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Abstract. We present one dimensional molecular dynamics simulations of a two species, initially uniform,
freely evolving granular system. Colliding particles swap their relative position with a 50% probability
allowing for the initial spatial ordering of the particles to evolve in time and frictional forces to operate.
Unlike one dimensional systems of identical particles, two species one dimensional systems of quasi-elastic
particles are ergodic and the particles’ velocity distributions tend to evolve towards Maxwell-Boltzmann
distributions. Under such conditions, standard fluid equations with merely an additional sink term in the
energy equation, reflecting the non elasticity of the interparticle collisions, provide an excellent means to
investigate the system’s evolution. According to the predictions of fluid theory we find that the clustering
instability is dominated by a non propagating mode at a wavelength of the order 10πL/Nε, where N is
the total number of particles, L the spatial extent of the system and ε the inelasticity coefficient. The
typical fluid velocities at the time of inelastic collapse are seen to be supersonic, unless Nε . 10π. Species
segregation, driven by the frictional force occurs as a result of the strong temperature gradients within
clusters which pushes the light particles towards the clusters’ edges and the heavy particles towards the
center. Segregation within clusters is complete at the time of inelastic collapse.

PACS. 45.70.Mg Granular flow: mixing, segregation and stratification – 45.50.Tn Collisions – 02.70.Ns
Molecular dynamics and particle methods

1 Introduction

Granular materials are ubiquitous in the macroscopic world
[1]. The consequence of the inelasticity of the collisions be-
tween grains is that the standard fluid equations used to
describe a gas of atoms or molecules need to be modified.
Even for the simplest systems, the mathematical expres-
sions for the transport coefficients turn out to be much
more involved than the expressions for a system of elastic
particles. In addition, granular materials are often polydis-
perse. For example sand grains are generally characterized
by a broad range of particle sizes and shapes. Thus, the-
oretical models and numerical simulations based on gran-
ular systems of identical particles may be too limited to
describe a real system, even on a purely qualitative level.
On the other hand, systems of identical particles have the
non negligible advantage of being mathematically simple
while retaining many important features of real dissipative
systems.

One of the most spectacular consequences of the in-
elastic nature of collisions in a granular system is the so
called inelastic collapse. In the absence of energy injection
statistical fluctuations in an initially uniform system can
lead some regions to cool faster than others producing lin-
early growing density fluctuations which can be described

in the frame of continuum model theories [2, 3, 4]. In the
non linear regime the high density regions collapse produc-
ing clumps of particles where the collision frequency grows
to infinity[5, 6]. The instability is a long wavelength insta-
bility which is hardly avoidable in freely evolving systems
provided the number of particles in the system exceeds
some minimum value which very much depends on the
system’s characteristics [6, 3]

It is often acceptable to describe granular systems by
means of fluid equations derived from the inelastic Boltz-
mann equation using the Chapman-Enskog procedure [7,
8, 9]. Hydrodynamic models have been applied to the
case of inelastic particles in a constant gravitational field
[10, 11, 12]. These systems often behave non intuitively.
Hence, it is shown in [12] that a collection of inelastic par-
ticles confined to a vertical box with permanent injection
of energy from the base (e.g. by shaking the base of the
box vertically) the granular temperature profile is a non
monotonic function of height. The temperature decreases
near the bottom, goes through a minimum, and finally
rises indefinitely with height above the minimum.

It has been recently shown in [13] that during the
homogeneous regime of the temporal evolution of a one
dimensional system of identical particles the spatial or-
dering of the particles appears to play a crucial role in
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shaping the particles’ velocity distribution. Thus, works
[14], based on the so-called pseudo-Maxwell model, a ho-
mogeneous model where no spatial ordering is assumed by
construction, have been found to be unable to describe the
evolution of a system of inelastically interacting particles,
even during the homogeneous regime. The late evolution
of systems of identically spatially ordered particles has
been shown to be strongly affected by the development of
spatial correlations between the particles’ velocities even-
tually leading to an inelastic collapse [e.g. 2, 13].

One dimensional systems of identical particles behave
in a very peculiar way. Thus, in the elastic limit, the over-
all velocity distribution of the particles’ is not modified by
collisions. Colliding particles do merely exchange their ve-
locities and the system is not ergodic. Adjunction of just
one anomalous particle forces the velocity distribution to
relax towards a Maxwell-Boltzmann distribution.

In this paper we use molecular dynamics (MD) simu-
lations to investigate the evolution of a two species one-
dimensional, periodic, system of N point particles. N/2
particles have mass m1 = 1 (species 1) and N/2 particles
have mass m2 = 4 (species 2). The system is a proto-
type for more complex systems with broader mass distri-
butions. One important ingredient of the model is that
colliding particles swap their relative position with a 50%
probability allowing for the initial spatial ordering of the
particles to evolve in time. This introduces the possibil-
ity of species to stream with respect to eachother giving
frictional forces the opportunity to operate.

The restitution coefficient r, appearing in the collision
rules (12) and (13), is close to elastic such that the ther-
malization time is always much shorter than the cooling
time. As a consequence, the velocity distribution function
of both species are always close to Maxwellian, at least
as long as the species do not segregate. Such dissipative
systems are always linearly unstable with respect to the
so-called clustering instability. In one dimension the clus-
tering instability is a fluid instability which is found to
triggers the formation of non propagating spatial density
inhomogeneities at scales of the order 10πL/Nε, where
ε ≡ 1− r2 and L is the size of the system. The clusters of
particles which form due to the clustering instability are
characterized by a temperature profile which increases ex-
ponentially as a function of the particle index l away from
the center of the cluster (cf e.g. Figure 6). These strong
temperature gradients within clusters drive the light par-
ticles away from their centers towards the edges of the
clusters while the opposite happens to the heavy parti-
cles which tend to become concentrated in a very small
region near the center of the cluster. (cf Figures 4 and 5).
The species segregation is driven by the frictional force (7)
which points in opposite directions for the light and heavy
particles. At the time of inelastic collapse, fluid motions
may or may not be supersonic depending on whether or
not the number of particles N exceeds a critical number
of order 10π/ε. In order to avoid confusion, we do loosely
define the time of inelastic collapse in our simulations as
the time for which the molecular dynamic simulation is
essentially ”frozen”. By ”frozen” we mean that the total

energy and, consequently the fluid velocity profiles of the
system do not change significantly by doubling the num-
ber of collisions.

The paper is organized as follows. In Section 2 we in-
troduce the set of fluid equations whereon we base our
analysis of the simulation results. The numerical model is
presented in Section 3. Simulations with N = 19600 par-
ticles and 3 different values of the restitution coefficient
r are presented in Section 4, In Appendix A we develop
the linear theory of the clustering instability for a two-
species, one dimensional system. The collision frequency
for such a system in the homogeneous limit and close to
the thermodynamic equilibrium, is given in Appendix B.

2 Fluid equations for a mixture of two species

In the general case [see e.g. 15], the expressions for the
hydrodynamic transport coefficients describing a granular
gas with two species of inelastically interacting particles
are so involved that they are of little practical use to de-
scribe real systems. It is not even clear under which condi-
tions fluid equations are relevant for real granular systems.
However, over the years it has been shown that fluid equa-
tions are extremely useful to help understand results from
granular system simulations. Over the few last decades,
explicit expressions for the transport coefficients in 2 and
3 spatial dimensions have been published by various au-
thors. To our knowledge, expressions for the 1d case have
not been published until now, certainly because of the
non-ergodicity of most 1d systems. Yet, in the case of a
mixture of unequal particles, collisions among particles of
different mass do inevitably drive the velocity distribution
functions for all species towards Maxwell-Boltzmann. The
tendency to thermalization in such one dimensional mix-
tures indicates that ”standard” fluid equations may apply
to such systems as well.

The fluid equations of this section all stem from a
Chapman-Enskog type treatment of the Boltzmann equa-
tion by various authors [7, 8, 15, 9] which implies that
their validity is at best limited by the assumptions on
which the Chapman-Enskog procedure is based on. One
of the most stringent conditions, in a system characterized
by a mean free path lmfp and a spatially varying temper-
ature T (x), is the requirement of the Knudsen number
K ≡ lmfp ∂ log T/∂x being much smaller than unity. The
K ≪ 1 condition means that the particles’ distribution
functions do not vary substantially over distances of the
order of the mean free path lmfp and that the velocity dis-
tributions are close to Maxwellian. A related condition is
that fluid time scales must be long compared to the colli-
sional time scale, i.e. the time between successive collisions
of a thermal particle.

We write the continuity equation for two species α =
1, 2 in terms of the species mean velocities uα and mass
densities ̺α = mαnα:

∂̺α

∂t
+

∂

∂x
(̺αuα) = 0. (1)
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Defining the total density ̺ ≡ ̺1 + ̺2 and the center of
mass flow velocity u ≡ (u1̺1+u2̺2)/̺ one can add the two
continuity equations (1) and write a one fluid continuity
equation:

∂̺

∂t
+

∂

∂x
(̺u) = 0. (2)

According to [16] we write the momentum equation for
both species in the form

̺α

(

∂uα

∂t
+ uα

uα

∂x

)

= −∂[pα(1 + Kα)]

∂x
+ φα (3)

where φα represents the frictional force on the species α
due to the collisions with the other species in the system
and where Kα is the contribution to the pressure tensor
from collisions with all species (shear and bulk viscosity).
Momentum conservation implies φ1 = −φ2. The sign dif-
ference between φ1 and φ2 indicates that if the frictional
force is dominant, it can act as a species filter. The par-
tial pressures pα in equation (3) are defined with respect
to the center of mass flow velocity u, i.e.

pα ≡
∫

mα(v − u)2fα(v)dv = nαTα. (4)

For the remaining of this section, and throughout the pa-
per, we assume that collisions are efficient enough to en-
sure energy equipartition among species, i.e. T = T1 = T2.
This restriction implies the characteristic cooling time for
each species being long with respect to the thermalization
time. The energy equation for the mixture in the one-
dimensional case is then given by [15]

∂p

∂t
+ u

∂p

∂x
+ 3p

∂u

∂x
+ 2

∂q

∂x
− 8

3
η

(

∂u

∂x

)2

= −ζp (5)

where p ≡ p1+p2 is the total pressure, q the total heat flux,
η the shear viscosity and ζ the cooling rate due to inelastic
collisions. The bulk viscosity is zero by construction [see
9]. Similarly, the momentum equation for the mixture can
be written in the conventional form [15]

∂u

∂t
+ u

∂u

∂x
= −1

̺

∂

∂x

(

p − 4

3
η
∂u

∂x

)

. (6)

We note that this equation is equivalent to equations (3)
up to terms which are quadratic in the species relative
drift velocity δu1 ≡ (u1 − u).

In the quasi-elastic limit, for small relative drift veloci-
ties, and assuming energy equipartition among species the
following relations do conveniently close the above set of
fluid equations. According to [16] the frictional force may
be cast into the form

φ1 = a(n1, n2) 2T
n1n2

n

∂

∂x

[

ln

(

n1

n2

T m12

)]

(7)

with m12 ≡ (m2−m1)/m, m ≡ m1 +m2 and n ≡ n1 +n2.
In equation (7) a is a dimensionless function of n1 and n2

which takes into account the species volume fraction and

the radial distribution function of the contacting pairs.
Explicit forms have been given for the 2 and 3 dimensional
case [16]. In this paper we do not care about the exact form
of equation 7. We are just interested in the qualitative
dependence of φ1 on the temperature T and on the relative
species concentration n1/n2. Following [9, 15] we write the
constitutive relation for the heat flux as

q = − nT

ν0

√
m1m2

∂T

∂x

[

b1

n1

n

√

m

m1

+ b2

n2

n

√

m

m2

]

(8)

where we have defined the frequency ν0 ≡ V12nσ and
the characteristic velocity V 2

12 = 2Tm/(m1m2), which, for
species with Maxwellian distributions, is just the thermal
velocity for the relative velocities between the two species
(cf Appendix B). Again, both, b1 and b2, are rather in-
volved functions of n1/n, m1, m2 and even V12, which
we do not need to care about in this paper. In the above
equation σ has the dimension of a surface and may be
interpreted as a collisional cross section. Formally, we ex-
press σ in terms of the total number of particles N , the
box length L and the mean number density n:

σ =
N

nL
. (9)

With this definition, in a uniform system one has ν0 =
V12N/L. Starting from equation (27) of Jenkins and Mancini
[7] we find that ζ must depend on the species densities via
an expression of the kind

ζ = εν0

[

c11

n2
1

n2

√

m2

m
+ c22

n2
2

n2

√

m1

m
+ c12

n1n2

n2

]

(10)

where the numerical coefficients c11, c12, and c22 are un-
known for the 1d case and where ε is the fractional energy
loss per collision (see Section 3). Equation (10) is correct
up to terms of order two in the gradients of hydrodynamic
quantities[8, 15]. Following Garzo et al [15] we write the
shear viscosity coefficient η as

η =
nT

ν0

[

d1

n1

n

√

m

m2

+ d2

n2

n

√

m

m1

]

(11)

where, once more, d1, and d2 are order unity coefficients
for which we do not care about the exact form. As a final
remark, we note that in the set of fluid equations (2),(5)
and (6) the inelasticity coefficient ε does only appear in
the energy equation (5) through the cooling rate ζ ∝ εν0.
In particular, neither the friction φ1, nor the heat flux q
depend on ε, which is only acceptable in the quasi-elastic
limit ε ≪ 1 [15].

3 Simulation model

We use a one-dimensional model which is close to the tra-
ditional point-like hard particles on a ring model [13] with
the notable difference that N/2 particles have mass m1

and N/2 particles have mass m2. In the strict one dimen-
sional case the post collision velocities v′i and v′j for two
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Table 1. Basic parameters for the 3 simulations discussed in
the paper. The total number of particles in each simulation is
N = 19600 with half of the particles with mass m1 = 1 and
the other half with mass m2 = 4.

Run ε r2 Nε

1 5 × 10−4 0.9995 9.8

2 2 × 10−3 0.998 39.2

3 2 × 10−2 0.98 392

colliding particles i and j = i + 1 of mass mi and mj and
center of mass velocity v0ij = (mivi + mjvj)/(mi + mj)
are given by

v′i = ± mjvij

mi + mj
r + v0ij (12)

v′j = ∓ mivij

mi + mj
r + v0ij (13)

where r is the restitution coefficient (r = 1 for elastic
collisions), vk the velocity of particle k = i, j before the
collision and vij ≡ vj−vi < 0 (we implicitly suppose a one
dimensional axis x with coordinates increasing from left
to right xi < xj). With this definition of the restitution
coefficient r the kinetic energy of two colliding particles
is reduced by a factor ε ≡ 1 − r2 in the center of mass
frame. The + sign in (12) and the − sign in (13) corre-
spond to the normal case where particle i and j do not
exchange their relative positions during collision. The −
sign in (12) and the + sign in (13) correspond to the case
where particles i and j swap their relative positions dur-
ing collision. In the latter case, taking r = 1, one has
v′i = vi and v′j = vj , i.e. particles just ignore each other.
In principle one should reject this possibility as it is a non
physical event for the case of a system of beads on a ring.
We shall take advantage of this possibility as it allows for
the different particles to become distributed spatially in-
dependently of the initial ordering with the possibility of
species segregation to operate as in 2 and 3 dimensional
systems.

4 Simulation results

In all simulations N particles are initially distributed uni-
formly over the spatial domain [0, L[. We consider a simple
two species system of N/2 particles with mass m1 = 1 and
N/2 particles with mass m2 = 4. Particles of both species
are initially disposed in alternating order. The initial ve-
locity of a particle with mass mα is randomly selected in

the interval [−0.5, 0.5]/m
1/2
α following a uniform probabil-

ity distribution as in the [13] where the reference case of
N identical particles is discussed. The mean energy per
particle is therefore the same for all species. Bulk veloc-
ities of all species are initially set to zero. The parame-
ters for the 3 runs which will be discussed in the paper
are listed in Table 1. The somewhat arbitrary mass ratio
m2/m1 = 4, which will be used throughout the paper,
is sufficiently small to ensure efficient interspecies energy

thermalization, so that we can assume T1 = T2, and suffi-
ciently large for the frictional force φ1 (see equation (7))
to play a non negligible role.

4.1 Homogeneous phase

The evolution of a one-dimensional system with not all
particles having the same mass is very different from that
of a one dimensional system of identical particles [e.g 6,
2, 13]. The difference is substantial, even in the elastic
limit r = 1. Indeed, while in the case of elastically in-
teracting identical particles the velocity distribution does
not change in time, the asymptotic velocity distribution is
a Maxwell-Boltzmann velocity distribution when different
species coexist in the system. The global thermalization
rate strongly depends on the particles’ mass distribution,
each species α thermalizing at different rates depending on
the species number density Nα and on the mass mα of the
species particles. For example in the case of a system with
N ≫ 1 and just one anomalous particle, the evolution to-
wards a Maxwell-Boltzmann distribution is much slower
than in the case of a two species system with N/2 parti-
cles for each species, since only collisions among unequal
particles can modify the velocity distribution functions in
one dimensional systems.

In Figure 1 a snapshot of the velocity distribution func-
tion of both species are shown for Run 1 after a total
number of 8 × 107 collisions . The distribution for both,
light and heavy particles, which should be compared to
the double peaked distribution of Figure 1 in [13] for the
one species case, do closely follow a Maxwell-Boltzmann
distribution disregarding of the fact that the initial distri-
bution was strongly non thermal. This tendency of the ve-
locity distributions to evolve towards Maxwell-Boltzmann

m=4

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
0
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120000
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Fig. 1. Homogeneous regime for the case of r2 = 0.9995 and
N = 19600 particles half of which have mass m1 = 1 and
the other half m2 = 4 (Run 1). Shown are the velocity dis-
tribution histograms for both species after 8 × 107 collisions.
The solid line represents the Maxwell-Boltzmann distribution
corresponding to the measured particles’ mean energy.
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Fig. 2. Energy versus collision index I for Run 1. The exponen-
tial part of the profile closely follows the E = E0 exp(−I/2 ×

107) profile of the fluid theory.

allows the use of standard fluid theories [7, 8, 15, 9] to
analyze the system’s behavior.

Figure 2 shows the evolution of the energy in Run 1.
The energy decreases exponentially as a function of the
number of collisions I during the first 5 108 collisions. We
shall define this phase as the homogeneous phase as it is
perfectly well described by the homogeneous version of the
fluid energy equation (5) (see equation (A.7) together with
the relation (B.7)) which predicts a per collision energy
loss of

δE

E
= −2

ε

N
(14)

Specifically, for r2 = 0.9995 and N = 19600 one has
δE/E ≈ 5.1×10−8 which corresponds to the value 2×107

observed in Figure 2.

4.2 Inhomogeneous phase

After the initial homogeneous phase the system enter a
new, inhomogeneous, regime where cluster formation be-
comes the dominant effect. The transition between the
homogeneous and the inhomogeneous regime is clearly vis-
ible as a departure from the exponential energy decay in
Figure 2. In this section we discuss the cluster structures
observed in the simulations in the light of the fluid equa-
tions exposed in Section 2.

4.2.1 Species segregation

As in the one species case, the inhomogeneous regime in
the multi species case is characterized by the presence of
clusters of particles. Given the smallness of the inelastic-
ity coefficient ε and the initial homogeneity of the system,
one expects the pressure to be spatially uniform for both
species, except near the center of the collapsing cluster
where the cooling rate ζ goes to infinity. Indeed, the tem-
perature and density profiles, plotted for the light particles

N=19600, r=0.9995, m=1

x
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Fig. 3. Run 1: Temperature and density profiles for the light
particles (i.e. m = 1) normalized to their average value at the
end of the simulation. Note the high concentration and low
temperature within the cluster near x = 0.416. Also note the
presence of a second cluster forming near x = 0.8.

at the end of Run 1 are seen to vary in antiphase (cf Figure
3) ensuring an approximate pressure balance.

However, light and heavy particles are not evenly dis-
tributed within the cluster. The relative concentration of
light particles as a function of the particle index l is shown
in Figure 4 which clearly shows that the heavy particles
are concentrated in the central part of the cluster, leav-
ing an excess of light particles in the wings of the 6000
particles cluster.

In order to appreciate the spatial scales associated with
the concentrations of light and heavy particles in the clus-
ter we compute the integrated heavy particles excess func-

0 4000 8000 12000 16000 20000
0

0.5

1

iter=11000000000
 histogram of light particles
 N=19600,r=0.9995

Particle index l

Concentration of light (m=1) particles

Run 1 
(inhomogeneous regime)

Fig. 4. Light particles histogram (m=1) at the end of Run
1. Bin values represent the fractional number of light parti-
cles n1/n. Each bin contains 400 particles. The main cluster
includes all particles with index l in the range 5000 to 11000.
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Fig. 5. Function Y (x) (see equation (15)) for Run 1. The slope
of the function Y is a measure of the heavy (positive slope) or
light (negative slope) particle excess.

tion Y defined as

Y (x) =

N
∑

l=1

(δmlm2
− δmlm1

)

∫ x

0

δ(ξ − xl)dξ (15)

Contribution to the integral is -1 for light particles (ml =
1) and +1 for heavy particle (ml = 4).

The function Y (x) is plotted in Figure 5 and illustrates
how disparate the spatial repartition of light and heavy
particles are in the system. The core of the cluster con-
tains some 3×103 heavy particles concentrated in a region
of size 10−8. From Figure 4 we know that the 3×103 light
particles of the cluster are largely excluded from this small
central region dominated by the heavy particles but Fig-
ure 5 shows that the light particles dominate over a much
larger region of size 10−5, the characteristic size of the
cluster at the end of the simulation. The species segrega-
tion is the visible effect of the frictional force φ1 (cf equa-
tion (7)) of the two fluid momentum equations (6). In case
of equal densities n1 = n2 and a spatially varying tempera-
ture profile T (x) the frictional force φ1 ∝ (m2−m1)∂T/∂x
points up the temperature gradient for the light species m1

and down the temperature gradient for the heavy species
m2. Segregation appears as a ineluctable consequence of
the temperature gradients within clusters.

4.2.2 Temperature profiles in clusters

Figure 3 shows that the temperature in a cluster strongly
decreases towards its center. Figure 6 shows the tempera-
ture profiles in the inhomogeneous regime for Run 1 and 2.
The figure illustrates the fact that the temperature drops
exponentially as a function of the particles index l towards
the center of the cluster. In these particular cases the tem-
perature decreases by several order of magnitudes from
edge to center. As expected, the thermalization time being

Fig. 6. Fluid temperature (circles) and light particles’ tem-
perature (plus) as function of the particle index for Run 1 (top
panel) and Run 2 (bottom panel) during the inhomogeneous
regime. In both simulations the temperature is found to de-
crease exponentially towards the center of the cluster according
to a characteristic scale of order ε−1/2.

much shorter than the cooling time, the fluid and light par-
ticle temperature profiles closely follow each other. The in-
teresting point is that the granular temperature decreases
exponentially towards the center of the cluster with a scale
which seems to be of order ε−1/2. Again, the ε−1/2 scaling
of the temperature profile in Fig. 6 can be deduced eas-
ily from the fluid equations. In order to do so, we evaluate
the temperature profiles within clusters in the static limit.
Using the energy equation (5) we can write

2
∂q

∂x
= −ζp (16)

Let us suppose that in a given region of the system species
1 is the dominating one, i.e. n ≈ n1 ≫ n2. In this case the
heat flux reads (cf equation (8))

q = −b1

σ

(

T

2m1

)1/2
∂T

∂x
(17)

whereas the right hand side of Eq. (16) becomes

−ζp = −εc11σ

(

2T

m1

)1/2

T n2 (18)
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and the static energy equation (16) writes

∂

∂x

(

T 1/2 ∂T

∂x

)

= ε
c11

b1

σ2T−1/2p2
0 (19)

where we have used the static limit p = p0 = const of the
momentum equation (6). In order to compute the temper-
ature profile as a function of the particle index l we have to
introduce the transformation from the spatial coordinate
x to the particle index l.

l(x) = A

∫ x

0

n(ξ)dξ (20)

where A is a surface such that An(ξ)dξ is the number of
particles in the interval [ξ, ξ + dξ]. Using the transforma-
tion (20) we write the energy equation (19) in terms of
the particle index l

∂

∂l

(

T−1/2 ∂T

∂l

)

=
ε

4

c11

b1

T 1/2 (21)

where we have used the fact that the particles’ cross sec-
tion σ is equal to A/2 given the 50% swap probability for
colliding particles. The solution of (21) is

T ∝ exp

{

±l

(

ε
c11

2b1

)1/2
}

(22)

If c11 and b1 are numerical constants of order unity, it
follows, as already suggested by Figure 6, that the typical
scale of variation for the temperature profile is of order
ε−1/2.

4.3 Cluster formation and linear fluid theory

As in one species simulations [6], Figure 7 shows that at
the time of inelastic collapse, the number of clusters is
an increasing function of the Nε. Even the Mach number
of the fluid motions is seen to depend on Nε, the simu-
lation with the smallest value of Nε being characterized
by subsonic motions and the two other simulations be-
ing characterized by supersonic motions with the evident
formation of shocks. As pointed out by Ben-Naim et al
[17] the piecewise linear velocity profiles observed in Fig-
ure 7 are a direct consequence of the momentum equation
(6). Indeed, as already discussed in the context of Figure
3, the pressure in the system is essentially constant ev-
erywhere except within clusters (shocks in the supersonic
regime). In this case the momentum equation reduces to
̺(∂u/∂t + u∂u/∂x) = 0.75η∂2u/∂x2 with solutions of the
type u(x, t) = u0 + (x − x0)/t, where u0 and x0 are inte-
gration constants.

The difference between the velocity profiles at the time
of inelastic collapse for the three runs shown in Figure
7 can be explained on the basis of a linear analysis of
the fluid equations of Section 2 developed in Appendix A.
The linearized system of equations has three eigenmodes,

m=4 particles

−0.02

0

0.02

−0.002

0

0.002

−0.000001

0

0.000001

0 0.2 0.4 0.6 0.8 1
x

Run 3: I = 1.5 10
8, ε = 0.02

Run 2: I = 10
9, ε = 0.002

Run 1: I = 1.5 10
10, ε = 0.0005

Fig. 7. Inhomogeneous regime: scatter plot for the m = 4
particles for all runs at the time of inelastic collapse.

two of which correspond to the right and left propagat-
ing sound wave and the non propagating (zero real fre-
quency) entropy mode. The main difference with respect
to classical gas dynamics is that all modes are unstable
at long wave length. The other important prediction of
linear theory is that in general, but more specifically for
wave vectors k such that k̃ ≡ kL/(Nε) . 1, the non prop-
agating entropy mode grows substantially faster than the
sound mode. Indeed, the growth rate of the entropy mode
always peaks at k = 0 whereas the sound mode’s growth
rate vanishes as k → 0. A careful analysis of the growth
rates does actually shows that the entropy mode is always
the fastest growing mode (see Appendix A).

4.3.1 The dominant mode

What determines the number of clusters in a one dimen-
sional system at the time of inelastic collapse? Knowledge
of the initial conditions for the velocity fluctuations of all
modes makes it possible to estimate different character-
istic time scales in terms of the dimensionless (pseudo)
time variable τ (defined in A.5) using the approximations
of linear theory.

Initially, in all systems, particles are distributed uni-
formly in the spatial interval [0, 1[ with N/2 particles of
mass m1 = 1 and N/2 particles of mass m2 = 4. The ve-
locity of a particle of mass m is sorted randomly in the ve-
locity interval [−0.5, 0.5]/m1/2 so that the average kinetic
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energy per particle is the same for all species correspond-
ing (formally) to an initial temperature T0 = 1/12 and
thermal velocity v2

0 = 2/(6m) = 1/15. Thermalization of
such a system takes only a few collisions per particle so
that all species can be assumed to be initially distributed
according to a Maxwellian distribution at temperature
T0 = 1/12, ε being much smaller than unity. The initial
amplitudes of the velocity fluctuations can be evaluated
using the Wiener-Khintchine theorem which states that
the power spectrum of the fluid velocity field for a set par-
ticles with uncorrelated velocities is flat (white noise). The
immediate consequence of the Wiener-Khintchine theo-
rem is that energy is evenly distributed among all Fourier
modes, i.e. all modes have equal amplitude |δu0|. Requir-
ing the total kinetic energy of all particles in the system
being NT/2 one must have

δu2
0 =

T

m

4

N
= 2

v2
0

N
(23)

In all simulations, at t = 0, we have T = 1/12, N = 19600,
m1 = 1 and m2 = 4. The initial amplitude of the velocity
fluctuations are therefore of order δu0 = 2.6 × 10−3 with
v0 = 0.258, which corresponds to δU0 = (2/N)1/2 = 1.01×
10−2.

From linear theory we know that at small values of
the wave vector k̃ . 1/2 the growth rate is approximately

given by γN/ε = 1 − k̃2/2 indicating that the mode with
the longest possible wavelength is always the fastest grow-
ing mode. It is then expected that clustering always oc-
curs at the largest possible scale allowed by the system
with only one cluster growing in the system. This is ef-
fectively the case in Run 1 only but not in Run 2 (with
2 clusters) and particularly in Run 3 where several clus-
ters occur. This can be understood by noting that linear
theory predicts that the density fluctuation of the entropy
mode is proportional to the wave vector k:

δnk

n
= −ik̃δUk (24)

where δUk ≡ δuk/v0 is essentially the fluctuation’s Mach
number. Thus, for two modes k1 and k2 with equal ini-
tial velocity fluctuation amplitude δUk1 = δUk2, the one
with the largest wave vector is the one with the largest
associated density fluctuation and therefore a more likely
candidate for triggering the inelastic collapse, provided the
growth rate of the two modes are not too dissimilar. For
example, in Run 3, there are some 10 visible density clus-
ters corresponding to an average distance between clusters
of the order λ = L/10. Therefore, the mode which triggers

the inelastic collapse has k̃ = 0.16 and a linear growth rate
which is only roughly 1% less than the growth rate of the
smallest possible wave vector k̃min ≡ 2π/Nε, but, accord-
ing to equation 24, with a 10 times larger density fluctu-
ation. Thus, as long as the velocity fluctuation amplitude
of the mode k̃ = 0.16 is not much smaller than the veloc-
ity fluctuation amplitude of the fastest growing mode, i.e.
potentially during the first 100γ−1 ≈ 100N/ε = 9.8 × 107

collisions, the strongest density fluctuations in the sys-
tem are due to the mode with k̃ = 0.16. Indeed, in Run

Table 2. Characteristic time scales of the entropy mode for
the smallest possible wave vector k = kmin ≡ 2π/Nε. The
column labelled Supersonic indicates whether or not the fluid
motions are supersonic at the time of inelastic collapse. γ refers
is the linear growth rate of the mode, τs and τn are defined in
equations (25) and (26), respectively. The parameters of the
runs are given in Table 1.

Run Supersonic k̃min γ−1 τs τn

1 no 0.64 4.9 × 107 2.3 × 108 2.5 × 108

2 yes 0.160 1.0 × 107 4.6 × 107 6.4 × 107

3 yes 0.016 1.0 × 106 4.5 × 106 8.6 × 106

3 particle clustering and supersonic motions are already
present after I ≈ 4 × 106 collisions, which, using the defi-
nition for τ given by (B.7) in Appendix B corresponds to
τ = 2.06I ≈ 8 × 106. This time is too short by more than
one order of magnitude for the fastest growing mode to
become dominant in terms of density fluctuations.

We conclude that, for quasi elastic restitution coef-
ficients ε ≪ 1, the mode which dominates the inelastic
collapse has a wave vector k̃ ∼ 1/5 corresponding to a
wavelength λ ∼ 10πL/Nε. If such a long wavelength does
not fit into the system, the dominant mode is simply the
one with the longest possible wavelength, i.e. λ = L.

4.3.2 Supersonic fluid motions

Let us now address the question of the magnitude of the
characteristic fluid velocities at the time of the inelastic
collapse. Velocities are subsonic in Run 1 and supersonic
in Runs 2 and 3.

We introduce the sonic time scale τs, defined as the
time for the amplitude of the velocity fluctuation δUk to
reach unity assuming linear growth, i.e.

τs(k̃) = − ln(δU0)

γ(k̃)
. (25)

For a system of uniformly distributed particles with un-
correlated velocities, the initial fluctuation amplitude is
δU0 ≈ (2/N)1/2. Similarly, using equation (24) we define
τn as the time for the density fluctuation δn(k)/n to reach
an amplitude of order unity, i.e.

τn = − ln(k̃ δU0)

γ(k̃)
. (26)

Both, τs and τn are listed in Table 2 for the mode with
the longest wavelength k̃min.

In Run 1 the motions remain subsonic at the time of
the inelastic collapse despite the simulation lasting signif-
icantly longer than τs, meaning that supersonic motions
had enough time to develop. We conclude that an inelas-
tic collapse is not necessarily associated with supersonic
motions. The explanation at hand can be found in Table
2 which shows that in Run 1 the characteristic times τs
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and τn are very much the same for the dominant mode
k = kmin ≡ 2π/Nε while the sonic time scale τs is sig-
nificantly shorter than τn for the dominant mode in Runs
2 and 3. From Table 2 it follows that supersonic motions
develop before the occurrence of an inelastic collapse pro-
vided k̃min . 1/5, i.e. 10π . Nε.

5 Conclusions

We have performed simulations of a one dimensional two
species periodic system of N point particles undergoing
inelastic collisions. In order to keep the possibility for the
system to arrange particles independently of the initial
configuration, particles are allowed to change their rel-
ative positions during collisions with a 50% probability.
Initial velocities for particles of species α are selected ran-
domly according to a constant distribution in the range

[−0.5, 0.5]/m
1/2
α . Unlike one dimensional systems of iden-

tical particles, where the homogeneous regime is charac-
terized by double peaked velocity distributions [13, 18],
one dimensional multi-species systems tend to evolve to-
wards a Maxwell-Boltzmann distribution. This tendency
justifies the use of “standard” fluid equations to describe
such systems. As for one dimensional systems of identi-
cal particles, the inhomogeneous regime is characterized
by the formation of clusters which eventually make an in-
elastic collapse. It has been shown in [2] that clustering
in one species systems is driven by a beam instability. We
show that in a two species system clustering is triggered by
a fluid instability of the non propagating entropy mode,
for which density and temperature fluctuations vary in
antiphase ensuring spatial pressure balance. The sound
mode is also found to be unstable but its growth rate is
always substantially smaller than the growth rate of the
entropy mode. Because of the non propagating nature of
the entropy mode, the one dimensional system does evolve
naturally towards a series of clusters with symmetric tem-
perature and density profiles and antisymmetric velocity
profiles.

The number of particles in the clusters is determined
by the number of particles in one wavelength of the domi-
nant mode of the clustering instability, i.e. the mode which
first reaches a relative density fluctuation of order unity.
The typical wavelength of this mode has been found to be
of the order λ ≈ 10πL/Nε corresponding to 10π/ε par-
ticles per cluster. Clustering is generally characterized by
supersonic fluid motions unless the total number of parti-
cles N . 10π/ε.

A peculiar aspect of the late evolution of a multi-
species systems is the appearance of species segregation
within the collapsing clusters, heavy particles becoming
concentrated in an extremely small region around the cen-
ter of the cluster and the light particles filling the space
between the central region and the edges of the cluster.
Segregation is driven by the temperature gradient inside
the cluster [19] via the frictional force φ in the one-species
fluid momentum equation (3).

We thank both referees for the many pertinent and helpful
comments which strongly helped us to improve the original
manuscript.

A Linear theory for a one-dimensional system

In this appendix we develop the linear theory for the clus-
tering instability in a one-dimensional and spatially uni-
form system of inelastically colliding particles using the
set of fluid equations of Section 2. Assuming particles of
mean mass m, we write the set of equations pertinent to
the one-dimensional one-fluid case as

∂n

∂t
+ u

∂n

∂x
+ n

∂u

∂x
= 0 (A.1)

m

(

n
∂u

∂t
+ nu

∂u

∂x

)

+
∂

∂x

(

nT − 4

3
η
∂u

∂x

)

= 0 (A.2)

∂

∂t
(nT ) + u

∂

∂x
(nT ) + 3nT

∂u

∂x

+2
∂q

∂x
− 8

3
η

(

∂u

∂x

)2

+ c ε
N

L
v0Tn = 0 (A.3)

where c is a constant of order unity, which will be com-
puted explicitly for a two species system in Appendix B.
The other quantities in equation (A.3) are defined as

v0 ≡
(

2T

m

)1/2

η ≡ d
nT

ν0

= d
nT

v0

L

N

q ≡ −b
nT

ν0m

∂T

∂x
= − b

2
nv0

L

N

∂T

∂x

with b and d being two more constants of order unity.
We note that for a two species system the normalization
velocity v0 is related to the thermal velocity V12 of the
species relative velocity of Section 2 via

V 2
12 = 2

m

m1m2

v2
0 . (A.4)

The linear analysis of the system is easier if performed in
terms of the dimensionless variables τ and U :

dτ = N2 v0

L
dt (A.5)

U =
u

v0

. (A.6)

where dτ/dt is a measure of the number of collisions per
time unit in the system during the homogeneous phase
and U is essentially the flow’s Mach number.

We assume a static equilibrium u(x, τ) = 0 with a
uniform density n = n0, and temperature T (x, τ) = T0(τ)
decreasing according to equation (A.3), i.e.

∂T0

∂τ
= −c

ε

N
T0 → T0(τ) ∝ e−cετ/N . (A.7)
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During the linear phase of the instability c is a constant
which only depends on the species relative densities and
on the species particle mass (see Appendix B). For exam-
ple, if N/2 particles have mass m1 = 1 and N/2 particles
m2 = 4, one has c = 0.97. Thus, c = 0.97 must be used
for all runs discussed in the paper except Run 1, where
all particles are identical and for which the linear theory
presented here is not applicable.

Let us now investigate the response of the equilibrium
characterized by n = n0 and T = T0(τ) to small pertur-
bations δn, δθ and δU by setting

n = n0 + δn (A.8)

T = T0(1 + δθ) (A.9)

U = δU. (A.10)

The coefficients of the resulting linear system are inde-
pendent of τ and x so that we can solve it using standard
Fourier techniques. We therefore assume perturbations of
the type δn, δθ, δU ∝ exp[i(kx−ωτ)] which, when plugged
into the linearized system, lead to

M ·











δn/n0

δU

δθ











= 0. (A.11)

where M is the 3 × 3 matrix given by

M ≡











−iω̃ ik̃ 0

ik̃ 4
3
Dk̃2 − 2iω̃ − 2 ik̃

2 − iω̃ 3ik̃ Bk̃2 − iω̃











(A.12)

with k̃ ≡ kL/(Nε), ω̃ ≡ ωN/ε, B ≡ εb and D ≡ εd. Non
trivial solutions of the system correspond to a vanishing
determinant of the matrix M. Splitting the complex fre-
quency ω = ωr + iγ into real and imaginary parts ωr and
γ, and assuming real wave vectors k leads to two equa-
tions for the real and the imaginary part of the condition
detM = 0 (in the remaining of this appendix we drop the
tildes to ease readability):

2

(

1 − Bk2 − 2

3
Dk2 − 3γ

)

ω2
r

+Bk4 + 3γk2 − 2γ2 + 2γ3 − 2k2 − 2Bγk2

+2Bγ2k2 +
4

3
Dγ2k2 +

4

3
DBγk4 = 0 (A.13)

and either

ω2
r = 3

(

γ2 +
k2

2

)

− 2γ

(

1 − Bk2 − 2

3
Dk2

)

− Bk2 +
2

3
BDk4. (A.14)

for the modified sound wave, or

ωr = 0 (A.15)

for the modified, non propagating, entropy wave. The dis-
persion relation for sound waves, ω2

r = 3k2/2, is imme-
diately obtained by setting γ = B = D = 0 in equa-
tion (A.14) (we shall remember that frequencies are mea-
sured in terms of the pseudo time τ and not the real time
t). Switching back to real time using equation (A.5), the
dispersion relation reduces to the more familiar relation
ω2

r = 3Tk2/m for a one dimensional system. The growth
rate γ(k) for both, sound and entropy mode, can be ob-
tained by substituting ω2

r from equation (A.14) or (A.15),
respectively, into (A.13). After some juggling one ends up
with

fs(γ, k , B, D) = 16γ3 − 16

(

1 − 2

3
Dk2 − Bk2

)

γ2

−
(

12Bk2 − 8BDk4 − 4B2k4 − 16

9
D2k4

+
16

3
Dk2 − 6k2 − 4

)

γ

− 2B2k4 +
4

3
B2Dk6 +

8

9
BD2k6 − 8

3
BDk4

+ 2Bk4 + 2Bk2 + 2Dk4 − k2 = 0 (A.16)

for the sound mode, and

fe(γ, k , B, D) = 2γ3 +

(

2Bk2 +
4

3
Dk2 − 2

)

γ2

+

(

3k2 − 2Bk2 +
4

3
BDk4

)

γ

+ Bk4 − 2k2 = 0 (A.17)

for the entropy mode. For small values of B and D, i.e.
at sufficiently large spatial scales such that both thermal
conduction time scale 1/Bk2 and the viscous time scale
1/Dk2 both exceed the linear time scale 1/ω, one may use
the asymptotic expressions for the imaginary part of both
the sound wave and the entropy wave, viz.

fs(γ, k, 0, 0) = 16γ3 − 16γ2

+ (6k2 + 4)γ − k2 = 0. (A.18)

and

fe(γ, k, 0, 0) = 2γ3 − 2γ2

+ 3k2γ − 2k2 = 0. (A.19)

We note that fs,e(0, k, 0, 0) < 0 for all values of k. Since
fs,e(γ → ∞) = ∞, a positive real solutions γ > 0 must
exist for both equations (A.18) and (A.19). Thus, both
the sound and the entropy mode are always unstable for
k → 0. There is indeed, only one real solution of (A.18)
which goes as k2 for |k| → 0 and tends towards the asymp-
totic value 1/6 for |k| → ∞. Similarly, for |k| → ∞,
the entropy mode’s growth rate tends towards 2/3. Of
course, for sufficiently large values of k both modes must
be damped by diffusive effects. However, unlike the en-
tropy mode, which is always unstable for |k| → 0, the
sound mode is completely stabilized for thermal diffusiv-
ity values B > 1/2.
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Fig. 8. Growth rate for the both the sound mode and the en-
tropy mode for a particular value of the thermal diffusion co-
efficient B and the shear viscosity coefficient D. Plotted is also
the real frequency of the sound mode ω(k) and the asymptotic
values of the growth rates for both modes in the limit k & 1,
and D = B = 0.

The fact that the entropy mode is a non propagating
mode implies that density and temperature fluctuations
vary spatially in antiphase, ensuring pressure balance. In-
deed, for k → 0, one has −iω = 1 − k2/2 (see Figure 8)
from where, using the second line of the matrix in equa-
tion (A.11), one immediately deduces the linear pressure
equilibrium condition δn/n0 = −δθ which is valid up to
order one in k. To same order in k, the first equation in
(A.11) implies the δn/n0 = −ikδU . This latter relation
shows that in the entropy mode density and velocity fluc-
tuations are out of phase by π/2 corresponding to the fluid
flowing from the low density to the high density parts of
the wave. These linear motions, eventually enforced by
non linear effects (i.e. velocity profile steepening) at late
times, ineluctably drive the system toward the final in-
elastic collapse.

B Collision frequency for Maxwellian

distributions

The number of collisions per time unit of a particle of
species α with the particles of species β for relative veloc-
ities in the range [u, u + du] is given by

dναβ = |u|fαβ(u)du, u < 0. (B.1)

In equation (B.1) fαβ(u) denotes the distribution of the
relative velocities. If one assumes Maxwellian distributions
for both species, the distribution of the relative velocities
is also Maxwellian. In one dimensions, with Nβ particles
uniformly distributed in a system of length L it must be

that

fαβ(u) =
1

Vαβ π1/2

Nβ

L
e−u2/V 2

αβ (B.2)

where Vαβ is the thermal velocity defined as

V 2
αβ ≡ V 2

α + V 2
β = 2

Tα

mα
+ 2

Tβ

mβ
. (B.3)

Integration of equation (B.1), assuming the Maxwellian
distribution (B.2), gives the collision frequency of a parti-
cle α with the particles of species β:

ναβ =

∫ 0

−∞

|u|fαβ(u)du =
Nβ

L

Vαβ

2π1/2
. (B.4)

The total collision frequency ν in the system is obtained
by adding the contributions from all kinds of collisions,
i.e.

ν = Nα ναβ + Nβνβα + Nαναα + Nβνββ =

2
NαNβ

L

Vαβ

2π1/2
+

N2
α

L

Vαα

2π1/2
+

N2
β

L

Vββ

2π1/2
.(B.5)

Assuming energy equipartition T = Tα = Tβ and an equal
number of particles for both species Nα = Nβ = N/2, one
ends up with

ν(mα, mβ , T, N) =
N2

4L

v0

π1/2

[

(

m

mα
+

m

mβ

)1/2

+

(

m

2mα

)1/2

+

(

m

2mβ

)1/2
]

(B.6)

where m ≡ (mα + mβ)/2 and v2
0 ≡ 2T/m. Using the

expression for the collision frequency given by (B.6) it be-
comes possible to specify the constant c which establishes
a relation between the time variable t and the collision
index I (cf equations (A.3) and (A.7)). Of course, given
the above assumptions, the relation between t and I only
holds as long as the inhomogeneities in the system are
weak. By comparing (A.7) and (14) one obtains the fol-
lowing relation between the pseudo time variable τ and
the collision index I:

2δI = cδτ. (B.7)

Given the relation between τ and the time variable t (see
equation (A.5)) and using the fact that the collision fre-
quency is just ν = δI/δt it follows that

c ≡ 2ν
L

N2v0

=
1

2π1/2

[

(

m

mα
+

m

mβ

)1/2

+

(

m

2mα

)1/2

+

(

m

2mβ

)1/2
]

(B.8)

We note that c does not depend on the temperature, as
long as energy equipartition is a valid approximation.
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