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Convergence to a self similar solution of a one-dimensional one-phase Stefan Problem
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We revisit the one-dimensional one-phase Stefan problem with a Dirichlet boundary condition at x = 0 as stated in the book of Avner Friedman about parabolic equations [F3]. We prove that under rather general hypotheses on the initial data, the solution converges to a self-similar profile as t → +∞.

Introduction

In this article, we revisit a standard one-dimensional one-phase Stefan problem. This free boundary problem arises in very simple physical situations and has been studied by numerous authors; in particular we should mention a chapter of the book of Avner Friedman on parabolic equations (Chapter 8 of [F3, p.215]). This problem is given by

                       u t = u xx ,
t > 0, 0 < x < s(t), u(0, t) = h, t > 0, u(s(t), t) = 0, t > 0, ds(t) dt = -u x (s(t), t), t > 0, s(0) = b 0 , u(x, 0) = u 0 (x), 0 < x < b 0

(1.1) where x = s(t) is the unknown free boundary which is to be found together with u(x, t).

Friedman [F3] proves that this problem has a unique smooth classical solution u(x, t), s(t) in Q := {(x, t), t > 0, 0 < x < s(t)}. Moreover it follows from Schaeffer [S] and Friedman [F1] that s ∈ C ∞ (0, ∞) and that u is infinitely differentiable up to the free boundary s.

The purpose of this paper is to study the large time behavior of the solution pair (u, s). Also let us mention some previous results from literature. Meirmanov [M] has proved that s(t)

√ t → a,
where a is the unique solution of the nonlinear equation (1.3) below. Also, Ricci and Xie [R] have performed a stability analysis of some special solutions of a related one-phase Stefan problem on the semi-infinite interval (s(t), ∞). In particular, they mention that the interface s(t) behaves as β √ t for some positive constant β which they characterize. Moreover, Aiki and Muntean [START_REF] Aiki | A free-boundary problem for concrete carbonation: Front nucleation and rigorous justification of the √ t-law of propagation[END_REF][START_REF] Aiki | Large-time asymptotics of moving-reaction interfaces involving nonlinear Henry's law and time-dependent Dirichlet data[END_REF], as mentioned in [Z], have proved the existence of two positive constants c and C independent of t such that c √ t s(t) C √ t + 1 for all t 0, in the case of a more complicated system.

In this article, we will prove that the solution pair (u, s) converges to a self-similar solution as t → ∞.

First, let us define the self-similar solution. To do so, we introduce the self-similar variable η = x √ t + 1 . Then, the self-similar solution is given by where a is characterized as the unique solution of the nonlinear equation

u(x, t) = U x √ t + 1 = U (η) = h 1 - η 0 e -s
h = a 2 e a 2 4
a 0 e -s 2 4 ds.

(1.3)

In the first step, we will write the problem (1.1) in terms of η and t. To do so, we set

   V (η, t) = u(x, t), a(t) = s(t) √ t + 1 . (1.4)
However, the partial differential equation for V which we obtain explicitly involves the time variable t. It is given by (t + 1)V t = V ηη + η 2 V η , t > 0, 0 < η < a(t).

(1.5)

This leads us to perform the change of time variable τ = ln(t + 1). A similar change of variables was performed by [HH]. The full time evolution problem corresponding to the system (1.1) in coordinates η and τ is given by

                       W τ = W ηη + η 2 W η , τ > 0, 0 < η < b(τ ), W (0, τ ) = h, τ > 0, W (b(τ ), τ ) = 0, τ > 0, db(τ ) dτ + b(τ ) 2 = -W η (b(τ ), τ ), τ > 0, b(0) = b 0 , W (η, 0) = u 0 (η), 0 < η < b 0 (1.6)
where b(τ ) = a(t). We shall denote by (W (η, τ, (u 0 , b 0 )), b(τ, (u 0 , b 0 ))) the solution pair of (1.6) with the initial conditions (u 0 , b 0 ). It is in the coordinates η and τ that we will rigorously characterize the large time behavior of the solution pair (W, b). However, for technical reasons, we sometimes have to use different variables, namely (y, τ ) with y = η b(τ ) for all 0 < η < b(τ ). The problem is then transformed into a problem on a fixed domain.

Organization of the paper. In Section 2, we introduce the Stefan problem [F2] and recall known well-posedness and regularity results [F1, S]. Using a maximum principle [F3], we show that if u 0 is nonnegative and bounded then the solution u is also nonnegative and bounded.

In Section 3, we start by defining a notion of upper and lower solutions for Problem (1.1). Then, we prove a comparison principle in the (x, t) coordinates for a pair of upper and lower solutions of Problem (1.1).

In Section 4, we construct the self-similar solution (U, a). We will show that U is as given by (1.2) and a is characterized as the unique solution of the nonlinear equation (1.3).

In Section 5, we transform Problem (1.1) in coordinates (x, t) to obtain an equivalent problem, Problem (1.6), in coordinates (η, τ ) where the solution pair becomes (W, b). We present an equivalent comparison principle in these coordinates and a class of functions which include both the lower and upper-solutions. We use the notation ( W, b) for the upper-solution, respectively ( Wλ , bλ ) for the lower-solution depending on a parameter λ 0, and we construct a function (W λ , b λ ) such that (W λ , b λ ) is an upper solution if 0 λ 1, a lower solution if λ 1.

(1.7)

Then, we prove the monotonicity in time of the solution pair (W, b) of the time evolution Problem (1.6) with the two initial conditions ( W, b) and ( Wλ , bλ ). In other words, we show that starting from a lower solution, the solution W (η, τ ) := W η, τ, ( Wλ , bλ ) increases in time as τ → ∞ to a limit function ψ and the corresponding moving boundary b(τ ) := b τ, ( Wλ , bλ ) increases to a limit b∞ .

Similarly, one can show that starting from an upper solution, the solution decreases to another limit function φ as τ → ∞ and the moving boundary b converges to a limit b∞ .

At the end of this section, we discuss some properties of upper and lower solutions to conclude that they are ordered functions. However, we do not know yet whether ψ and φ coincide with the self-similar profile U and whether b∞ and b∞ coincide with the point a. In order to prove these results we first have to show extra a priori estimates which we do in the following section.

In Section 6, we prove a number of a priori estimates some in the moving domain and some in the fixed domain. Indeed, we temporarily pass to fixed domain (y, τ ) ∈ (0, 1) × R + to avoid technical problems related to the characterization of the limits b∞ and b∞ . In other words, we need to show that Wη ( b(τ ), τ ) converges to ψ η ( b∞ ) as τ → ∞. This requests to prove the uniform convergence of Wη (η, τ ) to its limit as τ → ∞ which we can more easily do in the fix domain coordinates. Section 7 is devoted to the study of the limits as τ → ∞. More precisely, we prove that (ψ, b∞ ) verifies the following conditions

ψ(0) = h, ψ( b∞ ) = 0, b∞ 2 = -ψ η ( b∞ ).
and ψ satisfies the ordinary differential equation

ψ ηη + η 2 ψ η = 0.
Similarly, it turns out that W η, τ, ( W, b) , b τ, ( W, b) converges as τ → ∞ towards the unique solution (φ, b∞ ) of the stationary problem corresponding to Problem (1.6). At the end of Section 7, we show that the solution pair (ψ, b∞ ) coincides with the unique solution (U, a) of Problem (4.4) which coincides also with the solution pair (φ, b∞ ).

Next, we present the results of some numerical simulations. We choose the initial data (u 0 , b 0 ) such that bλ b 0 b and Wλ u 0 W. Figure 1 shows the large behavior of the solution pair (V, a) defined in (1.4).
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Upper-solution for = 0 Lower-solution for = 11000 self-similar solution U( ) To state an exact formulation of the results of this article, it is most convenient to use the variable y lying in [0, 1]. In the variables (y, η), the problem for Ŵ (y, τ ), b(τ

initial data u 0 V( , t = 0.01) V( , t = 0.07) V( , t = 1.11) V( , t = 11.13) V( , t = 94.31) ( 
) = W (η, τ ), b(τ ) is given by                            Ŵτ (y, τ ) = 1 b 2 (τ ) Ŵyy (y, τ ) + y d ln b(τ ) dτ + 1 2 Ŵy (y, τ ), τ > 0, 0 < y < 1, Ŵ (0, τ ) = h, τ > 0, Ŵ (1, τ ) = 0, τ > 0, 1 2 db 2 (τ ) dτ + b 2 (τ ) 2 = -Ŵy (1, τ ), τ > 0, b(0) = b 0 , Ŵ (y, 0) = u 0 (b 0 y), 0 y 1.
(1.8)

The main result of this article is the following. We suppose that the initial data (u 0 , b 0 ) satisfies the hypothesis:

H 0 : b 0 b and u 0 ∈ W 1,∞ (0, b 0 ) with u 0 (0) = h and u 0 (x) = 0 for all x b 0 , 0 u 0 (x) h 1 - x √ 2h for all 0 x b 0 . Main Theorem 1.1. Suppose that (u 0 , b 0 ) satisfies the hypothesis H 0 . The unique solution ( Ŵ, b) of Problem (1.8) is such that lim τ →+∞ || Ŵ (., τ ) -Û || C([0,1]) = 0, (1.9) lim τ →+∞ b(τ ) = a, (1.10)
where ( Û, a) is the unique solution of the stationary problem

         1 a 2 Ûyy + y 2 Ûy = 0, 0 < y < 1, Û (0) = h, Û (1) = 0, a 2 2 = -Ûy (1) (1.11)
which is equivalent to the stationary problem corresponding to Problem (1.6)

       U ηη + η 2 U η = 0, 0 < η < a, U (0) = h, U (a) = 0, a 2 = -U η (a),
(1.12)

for the self-similar solution of Problem (1.1).

Remark 1.2. (1.10) is equivalent to the convergence result (1.13) which was already proved by Meirmanov [M].

s(t) √ t + 1 → a as t → +∞,

Friedman's formulation

Let h > 0, b > 0. We define the function space

X h (b) := {u 0 (x) ∈ C[0, ∞), u 0 (0) = h, u 0 (x) 0 for 0 x < b, u 0 (x) = 0 for x b}.
and we consider the problem

                       u t = u xx , t > 0, 0 < x < s(t), u(0, t) = h, t > 0, u(s(t), t) = 0, t > 0, ds(t) dt = -u x (s(t), t), t > 0, s(0) = b 0 , u(x, 0) = u 0 (x) ∈ X h (b 0 ).
(2.1) Problem (2.1) is a free boundary problem where x = s(t) is the free boundary to be found together with the unknown function u(x, t).

Definition 2.1. Let T > 0. We say that the pair (u, s) is a classical solution of Problem (2.1) if

(i) s(t) is continuously differentiable for 0 t T ; (ii) u ∈ C(Q T ), where Q T := {(x, t), t ∈ (0, T ], 0 < x < s(t)}; (iii) u ∈ C 2,1 (Q T ); (iv) u x ∈ C(Q δ T ) for all δ > 0 where Q δ T = {(x, t), t ∈ (δ, T ], 0 < x < s(t)};
(v) the equations of Problem (2.1) are satisfied.

Let (u(x, t), s(t)) be a solution of (2.1) for all 0 t T . We extend u by: u(x, t) = 0 for x s(t), (2.2) so that u(•, t) is defined for all x 0.

Theorem 2.2 ([F2, Theorem 1]). Let h > 0, b > 0 and u 0 ∈ X h (b).
Then, there exists a unique solution (u(x, t), s(t)) of (2.1) for all t > 0 in the classical sense. Moreover, the solution (u, s) is such that s is infinitely differentiable on (0, ∞) and u is infinitely differentiable up to the free boundary for all t > 0 [F1], [S]. Furthermore, the function s(t) is strictly increasing in t.

Proposition 2.3. Let h > 0, b > 0 and u 0 ∈ X h (b) such that 0 u 0 h. Then, the solution (u(x, t), s(t)) of (2.1) is such that 0 u(x, t) h for all (x, t) ∈ Q T .

Proof. We apply the strong maximum principle (Theorem 1 of [F3, p.34]) which states that if u attains its minimum or its maximum in an interior point (x 0 , t 0 ) ∈ Q T , then u is constant in Q t 0 . However, since u(0, t) = h > 0 for t ∈ (0, T ] and u s(t), t = 0, u(., t) cannot be constant in space on 0, s(t) , so that u attains its minimum and its maximum on the boundary Γ := {(0, t), 0 t T } ∪ {(x, 0), 0 < x < b} ∪ {(s(t), t), 0 t T }. As 0 u 0 h, we conclude that 0 u(x, t) h for all (x, t) ∈ Q T .

Comparison principle

To begin with, we define a notion of lower and upper solutions. In particular, u 1 (x, t) < u 2 (x, t) for 0 < x s 1 (t) and t > 0.

Definition 3.1. For u ∈ C(Q T ) ∩ C 2,1 (Q T ), we define L(u) := u t -u xx . ( ū, s) is a lower solution of the Problem (2.1) if it satisfies                  L( ū) = ūt -ūxx 0 in Q T , ū(0, t) h, ū( s(t), t) = 0, t > 0, d s(t) dt = -ūx ( s(t), t), t > 0, s(0) b 0 , ū(x, 0) u 0 (x), x ∈ (0, b 0 ). ( 3 
Before proving Theorem 3.2, we first show the following result.

Lemma 3.3. Any upper solution (ū, s) of Problem (2.1) is such that ū > 0 in Q T .
Proof. We first perform the change of function ū(x, t) = v(x, t)e λt where λ is a strictly positive constant. The function v, as is easily seen, satisfies the inequality

(v t -vxx + λv)e λt 0 in Q T , for all λ > 0, so that vt -(v xx -λv) 0 in Q T , for all λ > 0.
Now, we prove that v 0 in Q T . Indeed, it follows from the weak maximum principle (Lemma 1 of [F3, p.34]) that v cannot have a negative minimum in Q T . Then, v attains its minimum on the boundary Γ := {(0, t), 0 t T } ∪ {(x, 0), 0 < x < b 0 } ∪ {(s(t), t), 0 t T }; since v 0 on Γ, it follows that v 0 in Q T which implies that ū 0 in Q T .

Next, we apply the strong maximum principle (Theorem 1 of [F3, p.34]) which states that if v attains its negative minimum at an interior point (x, t) ∈ Q T , then v is constant in Qt. However, since v(0, t) he -λt > 0 for t ∈ (0, T ], we have reached a contradiction, so that we conclude that v > 0 in Q T . Then, we conclude that ū > 0 in Q T .

Proof of Theorem 3.2. Suppose that there exists t 0 > 0 such that s 1 (t) < s 2 (t) for 0 t < t 0 and s 1 (t 0 ) = s 2 (t 0 ).

(3.2) Let x 0 := s 1 (t 0 ). Since s 1 (t) < s 2 (t) for 0 t < t 0 , we see that

s 1 (t 0 ) s 2 (t 0 ). (3.3) Let D := {(x, t)| 0 < t t 0 , 0 < x < s 1 (t)} and Γ := {(0, t)| 0 t t 0 } ∪ {(x, 0)| 0 < x < b 1 } ∪ {(s 1 (t), t)| 0 t t 0 }.
We introduce w(x, t) := u 2 (x, t) -u 1 (x, t). We shall prove that w > 0 in D. Indeed, w t -w xx 0 in D, it follows from the weak maximum principle that w 0 in D. Then, we remark that w(s 1 (t), t) = u 2 (s 1 (t), t) and according to Lemma 3.3 we have u 2 (s 1 (t), t) > 0 , so that we deduce from the strong maximum principle that w > 0 in D.

Let ξ > 0, a := ξ -2 , ϕ(x, t) := e -a(x-x 0 +ξ) 2 +a(t-t 0 ) -e -aξ 2 (3.4) and ρ(x) := (x -x 0 + ξ) 2 -ξ 2 + t 0 .

(3.5)

Let δ > 0 be small (to be chosen later). We define

D(δ) := {(x, t)| x 0 -δ < x < x 0 , ρ(x) < t < t 0 }.
Next we show that there exist a small ξ > 0 and a small δ 1 > 0 such that D(δ 1 ) ⊂ D, indeed since 0 < s 1 (t 0 ) < ∞ and there exists a small ξ > 0 such that

s 1 (t 0 ) < dρ -1 (t) dt t=t 0 = 1 ρ (x 0 ) = 1 2ξ . It follows that if ξ < 1 2s 1 (t 0 ) then D(δ 1 ) ⊂ D. Indeed, suppose that ρ(x) := (x -x 0 + ξ) 2 -ξ 2 + t 0 = t. Then dρ -1 (t) dt = 1 ρ (ρ -1 (t)) = 1 ρ (x)
,

where ρ -1 (t) is the inverse function of ρ(x) near x = x 0 and ρ (x) = 2(x -x 0 + ξ) which implies that ρ (x 0 ) = 2ξ. By direct calculation, we shall prove that

ϕ t (x 0 , t 0 ) -ϕ xx (x 0 , t 0 ) = -e -1 ξ -2 < 0. (3.6)
Indeed, from (3.4) we deduce that ϕ t (x, t) = ae -a(x-x 0 +ξ) 2 +a(t-t 0 ) = aϕ(x, t) + ae -aξ 2 .

We remark that since ϕ(x 0 , t 0 ) = 0, it follows that ϕ t (x 0 , t 0 ) = ae -aξ 2 = ξ -2 e -1 . Next, we compute the space derivatives of ϕ :

ϕ x (x, t) = -2a(x -x 0 + ξ)e -a(x-x 0 +ξ) 2 +a(t-t 0 ) , ϕ xx (x, t) = -2ae -a(x-x 0 +ξ) 2 +a(t-t 0 ) + 4a 2 (x -x 0 + ξ) 2 e -a(x-x 0 +ξ) 2 +a(t-t 0 ) .
Thus, ϕ xx (x 0 , t 0 ) = -2ae -aξ 2 + 4a 2 ξ 2 e -aξ 2 and since a = ξ -2 , we have,

ϕ xx (x 0 , t 0 ) = -2ξ -2 e -1 + 4ξ -2 e -1 = 2ξ -2 e -1 ,
which implies (3.6).

Since ϕ is smooth, and since ϕ satisfies (3.6), there exists a neighborhood U of (x 0 , t 0 ) such that ϕ t -ϕ xx < 0 in U . We choose δ 2 ∈ (0, δ 1 ) such that D(δ 2 ) ⊂ U .

We define z(x, t) := w(x, t) -εϕ(x, t), where ε > 0 will be chosen later. Then, z t -z xx 0 on D(δ 2 ).

(3.7) Indeed, since w t -w xx 0 in D, ϕ t -ϕ xx < 0 in U and D(δ 2 ) ⊂ U , we have

z t -z xx = w t -εϕ t -w xx + εϕ xx = w t -w xx + ε(ϕ xx -ϕ t ) 0 + ε(ϕ xx -ϕ t ) > 0 in D(δ 2 ). Let γ 0 := {(x, t)| x 0 -δ 2 x x 0 , t = ρ(x)} and γ 1 := {(x, t)| x = x 0 -δ 2 , ρ(x 0 -δ 2 ) t < t 0 }.
In what follows, we use the notation ∂(D(δ 2 )) := γ 0 ∪ γ 1 to denote the parabolic boundary of D(δ 2 ). Next, we show that ϕ = 0 on γ 0 . Indeed t = ρ(x) on γ 0 , we have that ϕ(x, ρ(x)) = e -a(x-x 0 +ξ) 2 +a(x-x 0 +ξ) 2 e -aξ 2 -e -aξ 2 = 0 and thus, ϕ = 0 on γ 0 . Since w ≥ 0 in D and γ 0 ⊂ D, we deduce from the definition of z that z = w 0 on γ 0 .

Since w > 0 on γ 1 , there exists a small ε > 0 such that z 0 on γ 1 . Indeed, w > 0 on D, so, there exists µ > 0 such that w µ in γ 1 . Moreover, from (3.4) we deduce that ϕ(x, t) e -a(x-x 0 +ξ) 2 +a(t-t 0 ) so that ϕ(x, t) 1 and ε ϕ(x, t) ε. Therefore, if

ε µ 2 ,
we have w µ εϕ(x, t)

which implies that z 0 on γ 1 . Using the fact that ∂(D(δ 2 )) = γ 0 ∪ γ 1 and z 0 on ∂(D(δ 2 )), we deduce from the weak maximum principle together with (3.7) that z 0 in D(δ 2 ) and hence w(x, t 0 ) εϕ(x, t 0 ) for x 0 -δ 2 x x 0 . Thus,

z(x, t 0 ) 0 for all x ∈ [x 0 -δ 2 , x 0 ]. (3.8)
Moreover, since (x 0 , t 0 ) both belongs to s 1 and s 2 , it follows that

z(x 0 , t 0 ) = w(x 0 , t 0 ) = u 2 (x 0 , t 0 ) -u 1 (x 0 , t 0 ) = 0. (3.9)
We deduce from (3.8) and (3.9) that z x (x 0 , t 0 ) 0, or else,

w x (x 0 , t 0 ) εϕ x (x 0 , t 0 ) = -2εe -1 ξ -1 < 0,
and hence u 1x (x 0 , t 0 ) > u 2x (x 0 , t 0 ). Because of (3.1), we see that s 1 (t 0 ) < s 2 (t 0 ). This contradicts (3.3). Since we have obtained a contradiction, (3.2) cannot occur. We see that s 1 (t) < s 2 (t) for all t 0. By the weak maximum principle we see that u 1 (x, t) u 2 (x, t) for x 0 and t 0. It follows from the strong maximum principle that u 1 (x, t) < u 2 (x, t) for 0 < x < s 1 (t) and t > 0.

Next we present an extension of Theorem 3.2 for the case that b 1 b 2 .

Corollary 3.4 (Extension of the comparison principle). Let (u 1 (x, t), s 1 (t)) and (u 2 (x, t), s 2 (t)) be respectively lower and upper solutions of (2.1) corresponding respectively to the data (h 1 , u 01 , b 1 ) and (h 2 , u 02 , b 2 ) such that u 01 or u 02 is a nonincreasing function.

If b 1 b 2 , h 1 h 2 and u 01 u 02 , then s 1 (t) s 2 (t) for t 0 and u 1 (x, t) u 2 (x, t) for x 0 and t 0.

Proof. The case where b 1 < b 2 has already been studied. It only remains to study the case "b 1 = b 2 ". We start to suppose that u 01 is nonincreasing. The case where u 02 is nonincreasing will be considered after.

We will construct a lower solution

(u ε , s ε ), 0 < ε < 1, of Problem (2.1) corresponding to the data (h 1 , b 0ε , u 0ε ) such that (b 0ε , u 0ε ) satisfies b 0ε < b 2 and b 0ε → b 1 = b 2 as ε → 1, u 0ε u 02 , (3.10) and    s ε (t) ---→ ε→1 s 1 (t), t 0, u ε (x, t) ---→ ε→1 u 1 (x, t), x 0, t 0. (3.11)
Then, it follows from (3.10) and Theorem 3.2 that

s ε (t) < s 2 (t), t 0, u ε (x, t) u 2 (x, t), x 0, t 0.
(3.12)

Letting ε → 1, we obtain s 1 (t) s 2 (t), t 0, u 1 (x, t) u 2 (x, t), x 0, t 0.

(3.13)

Next, we complete the proof by the construction of a lower solution (u ε , s ε ) which satisfies (3.11) with data (h 1 , u 0ε , b 0ε ) such that (u 0ε , b 0ε ) satisfies (3.10).

Construction of the lower solution (u ε , s ε ). We choose

     s ε (t) = ε . s 1 t ε 2 , t 0, u ε (x, t) = u 1 x ε , t ε 2 , x 0, t 0. (3.14) We first check that (u ε , s ε ) corresponding to the data (h 1 , u 0ε , b 0ε
) is a lower solution of (2.1). Indeed, since u 1 is a lower solution of (2.1), it follows that

L(u ε ) = 1 ε 2 u 1,t x ε , t ε 2 -u 1,xx x ε , t ε 2 0, (3.15) u ε (0, t) = u 1 0, t ε 2 = h 1 h, (3.16) u ε s ε (t), t = u 1 s 1 t ε 2 , t ε 2 = 0, (3.17) ds ε (t) dt = 1 ε d dt s 1 t ε 2 = -1 ε u 1,x s 1 t ε 2 , t ε 2 = -u ε,x (s ε (t), t). (3.18) Next, we choose data (h 1 , u 0ε , b 0ε ) such that (u 0ε , b 0ε ) satisfies (3.10). We set b 0ε := εb 1 . (3.19)
Then, it follows from (3.19) and 0 < ε < 1 that

s ε (0) = εs 1 (0) = εb 1 =: b 0ε < b 1 . (3.20)
Finally, we should check that u ε (x, 0) := u 0ε satisfies the second condition of (3.10). Indeed, we have

u ε (x, 0) = u 1 x ε , 0 = u 01 x ε . (3.21)
Since u 01 is a nonincreasing function and 0 < ε < 1, it follows that

u 01 x ε u 01 (x) for x 0. (3.22)
We deduce from (3.22) that

u ε (x, 0) := u 0ε (x) = u 01 x ε u 01 (x) u 02 (x) for x 0. (3.23) Therefore,(u ε , s ε ) satisfies (3.15)-(3.18) and corresponds to data (h 1 , u 0ε , b 0ε ) such that (u 0ε , b 0ε ) satisfies (3.10
). Thus, it is a lower solution of (2.1). Now, we consider the case where the function u 02 is nonincreasing. We can proceed exactly as before by considering the upper solution (u ε , s ε ) of Problem (2.1) with ε > 1, given by

     s ε (t) = ε . s 2 t ε 2 , t 0, u ε (x, t) = u 2 x ε , t ε 2 , x 0, t 0.
(3.24)

The corresponding initial datum b 0ε = s ε (0) and

u 0ε = u ε (x, 0) verify b 1 < b 0ε and b 0ε → b 2 = b 1 as ε → 1, u 01 u 0ε , (3.25) and    s ε (t) ---→ ε→1 s 2 (t), t 0, u ε (x, t) ---→ ε→1 u 2 (x, t), x 0, t 0. (3.26)
Then, the result follows from the use of Theorem 3.2 with (3.25) and letting ε → 1.

Self-similar solution

We now look for a self-similar solution of the problem

             u t = u xx , t > 0, 0 < x < s(t), u(0, t) = h, t > 0, u(s(t), t) = 0, t > 0, ds(t) dt = -u x (s(t), t), t > 0, (4.1) in the form    u(x, t) = U x √ t + 1 , s(t) = a √ t + 1, (4.2)
for some positive constant a still to be determined. We set

η := x √ t + 1 . (4.3)
and deduce that

U ηη + η 2 U η = 0, 0 < η < a, U (0) = h, U (a) = 0. (4.4)
The unique solution of (4.4) is given by

U (η) = h 1 - η 0 e -s 2 4 ds a 0 e -s 2 4 ds
for all η ∈ (0, a). (4.5)

It remains to determine the constant a. We write that We remark that the function a = a(h) is strictly increasing, which in turn implies that the functional h → U is strictly increasing.

s (t) = a 2 √ t + 1 = -u x (s(t), t) = - U η s(t) √ t + 1 √ t + 1 , (4.6 
We conclude that the self-similar solution of Problem (4.1) coincides with the unique solution (U, a) of Problem (1.12).

New coordinates, upper and lower solutions

We set

   V (η, t) = u(x, t), a(t) = s(t) √ t + 1 , (5.1)
and obtain the problem

         (t + 1)V t = V ηη + η 2 V η , t > 0, 0 < η < a(t), V (0, t) = h, V (a(t), t) = 0, t > 0, (t + 1) da(t) dt + a(t) 2 = -V η (a(t), t), t > 0.
(5.2)

Finally we set τ = ln(t + 1).

The equations in the system (5.2) read as

         W τ = W ηη + η 2 W η , τ > 0, 0 < η < b(τ ), W (0, τ ) = h, W (b(τ ), τ ) = 0, τ > 0, db(τ ) dτ + b(τ ) 2 = -W η (b(τ ), τ ), τ > 0, (5.3)
where we have set

V (η, t) = W (η, τ ), a(t) = b(τ ).
Next, we write the full time evolution problem corresponding to the system (5.3). It is given by

                       W τ = W ηη + η 2 W η , τ > 0, 0 < η < b(τ ), W (0, τ ) = h, τ > 0, W (b(τ ), τ ) = 0, τ > 0, db(τ ) dτ + b(τ ) 2 = -W η (b(τ ), τ ), τ > 0, b(0) = b 0 , W (η, 0) = u 0 (η), 0 η b 0 .
(5.4)

Finally, we note that the stationary solution of Problem (5.4) coincides with the unique solution of Problem (1.12), or in other words, the self-similar solution of Problem (1.1).

Definition 5.1. We define the linear operator L(W

) := W τ -W ηη - η 2 W η .
( W, b) is a lower solution of Problem (5.4) if it satisfies:

                   L( W ) = Wτ -Wηη - η 2 Wη 0, τ > 0, 0 < η < b(τ ), W (0, τ ) h, W ( b(τ ), τ ) = 0, τ > 0, d b(τ ) dτ + b(τ ) 2 = -Wη ( b(τ ), τ ), τ > 0, b(0) b 0 , W (η, 0) u 0 (η), 0 η b(0). (5.5) ( W, b
) is an upper solution of the Problem (5.4) if it satisfies Problem (5.5) with all replaced with .

Finally, we deduce from Corollary 3.4 that the following comparison principle holds. Throughout this paper, we will also make use of the explicit notation W η, τ, (u 0 , b 0 ) and b τ, (u 0 , b 0 ) for the solution pair associated with the initial data (u 0 , b 0 ).

Construction of upper and lower solutions

In this section, we construct ordered upper and lower solutions for Problem (5.4). For λ 0, we consider (W λ , b λ ) the unique solution of the problem

         W ηη + λη 2 W η = 0, 0 < η < b, W (0) = h, W (b) = 0, b 2 = -W η (b), (5.6)
which is given by (5.8)

W λ (η) = h 1 - η 0 e -
We can easily show the following properties for (W λ , b λ ).

Lemma 5.3. We have that 0 W λ (η) h for all λ 0 and 0 η b λ , (5.9) W λ,η (η) 0 for all λ 0 and 0 η b λ (5.10) and W λ,ηη (η) 0 for all λ 0 and 0 η b λ .

(5.11)

In particular,

W λ is a linear function if λ = 0, a convex function if λ > 0, (5.12) and b λ = √ 2h if λ = 0, satisfies the equation (5.8) if λ > 0.
(5.13)

Lower solution. We suppose that λ 1, (5.14) then (W λ , b λ ) is a lower solution for Problem (5.4). Indeed, we easily check that W λ satisfies the following property -W λ,ηη -η 2 W λ,η 0 if and only if λ 1.

(5.15)

We define ( Wλ , bλ ) by bλ = b λ and Wλ (η

) := W λ (η) if 0 η bλ , 0 if η > bλ .
(5.16)

The pair ( Wλ , bλ ) is a lower solution for Problem (5.4).

We assume the following condition on the initial data (u 0 , b 0 ): Wλ (η) u 0 (η) for all 0 η b 0 , bλ b 0 .

(5.17)

According to (5.10), Wλ is a nonincreasing function and then, in view of the comparison principle Theorem 5.2, it follows that bλ b τ, (u 0 , b 0 ) and Wλ (η) W η, τ, (u 0 , b 0 ) for all τ 0, η 0.

(5.18)

Upper solution. Now, we suppose that 0 λ 1.

(5.19)

We define ( Wλ , bλ ) by bλ = b λ and Wλ (η

) := W λ (η) if 0 η bλ , 0 if η > bλ .
(5.20)

In view of (5.15), the pair ( Wλ , bλ ) is an upper solution for Problem (5.4). We now suppose that λ = 0 and define the corresponding upper solution by ( W, b) b = √ 2h and W(η

) := W 0 (η) if 0 η b, 0 if η > b, (5.21) where W 0 (η) = h 1 - η √ 2h for all 0 < η < b.
We assume the following condition on the initial data (u 0 , b 0 ): (5.28)

u 0 (η) W ( 
From (5.9), we have that 0 W(η) h.

Then, it follows from Proposition 2.3 that 0 W η, τ, ( W, b) h for all τ 0 and η 0.

(5.29)

Let σ > 0 be fixed. Due to (5.10), W is a nonincreasing function, then we apply Theorem 5.2 for (5. Thus for each η, W η, τ, ( W, b) is nonincreasing in τ and from (5.29), it is bounded from below by zero. Therefore it has a limit φ as τ → ∞.

Also b τ, ( W, b) is nonincreasing in τ and from (5.18) we deduce that it is bounded from below by bλ . Therefore it has a limit b∞ as τ → ∞.

The same reasoning can be applied to prove that W η, τ, ( Wλ , bλ ) and b τ, ( Wλ , bλ ) are nondecreasing in time. Thus for each η, W η, τ, ( Wλ , bλ ) is nondecreasing in τ and it is bounded from above by the constant function h as follows from Proposition 2.3. Therefore it has a limit ψ as τ → ∞. Also, b τ, ( Wλ , bλ ) is nondecreasing in τ and bounded from above by b thanks to (5.23).

Therefore it has a limit b∞ as τ → ∞.

Later we will show that φ and ψ coincide with the unique solution of Problem (1.12). To that purpose, we will derive in the Section 6 estimates for the free boundary Problem (5.4) in both moving and fixed domains.

Properties of a family of upper and lower solutions

In this subsection, we establish some further properties of upper and lower solutions through successive lemmas.

Lemma 5.5. The following properties hold for b λ satisfying (5.8).

(i) b λ is a decreasing function of λ.

(ii) b λ → 0 as λ → +∞.

Proof. We start to prove (i). We define F as the function given by

F(λ, b λ ) = b λ 2 b λ 0 e λ(b 2 λ -s 2 ) 4 ds -h (5.30)
and consider the equation F(λ, b λ ) = 0. We compute the differential of F through partial derivatives given by dF = ∂F ∂λ dλ + ∂F ∂b λ db λ .

(5.31)

From (5.30), it follows that

∂F ∂λ = b λ 2 b λ 0 (b 2 λ -s 2 ) 4 e λ(b 2 λ -s 2 ) 4
ds > 0 for all b λ > 0, (5.32)

and

∂F ∂b λ = 1 2 b λ 0 e λ(b 2 λ -s 2 ) 4 ds + b λ 2 1 + b λ 0 2b λ λ 4 e λ(b 2 λ -s 2 ) 4
ds > 0 for all b λ > 0.

(5.33)

Since F(λ, b λ ) = 0, it follows from (5.31) that

∂F(λ, b λ ) ∂λ dλ + ∂F(λ, b λ ) ∂b λ db λ = 0.
(5.34) Thus, since ∂F ∂b λ = 0, it follows from (5.32),(5.33) and (5.34) that

db λ dλ = - ∂F(λ, b λ ) ∂λ ∂F(λ, b λ ) ∂b λ < 0, (5.35) 
which completes the proof of (i).

Now, we turn to the proof of (ii). For λ 0, we have b λ > 0 and b λ is a decreasing function of λ. Hence, there exists α 0 such that b λ → α as λ → +∞ and b λ α for all λ 0. We shall prove that α = 0. This fact mainly relies on the following inequality which will be proved later on. Let a 0. For λ 0 large enough, the following inequality holds: (5.37)

For λ large enough we infer from the estimate (5.36) that

h α 2 2 (1 + λ 4 α 2 ).
(5.38)

Letting λ → +∞ in (5.38), we see that we necessarily have α = 0. It remains to prove that the inequality (5.36) holds for λ large enough. We only have to consider the case where a > 0 since

(5.36) is trivially true for a = 0. Let us introduce f (x) = e -λx 2 4 . We have f (x) = λ 2 ( λ 2 x 2 -1)e -λx 2 4 . We choose λ > 0 large enough to have 0 < 2 λ < a and then

f is convex in [ 2 λ , a]. Therefore, for all x ∈ [ 2 λ , a] we have f (x) g(x) := f (a) + (x -a)f (a) (5.39) that is e -λx 2 4 1 + λ 2 a(a -x) e -λa 2 4 , for all x ∈ [ 2 λ , a].
(5.40)

Next we prove that (5.39) also holds for x ∈ [0, 2 λ ]. Indeed, we have max

x∈[0, 2 λ ] g(x) = g(0) = (1 + λ 2 a 2 )e -λa 2 4 and min x∈[0, 2 λ ] f (x) = f ( 2 λ ) = e -1 2 .
Since g(0) → 0 as λ → +∞, we get, for λ large enough max

[0, 2 λ ] g = g(0) ≤ min [0, 2 λ ] f = e -1 2
(5.41) and then

g(x) f (x), for all x ∈ [0, 2 λ ] (5.42)
Combining (5.39) with (5.42) leads to f (x) g(x) for all x ∈ [0, a], that is

e -λx 2 4 1 + λ 2 a(a -x) e -λa 2 4 , for all x ∈ [0, a].
(5.43) Integrating (5.43) over [0, a] leads to the desired inequality (5.36).

Next, we prove the following result.

Lemma 5.6. Let λ 1 and λ 2 be such that λ 1 < λ 2 , then it follows that b λ 1 > b λ 2 , (5.44) and W λ 1 (η) W λ 2 (η) for all 0 η b λ 2 .

(5.45)

Proof. From Lemma 5.5, since λ 1 < λ 2 , it follows that b λ 1 > b λ 2 . Then, (5.44) holds. Next, we show (5.45). To do so, let the pair (W λ i , b λ i ) i∈{1,2} be the unique solution of the problem

   W λ i ,ηη + λ i η 2 W λ i ,η = 0, 0 < η < b λ i W λ i (0) = h, W λ i (b λ i ) = 0.
(5.46)

Then, we recall that for i ∈ {1, 2} the solution pair (W λ i , b λ i ) is given by

W λ i (η) = h 1 - η 0 e -λ i s 2 4 ds b λ i 0 e -λ i s 2 4 ds
for all 0 η b λ i , (5.47) with also

W λ i ,η (η) = -h e -λ i η 2 4 b λ i 0 e -λ i s 2 4 ds
for all 0 η b λ i .

(5.48)

Next, we define the linear operator L(W ) := W ηη + λ 1 η 2 W η for all 0 η b λ 2 . We compute

L(W λ 2 -W λ 1 ) to obtain L(W λ 2 -W λ 1 ) = W λ 2 ,ηη + λ 1 η 2 W λ 2 ,η -W λ 1 ,ηη - λ 1 η 2 W λ 1 ,η for all 0 η b λ 2 .
(5.49)

Then, from (5.46), we have that

W λ 2 ,ηη (η) = - λ 2 η 2 W λ 2 ,η for all 0 η b λ 2 .
(5.50)

We substitute (5.50) in (5.49). Then, since (W λ 1 , b λ 1 ) is a solution of problem (5.46), (5.49) becomes

L(W λ 2 -W λ 1 ) = (λ 1 -λ 2 ) η 2 W λ 2 ,η .
(5.51)

Since λ 1 < λ 2 , by (5.48) and (5.51), we deduce that L(W λ 2 -W λ 1 ) 0 for all 0 η b λ 2 .

(5.52)

Then, from (5.46), since

W λ 2 -W λ 1 (0) = h -h = 0 and W λ 2 -W λ 1 (b λ 2 ) = 0 -W λ 1 (b λ 2 ) < 0,
we deduce from the one-dimensional maximum principle (Theorem 1 of [START_REF] Protter | Maximum principles in differential equations[END_REF]p.2]) that the function W λ 2 -W λ 1 attains its maximum on the boundary. This implies that

W λ 2 (η) -W λ 1 (η) 0 for all 0 η b λ 2 ,
which completes the proof of Lemma 5.6.

The next result ensures that the assumption made in (5.17) on the initial datum is fulfilled for λ large enough.

Lemma 5.7. Let u 0 ∈ X h (b 0 ) ∩ W 1,∞ 0, b 0 and ( Wλ , bλ ) defined by (5.16). There exists λ 1 large enough such that Wλ u 0 in [0, b 0 ] and bλ b 0 .

Proof. According to (5.12), W λ is a convex function. Thus, we have We conclude from (5.27) that bλ b(τ ) b∞ b, then (6.1) holds. Now we prove (6.2). Indeed, we know from (5.9) and (5.16) that 0 Wλ (η) h for all η ∈ (0, b), which by Proposition 2.3 implies that 0 W (η, τ ) := W η, τ, ( Wλ , bλ ) h for all τ 0, 0 η b, so that (6.2) holds.

W λ (η) h b λ (b λ -η)
Next we prove the following result.

Lemma 6.3. Let σ > 0. For all τ > 0, we have that

Wη (•, • + τ ) 2 L 2 (Ωσ,τ ) C(σ), (6.3) 
for some positive constant C(σ) which does not depend on τ and where Ω σ,τ := (η, S); 0 < η < b(S + τ ), S ∈ (0, σ) . (6.4)

Proof. We have Wτ (η, τ ) = Wηη (η, τ ) + η 2 Wη (η, τ ) for all τ > 0 and 0 < η < b(τ ), Then,

W -h τ (η, τ ) W -h (η, τ ) = Wηη (η, τ ) W -h (η, τ ) + η 2 Wη (η, τ ) W -h (η, τ ). (6.5) A direct computations yields d dτ b(τ ) 0 W (η, τ ) -h 2 dη = d b(τ ) dτ W b(τ ), τ -h 2 + 2 b(τ ) 0 W -h τ (η, τ ) W -h (η, τ )dη. Since W b(τ ), τ = 0, we obtain b(τ ) 0 W -h τ (η, τ ) W -h (η, τ )dη = 1 2 d dτ b(τ ) 0 W (η, τ ) -h 2 dη - 1 2 db(τ ) dτ h 2 . (6.6)
Then, we deduce from (6.5) and (6.6) that

b(τ ) 0 Wηη (η, τ ) W -h (η, τ )dη + b(τ ) 0 η 2 Wη (η, τ ) W -h (η, τ )dη = (6.7) 1 2 d dτ b(τ ) 0 W (η, τ ) -h 2 dη - 1 2 db(τ ) dτ h 2 .
Next, we integrate by parts the first term on the left-hand-side of (6. (6.9)

Then, we deduce from (6.7), (6.8) and (6.9) that 1 2

d dτ b(τ ) 0 W (η, τ ) -h 2 dη - 1 2 d b(τ ) dτ h 2 -Wη b(τ ), τ h - b(τ ) 0 | Wη | 2 dη + b 2 h b(τ ) 0 | Wη |dη.
(6.10) Moreover, it follows from Cauchy-Schwarz's and Young's inequalities that

b(τ ) 0 | Wη ||1|dη 1 2ε b(τ ) 0 | Wη | 2 dη + ε 2 b(τ ) 0 |1| 2 dη (6.11) for all ε > 0. Since -Wη b(τ ), τ = d b(τ ) dτ + b(τ ) 2
and in view of (6.11), (6.10) becomes 1 2

d dτ b(τ ) 0 ( W -h) 2 dη- h 2 2 d b(τ ) dτ + b(τ ) 0 | Wη | 2 dη d b(τ ) dτ +b (τ ) 2 h+ b h 4 1 ε b(τ ) 0 | Wη | 2 dη +ε b(τ ) .
(6.12) Let σ > 0; we integrate both sides of the inequality (6.12) on (τ, τ + σ) to obtain 1 2

τ +σ τ d ds b(s) 0 ( W -h) 2 dηds - h 2 2 τ +σ τ d b(s) ds ds + τ +σ τ b(s) 0 | Wη | 2 dηds τ +σ τ d b(s) ds + b(s) 2 h ds + b h 4 τ +σ τ 1 ε b(s) 0 | Wη | 2 dηds + b h ε 4 τ +σ τ b(s)ds.
Then, it follows that

1 2 b(τ +σ) 0 W (η, τ + σ) -h 2 dη - 1 2 b(τ ) 0 W (η, τ ) -h 2 dη - h 2 2 b(τ + σ) -b(τ ) + 1 - b h 4 ε τ +σ τ b(s) 0 | Wη | 2 dηds b(τ + σ) -b(τ ) h + h(2 + ε b) 4 τ +σ τ b(s)ds. For ε = bh 2 , we obtain 1 2 τ +σ τ b(s) 0 | Wη | 2 dηds 1 2 b(τ ) 0 W (η, τ ) -h 2 dη + h + h 2 2 b(τ + σ) -b(τ ) + h(4 + b2 h) 8 τ +σ τ b(s)ds. Since b(τ ) b for all τ > 0 and W (η, τ ) -h h, it follows that τ +σ τ b(s) 0 | Wη | 2 dηds h 2 b + 2h + h 2 b + h(4 + b2 h) 4 σ b.
We conclude that for some positive constant C(σ) which does not depend on τ . This completes the proof of Lemma 6.3.

Next we show the following result.

Lemma 6.4. Let σ > 0. For all τ > 0, we have that Wηη (., . + τ ) (6.15) for some positive constant C(σ) which does not depend on τ .

2 L 2 (Ωσ,τ ) C(σ),
Before proving Lemma 6.4, we will recall the following result.

Lemma 6.5 (The Uniform Gronwall Lemma (Lemma 1.1 of [T, p.89])). Let g and y be two positive locally integrable functions on (0, +∞) such that dy dt is locally integrable on (0, ∞), which satisfy the inequalities dy dt g y for all t 0, (6.16) t+r t g(s)ds a 1 , t+r t y(s)ds a 2 for all t 0, (6.17)

where r, a 1 , a 2 , are positive constants which do not depend in t. Then

y(t + r) a 2 r exp(a 1
), for all t 0. (6.18)

Proof of Lemma 6.4. We define Z(η, τ ) := Wη (η, τ ) for all τ > 0 and 0 < η < b(τ ), (6.19) where W (η, τ ) is defined in Definition 6.1. From Problem (5.4), we have

( Wη ) τ = Wη ηη + η 2 Wη η + Wη 2 , τ > 0, 0 < η < b(τ ),
so that

Z τ = Z ηη + η 2 Z η + Z 2 , τ > 0, 0 < η < b(τ ). (6.20)
Next we show that Z η (0, τ ) = 0 and that Z η b(τ ), τ = Z 2 b(τ ), τ . Indeed, we have that W (0, τ ) τ = (h) τ = 0 and W (0, τ ) τ = Wτ (0, τ ) = ( Wη ) η (0, τ ) + 0 2 Wη (0, τ ). Then We substitute (6.23) in (6.22) to obtain

( Wη ) η b(τ ), τ + b(τ ) 2 Wη b(τ ), τ + d b(τ ) dτ Wη b(τ ), τ = 0, so that Z η b(τ ), τ + b(τ ) 2 Z b(τ ), τ + d b(τ ) dτ Z b(τ ), τ = 0. (6.24) Since d b(τ ) dτ + b(τ ) 2 = -Wη b(τ ), τ = -Z b(τ ), τ then (6.24) becomes Z η b(τ ), τ = Z 2 b(τ ), τ . (6.25)
Therefore, from (6.20), (6.21) and (6.25), the time evolution Problem (5.4) leads to (6.26) where Wλ,η (η) = -h e -λη 2 4 bλ 0 e -λs 2 4 ds with λ 1. We consider the function F defined by

                         Z τ = Z ηη + η 2 Z η + Z 2 , τ > 0, 0 < η < b(τ ), Z η (0, τ ) = 0, τ > 0, Z η ( b(τ ), τ ) = Z 2 b(τ ), τ , τ > 0, d b(τ ) dτ + b(τ ) 2 = -Z( b(τ ), τ ), τ > 0, b(0) = b, Z(η, 0) = Wλ,η (η), 0 η bλ ,
F (τ ) = b(τ ) 0 Z 2 (η, τ ) dη. (6.27) Then, we compute dF (τ ) dτ = d b(τ ) dτ Z 2 ( b(τ ), τ ) + 2 b(τ ) 0 Z τ (η, τ )Z(η, τ ) dη, so that b(τ ) 0 Z τ (η, τ )Z(η, τ ) dη = 1 2 d dτ b(τ ) 0 Z 2 (η, τ ) dη - 1 2 d b(τ ) dτ Z 2 ( b(τ ), τ ). (6.28)
We multiply (6.20) by Z and integrate in space between 0 en b(τ ) to obtain

b(τ ) 0 Z τ (η, τ )Z(η, τ ) dη = b(τ ) 0 Z ηη (η, τ )Z(η, τ ) dη + b(τ ) 0 η 2 Z η (η, τ )Z(η, τ ) dη + b(τ ) 0 Z 2 (η, τ ) 2 dη.
(6.29) We integrate by parts the first term on the right-hand-side of (6.29) and using Z η (0, τ ) = 0 and

Z η ( b(τ ), τ ) = Z 2 b(τ ), τ , we deduce that b(τ ) 0 Z ηη (η, τ )Z(η, τ ) dη = Z 3 b(τ ), τ - b(τ ) 0 Z η (η, τ ) 2 dη. (6.30) Next, since 0 η b, it follows that b(τ ) 0 η 2 Z η (η, τ )Z(η, τ ) dη b 2 b(τ ) 0 Z η (η, τ ) Z(η, τ ) dη. (6.31)
Using the Cauchy-Schwarz inequality with the Young inequality, we obtain that

b(τ ) 0 η 2 Z η (η, τ )Z(η, τ ) dη b 4ε b(τ ) 0 |Z η (η, τ )| 2 dη + bε 4 b(τ ) 0 |Z(η, τ )| 2 dη (6.32)
for all ε > 0. Next, combining (6.28), (6.29), (6.30) and (6.32) we deduce that 1 2

d dτ b(τ ) 0 Z 2 (η, τ ) dη - 1 2 d b(τ ) dτ Z 2 ( b(τ ), τ ) (6.33) Z 3 b(τ ), τ - b(τ ) 0 Z η (η, τ ) 2 dη + b 4ε b(τ ) 0 |Z η (η, τ )| 2 dη + bε 4 b(τ ) 0 |Z(η, τ )| 2 dη + b(τ ) 0 Z 2 (η, τ ) 2 dη. Since d b(τ ) dτ + b(τ ) 2 = -Z( b(τ ), τ ), then -1 2 d b(τ ) dτ Z 2 ( b(τ ), τ ) = 1 2 Z 3 ( b(τ ), τ ) + b(τ ) 4 Z 2 ( b(τ ), τ ).
So, (6.33) becomes 1 2

d dτ b(τ ) 0 Z 2 (η, τ ) dη + 4ε - b 4ε b(τ ) 0 |Z η (η, τ )| 2 dη (6.34) 1 2 Z 3 ( b(τ ), τ ) - b(τ ) 4 Z 2 ( b(τ ), τ ) + bε + 2 4 b(τ ) 0 Z(η, τ ) 2 dη.
From (6.49) below, we have

Z b(τ ), τ = Wη b(τ ), τ 0; setting ε = b 2 then yields 1 2 d dτ b(τ ) 0 Z 2 (η, τ ) dη + 1 2 b(τ ) 0 Z η (η, τ ) 2 dη b2 + 4 8 b(τ ) 0 Z(η, τ ) 2 dη. (6.35)
It follows from (6.35), (6.13) and the uniform Gronwall Lemma 6.5 that there exists some positive constant C(σ) which does not depend on τ such that b(τ +σ) 0 Z 2 (η, τ + σ) dη C(σ) for all τ > 0. (6.36)

Next, we integrate both sides of the inequality (6.35) on (τ, τ + σ) to obtain 1 2

τ +σ τ d ds b(s) 0 Z 2 (η, s) dηds+ 1 2 τ +σ τ b(s) 0 Z η (η, s) 2 dη ds b2 + 4 8 τ +σ τ b (s) 0 Z(η, s) 2 dη ds. 
(6.37) Then, in view of (6.36) and the fact that b is nondecreasing, (6.37) becomes (6.38) so that also

1 2 b(τ +σ) 0 Z 2 (η, τ + σ) dη - 1 2 b(τ ) 0 Z 2 (η, τ ) dη + 1 2 τ +σ τ b(s) 0 Z η (η, s) 2 dη ds ( b2 + 4) σ C(σ) 8 , 
τ +σ τ b(s) 0 Z η (η, s) 2 dη ds C(σ) + ( b2 + 4) σ C(σ) 4 . (6.39)
Next, we perform the change of variable S = s -τ , then

σ 0 b(S+τ ) 0 Z η (η, S + τ ) 2 dη dS C(σ) + ( b2 + 4) σ C(σ) 4 for all τ > 0 which implies that Z η (., . + τ ) 2 L 2 (Ωσ,τ ) C(σ) + ( b2 + 4) σ C(σ) 4 . (6.40)
This completes the proof of Lemma 6.4.

Next we deduce the following Corollary.

Corollary 6.6. Let σ > 0. For all τ > 0, we have that Wη (., . + τ )

L 2 0,σ;C 1 2 (Ωτ ) C(σ), (6.41) 
for some positive constant C(σ) which does not depend on τ and where

Ω τ := η; 0 < η < b(S + τ ), S ∈ (0, σ) . (6.42)
Proof. From Lemmas 6.3 and 6.4, we deduce that there exists some positive constant ≈ C(σ) which does not depend on τ such that Wη (., . + τ )

2 L 2 0,σ;H 1 (Ωτ ) ≈ C(σ). (6.43) Then, since H 1 (Ω τ ) ⊂ C 1 2
(Ω τ ), (6.41) follows from (6.43).

Uniform estimate of W (., .

+ τ ) in C 1 2 , 1 4 (Ω σ,τ ).
Lemma 6.7. There exists some positive constant C which does not depend on τ such that W (., . + τ )

C 1 2 , 1 4 (Ωτ,σ) C, (6.44) 
where Ω σ,τ := (η, S); 0 < η < b(S + τ ), S ∈ (0, σ) .

Proof. There exists some positive constant C 1 (σ) which does not depend on τ such that Wτ (., . + τ ) L 2 (Ωσ,τ ) C 1 (σ). (6.45) Indeed, we have that

Wτ (η, τ ) = Wηη (η, τ ) + η 2 Wη (η, τ ) for all τ > 0 and 0 < η < b(τ ),
and from Lemmas 6.3 and 6.4, we have that Wη (., . + τ )

2 L 2 (Ωσ,τ )
C 2 (σ) for some positive constant C 2 (σ), and Wηη (., . + τ )

2 L 2 (Ωσ,τ )
C 3 (σ) for some positive constant C 3 (σ).

Since η b, it follows that η 2 Wη (., . + τ ) ∈ L 2 (Ω σ,τ ). Finally, we conclude from the partial differential equation for W that the estimate (6.45) holds, so that W (., . + τ ) ∈ W 2,1 2 (Ω σ,τ ). From (Lemma 3.5 of [START_REF] Brochet | Finite dimensional exponential attractor for the phase field model[END_REF]p.207]), we have that

W 2,1 2 (Ω σ,τ ) ⊂ C 1 2 , 1 4 (Ω σ,τ ), (6.46) 
so that (6.44) holds.

Next we show the following result.

Lemma 6.8. The function Wη is such that Wη (η, τ ) 0 for all τ > 0 and 0 < η < b(τ ).

Proof. We recall that Z(η, τ ) := Wη (η, τ ) for all τ > 0 and 0 < η < b(τ ) as defined in (6.19). From (6.26), Z satisfies the partial differential equation

Z τ = Z ηη + η 2 Z η + Z 2 , τ > 0, 0 < η < b(τ ).
We also have that Z(0, τ ) 0 for all τ > 0. (6.47) Indeed, since 0 W (η, τ ) h and W (0, τ ) = h, it follows that Wη (0, τ ) 0 for all τ > 0. (6.48)

Next, we prove that Z( b(τ ), τ ) 0. (6.49) Indeed, from Problem (5.4) and Lemma 5.4, we deduce that

d b(τ ) dτ + b(τ ) 2 = -Wη ( b(τ ), τ ) and d b(τ )
dτ 0 for all τ > 0; it follows that Wη ( b(τ ), τ ) 0 for all τ > 0. Next from (6.26), we have that

Z(η, 0) = Wλ,η (η) = -h e -λη 2 4
bλ 0 e -λs 2 4 ds 0 for 0 η bλ with λ 1. (6.50)

Let T > 0, we define 

Q T := {(η, τ ), τ ∈ (0, T ), 0 < η < b(τ )}. ( 6 
2 -α) Z e ατ in Q T , for all α > 1 2 , so that Zτ -Zηη + η 2 Zη + 1 2 -α Z = 0 in Q T , for all α > 1 2 .
Now, we prove that Z 0 in Q T . Indeed, it follows from the weak maximum principle (Lemma 1 of [F3, p.34]) that Z cannot have a positive maximum in Q T . Then, Z attains its maximum on the boundary Γ := {(0, τ ), 0

≤ τ ≤ T } ∪ {(η, 0), 0 < η < b(0)} ∪ {( b(τ ), τ ), 0 ≤ τ ≤ T }.
Then, it follows from (6.47), (6.49) and (6.50) that Z 0 on Γ, so that Z 0 in Q T which implies that Z 0 in Q T . Thus, we deduce that Wη (η, τ ) 0, for all τ 0, 0 η b(τ ). (6.52) which completes the proof of Lemma 6.8. Lemma 6.9. Let τ 0 be arbitrary. The function η → Wη (η, τ ) is nondecreasing.

Proof. To prove Lemma 6.9, we need to show that Wηη (η, τ ) 0 for each τ 0. Indeed, we define G(η, τ ) := Z η (η, τ ) for all τ > 0 and 0 < η < b(τ ).

We recall that Z(η, τ ) := Wη (η, τ ) for all τ > 0 and 0 < η < b(τ ) as defined in (6.19). (6.55) where G(η, 0) = Wλ,ηη (η) = λ η h e -λη 2 4 2 bλ 0 e -λs 2 4 ds 0 with λ 1.

                       G τ = G ηη + η 2 G η + G, τ > 0, 0 < η < b(τ ), G(0, τ ) = 0, τ > 0, G( b(τ ), τ ) = Z 2 b(τ ), τ , τ > 0, d b(τ ) dτ + b(τ ) 2 = G( b(τ ), τ ), τ > 0, b(0) = b, G(η, 0) = Wλ,ηη (η), 0 η bλ .
Finally, we use similar arguments as in the proof of Lemma 6.8 to deduce that Wηη (η, τ ) 0 for all τ 0, 0 η b(τ ). ( 6.56)

This completes the proof of Lemma 6.9.

Lemma 6.10. Let σ > 0. For all τ > 0, we have that

d b(. + τ ) dτ L 2 (0,σ) C(σ), (6.57) 
for some positive constant C(σ) which does not depend on τ , so that b(. + τ )

C 0, 1 2 [0,σ]
Ĉ(σ), (6.58)

for some positive constant Ĉ(σ) which does not depend on τ.

Proof. We only have to show (6.57). We recall that b(. + τ ) satisfies the ODE

d b(. + τ ) dτ + b(. + τ ) 2 = -Wη b(. + τ ), . + τ for all τ > 0.
We have that (6.59) From (6.59) and Corollary 6.6, we deduce that there exists some positive constant C(σ) which does not depend on τ such that which together with Lemma 6.2 implies that (6.57) holds.

In the following subsection, we derive estimates for the free boundary Problem (5.4) in a fixed domain.

Since Wηη (η, s) = 1 b2 (τ ) Ŵ yy (y, s) and b(τ ) b, we deduce that This complete the proof of (6.64). Now, we prove the following result.

Lemma 6.13. There exists a positive constant C which does not depend on τ such that Ŵ y (., τ ) L 1 (0,1) C for all τ 0. (6.70)

Proof. From Lemma 6.12, we have that the function y → Ŵ y (y, τ ) is nondecreasing for all τ 0. Then, it follows that Ŵ y (., τ ) L 1 (0,1) = -1 0 Ŵ y (y, τ ) dy = Ŵ (0, τ ) -Ŵ (1, τ ) = h for all τ 0. (6.71) Indeed, from Problem (5.4), we have that W (0, τ ) = h and W ( b(τ ), τ ) = 0 which implies that Ŵ (0, τ ) = h and Ŵ (1, τ ) = 0 for all τ 0. This complete the proof of Lemma 6.13.

7 Limit Problem as τ → ∞.

Theorem 7.1. Let ψ, b∞ be defined in Lemma 5.4. Then ψ, b∞ is the unique stationary solution of Problem (1.12).

Before proving this theorem, we need to show some preliminary results. Let Ŵ be defined as in (6.60). We also define ψ(y) = ψ(η), y = η b∞ ∈ [0, 1] for 0 η b∞ . (7.1)

We will derive estimates for ψ. We start by showing the following result.

Lemma 7.2. We have ψ, ψy ∈ H 1 (0, 1) ⊂ C 0, 1 2 [0, 1] .

Proof. Since 0 W (η, τ ) h for all τ 0 and η ∈ [0, b(τ )], we have that 0 Ŵ (y, τ ) h for all τ 0, y ∈ [0, 1]. (7.2)

We deduce from (6.61) and (6.62) in Lemma 6.11 that there exists a constant C(σ) > 0 such that

Ŵ (•, • + τ ) L 2 (0,σ;H 2 (0,1)) C(σ) (7.3)
for all τ > 0. Thus, there exists v ∈ L 2 0, σ; H 2 (0, 1) such that Ŵ (•, • + τ ) v weakly in L 2 0, σ; H 2 (0, 1) as τ → +∞. (7.4)

We shall prove that v = ψ. First, since lim τ →+∞ W (η, τ ) = ψ(η) for all η ∈ R + , it follows from (6.60) and (7.1) that lim τ →+∞ Ŵ (y, τ ) = ψ(y) for all y ∈ [0, 1], (7.5) and since 0 Ŵ h, we deduce from Lebesgue Dominated Convergence Theorem that Ŵ (•, • + τ ) → ψ in L 1 ((0, 1) × (0, σ)) as τ → +∞. (7.6)

Using again the uniform boundedness of Ŵ and ψ, we conclude that this convergence also holds in L p (0, 1) × (0, σ) for all p ∈ [1, ∞). Hence, v = ψ ∈ H 2 (0, 1). This completes the proof of Lemma 7.2.

Proposition 7.3. The sequence { Ŵ y (•, τ )} converges to ψy in L 2 (0, 1) as τ → +∞. (7.7)

Proof. From the Lemmas 6.12 and 6.13, we deduce that there exists a positive constant C independent of τ such that Ŵ y (•, τ ) W 1,1 (0,1) C for all τ 0. (7.8)

The space W 1,1 (0, 1) is compactly embedded in L 2 (0, 1) (see for instance the proof of Lemma 2.7 in [START_REF] Bertsch | Large time behaviour of solutions of scalar viscous and nonviscous conservation laws[END_REF]p.86]). Thus, it follows that there exist a subsequence { Ŵ y (•, τ n )} n=∞ n=0 and a function χ ∈ L 2 (0, 1) such that Ŵ y (•, τ n ) → χ strongly in L 2 (0, 1) as τ → ∞.

(7.9)

Now, we prove that χ = ψy . From (7.9), it follows that for all ϕ ∈ H 1 0 (0, 1). We finally deduce from (7.10), (7.11) and (7.12) that χ = ψy and then (7.9) becomes Ŵ y (•, τ n ) → ψy strongly in L 2 (0, 1) as τ → ∞, (7.13) which completes the proof of Proposition 7.3.

Next we show the following result.

Proposition 7.4 (Application of Second Dini's Theorem). We have that Ŵ y (•, τ ) converges uniformly to ψy as τ → ∞ on [0, 1]. (7.14)

Proof. From Lemma 6.12, we have that the function y → Ŵ y (y, τ ) is nondecreasing for all τ 0. In view of Lemma 6.7, we recall that Ŵ y (•, τ ) is a continuous function for all τ ≥ 0. From Proposition 7.3, we have that Ŵ y (., τ ) converges to ψy , as τ → +∞, a.e. in (0, 1) and from Lemma 7.2, we have that ψy ∈ C 0, 1 2 ([0, 1]). It follows from applying the second Dini's Theorem (Theorem 10.32 of [START_REF] Weil | Mathématiques L2 Cours complet avec 700 tests et exercices corrigés[END_REF]p. 454]) which states that "if a sequence of monotone continuous functions converges pointwise on (0, 1) and if the limit function is continuous in [0, 1], then the convergence is uniform", which completes the proof of Proposition 7.4.

Corollary 7.5. lim τ →+∞ || Ŵ (., τ ) -ψ|| C 1 ([0,1]) = 0.
Proof. It remains to show that Ŵ (., τ ) converges uniformly to ψ as τ → ∞. We have that

|| Ŵ (., τ ) -ψ|| C 0 ([0,1]) = sup y∈[0,1] y 0 Ŵ y (s, τ )ds + h - y 0 ψy (s)ds -h (7.15) = sup y∈[0,1] y 0 Ŵ y (s, τ )ds - y 0 ψy (s)ds || Ŵ y (., τ ) -ψy || L 1 (0,1) → 0 as τ → ∞.
Next, we prove Theorem 7.1.

Proof of Theorem 7.1. The proof will be done through successive Lemmas. The first step of the proof consists in showing the following result.

Lemma 7.6. We have ψ(0) = h and ψ( b∞ ) = 0.

Proof. We start by showing that ψ(0) = h. Indeed, we have that (recall that W is nondecreasing in time)

Wλ (η) = W (η, 0) W (η, τ ) h. (7.16)

Letting τ tend to +∞, we deduce that Wλ (η) ψ(η) h for all η ∈ [0, b∞ ].

Then, for η = 0, we obtain Wλ (0) = h ψ(0) h, that is ψ(0) = h.

Next, we prove that ψ( b∞ ) = 0. We deduce from Corollary 7.5 that Ŵ (1, τ ) → ψ(1) as τ → ∞, (7.17 we deduce that indeed ψ( b∞ ) = 0.

The following result holds.

Lemma 7.7. We have b∞ 2 = -ψ η ( b∞ ). (7.20)

Proof. First, we prove the corresponding relation for ψy (1) and then we will conclude the result for ψ η . We recall that 

ψ ηη + η 2 ψ η = 0 in (0, b∞ ).
We will prove Proposition 7.8 by means of several lemmas.

Lemma 7.9. Let ϕ ∈ D(0, b∞ ) be arbitrary. Then there exists a class of functions ϕ satisfying the following properties This completes the proof of Lemma 7.9. The result of Theorem 7.11 then follows from (7.46) and (7.47).

(i) ϕ ∈ C ∞ [0, b∞ ] × R + , (ii) ϕ(0, τ ) = 0, ϕ b(τ ), τ = 0 and ϕ η (0, τ ) = 0 for all τ 0, (iii) lim τ →+∞ ϕ τ (η, τ ) = 0 for all η ∈ [0, b∞ ], ( 
This completes the proof of Theorem 1.1 in the introduction section.

  a) Time evolution of the unknown function V (η, t). evolution of the moving boundary a(t).
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 1 Figure 1: Large time behavior of the solution pair (V, a).

  Theorem 5.2. Let W 1 (η, τ ), b 1 (τ ) and W 2 (η, τ ), b 2 (τ ) be respectively lower and upper solutions of (5.4) corresponding respectively to the data (h 1 , u 01 , b 01 ) and (h 2 , u 02 , b 02 ) such that u 01 or u 02 is a nonincreasing function.If b 01 b 02 , h 1 h 2 and u 01 u 02 , then b 1 (τ ) b 2 (τ ) for τ 0 and W 1 (η, τ ) W 2 (η, τ ) for η 0 and τ 0.

  all η ∈ (0, b λ ) (5.7) and b λ is the unique solution of the equation

  η) for all 0 η b, b 0 b. (5.22) According to (5.10), W is a nonincreasing function and then, in view of the comparison principle Theorem 5.2, it follows that b τ, (u 0 , b 0 ) b and W η, τ, (u 0 , b 0 ) W(η) for all τ 0, η 0. (5.23) Next, we prove the monotonicity in time of the solution pair (W, b) of the time evolution Problem (5.4) with the two initial conditions ( W, b) and ( Wλ , bλ ). Lemma 5.4. Suppose that the initial data (u 0 , b 0 ) satisfies (5.17) and (5.22). Let ( Wλ , bλ ) and W, b be defined by (5.16) and (5.21). (i) The functions W η, τ, ( W, b) and b τ, ( W, b) are nonincreasing in time. Furthermore, there exist a positive constant b∞ and a function φ ∈ L ∞ (0, b∞ ) such that lim τ →+∞ W η, τ, ( W, b) = φ(η) for all η ∈ (0function W η, τ, ( Wλ , bλ ) and b τ, ( Wλ , bλ ) are nondeacreasing in time. Furthermore, there exist a positive constant b∞ and a function ψ ∈ L ∞ (0, b∞ ) such that lim τ →+∞ W (η, τ, ( Wλ , bλ )) = ψ(η) for all η ∈ (0, b∞ ), (5.26) lim τ →+∞ b τ, ( Wλ , bλ ) = b∞ . (5.27) Proof. Applying repeatedly Theorem 5.2, one can show that W η, τ, ( W, b) and b τ, ( W, b) are nonincreasing in time and that W η, τ, ( Wλ , bλ ) and b τ, ( Wλ , bλ ) are nondeacreasing in time. Indeed, from (5.23) we have that b τ, (u 0 , b 0 ) b and W η, τ, (u 0 , b 0 ) W(η) for all τ 0 and η 0. In particular, with u 0 = W and b 0 = b , we get b τ, ( W, b) b and W η, τ, ( W, b) W(η) for all τ 0 and η 0.

  28) to obtain b τ + σ, ( W, b) b σ, ( W, b) and W η, τ + σ, ( W, b) W η, σ, ( W, b) for all τ 0 and η 0.

  b λ α for all λ 0, we deduce from (5

  ds for 0 η b 0 , we deduce that u 0 (η) h -M η for all 0 η b 0 (5.54) where M = du 0 dη L ∞ (0,b 0 ) . From Lemma 5.5 (ii), b λ → 0 as λ → +∞. Then we can choose λ 1 large enough so that b λ min( η) W λ (η) for all 0 η b λ . (5.56) Defining Wλ = W λ and bλ = b λ as in (5.16), we deduce that the pair ( Wλ , bλ ) is a lower solution for Problem (5.4). 6 A priori estimates for the solution of Problem (5.4) 6.1 A priori estimates for the solution of Problem (5.4) on the moving domain Definition 6.1. We define b(τ ) := b τ, ( Wλ , bλ ) and W (η, τ ) := W η, τ, ( Wλ , bλ ) for all τ > 0, 0 η b(τ ). We start by showing successive lemmas for the function pair ( W, b). Lemma 6.2. We have the following uniform bounds in time bλ b(τ ) := b τ, ( Wλ , bλ ) b∞ b for all τ 0τ ) := W η, τ, ( Wλ , bλ ) h for all τ 0, 0 η b. (6.2) Proof. It follows from (5.18) and (5.23) that bλ b τ, (u 0 , b 0 ) b for all τ 0. In particular, for (u 0 , b 0 ) = ( Wλ , bλ ), we obtain bλ b(τ ) := b τ, ( Wλ , bλ ) b for all τ 0.

|

  7) and we use W b(τ ), τ = 0 and W (0, τ ) = h to obtain b(τ ) 0 Wηη (η, τ ) W -h (η, τ )dη = -Wη b(τ ), τ h -6.2, we have W (η, τ ) -h h and 0 η b. It follows that Wη |dη.

||

  Wη | 2 dηds C(σ) for some positive constant C(σ). (6.13) Next we perform the change of variable S = s -τ ; then Wη (η, S + τ )| 2 dηdS C(σ) for all τ 0,

  .51) Next, we perform the change of function Z(η, τ ) = Z(η, τ )e ατ where α > 1 2 . The function Z satisfies the equality Zτ e ατ = Zηη e ατ + η 2 Zη e ατ + ( 1

  Now we derive the time evolution problem satisfied by G from the time evolution Problem (6.26) satisfied by Z. First, G satisfied the following boundary conditions G(0, τ ) = 0, G( b(τ ), τ ) = Z 2 b(τ ), τ for all τ > 0. (6.53) From Lemma (6.8), we have that Z b(τ ), τ = Wη b(τ ), τ 0 for all τ > 0. It follows that Z b(τ ), τ = -G( b(τ ), τ ) for all τ > 0. (6.54) Straightforward computations give

  s + τ ), s + τ 2 ds C(σ),

Ŵ

  yy (y, s) dy = Ŵ yy (., s) L 1 (0

  ϕ(y) dy as τ → ∞ for all ϕ ∈ H 1

  22) in time between τ and τ + σ and performing the change of variable S = sdeduce from Proposition 7.4 that Ŵ y (1, S + τ ) converges to ψy (1) as τ → +∞ and recall that b(τ ) → b∞ as τ → +∞. Passing to the limit as τ → +∞ in (7.23), we conclude that b2 of the proof of Theorem 7.1 consists in the following result.Proposition 7.8. The function ψ ∈ C ∞ ([0, b∞ ]) and satisfies the equation

  iv) lim τ →+∞ ϕ(η, τ ) = ϕ(η) for all η ∈ [0, b∞ ].Proof. Let ϕ ∈ D(0, b∞ ) be given. We define the function ϕ∈ C ∞ [0, b∞ ] × R + such that ϕ(η, τ ) = ϕ( b∞ y), y = η b(τ )for all τ 0, 0 η b(τ ), (7.26) and ϕ(η, τ ) = 0 for all τ > 0 and b(τ ) η b∞ . Next, we show that ϕ satisfies the properties (i)-(iv).The function ϕ obviously satisfies (i). Property (ii) readily holds because we have ϕ(0, τ ) = ϕ(0) = 0, ϕ( b(τ ), τ ) = ϕ b∞ = 0 and ϕ η (0, τ ) ϕ y ( b∞ y) for all 0 η b(τ ). From Proposition 7.4 and (7.24), we deduce that lim τ →+∞ Ŵ y (1, τ ) = ψy (1

  functions ϕ ∈ D(0, b∞ ).Proof. Let ϕ satisfying the properties (i) -(iv) of Lemma 7.9 and let σ > 0 be fixed. Recall that ( W, b) satisfies Problem 5.4, in particular we have Wτ (η, τ ) = Wηη (η, τ ) + , s)ϕ(η, s)dηds= b(τ +σ) 0 W (η, τ +σ)ϕ(η, τ +σ)dη -b(τ ) 0 W (η, τ )ϕ(η, τ ) dη (7.31)and on the other hand, s)ϕ(η, s) + W (η, s)ϕ s (η, s) dη+ W ( b(s), s)ϕ( b(s), s)ϕ(η, s) + W (η, s)ϕ s (η, s) dηds. (7, τ + σ)ϕ(η, τ + σ)dη -b(τ ) 0 W (η, τ )ϕ(η, τ ) dη. (7.33)We deduce from (7.29), (7.30) and (7.33) that b(τ +σ) 0 W (η, τ + σ)ϕ(η, τ + σ)dητ + σ)ϕ(η, τ + σ) dηs) dη ds. (7.35) Furthermore, according to Lemma 5.4, we recall that lim τ →+∞ W (η, τ ) = ψ(η) for all 0 < η < b∞ and lim τ →+∞ b(τ ) = b∞ . Then, since ϕ satisfies property (iv), it follows that lim ) W η, τ ϕ(η, τ ) dη → b∞ 0 ψ(η) ϕ(η) dη as τ → ∞. (7.37) Now, we turn to the right-hand-side of (7.35). With the change of variables S = s -τ , we obtain dη dS as τ → ∞. (7.38) Then, since ϕ satisfies the property (iii), we conclude from (7.35)-(7functions ϕ ∈ D(0, b∞ ) which yields the result of Lemma 7.10. Finally, we present the proof of Lemma 7.8. Proof of Lemma 7.8. From Lemma 7.2, we have that ψ ∈ H 2 (0, b∞ ). Then, by means of integration by parts, we obtain b∞ 0 ψ(η) ϕ ηη (η) dη = b∞ 0 ψ ηη (η) ϕ(η) dη (ϕ ∈ D(0, b∞ ). This finally implies that ψ ∈ C ∞ ([0, b∞ ]) and ψ ηη + η 2 ψ η = 0 for all 0 < η < b∞ . (7.43) This completes the proof of Lemma 7.8. We conclude that the pair W (η, τ ) := W η, τ, ( Wλ , bλ ) , b(τ ) := b τ, ( Wλ , bλ ) converges to (ψ, b∞ ) as τ → ∞. Thanks to Lemma 7.6, Lemma 7.7 and Lemma 7.8, (ψ, b∞ ) satisfies Problem (1.12) and thus (ψ, b∞ ) coincides with the unique stationary solution (U, a) of Problem (1.12). This completes the proof of Theorem 7.1. Similarly, one can show that W η, τ, ( W, b) , b τ, ( W, b) converges as τ → ∞ to (φ, b∞ )which also coincides with the unique stationary solution (U, a) of Problem (1.12). Recalling Lemma 5.7, we obtain the following result.Theorem 7.11. Let u 0 ∈ X h (b 0 ) ∩ W 1,∞ 0, b 0 be such that 0 u 0 W in [0, b 0 ]and b 0 b where ( W, b) is defined in (5.21). Let (W, b) = W (•, •, (u 0 , b 0 )) , b(•, (u 0 , b 0 )) be the solution of Problem (5.4) with the initial data (u 0 , b 0 ). Then lim τ →+∞ W (η, τ ) = U (η) for all η ∈ (0, a) (7.44) and lim τ →+∞ b(τ ) = a (7.45) where (U, a) is the unique solution of the stationary Problem (1.12). Proof. For all τ > 0 and η 0, we have that W η, τ, ( Wλ , bλ ) W η, τ, (u 0 , b 0 ) W η, τ, ( W, b) (7.46) and b τ, ( Wλ , bλ ) b τ, (u 0 , b 0 ) b τ, ( W, b) . (7.47) According to Lemma 5.4 together with the fact that (ψ, b∞ ) = (φ, b∞ ) = (U, a), we deduce that lim τ →+∞ W η, τ, ( W, b) = lim τ →+∞ W (η, τ, ( Wλ , bλ )) = U (η

  , u 01 , b 1 ) and (h 2 , u 02 , b 2 ). If b 1 < b 2 , h 1 h 2and u 01 u 02 , then s 1 (t) < s 2 (t) for t 0 and u 1 (x, t) u 2 (x, t) for x 0 and t 0.

	.1)
	(ū, s) is an upper solution of the Problem (2.1) if it satisfies (3.1) with all replaced by .
	Theorem 3.2 (Comparison principle). Let (u 1 (x, t), s 1 (t)) and (u 2 (x, t), s 2 (t)) be respectively lower
	and upper solutions of (2.1) corresponding respectively to the data (h 1
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6.2 A Priori Estimates for the solution of Problem (5.4) on the fixed domain.

It will be necessary in the sequel to reason on a fixed domain. To do so, we start by giving the transformation to the fixed domain Ω := (y, τ ) ∈ (0, 1) × (0, ∞) . We set

Using this change of variable in the estimates obtained in Lemmas 6.3 and 6.4, with the bounds on b in Lemma 6.2, we readily get the following uniform estimates for the function Ŵ . Lemma 6.11. Let σ > 0. For all τ 0, we have that

for some positive constant C(σ) which does not depend on τ .

Next, we show the following result.

Lemma 6.12. We have that Ŵ yy (y, τ ) 0 for all τ 0, 0 y 1, (6.63)

and the function y → Ŵ y (y, τ ) is nondecreasing for all τ 0. Moreover, there exists a positive constant C which does not depend on τ such that Ŵ yy (., τ ) L 1 (0,1) C for all τ 0. (6.64)

Proof. From (6.56), we have that Wηη (η, τ ) 0, for all τ 0, 0 η b(τ ). Since Wηη (η, τ ) = 1 b2 (τ ) Ŵ yy (y, τ ), we deduce that (6.63) holds. Next, we prove that Wηη (η, τ ) is uniformly bounded on L 1 [0, b(τ )] for all τ 0. (6.65)

From Lemma (6.8), we have that Z b(τ ), τ = Wη b(τ ), τ 0 for all τ > 0. Thus, we have

We shall prove that Wη (0, τ ) is bounded below for τ 0. Indeed, from Lemma 5.4, we know that W is nondecreasing in time and since W (0, τ ) = h for all τ 0, it follows that Wη (0, 0) Wη (0, τ ) for all τ 0. (6.67)

We have that Wη (0, 0) = Wλ,η (0) = -h bλ 0 e -λs 2 4 ds with λ 1, which implies together with (6.67) that -Wη (0, τ ) h