
HAL Id: hal-03090623
https://hal.science/hal-03090623

Submitted on 29 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User scheduling over multiple channels : A
multiple-choice knapsack approach

Riade Benbaki, Mohamed Malhou

To cite this version:
Riade Benbaki, Mohamed Malhou. User scheduling over multiple channels : A multiple-choice knap-
sack approach. [University works] ÉCOLE POLYTECHNIQUE. 2020. �hal-03090623�

https://hal.science/hal-03090623
https://hal.archives-ouvertes.fr

USER SCHEDULING OVER MULTIPLE CHANNELS

Mohamed Malhou, Benbaki Riade
Supervisor: Marceau Coupechoux

January 2020

1 Introduction

An antenna transmits data packets to smartphones (or users) through a wireless medium, which is di-
vided into a set of frequency channels. Figure 1 is an example of simultaneous transmission towards
three users using three channels.

Figure 1: Wireless packet scheduler transmitting data simultaneously to three users over three (fre-
quency) channels.

The higher the power dedicated to a user, the higher the data rate it can experience. The exact de-
pendence between power and data rate is however user and channel specific. With the same transmit
power, a user close to the antenna will enjoy for example a higher data rate than a user far away. A
wireless packet scheduler is thus responsible to allocated channels to users and to divide the total power
budget of the antenna among the available channels. The goal of this project is to design optimal packet
schedulers in this context.

2 Problem formulation

We consider a system with a set K of K users to be served over a set N of N channels. Every channel
shall be used to serve a single user and cannot be left unallocated for efficiency reasons; a user can be
served using several channels; however some users may not be served. The scheduler chooses a transmit
power pk,n, k ∈ K,n ∈ N to serve user k on channel n. If user k is not served on channel n, we have
pk,n = 0. When user k is served over channel n with power pk,n, its data rate is rk,n = uk,n(pk,n),
where the function uk,n is called the rate utility function of user k on channel n. This utility function is
assumed to be known by the scheduler. In practical systems, uk,n is a non-decreasing step function that
takes a finite number of non-zero values, say M for all k and n and such that uk,n(0) = 0 for all k and
n. To fix notations, we thus define:

uk,n(pk,n) =

0 if pk,n < pk,1,n

rk,1,n if pk,1,n ≤ pk,n < pk,2,n

.

rk,M,n if pk,M,n < pk,n

(1)

1

The task of the scheduler is to allocate channels to users and transmit powers to users so as to max-
imise the sum data rate of the system under the constraint of a total transmit power budget p and the
constraint of having exactly one user served per channel. For simplicity, we assume that all coefficients
rk,m,n, pk,m,n and p are non-negative integers.

To formulate the problem as an integer linear program (ILP), we aim to maximise
∑

k,m,n xk,m,nrk,m,n

subject to

1.
∑

k,m,n xk,m,npk,m,n ≤ p

2.
∑

k,m xk,m,n = 1

3. xk,m,n ∈ N

for all 0 ≤ k ≤ K, 0 ≤ m ≤M and 0 ≤ n ≤ N .

This is a multiple-choice knapsack problem (MCKP) which is a generalization of the ordinary knap-
sack problem, where the set of items is partitioned into classes. The binary choice of taking an item is
replaced by the selection of exactly one item out of each class of items[1].
This ILP is known to be NP hard. By relaxing the integrality constraint on xk,m,n, we obtain a linear
program (LP), which provides an upper bound for our problem. If the solution to the LP is integer, then
we have a solution for the ILP. In the following sections, we first make some preprocessing to reduce
problem instance size, then solve the LP and the IP, and at last consider an online version of the problem.

3 Preprocessing

3.1 First preprocessing step

We want to make a quick preprocessing to check if an instance has obviously no solution and to remove
triplets (k,m, n) that, if chosen, obviously prevent any solution to be feasible.
A triplet (k,m,n) is obviously not a part from any solution if pk,m,n +

∑
n′ 6=n pmin,n > P , pmin,n being

the minimum power among all terms in channel n. If after this preprocessing there is a channel with no
terms remaining, then the problem has no solution.

3.2 Removing IP-dominated terms

Lemma 1 For a given channel n, if pk,m,n ≤ pk′ ,m′ ,n and rk,m,n ≥ rk′ ,m′ ,n then there is an optimal

solution of the ILP such that xk′ ,m′ ,n = 0. We say that (k
′
,m
′
, n) is IP-dominated

Based on Lemma 1, we provide an algorithm to remove IP-dominated terms of an instance of the IP
problem.
We sort the terms by their power values for each channel (and by decreasing rate in case of equal power),
then as we go through the sorted array, we compare the rate to the maximum rate of previous terms,
and we update this maximum.

Algorithm 1 Remove IP-dominated terms

for n = 0 to N − 1 do
channels[n].sortbypower()
maxrate = channels[n][0].rate
for i = 0 to channels[n].size() do

currterm = channels[n][i]
if currterm.rate <= maxrate then

remove(currterm)
end if
maxrate = max(maxrate, currterm.rate)

end for
end for

For each channel, sorting costs O(KMlog(KM)), then we go through the terms of each channel, which
takes linear time. This gives a total complexity of O(NKMlog(KM))

2

3.3 Removing LP-dominated terms

Lemma 2 For a given channel n, if pk,m,n < pk′ ,m′ ,n < pk”,m”,n and rk,m,n < rk′ ,m′ ,n < rk”,m”,n

satisfy:
rk”,m”,n − rk′ ,m′ ,n
pk”,m”,n − pk′ ,m′ ,n

≥
rk′ ,m′ ,n − rk,m,n

pk′ ,m′ ,n − pk,m,n
(2)

then there is an optimal solution of the LP such that xk′ ,m′ ,n = 0. We say that (k
′
,m
′
, n) is LP-dominated

LP dominated terms are in this case terms that don’t belong to the convex hull of the set of all points.
In the following algorithm, we determine this convex hull by going through all the terms by order of
power, and keeping a stack that contains, after each iteration of the while loop, the convex hull of the
already processed points. When processing a new point, we know that this point belongs to the new
convex hull, but we first need to remove points that will no longer be in it. These points are necessarily
on top of the stack, so we keep testing the top of the stack until all these points are removed, then we
add the new point.

Algorithm 2 Remove LP-dominated terms

for n = 0 to N − 1 do
channels[n].sortbypower()
convexhull = [channels[0]]
for i = 1 to channels[n].size() do

currterm = channels[n][i]
while currterm is at the right of the line (convexhull[-2],convexhull[-1]) do

convexhull.pop()
end while
convexhull.push(currterm)

end for
channels[n] = convexhull

end for

For each channel, each term is pushed in the stack once, and poped out at most one, so the total
complexity, for each channel, is O(KMLog(KM) + 2KM) = O(KMLog(KM)), therefore the total
complexity is O(NKMLog(KM)) or O(NKM) if already sorted by power in the previous procedures.

3.4 Applying the preprocessing

We apply the three steps pre-processing on instances of test files ’test1.txt’, ’test2.txt’ and ’test3.txt’.

Preprocessing step/TestfFile 1 2 3 4 5
Before preprocessing 24 24 24 614400 2400

After removing impossible terms 24 0 24 614400 2400
After removing IP-dominated terms 10 N.A 13 14687 329
After removing LP-dominated terms 8 N.A 9 4982 193

Figure 2: Total number of pairs remaining in the problem after each step of the preprocessing

3

Figure 3: Pairs in channel 0 of file 5 before preprocessing

Figure 4: Pairs in the first channel of file 5 after removing impossible terms

Figure 5: Pairs in the first channel of file 5 after removing IP-dominated terms

4

Figure 6: Pairs in the first channel of file 5 after removing LP-dominated terms

4 Linear Program and Greedy Algorithm

Now that the instance size has been reduced, we study a greedy algorithm for the LP problem. For a
given channel n, all possible pairs (pk,m,n, rk,m,n) are sorted in ascending order of pk,m,n and reindexed
with the set L = {1, ..., L}, L = KM . We define the incremental efficiency of choosing pair l > 1 instead
of pair l1 for the transmission on channel n as follows:

eln =
rl,n − rl−1,n
pl,n − pl−1,n

(3)

Based on this notion, we propose a greedy algorithm to provide a solution to the LP problem,

4.1 The pseudo-code of the greedy algorithm

Algorithm 3 Greedy Algorithm to solve the LP problem

Input List of all pairs, preprocessed and with access to indexes of each pair
Output Maximum rate achievable for the LP problem instance
sortedbyeff = SORT ALL PAIRS BY INC EFF DESC
power budget = P -

∑n
i=1 p1,i //budget remaining to fill

Set x1,i = 1∀i ∈ {1, ..., n} //we use the same indexing for x variables as for pairs
rate =

∑n
i=1 r1,i

i, j =sortedbyeff.pop().indexes
while power budget >= pi,j − pi,j−1 do
xi,j = 1, xi,j−1 = 0
power budget − = pi,j − pi,j−1
rate+ = ri,j − ri,j−1
i, j = sortedbyeff.pop().indexes

end while
if power budget == 0 then

return rate //We have an integral solution !
else
x = powerbudget

pi,j−pi,j−1

xi,j = x, xi,j−1 = 1− x
rate + = (ri,j − ri,j−1) ∗ x
power budget − = (pi,j − pi,j−1) ∗ x
return rate

end if

5

Sorting and the beginnig of the algorithm takes O(KMNlog(KMN)), after that, we perform a
linear traversal of the list, each loop iteration having a constant cost. The overall complexity is therefore
O(KMNlog(KMN))

4.2 Results of the greedy algorithm

TestfFile 1 2 3 4 5
Greedy 365.0 N.A 372.15384615384613 9870.32183908046 1637.0

LPsolver 365.0 N.A 372.15384615384613 9870.32183908046 1637.0

Figure 7: Maximum rates achieved

TestfFile 4 5
Preprocessing 168.98987497 0.62586537

Greedy (on preprocessed instance) 2.08267759 0.03906349
LPsolver (on preprocessed instance) 386.13193925 5.14502407

LPsolver (without preprocessing,over 1 execution) 35256 29

Figure 8: CPU runtime in ms, averaged over 100 execution

5 Algorithms for solving the ILP

As the relaxed solution cannot be implemented in practice (this would require the possibility to schedule
two users on the same channel), we tackle in this section the ILP problem (when the power budget is an
integer). Unfortunately, the greedy algorithm can be arbitrarily bad in this case. Although there is an
improved greedy algorithm for this problem, this is only a 1/2-approximation. We are looking here for
an optimal solution by first relying on Dynamic Programming (DP).

5.1 Dynamic Programming Solution

Let’s tackle a DP algorithm based on sub-problems with power budget less than p.
The equation we are using is given as follows:

R(n, p) = max
pair∈channeln

pair.p≤p

R(n− 1, p− pair.p) + pair.r (4)

Time complexity : it takes at most O(KM) to find the maximum of the equation (1), so, regarding
the two main loops of our algorithm, we have a time complexity of O(PNKM).
space complexity : O(P) as we use two arrays of length P .

6

Algorithm 4 Dynamic Programming algorithm to solve IP

Input p power budget, data, an array such that data[n] is an array of all pairs of channel n
Output maximum rate value

∑
k,m,n xk,m,nrk,m,n

1 channel case :
Let L an array of length p
for i = 1 to p do

L[i-1] = max(pair.r such pair.p ≤ i and pair ∈ data[0])
end for
for n = 1 to N do

Let currentChannel = data[n]
Let aux an auxiliary list of length p
for power = 1 to p do

aux[power-1] = max(L[power− pair.p −1] + pair.r, with pair.p ≤ power ,L[power−pair.p− 1]> 0
) for pair ∈ currentChannel

end for
L = aux

end for
return L[-1]

5.2 A second dynamic programming approach

An alternative DP approach is to consider sub-problems of finding minimal power allocations providing a
given sum data rate r less than some upper bound U for the objective function. The equation of finding
minimal power allocations is :

P (n,U) = min
pair∈channeln

pair.r≤U

P (n− 1, U − pair.r) + pair.p (5)

Algorithm 5 Another DP algorithm to solve IP, based on finding minimal power allocations

Input U upper bound for rate, data.
Output maximum rate value

∑
k,m,n xk,m,nrk,m,n

reversing the function u1 :
Let L an array of length U
for i = 1 to U do

L[i-1] = min(pair.p such pair.r = i and pair ∈ data[0]) #0 otherwise
end for
for n = 1 to N do

Let currentChannel = data[n]
Let aux an auxiliary list of length U
for rate = 1 to U do

aux[rate-1] = min(L[rate− pair.r −1] + pair.p, with pair.r ≤ rate ,L[rate−pair.r − 1]> 0) for
pair ∈ currentChannel

end for
L = aux

end for
return maximum index r such that L[r-1] <= p & L[r-1] > 0

time complexity : O(NUKM) and space complexity : O(U)

5.3 Branch And Bound Solution

Another classical way of solving IPs is called Branch-and-Bound (BB). The principle of BB is as follows.
We construct a tree of sub-problems, whose root corresponds to the initial problem. Each vertex v
corresponds to a sub-problem, which is generated from its parent in the tree by adding an additional
constraint. At node v (a branch of the tree), the relaxed sub-problem is solved in order to get an upper

7

bound z̄v of the optimal value for the sub-problem. This branch is not further explored if (1) z̄v is less
than a current feasible solution we have already or (2) z̄v is associated to an integer solution, in which
case we can update the current feasible solution or (3) the relaxed sub-problem is infeasible.

Each level of the tree represents a channel, and each node of each level represents a feasible pair choice
in that channel.So each path from the source to a node in level k represents a possible configuration where
channels from 1 to k are assigned to a pair. At each node, we use the relaxed problem to find an upper
bound for the problem, using the greedy algorithm. The greedy algorithm also gives us a feasible solution,
so we update the lower bound each time this feasible solution is better than the one we already have.
The worst case complexity is O(KM ∗ (KM)N) because it’s possible to go through all the nodes of the
tree, but in most cases, several branches will be eliminated, thus giving a lower amortised complexity.
The fact that we use a stack or a queue in the algorithm changes the traversal order of the tree : DFS
using a stack, BFS using a queue. In this case, the later runtime results show that using a DFS is faster.

Algorithm 6 Auxiliary function GreedyBound() returning upper and lower bounds of a branch in the
Branch and Bound algorithm

Input Current channel, left power budget and a sorted list of all pairs by INC EFF DESC.
Output Lower bound and upper bound performed by the greedy algorithm
Let Rate = 0
Let index i = 0 and current pair currPair
while i < listOfPairs.size() and listOfPairs.get(i).p < PowerBud do

currPair = listOfPairs.get(i)
if currPair.n >= currChannel then

PowerBud − = currPair.incPower;
Rate + = currPair.incRate;

end if
i++

end while
Let LowerBound = Rate
if PowerBud > 0 and i < listOfPairs.size() then

currPair = listOfPairs.get(i)
Let x = PowerBud/currPair.incPower;
Rate + = x×currPair.incRate
PowerBud − = x× currPair.incPower

end if
return Rate and LowerBound

8

Algorithm 7 Branch and Bound Algorithm

sortedInc = SORT ALL PAIRS BY INC EFF DESC
Let Stack a stack< vertex >
Stack.push(new vertex(0,0,0)) // args : current Channel, left power and achieved rate
currBounds = GreedyBound(0,0,sortedInc)
while Stack.size()> 0 do

vertex = Stack.get()
for all pair ∈ data[vertex.currChannel] do

if pair.p + vertex.usedPower > powerBud then
continue

end if
if vertex.currChannel < N-1 then

Let BranchBound = GreedyBound(vertex.currChannel+1, powerBud − vertex.usedPower −
pair.p,sortedInc)
if BranchBound.UBound + vertex.rateAchieved + pair.r > currBounds.LBound then

Stack.push(new vertex(vertex.currChannel+1,vertex.usedPower + pair.p, ver-
tex.rateAchieved + pair.r))

end if
currBounds.LBound = max(currBounds.LBound, vertex.rateAchieved + pair.r + Branch-
Bound.UBound)

else
currBounds.LBound = max(currBounds.LBound, vertex.rateAchieved + pair.r)

end if
end for

end while
return currBounds.LBound

5.4 Results of IP algorithms

Test File 1 2 3 4 5
DP1 365 N.A 350 9870 1637
DP2 365 N.A 350 9870 1637
BB 365 N.A 350 TLE 1637

Figure 9: Maximum rates achieved

Test File 1 2 3 4 5
DP1 1.493625 N.A 0.506143 5722.798771 9.421062
DP2 0.038489999999999996 N.A 0.042031 4539.203344 7.3717749999999995

BB (doing a DFS) 0.004246 N.A 0.012026 TLE 0.07812899999999999
BB (doing a BFS) 0.21529399999999999 N.A 0.271411 TLE 0.442135

Figure 10: CPU Runtime in ms averaged over 100 execution

6 Stochastic Online Scheduling

In this section, users arrive sequentially in the system. The scheduler is no longer aware of the whole
instance before taking a decision and has to take a decision each time a new user is coming. To be more
precise, we assume that the scheduler is aware of the number of users K that will arrive in the system.
At time t = k, user k arrives in the system providing to the scheduler all the pairs (pk,m,n, rk,m,n),
m = 1, ...,M, n = 1, ..., N . All pairs indexed by k′ > k are unknown. At this time instant, the scheduler
must assign the variables xk,m,n, m = 1, ...,M, n = 1, ..., N without being able to modify them in the
sequel, i.e., at t > k. We assume that powers are independent and identically distributed with uniform
discrete distribution on the set {1, 2, ..., pmax}; rates are independent and identically distributed with

9

uniform discrete distribution on the set {1, 2, ..., rmax}, where pmax and rmax are positive integers. These
distributions are supposed to be known by the scheduler.

Due to lack of knowledge, optimum solution seems to be unapproachable. Thus we aim at proposing
an approximation of a greedy algorithm that only looks at maximum efficiencies. The first idea that
comes to mind is that in each iteration, we select all pairs with efficiency exceeding our expectation of
the last pair to be chosen among the left pairs not generated yet.
In a formal way, let Thk be the threshold of the k-th iteration and Nk the residual channels, we have :

Thk = E(XNk:(K−k)NM |Nk) (6)

where Xt = Rt

Pt
, (Rt)t∈N and (Pt)t∈N uniformly distributed random variables.

With the convention X1:n >= ... >= Xn:n

The constraint is that there is no easy formula for calculating these expectations, and simulating the
variables in order to use LLN to find an approximation would require a lot of processing. we would
rather use a deterministic way trying to be fair to all the users, that is, we give each user a fair power
budget : p

K to use efficiently without restricting the number of channels to use. we get Algorithm 8

Algorithm 8 Online algorithm

Input pmax, rmax, p, M, N, K
Output achieved rate
Let L a list[N] such that L[i] == 1 if channel i is taken
Let powerPerUser p

K
Let Rate = 0
for all k = 0 to K do

data = generate(NM pairs)
sort data by efficiency ratio r

p
Let up = 0 be the used power by user k
Let i = 0
for all pair ∈ data do

if L[pair.n] == 0 and up +pair.p <=PowerPerUser then
L[pair.n] = 1
Rate + = pair.r
p − = pair.p
up + = pair.p

end if
end for
up = 0

end for
return Rate

Using the parameters p = 100, pmax = 50, rmax = 100,M = 2, N = 4 and K = 10, over 10000
samples, we get a an average ratio of 0.48 and used power budget of 78.23 versus 82.8 for optimum
solution.

References

[1] Ulrich Pferschy Hans Kellerer and David Pisinger. Knapsack Problems. Springer-Verlag Berlin Hei-
delberg, 2004. isbn: 978-3-642-07311-3.

10

