 0 | ´1{2 } BpL 2 q Ñ 0. (5.8) 
Now, combing with the inequality (5.6), (5.7) and Lemma 3.2, we get

D DKS ρ pZq ď D DKS ρn pZq `p π 2 }ρ ´ρn } L 1 `Cg,3 C ex p}ρ ´ρn } L 1 q 2 qp1 ´κq ´1|D DKS ρn pZq|
By virtue of the formula (4.1),

σ m j i ,κ j i ρ,k i pZq ď p1 `p π 2 }ρ ´ρn } L 1 `Cg,3 C ex p}ρ ´ρn } L 1 q 2 qqp1 ´κq ´1σ m j i ,κ j i ρn,k i pZq.
Similarly, we have

σ m j i ,κ j i ρn,k i pZq ď p1 `p π 2 }ρ ´ρn } L 1 `Cg,3 C ex p}ρ ´ρn } L 1 q 2 qqp1 ´κq ´1σ m j i ,κ j i ρ,k i pZq.
Thus,

|σ m j i ,κ j i ρ,k i pZq´σ m j i ,κ j i ρn,k i pZq| ď p π 2 }ρ´ρ n } L 1 `Cg,3 C ex p}ρ´ρ n } L 1 q 2 qp1´κq ´1p1´C ex pN qq Ñ 0.
Hence we conclude that σ m j i ,κ j i ρ,k i pZq is continuous with respect to ρ P SpN q. By Lemma 5.1, the corresponding eigenfunction u m j i ,κ j i ρ,k i to the eigenvalue σ m j i ,κ j i ρ,k i pZq under the condition (5.2) is unique. Thus, by Cauchy's integral formula, there is a constant i small enough satisfying Bpσ m j i ,κ j i ρ,k i pZq, i q X σpD DKS,m j i ,κ j i ρ pZqq " σ

m j i ,κ j i ρ,k i pZq,
and distpσpD DKS,m j i ,κ j i ρ pZqq, BBpσ

m j i ,κ j i ρ,k i pZq, i qq " i , such that T pρq " ř N i"1 T i pρq with T i pρq " ´p2πiq ´1 ż BBpσ m j i ,κ j i ρ,k i
pZq, i q pD DKS,m j i ,κ j i ρ pZq ´zq ´1 dz.

And as σ m j i ,κ j i ρ,k i pZq is continuous with respect to ρ P SpN q, for any sequence ρ n P SpN q such that ρ n Ñ ρ in L 1 , we have that for n ě n 0 large enough, Bpσ m j i ,κ j i ρ,k i pZq, i q X σpD DKS,m j i ,κ j i ρn pZqq " σ m j i ,κ j i ρn,k i pZq, and i {2 ď dispσpD DKS,m j i ,κ j i ρn pZqq, BBpσ

m j i ,κ j i ρ,k i pZq, i qq ď i .
Consequently, we yield T pρ n q " ř N i"1 T i pρ n q with T pρ n q " ´p2πiq

´1 N ÿ i"1 ż BBpσ m j i ,κ j i ρ,k i
pZq, i q pD DKS,m j i ,κ j i ρn pZq ´zq ´1 dz.

As dim rangepT i q " 1 and by Theorem A.1, we have

}ρ T pρq ´ρTpρnq } L 1 ď }T ρ ´Tρn } σ 1 ď N ÿ i"1 }T i pρq ´Ti pρ n q} BpL 2 m j i ,κ j i q .
Note }T i pρq ´Ti pρ n q} BpL 2 m j i ,κ j i By Lemma 3.2, for the first term on the right hand side and for z P BBpσ

m j i ,κ j i ρ,k i pZq, i q, we have }pD DKS ρn pZq ´zq ´1V ρ´ρ pD DKS ρ pZq ´zq ´1} BpL 2 m j i ,κ j i q ď π 2 }ρ n ´ρ} L 1 `}pD DKS ρn pZq ´zq ´1|D 0 | 1{2 } BpL 2 q }pD DKS ρ pZq ´zq ´1|D 0 | 1{2 } BpL 2 q ďp1 ´κq ´1 π 2 }ρ n ´ρ} L 1 }pD DKS ρn pZq ´zq ´1|D DKS ρn pZq| 1{2 } BpL 2 q ˆ}pD DKS ρ pZq ´zq ´1|D DKS ρ pZq| 1{2 } BpL 2 q ďp1 ´κq ´1 π 2 }ρ n ´ρ} L 1 p ´1{2 i ` ´1 i |z| 1{2 qp ? 2 ´1{2 i ` ´1 i 2|z| 1{2 q ďC}ρ n ´ρ} L 1 .
(5.9)

Analogously, for the second term on the right hand side and z P BBpσ

m j i ,κ j i ρ,k i pZq, i q
}pD DKS ρn pZq ´zq ´1pg 1 pρq ´g1 pρ n qqpD DKS ρ pZq ´zq ´1} BpL 2 m j i ,κ j i q ďCC 2 ex p}ρ ´ρn } L 1 q.

(5.10) Given |BBpσ m j i ,κ j i ρ,k i pZq, i q| ă 8, by Equation (5.6) and (5.8) for any ρ n Ñ ρ in L 1 we have }T i pρq ´Ti pρ n q} BpL 2 m j i ,κ j i q Ñ 0.

Now we have proved that T is continuous on SpN q.

Lemma 5.3. T is compact on SpN q.

Proof. It is sufficient to prove that T pρ n q is relatively compact in SpN q. As N ď N ˚pZ, N q, we have that for

1 ď i ď N σ m j i ,κ j i ρn,k i pZq ď σ N H 1{2 pZ, N q ă 1 ´Cex pN q.
and }u

m j i ,κ j i ρn,k i } H 1{2 m j i ,κ j i ď C.
Up to a subsequence, we have that for

1 ď i ď N σ m j i ,κ j i ρn,k i pZq Ñ σ m j i ,κ j i ρ,k i pZq P r0, 1 ´Cex pN qq
and u

m j i ,κ j i ρn,k i á u m j i ,κ j i ρ,k i in H 1{2 m j i ,κ j i . This implies u m j i ,κ j i ρn,k i Ñ u m j i ,κ j i ρ,k i in L 2 loc .
We pick a smooth cut-off function 0 ď χp|x|q ď 1 which equals 1 on the ball Bp0, 1q and 0 outside the ball Bp0, 2q. Let u p1q n,R,i :" χp|x|{Rqu m j i ,κ j i ρn,k i and u p2q n,R,i :" p1 ´χp|x|{p4Rqqqu m j i ,κ j i ρn,k i , and u p3q n,R,i :" pχp|x|{p4Rqq ´χp|x|{Rqqu

m j i ,κ j i ρn,k i . Obviously, we have u p1q n,R,i Ñ u p1q ˚,R,i :" χp|x|{Rqu m j i ,κ j i ρ,k i in L 2 , and u p3q n,R,i Ñ u p3q ˚,R,i :" pχp|x|{p4Rqq ´χp|x|{Rqqu m j i ,κ j i ρ,k i in L 2 .
Thus, we have pD DKS,m j i ,κ j i ρn pZq ´σm j i ,κ j i ρn,k i pZqqpu

p1q n,R,i `up2q n,R,i q " f n,R,i with f n,R,i :" pD DKS,m j i ,κ j i ρn pZq ´σm j i ,κ j i ρn,k i pZqqu p3q n,R,i . By virtue of the fact that supp u p1q n l ,i and supp u p2q n l ,i are disjoint, }u p2q n,R,i } L 2 m j i ,κ j i ď}pD DKS,m j i ,κ j i ρn p0q ´σm j i ,κ j i ρn,k i pZqq ´1pZ r ´1u p2q n,R,i `fn,R,i q} L 2 m j i ,κ j i .
According to Lemma 2.4, Lemma 4.1 and Lemma 5.1, σpD DKS,m j i ,κ j i ρn p0qq X R `Ă r1 Ćex pN q, 8q for any γ n P Γ N . This and the fact σ m j i ,κ j i ρn l ,k i pZqσ m j i ,κ j i ρ˚,k i pZq ă 1´C ex pN q imply that the operators pD DKS,m j i ,κ j i ρn p0q ´σm j i ,κ j i ρn l ,k i pZqq ´1 are uniformly bounded. Hence,

}u p2q n,R,i } L 2 m j i ,κ j i ď }u p3q n,R,i } L 2 m j i ,κ j i `ZC R }u p2q n,R,i } L 2 m j i ,κ j i As a result, }u m j i ,κ j i ρn,k i ´um j i ,κ j i ρ,k i } L 2 m j i ,κ j i ď }u p2q n,R,i } L 2 m j i ,κ j i `}u p3q n,R,i } L 2 m j i ,κ j i `}u p1q n,R,i ´um j i ,κ j i ρ,k i } L 2 m j i ,κ j i ď 2}u p3q n,R,i } L 2 m j i ,κ j i `}u p1q n,R,i ´um j i ,κ j i ρ,k i } L 2 m j i ,κ j i `C R Ý ÝÝ Ñ nÑ8 2}u p3q ˚,R,i } L 2 m j i ,κ j i `}p1 ´χp|x|{Rqqu m j i ,κ j i ρ,k i } L 2 m j i ,κ j i `C R Ý ÝÝ Ñ RÑ8 0.
Thus, T is compact.

Proof of Theorem 2.6. Now, combing Lemma 5.2 and 5.3 according to the Schauder's fixed point theory, we have proved the existence of a solution set pu k i ,m j i ,κ j i , λ k i ,m j i ,κ j i q 1ďiďN for the case N ď N ˚pZ, N q " maxtk P Z `; σ k H 1{2 pZ, N q ă 1 ´Cex pN qu. By Lemma 5.1, for any

1 ď i ď N , σ H 1{2 m j i ,κ j i ,k i pZ, N q ď λ k i ,m j i ,κ j i ď σ k i H 1{2 m j i ,κ j i pZ, N q.
In particular, pk i , j i , m j i , κ j i q 1ďiďN could be such that pσ k i H 1{2 m j i ,κ j i pZ, N qq 1ďiďN are the first N eigenvalues of the operator D DKS 0 pZ ´N q. Thus,

σ H 1{2 ,i pZ, N q ď λ k i ,m j i ,κ j i ď σ i H 1{2 pZ, N q.
Now, we consider the assumption N ď N ˚pZ, N q " maxtk P Z `; σ k H 1{2 pZ, N q ď 1 ´Cex pN qu. We follow the idea of the proof of Theorem III.3 in [START_REF] Lions | Solutions of hartree-fock equations for coulomb systems[END_REF]. In this case, we approximate Z by Z ` . Thus, as σ k H 1{2 pZ ` , N q ă σ k H 1{2 pZ, N q, we know N ď N ˚pZ ` , N q " maxtk P Z `; σ k H 1{2 pZ ` , N q ă 1´C ex pN qu. Let pu 1 , λ 1 , ¨¨¨, u N , λ N q be the solution set. Then we have u i á u i in H 1{2 . If ř }u i } 2 L 2 :" N 1 ă N , then the limit operator has at least N eigenvalues since σ k H 1{2 pZ, N 1 q ă σ k H 1{2 pZ, N q ď 1 ´Cex pN q. In particular, λ i Ñ λ i ă 1 ´Cex pN q. By virtue of Lemma 5.3 we deduce the strong convergence of u i to u i in L 2 reaching a contradiction. Therefore, u i Ñ u i strongly in L 2 . This ends the proof of Theorem 2.6.

Existence of minimizers

Proof of Theorem 2.8. From now on, we can prove the existence of minimizers. The following theorem is inspired by the work [HS07]: Theorem 6.1. Under the Assumptions 2.2 and 2.3 and with the same assumption as in Theorem 2.8, there is a constant ν ă σ H 1{2 ,ess pZ, N q, such that E DKS pZ, N q " inftE DKS pZqpγq, γ P Γ ps,Z,N,ν u with Γ ps,Z,N,ν :" tγ P Γ ps,Z,N ; γ "

N ÿ k"1 |u k u k | , D DKS ρ pZqu k " ν k u k with 0 ă ν 1 ď ¨¨¨ď ν N ă νu.
Proof. Under the assumption (2.6), obviously there is a constant ν ă σ H 1{2 ,ess pZ, N q, such that E DKS pZ, N q ă p1 ´τ qp N ´1 ÿ k"1 σ H 1{2 ,k pZ, N q `νq.

By the definition of Γ ps,Z,N , there are at least N eigenfunctions for the operator D DKS ργ pZq if γ P Γ ps,Z,N . Thus the contradiction can be constructed. We assume otherwise that γ 1 " ř N k"1 |u k u k | minimizes E DKS pZqpγq in Γ ps,Z,N and there is a constant 1 ď l ď N , such that for k ě l, D DKS ρ pZqu l " ν l u l with ν ď ν k . Now, by Lemma 3.2, we know

E DKS pZqpγ 1 q ěp1 ´τ q Tr L 2 D DKS ρ 1 pZ, N qγ 1 "p1 ´τ q l´1 ÿ k"1 ν k `p1 ´τ q N ÿ k"l ν k .
By Lemma 2.4 again, we know

ν k ě σ H 1{2 ,k pZ, N q.
Hence, E DKS pZqpγ 1 q ě p1 ´τ qp

N ´1 ÿ k"1 σ H 1{2 ,k pZ, N q `νq ą E DKS pZ, N q.
This is a contradiction. This ends the proof. By Lemma 3.2, we know that pu n,k q ně1 is uniformly bounded in H 1{2 from above, and h 0 ď ν n,k ă ν. Thus, we have that up to a subsequence, there is a γ ˚:" ř N k"1 |u k u k | such that pν n,k q 1ďkďN Ý ÝÝ Ñ nÑ8 pν k q 1ďkďN P rh 0 , νs, and ν k ď ν l if k ď l, and pu n,k q 1ďkďN á nÑ8 pu k q 1ďkďN in H 1{2 , (6.1) as well as pu n,k q 1ďkďN Ý ÝÝ Ñ nÑ8 pu k q 1ďkďN in L 2 loc . (6.2) Lemma 6.2. For all 1 ď k ď N , up to a subsequence u n,k Ñ u k strongly in H 1{2 .

Proof. Arguing as in the proof of Lemma 5.3, we know that up to a subsequence }u n,k ´uk } L 2 Ñ 0, thus }ρ γn ´ργ˚}L 1 Ñ 0. ďp1 ´κq ´2C g,3 C 2 ex p}ρ ´ρn } L 1 q}|D 0 | ´1{2 u n,k } L 2 . Consequently, by equations (5.6) and (5.8), we know }u n,k ´uk } H 1{2 Ñ 0. Now, we have proved that γ ˚P Γ ps,Z,N . The existence of minimizers will be proved if we show E ex pρ γn q Ñ E ex pρ γ˚q .

Given }ρ γ˚`t pρ γn ´ργ˚q } L 1 ď p1 ´tq}ρ γ˚}L 1 `t}ρ γn } L 1 " N, using again the equation (3.1), we yield |E ex pρ γn q ´Eex pρ γ˚q | " ˇˇˇż 1 0 g 1 pρ γ˚`t pρ γn ´ργ˚q q, ρ γn ´ργ˚ dt ˇˇď Finally, we proved E DKS pZqpγ ˚q " lim nÑ8 E DKS pZqpγ n q ": E DKS pZ, N q.

The conclusion follows.

Now we are going to check whether we could bind one electron (N " 1) in our theory for some proper nuclear charges Z. For simplicity, we only consider the reduced Dirac-Fock model which means E xc pρq " 0 for the Dirac-Kohn-Sham model. In this case, σ H 1{2 ,1 pZ, N q " σ 1 pD 0 ´αZ |x| q " `1 ´α2 Z 2 ˘1{2 , σ 1 H 1{2 pZ, N q " σ 1 pD 0 ´αpZ ´1q |x| q " `1 ´α2 pZ ´1q 2 ˘1{2 and τ " απ 4 ´2απpZ `1q .

We are going to check the inequality: p1 ´α2 pZ ´1q 2 q 1{2 ˆ1 `απ 4 ´2απpZ `1q ˙ă 1 ´απ 4 ´2απpZ `1q

After simple calculation, this inequality holds for 26 ď Z ď 81.

D 0

 0 ´αZ |x| ´Cex pN q|D 0 | "p1 ´Cex pN qqΛ `|D 0 |Λ ``αZ |x| ´p1 `Cex pN qqΛ ´|D 0 |Λ ďp1 ´Cex pN qqΛ `|D 0 |Λ ``αZ |x| ´p1 ´Cex pN qqΛ ´|D 0 |Λ "p1

  pZq, i q dz}pD DKS ρn pZq ´zq ´1pg 1 pρq ´g1 pρ n qqpD DKS ρ pZq ´zq ´1} BpL 2 m j i ,κ j i q .

For

  any minimizing sequence γ n :" ř N k"1 |u n,k u n,k | P Γ ps,Z,N,ν , we have D DKS ργ n pZqu n,k " ν n,k u n,k .

|g 1 }|D 0 |

 10 pρ γ˚`t pρ γn ´ργ˚q q||u n,k ´uk |, |u n,k `uk | ďC ex pN q 1{2 pu n,k ´uk q} L 2 }|D 0 | 1{2 pu n,k `uk q} L 2 Ñ0.

  Now, we are going to prove that u n,k Ñ u k in H 1{2 . Indeed, we have}u n,k ´uk } H 1{2 "}ν n,k pD DKS ργ n pZqq ´1u n,k ´νk pD DKS ργ ˚pZ qq ´1u k } H 1{2 ďC|ν k ´νn,k | `νk }ppD DKS ργ n pZqq ´1 ´pD DKS ργ ˚pZ qq ´1qu n,k } H 1{2 `νk }pD DKS ργ ˚pZ qq ´1pu n,k ´uk q} H 1{2 ďC|ν k ´νn,k | `νk }pD DKS ργ n pZq ´1V ργ n ´ργ ˚pD DKS ργ ˚pZ qq ´1qu n,k } H 1{2 `νk }pD DKS ργ n pZqq ´1pg 1 pρ γn q ´g1 pρ γ˚q qpD DKS ργ ˚pZ qq ´1u n,k } H 1{2 `νk p1 ´κq ´1}|D 0 | ´1{2 pu n,k ´uk q} L 2 .Similar to the estimates (5.9) and (5.10), we have}|D 0 | 1{2 pD DKS ργ n pZqq ´1V ργ n ´ργ ˚pD DKS ργ ˚pZ qq ´1u n,k } L 2 ď π 2 }ρ γn ´ργ˚}L 1 }|D 0 | 1{2 pD DKS ργ n pZqq ´1|D 0 | 1{2 } BpL 2 q }|D 0 | 1{2 pD DKS ργ ˚pZ qq ´1u n,k } L 2 ďp1 ´κq ´2 π 2 }ρ γn ´ργ˚}L 1 }|D 0 | ´1{2 u n,k } L 2 ,and }pD DKS ργ n pZqq ´1pg 1 pρ γ˚q ´g1 pρ γn qqpD DKS

ρ pZqq ´1u n,k } L 2

A Inequality

We are going to prove the following inequality:

Proof. Let h " γ 1 ´γ2 , then ρ h pxq " hpx, xq " γ 1 px, xq ´γ2 px, xq " ρ γ 1 pxq ´ργ 2 pxq.

Thus, we only need to consider the problem

As γ 1 , γ 2 P X is self-adjoint, thus h is self-adjoint, with ´1L 2 ď h ď 1 L 2 . Now, we have a complete set of eigenfunctions pu n q ně1 of h in L 2 corresponding to a sequence of eigenvalues λ n with |λ n | non-decreasing, such that h "

Thus, we have

B More about the energy criteria (2.6)

In this part, we would like to explain more about the energy criteria.

then the energy criteria (2.6) holds.

Proof. By Lemma 3.2 and Theorem 2.6, we obtain

On the other hand, by Lemma 4.1, we know σ H 1{2 ,ess " 1 ´Cex pN q, thus the energy criteria holds if

σ k H 1{2 pZ, N q ă p1 ´τ q

σ H 1{2 ,k pZ, N q `1 ´Cex pN q.

This ends the proof.