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In this paper, we aim at giving a refined behavior to blow-up solutions for the Complex Ginzburg-Landau (CGL) equation in the subcritical case. More precisely, we construct blowup solutions and refine their blowup profile by a more approached accurate description.

Introduction

In this paper, we aim at considering the Complex Ginzburg-Landau (CGL) equation

u t = (1 + iβ)∆u + (1 + iδ)|u| p-1 u + αu, u(., 0) = u 0 ∈ L ∞ (R N , C) (CGL) (1) 
where δ, β, α ∈ R.

The equation is better known when p = 3 whith a long history in physics (see Aranson and Kramer [AK02]). The CGL equation describes a lot of phenomena including nonlinear waves, second-order phase transitions, and superconductivity. We note that the CGL equation can be used to describe the evolution of amplitudes of unstable modes for any process exhibiting a Hopf bifurcation (see for example Section VI-C, page 37 and Section VII, page 40 from [START_REF] Aranson | The world of the complex Ginzburg-Landau equation[END_REF] and the references cited therein). The equation can be considered as a general normal form for a large class of bifurcations and nonlinear wave phenomena in continuous media systems. More generally, the CGL equation is used to describe synchronization and collective oscillation in complex media.

The study of collapse, chaotic or blow-up solutions of equation (1) appears in many works; in the description of an unstable plane Poiseuille flow, see Stewartson and Stuart [SS71], Hocking, Stewartson, Stuart and Brown [START_REF] Hocking | A nonlinear instability in plane parallel flow[END_REF] or in the context of binary mixtures in Kolodner and al, [START_REF] Kolodner | Traveling wave convection in an annulus[END_REF], [START_REF] Kolodner | Characterization of dispersive chaos and related states of binary-fluid convection[END_REF], where the authors describe an extensive series of experiments on traveling-wave convection in an ethanol/water mixture, and they observe collapse solution that appear experimentally. For our purpose, we consider CGL independently from any particular physical context and investigate it as a mathematical model in partial differential equations with p > 1.

The Cauchy problem for equation (1) can be solved in a variety of spaces using the semigroup theory as in the case of the heat equation (see [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Ginibre | The Cauchy problem in local spaces for the complex Ginzburg-Landau equation[END_REF][START_REF] Ginibre | The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods[END_REF]). The space L ∞ (R N ) is a convenient choice for us. We say that u(t) blows up or collapses in finite time T < ∞, if u(t) exists for all t ∈ [0, T ) and lim t→T u(t) L ∞ = +∞. In that case, T is called the blowup time of the solution. A point x 0 ∈ R N is said to be a blow-up point if there is a sequence {(x j , t j )}, such that x j → x 0 , t j → T and |u(x j , t j )| → ∞ as j → ∞. The set of all blow-up points is called the blow-up set. Let us now introduce the following definition: Definition 1.1 The parameters (β, δ) are called sub-critical point if p-δ 2βδ(p + 1) > 0 Some results are available in the subcritical case from Zaag [START_REF] Zaag | Blow-up results for vector-valued nonlinear heat equations with no gradient structure[END_REF] (β = 0) and also Masmoudi and Zaag [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] (β = 0). More precisely, if p -δ 2 -βδ(p + 1) > 0, then, the authors construct a solution of equation (1), which blows up in finite time T > 0 only at the origin such that for all t ∈ [0, T ),

(T -t) 1+iδ p-1 |log(T -t)| -iµ u(x, t) -p -1 + b sub |x| 2 (T -t)| log(T -t)| -1+iδ p-1 L ∞ (2) ≤ C 0 1 + | log(T -t)| ,
where

b sub = (p -1) 2 4(p -δ 2 -βδ(1 + p))
> 0 and µ = -2b sub (p -1) 2 β(1 + δ 2 ).

(3)

Note that this result was previously obtained formally by Hocking and Stewartson [START_REF] Hocking | On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance[END_REF] (p = 3) and mentioned later in Popp et al [START_REF] Popp | The cubic complex Ginzburg-Landau equation for a backward bifurcation[END_REF] (see those references for more blow-up results often approved numerically, in various regimes of the parameters).

In the critical case, there are some results concerned by the construction of a blow up solution by Nouaili and Zaag [START_REF] Nouaili | Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case[END_REF] and Duong, Nouaili and Zaag [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF]. More precisely, if p -δ 2 -βδ(p + 1) = 0, then, the authors construct a solution of equation (1), which blows up in finite time T > 0 only at the origin such that for all t ∈ [0, T ), (see Theorem 2 in [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF]),

(T -t) 1+iδ p-1 |log(T -t)| -iµ e -iν √ | log(T -t)| u(x, t) -p -1 + b cri |x| 2 (T -t)| log(T -t)| 1 2 -1+iδ p-1 L ∞ (4) ≤ C 0 1 + | log(T -t)| 1 4
, where b 2 cri = (p -1) 2 4(p + 1) 2 δ 2 16(1 + δ 2 )(p(2p -1) -(p -2)δ 2 )((p + 3)δ 2 + p(3p + 1))

> 0 and ν = ν(β, p), µ = µ(β, p) are given in [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF].

The authors obtain in fact a more refined description showing some first order terms of the blow-up solution. On contrary, in the subcritical case, few results are available showing first order terms in the blow-up solution (2).

Up to our knowledge, there are only formal results given by Berger and Kohn [START_REF] Berger | A rescaling algorithm for the numerical calculation of blowing-up solutions[END_REF] and Velázquez, Galaktionov, and Herrero [START_REF] Velázquez | The space structure near a blow-up point for semilinear heat equations: a formal approach[END_REF] when β = δ = 0, which corresponds to the nonlinear heat equation (NLH) .

Statement of our result

Our main concern is to give a refined asymptotic description of the blowup solution given by Masmoudi and Zaag. Rather than considering that solution and refining its description, we will instead start over from the beginning, and we construct a solution u(x, t) of (1) in the subcritical case (p -βδ(p + 1) -δ 2 > 0) that blows up in some finite time T , in the sense that lim t→T u(., t) L ∞ = +∞, and which has the same zero order description as the solution of Masmoudi and Zaag [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF], with a more accurate description showing next order terms in the expansion. Let us first recall the Theorem 1 from Masmoudi and Zaag [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF]: Blow-up profiles for equation (1). Let us consider the subcritical case where p -δ 2 -βδ(p + 1) > 0. Then, there exists a unique constant η depending on p, δ and β such that equation (1) has a solution u(x, t), which blows up in finite time T , only at the origin. Moreover:

(i) For all t ∈ [0, T ), (T -t) 1+iδ p-1 | log(T -t)| -iµ u(., t) -ϕ 0 . (T -t)| log(T -t)| 1/2 L ∞ (R N ) (5) 
≤ C 0 1 + | log(T -t)| 1 2
,

where ϕ 0 (z) = p -1 + bz 2 -1+iδ p-1 , (6) 
with b(= b sub ) is defined as in (5),

µ = - 4bβ(1 + δ 2 ) (p -1) 2 (7) 
(ii) For all x = 0, u(x, t) → u * (x) ∈ C 2 (R N \{0}) and

u * (x) ∼ |2 log |x|| iµ b sub |x| 2 2| log |x|| -1+iδ p-1 as x → 0. ( 8 
)
Let us introduce the main result of this work.

Theorem 1 (First order terms) Following Theorem 1.1, we claim that the solution decomposes in self similar variables

W (y, t) = (T -t) 1+iδ p-1 u(x, t), y = x √ T -t , as follows: For M > 0 sup |y|<M | log(T -t)| 1 2 W (y, t)e -iη log(| log(T -t)|) | log(T -t)| log(T -t)| -iµ e iθ(t) - ϕ 0 y | log(T -t)| 1/2 + a(1 + iδ) | log(T -t)| + log | log(T -t)| | log(T -t)| 2 E(y) + 1 | log(T -t)| 2 F(y) ≤ C | log(T -t)| 3 (1 + |y| 5 ),
(9) and θ(t) → θ 0 as t → T , such that

|θ(t) -θ 0 | ≤ C log (| log(T -t)|) 2 | log(T -t)| 2 with ϕ 0 (z) = p -1 + bz 2 -1+iδ p-1 , ( 10 
)
where b is defined as in (5), ν and a are given by (7) and E and F(y) is a function defined as follows

E(y) = Ã2 h2 (y), (11) 
F(y) = B0 h0 (y) + B 2 h 2 (y) + B2 h2 (y), ( 12 
)
where B0 , B 2 and Ã2 depend only on β and δ and are given by (47) in Definition 3.1 and h 0 (y), h 2 (y) and h2 (y) will be given in Lemma 2.2.

The constant B2 depend only on β and δ when β = 0. When β = 0, we can choose arbitrary B2 .

Remark 1.2 For technical reasons, the proof of Theorem 1 must be done separately for β = 0 and β = 0.

Remark 1.3 We will consider CGL, given by (1), only when α = 0. The case α = 0 can be done as in [START_REF] Ebde | Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term[END_REF]. In fact, when α = 0, exponentially small terms will be added to our estimates in self-similar variable (see (13) in the below), and that will be absorbed in our error terms, since our trap V A (s) defined in Definition 3.1 is given in polynomial scales.

Let us give an idea of the method used to prove the results. We construct the blow-up solution with the profile in Theorem 1, by following the method of [START_REF] Merle | Stability of the blow-up profile for equations of the type u t = ∆u + |u| p-1 u[END_REF], [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF]. This kind of methods has been applied for various nonlinear evolution equations. For hyperbolic equations, it has been successfully used for the construction of multi-solitons for semilinear wave equation in one space dimension (see [START_REF] Côte | Construction of a multi-soliton blow-up solution to the semilinear wave equation in one space dimension[END_REF]). For parabolic equations, it has been used in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] and [START_REF] Zaag | A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure[END_REF] for the Complex Ginzburg Landau (CGL) equation with no gradient structure, the critical harmonic heat flow in [START_REF] Raphaël | Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow[END_REF], the two dimensional Keller-Segel equation in [START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF] and the nonlinear heat equation involving nonlinear gradient term in [START_REF] Ebde | Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term[END_REF], [START_REF] Tayachi | Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term[END_REF]. Recently, this method has been applied for various non variational parabolic system in [START_REF] Nouaili | Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation[END_REF] and [GNZ17, GNZ18b, GNZ18a, GNZ19], for a logarithmically perturbed nonlinear equation in [START_REF] Nguyen | Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations[END_REF][START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued semilinear heat equation[END_REF][START_REF] Duong | A blowup solution of a complex semi-linear heat equation with an irrational power[END_REF][START_REF] Duong | Construction of a stable blowup solution with a prescribed behavior for a non-scalinginvariant semilinear heat equation[END_REF]. We also mention a result for a higher order parabolic equation [START_REF] Ghoul | Construction of type I blowup solutions for a higher order semilinear parabolic equation[END_REF], two more results for equation involving non local terms in [START_REF] Duong | Profile of a touch-down solution to a nonlocal MEMS model[END_REF][START_REF] Abdelhedi | Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient term[END_REF].

Following [START_REF] Merle | Stability of the blow-up profile for equations of the type u t = ∆u + |u| p-1 u[END_REF], [START_REF] Nouaili | Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case[END_REF] and [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF], the proof is divided in two steps. First, we reduce the problem to a finite dimensional case. Second, we solve the finite time dimensional problem and conclude by contradiction using index theory. More precisely, the proof is performed in the framework of the similarity variables defined below in (13). We linearize the self-similar solution around the profile ϕ 0 and we obtain q (see (15) below). Our goal is to guarantee that q(s) belongs to some set V A (s) (introduced in Definition 3.1), which shrinks to 0 as s → +∞. The proof relies on two arguments:

• The linearized equation gives two positives mode; Q0 and q1 , one zero modes (q 2 ) and an infinite dimensional negative part. The negative part is easily controlled by the effect of the heat kernel. The control of the zero mode is quite delicate (see Part 2: Proof of Proposition 3.9, page 34). Consequently, the control of q is reduced to the control of its positive modes.

• The control of the positive modes Q0 and q1 is handled thanks to a topological argument based on index theory (see the argument at page 19).

The organization of the rest of this paper is as follows. Section 3 is divided in three subsections. In Subsection 3 we give the proof of the existence of the profile assuming technical details when β = 0. In particular, we construct a shrinking set and give an example of initial data giving rise to the blow-up profile. Subsection 3.1 is devoted to the proof of technical results which are needed in the proof of existence. In Subsection 3.3, we explain the case β = 0.

Formulation of the problem

We here consider the CGL equation, introduced in (1), with α = 0. Since, as we mentioned before in Remark 1.3 that the perturbation of αu is quite small. Now, let us introduce the similarity variable

u(x, t) = (T -t) -1 p-1 w(y, s), y = x √ T -t and s = -ln(T -t). (13) 
Hence, w reads

∂ s w = (1 + iβ)∆w - 1 2 y • ∇w - w p -1 + (1 + iβ)|w| p-1 w. ( 14 
)
Using the idea from [MZ08], we will introduce q(y, s) and θ(s) satisfying w(y, s) = e i(µ log s+η ln s s +θ(s)) (ϕ(y, s) + q(y, s)) ,

where .

ϕ (y, s) = ϕ 0 y s 1/2 + (1 + iδ) a s ≡ κ -iδ p -1 + b |y| 2 s -1+iδ p-1 + (1 + iδ) a s , (16) 
We will explain how we choose these constant the proof. In particular, η is new constant add for the refinement the behavior of w. Note that ϕ 0 (z) satisfies the following equation

- 1 2 z • ∇ϕ 0 - 1 + iδ p -1 ϕ 0 + (1 + iδ)|ϕ 0 | p-1 ϕ 0 = 0. ( 17 
)
Using equation ( 14), we derive that q solves the following equation

∂q ∂s = L β q - (1 + iδ) p -1 q + L(q, θ , y, s) + R * (θ , y, s). ( 18 
)
where

L β q = (1 + iβ)∆q -1 2 y • ∇q, L(q, θ , y, s) = (1 + iδ) |ϕ + q| p-1 (ϕ + q) -|ϕ| p-1 ϕ -i η 1 s 2 -ln s s 2 + µ s + θ (s) q , R * (θ , y, s) = R(y, s) -i η 1 s 2 -ln s s 2 + µ s + θ (s) ϕ, R(y, s) = -∂ϕ ∂s + (1 + iβ)∆ϕ -1 2 y • ∇ϕ -(1+iδ) p-1 ϕ + (1 + iδ)|ϕ| p-1 ϕ. ( 19 
)
Our aim is to find a θ ∈ C 1 ([-log T, ∞), R) such that equation ( 22) has a solution q(y, s) defined for all (y, s) ∈ R N × [-log T, ∞) such that q(y, s) = F(y) log s s 2 + v(y, s),

where F is defined by (12) in Theorem 1 and

v(s) L ∞ → 0 as s → ∞.
From (17), one sees that the variable z = y s 1/2 plays a fundamental role. Thus, we will consider the dynamics for |z| > K, and |z| < 2K separately for some K > 0 to be fixed large.

The outer region where |y| > Ks 1/2

Let us consider a non-increasing cut-off function χ 0 ∈ C ∞ (R + , [0, 1]) such that χ 0 (ξ) = 1 for ξ < 1 and χ 0 (ξ) = 0 for ξ > 2 and introduce

χ(y, s) = χ 0 |y| Ks 1/2 , ( 20 
)
where K will be fixed large. Let us define q e (y, s) = e iδ p-1 s q(y, s) (1 -χ(y, s)) ,

and note that q e is the part of q(y, s), corresponding to the non-blowup region |y| > Ks 1/2 . As we will explain in subsection (3.2.3), the linear operator of the equation satisfied by q e is negative, which makes it easy to control q e (s) L ∞ . This is not the case for the part of q(y, s) for |y| < 2Ks 1/2 , where the linear operator has two positive eigenvalues, a zero eigenvalue in addition to infinitely many negative ones. Therefore, we have to expand q with respect to these eigenvalues in order to control q(s) L ∞ (|y|<2Ks 1/2 ) . This requires more work than for q e . The following subsection is dedicated to that purpose. From now on, K will be fixed constant which is chosen such that ϕ(s

) L ∞ (|y|>Ks 1/2 ) is small enough, namely ϕ 0 (z) p-1 L ∞ (|z|>K) ≤ 1 C(p-1)
(see subsection (3.2.3) below, for more details).

The inner region where |y| < 2Ks 1/2

If we linearize the term L(q, θ , y, s) in equation ( 18), then we can write (18) as ∂q ∂s = L β,δ q-i µ s -η ln s s 2 + η s 2 + θ (s) q+V 1 q+V 2 q+B(q, y, s)+R * (θ , y, s), (22) where

L δ,β q = (1 + iβ)∆q -1 2 y • ∇q + (1 + iδ) q, V 1 (y, s) = (1 + iδ) p+1 2 |ϕ| p-1 -1 p-1 , V 2 (y, s) = (1 + iδ) p-1 2 |ϕ| p-3 ϕ 2 -1 p-1 , B(q, y, s) = (1 + iδ) |ϕ + q| p-1 (ϕ + q) -|ϕ| p-1 ϕ -|ϕ| p-1 q -p-1 2 |ϕ| p-3 ϕ(ϕq + φq) , R * (θ , y, s) = R(y, s) -i µ s -η ln s s 2 + η s 2 + θ (s) ϕ, R(y, s) = -∂ϕ ∂s + ∆ϕ -1 2 y • ∇ϕ -(1+iδ) p-1 ϕ + (1 + iδ)|ϕ| p-1 ϕ.
(23) Note that the term B(q, y, s) is built to be quadratic in the inner region |y| ≤ Ks 1 2 . Indeed, we have for all K ≥ 1 and s ≥ 1,

sup |y|≤2Ks 1 2 |B(q, y, s)| ≤ C(K)|q| 2 . ( 24 
)
Note also that R(y, s) measures the defect of ϕ(y, s) from being an exact solution of (14). However, since ϕ(y, s) is an approximate solution of (14), one easily derives the fact that

R(s) L ∞ ≤ C s . (25) 
Therefore, if θ (s) goes to zero as s → ∞, we expect the term R * (θ , y, s) to be small, since ( 22) and (25) yield

|R * (θ , y, s)| ≤ C s + |θ (s)|. ( 26 
)
Therefore, since we would like to make q go to zero as s → ∞, the dynamics of equation ( 22) are influenced by the asymptotic limit of its linear term,

L β,δ q + V 1 q + V 2 q,
as s → ∞. In the sense of distribution (see the definitions of V 1 and V 2 in (22) and ϕ (16)) this limit is L β,δ q.

Spectral properties of L β

Here, we will restrict to N = 1. We consider the Hilbert space

L 2 |ρ β | (R N , C) which is the set of all f ∈ L 2 loc (R N , C) such that R N |f (y)| 2 |ρ β (y)|dy < +∞,
where

ρ β (y) = e - |y| 2 4(1+iβ) (4π(1 + iβ)) N/2 and |ρ β (y)| = e - |y| 2 4(1+β 2 ) (4π 1 + β 2 ) N/2 . ( 27 
)
We can diagonalize

L β in L 2 |ρ β | (R N , C
). Indeed, we can write

L β q = 1 ρ β div(ρ β ∇q).
We notice that L β is formally "self-adjoint" with respect to the weight ρ β . Indeed, for any v and w in L 2

|ρ β | (R N , C) satisfying L β v and L β w in L 2 |ρ β | (R N , C), it holds that vL β wρ β dy = wL β vρ β dy. (28) 
If we introduce for each α = (α 1 , ..., α N ) ∈ N N the polynomial

f α (y) = c α Π N i=1 H α i y i 2 √ 1 + iβ , ( 29 
)
where H n is the standard one dimensional Hermite polynomial and c α ∈ C is chosen so that the term of highest degree in f α is Π N i=1 y α i i , then, we get a family of eigenfunction of L β , "orthogonal" with respect to the weight ρ β , in the sense that for any different α and σ ∈ N N

L β f α = -α 2 f α , R f α (y)f σ (y)ρ β (y)dy = 0. ( 30 
)
2.4 Spectral properties of L β,δ

In the sequel, we will assume N = 1. Now, with the explicit basis diagonalizing L β , we are able to write L β,δ in a Jordan's block's. More precisely, we recall Lemma 3.1 from [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] Lemma 2.1 (Jordan block's decomposition of L β,δ ) For all n ∈ N, there exists two polynomials

h n = if n + n-1 j=0 d j,n f j , where d j,n ∈ C hn = (1 + iδ)f n + n-1 j=0 dj,n f j , where dj,n ∈ C, (31) 
of degree n such that

L β,δ h n = - n 2 h n , L β,δ hn = 1 - n 2 hn + c n h n-2 , (32) 
with c n = n(n -1)β(1 + δ) 2 (and we take h k ≡ 0 for k < 0). The term of highest of h n (resp. hn ) is iy n (resp. (1 + iδ)y n ).

Proof : See the proof of Lemma 3.1 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF]. For the explicit formulation of c n , we look at the imaginary part of order n -1 in the equation

L β,δ hn = 1 -n 2 hn + c n h n-2 .
In addition to that, we have the formulas of eigen-functions h j , hj , j ∈ {1, 2, ..., 6} in [DNZ20]:

Lemma 2.2 (The basis vectors of degree less or equal to 6) we have

h 0 (y) = i, h0 = (1 + iδ), h 1 (y) = iy, h1 = (1 + iδ)y, h 2 (y) = iy 2 + β -i(2 + δβ), h2 = (1 + iδ)(y 2 -2 + 2βδ), h 4 (y) = iy 4 + y 2 (c 4,2 + id 4,2 ) + c 4,0 + id 4,0 , c 4,2 = 6β, d 4,2 = -6(2 + βδ) = -18 -6(βδ -1), c 4,0 = -4β(3 + βδ), d 4,0 = 12 -6β 2 + 12βδ + 2β 2 δ 2 , h4 (y) = (1 + iδ)y 4 + y 2 (12(βδ -1) + i d4,2 ) + c4,0 + i d4,0 . c4,2 = 12(βδ -1), d4,2 = 0, c4,0 = 6β 2 (1 + δ 2 ) -12(βδ -1), d4,0 = -6β 2 δ(3δ 2 + 7) -12δ(βδ + 1) h 6 (y) = iy 6 + y 4 (c 6,4 + id 6,4 ) + y 2 (c 6,2 + id 6,2 ) + c 6,0 + id 6,0 , c 6,4 = 15β, d 6,4 = -15(2 + βδ), c 6,2 = -60β(3 + δβ), d 6,2 = -90β 2 + 180 + 180βδ + 30β 2 δ 2 , c 6,0 = 180β + 120δβ 2 -45β 3 + 15β 3 δ, d 6,0 = -180βδ + 55δβ 3 -60δ 2 β 2 -5β 3 δ 2 + 180β 2 -120, h6 (y) = (1 + iδ)y 6 + y 4 (c 6,4 + i d6,4 ) + y 2 (c 6,2 + i d6,2 ) + c6,0 + i d6,0 , c6,4 = 30(βδ -1), d6,4 = 0, c6,2 = 90β 2 (1 + δ 2 ) -180(βδ -1), d6,2 = -90β(1 + δ 2 )(3βδ + 4) + 180(βδ -1)(δ -2β), c6,0 = -20β 2 (1 + δ 2 )(11βδ + 21) + 120(βδ -1)(-2β 2 + βδ + 1), d6,0 = 270β(1 + δ 2 )(2 + βδ) + β 2 (1 + δ 2 )(140βδ 2 -180βδ + 390δ) +60(βδ -1)(2β 2 δ -βδ 2 + 9β -4δ),
Moreover, we have

L β,δ h0 = h0 , L β,δ h1 = 1 2 h1 , L β,δ h2 = 2β(1 + δ 2 )h 0 = 2iβ(1 + δ 2 ), L β,δ h4 = -h4 + 12β(1 + δ 2 )h 2 , L β,δ h6 = -2 h6 + 30β(1 + δ 2 )h 4 .
Corollary 2.1 (Basis for the set of polynomials) The family (h n hn ) n is a basis of C[X], the R vector space of complex polynomials.

Decomposition of q

For the sake of controlling q in the region |y| < 2K √ s, we will expand the unknown function q (and not just χq where χ is defined in (20)) with respect to the family f n and the with respect to the h n . We start by writing

We start by writing

q(y, s) = n≤M Q n (s)f n (y) + q -(y, s), (33) 
where

f n is the eigenfunction of L β defined in (29), Q n (s) ∈ C, q -satisfies q -(y, s)h n (y)ρ(y)dy = 0 for all n ≤ M,
and M is a fixed even integer satisfying

M ≥ 4 1 + δ 2 + 1 + 2 max i=1,2,y∈R,s≥1 |V i (y, s)| , (34) 
with V i=1,2 defined in (23). From (33), we have

Q n (s) = q(y, s)f n (y)ρ β (y)dy f n (y) 2 ρ β (y) ≡ F n (q(s)), (35) 
The function q -(y, s) can be seen as the projection of q(y, s) onto the spectrum of L β , which is smaller than (1 -M )/2. We will call it the infinite dimensional part of q and we will denote it q -= P -,M (q). We also introduce P +,M = Id -P -,M . Notice that P -,M and P +,M are projections. In the sequel, we will denote P -= P -,M and P + = P +,M . The complementary part q + = q -q -will be called the finite dimensional part of q. We will expand it as follows

q + (y, s) = n≤M Q n (s)f n (y) = n≤M q n (s)h n (y) + qn (s) hn (y), (36) 
where qn , q n ∈ R. Finally, we notice that for all s, we have q -(y, s)q + (y, s)ρ β (y)dy = 0.

Our purpose is to project (22) in order to write an equation for q n and qn .

For that we need to write down the expression of q n and qn in terms of Q n .

Since the matrix (h n , hn ) n≤M in the basis of (if n , f n ) is upper triangular (see Lemma 2.2). The same holds for its inverse. Thus, we derive from (36)

q n = ImQ n (s) -δ ReQ n (s) + M j=n+1 A j,n ImQ j (s) + B j,n ReQ j (s) ≡ P n,m (q(s)), qn (s) = ReQ n (s) + M j=n+1 Ãj,n ImQ j (s) + Bj,n ReQ j (s) ≡ Pn,M (q(s)), (37) 
where all the constants are real. Moreover, the coefficient of ImQ n and ReQ n in the expression of q n and qn are explicit. This comes from the fact that the same holds for the coefficient of if n and f n in the expansion of h n and hn (see Lemma 2.1). Note that the projector P n,m (q) and Pn,m (q) are well-defined thanks to (35). We will project equation ( 22) on the different modes h n and hn . Note that from (33) and (36), that

q(y, s) =   n≤M q n (s)h n (y) + qn (s) hn (y)   + q -(y, s), (38) 
we should keep in mind that the presentation in (38) is unique.

Existence

In this section, we prove the existence of a solution q(s), θ(s) of problem ( 18)-( 50) and describe more the asymptotic of q q(y, s) = h0 (y) Ã0

s 2 + h 2 (y) Ã2 s 2 + h2 (y) Ã2 s 2 + B2 ln s s 2 + v(y, s),
with, for all M > 0 sup

|y|<M s 1 2 |v(y, s)| ≤ C (1 + |y| 5 ) ln 2 s s 3 , and |θ (s)| ≤ CA 10 ln 2 s s 3 for all s ∈ [-log T, +∞), (39) 
where Ã0 , A 2 , Ã2 and B2 in Definition 3.1 and h 0 (y), h 2 (y) and h2 (y) are given in Lemma 2.2.

Hereafter, we denote by C a generic positive constant, depending only on p, δ, β and K introduced in (20), itself depending on p.

As a matter of fact, we aim at control the asymptotic (39) by a shrinking set. In fact, we are inspired from the set given in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] and [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF], to introduce the new one which is more sharped: Definition 3.1 (A set shrinking to zero) For all K > 1, A ≥ 1 and s ≥ 1, we define V A (s) as the set of all q ∈ L ∞ (R) such that

q e L ∞ (R) ≤ A M +2 s 1 2 , q -(y) 1+|y| M +1 L ∞ (R) ≤ A M +1 s M +2 2 , |q j |, |q j | ≤ A j s j+1 2 for all 5 ≤ j ≤ M, |q 0 | ≤ 1 s 2 , |q 1 | ≤ A s 3 , |q 1 | ≤ A 4 s 3 .
In addition to the the other modes will satisfy the following condition:

|Q 4 | ≤ A 7 ln 2 s s 4 and Q4 ≤ A 4 ln 2 s s 4 , |q 3 | ≤ A 3 s 4 and |q 3 | ≤ A 3 s 4 , |Q 2 | ≤ A 8 ln 2 s s 4 and Q2 ≤ A 10 ln 2 s s 3 , and Q0 ≤ A ln 2 s s 4
, where

Q 4 = q 4 - 1 2 D 4,2 q2 s + C 4,2 R * 2,1 2 + R * 4,2 2 1 s 3 , ( 40 
) = q 4 -A 4 q2 s + B 4 s 3 , Q4 = q4 -D4,2 q2 s + 1 s 3 C4,2 R * 2,1 + R * 4,2 , (41) 
= q4 -Ã4 q2 s + B4 s 3 , Q0 = q0 - q2 s µ L0,2 -D0,2 - Θ * 0,0 c 2 κ - R * 0,1 s 2 - T * 0,1 ln s s 3 (42) - 1 s 3 -X0 + µ K0,2 R * 2,1 -C0,2 .R * 2,1 -T * * 0,1 , (43) 
= q0 -Ã0 q2 s + B0 s 2 + C0 ln s s 3 + D0 s 3 , (44) 
and

Q 2 = q 2 - q2 s D 2,2 -µ(1 + δ 2 ) + c 4 D4,2 + Θ * 2,0 c 2 κ + R * 2,1 s 2 - T * 2,0 ln s s 3 + 1 s 3 X 2 + c 4 [ C4,2 R * 2,1 + R * 4,2 ] -D 2,0 . R * 0,1 + T * * 2,0 , (45) = q 2 -A 2 q2 s + B 2 s 2 + C 2 ln s s 3 + D 2 s 3 , Q2 = q2 - Ã2 ln s s 2 + B2 s 2 , ( 46 
)
and Ã2 = - δb (p -1) 2 R * 0,1 + (µ + C2,2 )R * 2,1 -D2,0 R * 0,1 + R2,2 , ( 47 
) B2 = - R * 0,1 -ηκ c 2 , where c 2 = 2β(1 + δ 2 ) if β = 0, B2 is arbitrary if β = 0, (48) 
and

X 2 = R * 2,2 + (C 2,2 -δµ)R * 2,1 + Θ * 2,0 R * 0,1 κ and X0 = R * 0,2 -(δµ + D0,0 ) R * 0,1 .
Using Definition 3.1, we claim to the following Claim 3.2 (The size of q ∈ V A ) For all r ∈ V A (s), we have the following estimates

(i) r L ∞ (|y|<2K √ s) ≤ C(K) A M +1 √ s and r L ∞ ≤ C(K) A M +2 √ s . (ii) For all y ∈ R, |r(y)| ≤ C A M +1 ln s s 2 (1 + |y| M +1 ).
Proof: The proof directly follows the definition of the shrinking set.

From item (i), our purpose is to control q to stay in V(A) for s ≥ s 01 . More over, the bounds in this set help us to conclude the result in the Theorems.

In the following, we aim to choose the initial data Definition 3.3 (Choice of initial data) Let us define, for A ≥ 1, s 0 = -log T > 1 and d 0 , d 1 ∈ R, the function

ψ s 0 ,d 0 ,d 1 (y) = A ln 2 s s 4 0 d0 + B0 s 2 0 + ( Ã0 Ã2 + C0 ) ln s 0 s 3 0 + D0 + Ã0 B2 s 3 0 h0 + A s 3 0 d1 h1 (y) + d 0 h 0 + Ã2 ln s 0 s 2 0 + B2 s 2 0 h2 + B 2 s 2 0 + D 2 + A 2 B2 s 3 0 + (C 2 + A 2 Ã2 ) ln s 0 s 3 0 h 2 + B4 + Ã4 Ã2 s 3 0 + Ã4 Ã2 ln s 0 s 3 0 h4 + B 4 + A 4 B2 s 3 0 + A 4 Ã2 ln s 0 s 3 0 h 4 χ(2y, s 0 ), (49 
) where s 0 = -log T and h i , hi , i = 0, 1, 2, 3, 4 are given in Lemma 2.2, χ is defined by (20) and d 0 = d 0 ( d0 , d1 ) will be fixed later in (i) of Proposition 3.6. The constants Ãi , A i , Bi , B i , Ci , C i , Di , D i for i = 0, 2, 4 are given by (40-46). Remark 3.4 Let us recall that we will modulate the parameter θ to kill one of the neutral modes, see equation (50) below. It is natural that this condition must be satisfied for the initial data at s = s 0 . Thus, it is necessary that we choose d 0 to satisfy condition (50), see (51) below.

So far, the phase θ(s) introduced in (15) is arbitrary, in fact as we will show below in Proposition 3.7. We can use a modulation technique to choose θ(s) in such a way that we impose the condition

P 0,M (q(s)) = 0, (50) 
which allows us to kill the neutral direction of the operator L defined in (22). Reasonably, our aim is then reduced to the following proposition:

Proposition 3.5 (Existence of a solution trapped in V A (s)) There exists A 2 ≥ 1 such that for A ≥ A 2 there exists s 02 (A) such that for all s 0 ≥ s 02 (A), there exists ( d0 , d1 ) such that if q is the solution of (22)-( 50), with initial data given by (49) and (51), then v ∈ V A (s), for all s ≥ s 0 .

This proposition gives the stronger convergence to 0 in L ∞ (R). Let us first be sure that we can choose the initial data such that it starts in V A (s 0 ). In other words, we will define a set where where will be selected the good parameters ( d0 , d1 ) that will give the conclusion of Proposition 3.5.

More precisely, we have the following result:

Proposition 3.6 (Properties of initial data) For each A ≥ 1, there exists s 03 (A) > 1 such that for all s 0 ≥ s 03 : (i) P 0,M (iχ(2y, s 0 )) = 0 and the parameter d 0 (s 0 , d0 , d1 ) given by 51) is well defined, where χ defined in (20) and the constants Ãi , A i , Bi , B i , Ci , C i , for i = 0, 2, 4 are given by (40-46). (ii) If ψ is given by (49) and (51) with d 0 defined by (51).Then, there exists a quadrilateral D s 0 ⊂ [-2, 2] 2 such that the mapping

d 0 (s 0 , d0 , d1 ) = - A s 3 0 d1 P 0,M h1 χ(2y, s 0 ) P 0,M (iχ(2y, s 0 )) - A ln 2 s 0 s 4 0 d0 + B0 s 2 0 + ( Ã0 Ã2 + C0 ) ln s 0 s 3 0 + D0 + Ã0 B2 s 3 0 P 0,M h0 χ(2y, s 0 ) P 0,M (iχ(2y, s 0 )) - Ã2 ln s 0 s 2 0 + B2 s 2 0 P 0,M h2 χ(2y, s 0 ) P 0,M (iχ(2y, s 0 )) - B 2 s 2 0 + D 2 + A 2 B2 s 3 0 + (C 2 + A 2 Ã2 ) ln s 0 s 3 0 P 0,M (h 2 χ(2y, s 0 )) P 0,M (iχ(2y, s 0 )) - B4 + Ã4 Ã2 s 3 0 + Ã4 Ã2 ln s 0 s 3 0 P 0,M h4 χ(2y, s 0 ) P 0,M (iχ(2y, s 0 )) - B 4 + A 4 B2 s 3 0 + A 4 Ã2 ln s 0 s 3 0 P 0,M (h 4 χ(2y, s 0 )) P 0,M (iχ(2y, s 0 )) (
( d0 , d1 ) → Ψ0 = ψ0 - B0 s 2 0 + ( Ã0 Ã2 + C0 ) ln s 0 s 3 0 + D0 + Ã0 B2 s 3 0 , ψ1
(where ψ stands for ψ s 0 , d0 , d1 ) is linear, one to one from D s 0 onto

[-A ln 2 s 0 s 4 0 , A ln 2 s 0 s 4 0 ] × [-A s 3 0 , A s 3 0 ].
Moreover it is of degree 1 on the boundary.

(iii) For all ( d0 , d1 ) ∈ D s 0 , ψ e ≡ 0,

ψ 0 = 0, | ψi | + |ψ j | ≤ CAe -γs 0
for some γ > 0, for some γ > 0 and for all 3 ≤ i ≤ M, i = 4 and 1 ≤ j ≤ M, j = 4 and

| Ψi | + |Ψ j | ≤ CAe -γs 0 for i, j = {2, 4},
where Ψi and Ψ i are defined as in (40-46). Moreover ,

ψ -(y) (1+|y|) M +1 L ∞ (R) ≤ C A s M 4 +1 0 .
(iv) For all ( d0 , d1 ) ∈ D s 0 , ψ s 0 , d0 , d1 ∈ V A (s 0 ) with strict inequalities except for ( ψ0 , ψ1 ).

Proof: The proof is the same as Proposition 4.2 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] and Proposition 4.5 in [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF] In the following, we find a local in time solution for equation ( 22) coupled with the condition (50). 51)) For all A ≥ 1, there exists T 3 (A) ∈ (0, 1/e) such that for all T ≤ T 3 , the following holds: For all ( d0 , d1 ) ∈ D T , there exists s max > s 0 = -log T such that problem (22)-( 50) with initial data at s = s 0 , (q(s 0 ), θ(s 0 )) = (ψ s 0 , d0 , d1 , 0), where ψ s 0 , d0 , d1 is given by (49) and (51), has a unique solution q(s), θ(s) satisfying q(s) ∈ V A+1 (s) for all s ∈ [s 0 , s max ).

The proof is quite similar to Proposition 4.4 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] and Proposition 4.6 in [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF].

Let us now give the proof of Proposition 3.5. Proof of Proposition 3.5: Let us consider A ≥ 1, s 0 ≥ s 03 , ( d0 , d1 ) ∈ D s 0 , where s 03 is given by Proposition 3.6. From the existence theory (which follows from the Cauchy problem for equation (1)), starting in V A (s 0 ) which is in V A+1 (s 0 ), the solution stays in V A (s) until some maximal time s * = s * ( d0 , d1 ). Then, either:

• s * ( d0 , d1 ) = ∞ for some ( d0 , d1 ) ∈ D s 0 , then the proof is complete.

• s * ( d0 , d1 ) < ∞, for any ( d0 , d1 ) ∈ D s 0 , then we argue by contradiction. By continuity and the definition of s * , the solution on s * is in the boundary of V A (s * ). Then, by definition of V A (s * ), one at least of the inequalities in that definition is an equality. Owing to the following proposition, this can happen only for the first two components q0 , q1 . Precisely we have the following result Proposition 3.8 (Control of q(s) by (q 0 (s), q 1 (s)) in V A (s)) There exists A 4 ≥ 1 such that for each A ≥ A 4 , there exists s 04 ∈ R such that for all s 0 ≥ s 04 . The following holds: If q is a solution of (22) with initial data at s = s 0 given by (49) and (51) with ( d0 , d1 ) ∈ D s 0 , and q(s) ∈ V(A)(s) for all s ∈ [s 0 , s 1 ], with q(s 1 ) ∈ ∂V A (s 1 ) for some s 1 ≥ s 0 , then: (i)(Smallness of the modulation parameter θ defined in (15)) For all s ∈ [s 0 , s 1 ],

|θ (s)| ≤
CA 10 ln 2 s s 3 .

(ii) (Reduction to a finite dimensional problem) We have: , and the following function

Q0 (s 1 ), q1 (s 1 ) ∈ ∂ - A ln 2 s 1 s 4 1 , A ln 2 s 1 s 4 1 × - A s 3 1 , A s 3 1 . ( 
φ : D s 0 → ∂([-1, 1] 2 ) ( d0 , d1 ) → s 4 * A ln 2 s * Q0 , s 3 * A q1 ( d0 , d1 ) (s * ), with s * = s * ( d0 , d1 ),
is well defined. Then, it follows from Proposition 3.8, part (iii) that φ is continuous. On the other hand, using Proposition 3.6 (ii)-(iv) together with the fact that q(s 0 ) = ψ s 0 , d0 , d1 , we see that when ( d0 , d1 ) is in the boundary of the rectangle D s 0 , we have strict inequalities for the other components.

Applying the transverse crossing property given by (iii) of Proposition 3.8, we see that q(s) leaves V A (s) at s = s 0 , hence s * ( d0 , d1 ) = s 0 . Using Proposition 3.6, part (ii), we see that the restriction of φ to the boundary is of degree 1. A contradiction, then follows from the index theory. Thus there exists a value ( d0 , d1 ) ∈ D s 0 such that for all s ≥ s 0 , q s 0 ,d 0 ,d 1 (s) ∈ V A (s). This concludes the proof of Proposition 3.5. Using (i) of Proposition 3.8, we get the bound on θ (s). This concludes the proof of (39).

Proof of the technical results

This section is devoted to the proof of the existence result given by Theorem 1. We proceed in 2 steps, each of them making a separate subsection.

• In the third subsection using the spectral properties of equation ( 22), we reduce our goal from the control of q(s) (an infinite dimensional variable) in V A (s) to control its two first components ( Q0 ,q 1 ) a two variables in

-A ln 2 s s 4 , A ln 2 s s 4 × -A s 3 , A s 3 .
• In the fourth subsection, we solve the finite dimensional problem using the index theory and conclude the proof of Theorem 1 .

Properties of the shrinking set V A (s) and preparation of initial data

In this subsection, we give some properties of the shrinking set defined in Definition 3.1.

In the following we give the proof of Local in time solution for problem (22)-(50). In fact, we impose some orthogonality condition given by (50), killing the one of the zero eigenfunction of the linearized operator of equation (22).

Reduction to a finite dimensional problem

In the following we give the proof of Proposition 3.8:

The idea of the proof is to project equation ( 22) on the different components of the decomposition (38). More precisely, we claim that Proposition 3.8 is a consequence of the following Proposition 3.9 There exists A 5 ≥ 1 such that for all A ≥ A 5 , there exists s 5 (A) such that the following holds for all s 0 ≥ s 5 : Assuming that for all s ∈ [τ, s 1 ] for some s 1 ≥ τ ≥ s 0 , q(s) ∈ V A (s) and q 0 (s) = 0, then the following holds for all s ∈ [τ, s 1 ]:

(i) (Smallness of the modulation parameter):

|θ (s)| ≤
CA 10 ln 2 s s 3 .

(ii) (ODE satisfied by the expanding mode): For m = 0 and 1, we have

Q 0 (s) -Q 0 (s) ≤ C ln 2 s s 4 ,
and

q 1 - 1 2 q1 ≤ C s 3 .
(iii) (ODE satisfied by the null mode):

Q 2 (s) - 2 Q2 s ≤ CA 8 ln 2 s s 3 .
(iv) (Control of negative modes):

|q 1 (s)| ≤ e -(s-τ ) 2 |q 1 (τ )| + CA 3 s 3 , |Q 2 (s)| ≤ e -(s-τ ) |Q 2 (τ )| + CA 7 ln 2 s s 4 , |q 3 | ≤ e -3 2 (s-τ ) |q 3 (τ )| + CA 2 s 4 , |q 3 | ≤ e -s-τ 2 |q 3 (τ )| + CA 2 s 4 , |Q 4 (s)| ≤ e -2(s-τ ) |Q 4 (τ )| + CA 6 ln 2 s s 4 , Q4 (s) ≤ e -(s-τ ) Q4 (τ ) + CA 3 ln 2 s s 4 , |q j (s)| ≤ e -j (s-τ ) 2 |q j (τ )| + CA j-1 s j+1 2
, for all 5 ≤ j ≤ M,

|q j (s)| ≤ e -(j-2) (s-τ ) 2 |q j (τ )| + CA j-1 s j+1 2 , for all 5 ≤ j ≤ M, q -(y, s) 1 + |y| M +1 L ∞ ≤ e -M +1 4 (s-τ ) q -(τ ) 1 + |y| M +1 L ∞ + C A M s M +2 2 , q e (y, s) L ∞ ≤ e - (s-τ ) 2(p-1) q e (τ ) L ∞ + CA M +1 √ τ (1 + s -τ ),
where Q0 , Q 2 , Q2 , Q 4 and Q4 are defined by (40-46).

Proof: Briefly speaking, the main idea of the proof of Proposition 3.9 is to project equations ( 18) and ( 22) according to the decomposition (38). Due to the lengthy of the proof with a lot of technical computations, we will give the complete proof in Subsection 3.2.

The conclusion of Proposition 3.8

Let us now focus on the proof of Proposition 3.8 assuming Proposition 3.9 hold. Indeed, We will take A 4 ≥ A 5 . Hence, we can use the conclusion of Proposition 3.9. (i) The proof follows from (i) of Proposition 3.9. Indeed by choosing T 4 small enough, we can make s 0 = -log T bigger than s 5 (A).

(ii) We notice that from Claim 3.2 and the fact that q 0 (s) = 0, it is enough to prove that for all s ∈ [s 0 , s 1 ],

Q2 (s) = q2 (s) - Ã2 ln s s 2 + B2 s 2 < A 10 ln 2 s s 3 . ( 52 
)
q e L ∞ (R) ≤ A M +2 2s 1 2 , q -(y,s) 1+|y| M +1 L ∞ ≤ A M +1 2s M +2 2 , |q j |, |q j | ≤ A j 2s j+1 2 for all 5 ≤ j ≤ M, |q 1 | ≤ A 4 2s 3 , |Q 2 | ≤ A 8 ln 2 s 2s 4 |q 3 |, |q 3 | ≤ A 3 2s 4 , |Q 4 |, | Q4 | ≤ A 7 ln s 2s 4 . (53) 
In fact, the estimates in (53) are quite the same as in Proposition 4.7 of [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF]. For that reason, we only focus on the proof of (52): Indeed, we will use a contradictory argument, we assume that there exists 

s * ∈ [s 0 , s 1 ] such that Q2 (s * ) = q2 (s * ) - Ã2 ln s * s 2 * + B2 s 2 * = ω A 10 ln 2 s * s 3 
Q 2 + 2 Q2 s ≤ CA 8 ln 2 s s 4 , hence it follows Q 2 (s * ) ≤ - Q2 s + CA 8 ln 2 s s 4 ≤ (-2A 10 + CA 8 ) ln 2 s s 4 < 0, (54) 
provided that A large enough. Then, Q2 has to decrease in [s * -1 , s * ] which implies a contradiction with the assumption that Q2 admits maximum at s * . In other word, (52) holds. Finally, it concludes the proof.

Proof of Proposition 3.9

In this section, we focus on the proof of Proposition 3.9. The idea mainly bases on the technique in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF], [START_REF] Nouaili | Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case[END_REF] and [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF]. In fact, it involves to the projection equations ( 18) and ( 22) to get equations satisfied by the different coordinates of the decomposition (38). Let us summary the proof • In the first subsection, we deal with equation ( 22) to write equations satisfied by qj and q j . Then, we prove (i), (ii), (iii) and (iv) (expect the two last identities) of Proposition 3.9.

• In the second subsection, we first derive from equation ( 22) an equation satisfied by q -and prove the last but one identity in (iv) of Proposition 3.9.

• In the third subsection, we project equation (18) (which is simpler than (22)) to write an equation satisfied by q e and prove the last identity in (iv) of Proposition 3.9.

The finite dimensional part q +

We now divide the proof into two steps

• In Part 1, we give the details of projections of equation ( 22) to get ODEs, satisfied by modes qj and q j .

• In Part 2, we prove (i), (ii) and (iii) of Proposition 3.9, together with the estimates concerning qj and q j in (iv).

Part 1: The projection of equation ( 22) on the eigenfunction of the operator L β,δ . In the following, we will find the main contribution in the projections Pn,M and P n,M of the six terms appearing in equation ( 22):

∂ s q, L β,δ q, -i ν 2 √ s + µ s + θ (s) q, V 1 q + V 2 q, B
(q, y, s) and R * (θ , y, s).

First term: ∂q ∂s . From (37), we directly derive Pn,M ∂q ∂s = q n and P n,M ∂q ∂s

= q n . (55) 
Second term: L β,δ q, where L β,δ is defined as in (23). We will use the following Lemma from [MZ08]: Lemma 3.10 (Projection of L β,δ on hn and h n for n ≤ M ) a) If n ≤ M -2,then

P n,M (L β,δ q) -- n 2 q n (s) + c n+2 qn+2 ≤ C q - 1 + |y| M +1 L ∞
, where c n is given in Lemma 2.1. Moreover, we have the following

If M -1 ≤ n ≤ M , then P n,M (L β,δ q) + n 2 q n (s) ≤ C q - 1 + |y| M +1 L ∞ . (b) If n ≤ M , then the projection of L β,δ on hn satisfies Pn,M (L β,δ q) -1 - n 2 qn (s) ≤ C q - 1 + |y| M +1 L ∞ .
Proof : The proof is quiet the same as the proof of Lemma 5.1 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF].

Using Lemma 3.10 and the fact that q(s) ∈ V A (s) (see Definition 3.1) we can improve the error by the following: Corollary 3.1 For all A ≥ 1, there exists s 9 ≥ 1 such that for all s ≥ s 9 (A), if q(s) ∈ V A (s), then: a) For n = 0, we have

|P 0,M (L β,δ q) -c 2 q2 | ≤ C A M +1 s M +2 2 . b) For 1 ≤ n ≤ M -1, we have P n,M (L β,δ q) + n 2 q n (s) ≤ C A n+2 s n+3 2
.

In particular, we have a smaller bound for P 2,M (L β,δ q):

|P 2,M (L β,δ q) + q 2 -c 4 q4 | ≤ A M +1 s M +2 2 . c) For n = M , we have P M,M (L β,δ q) + M 2 q M (s) ≤ C A M +1 s M +2 2 . d) For 0 ≤ n ≤ M , we have Pn,M (L β,δ q) -1 - n 2 qn (s) ≤ C A M +1 s M +1 2 .
Third term: -i µ s -η ln s s 2 + η s 2 + θ (s) q. It is enough to project iq, from (37), we recall Lemma 5.3 from [MZ08]: Lemma 3.11 (Projection of the term -i µ s -η ln s s 2 + η s 2 + θ (s) q on h n and hn for n ≤ M ) We have the following identities

P n,M -i µ s -η ln s s 2 + η s 2 + θ (s) q = - µ s -η ln s s 2 + η s 2 + θ (s)   δq n + (1 + δ 2 )q n + M j=n+1 K n,j q j + L n,j qj   ,
where K n,j and L n,j defined by

K n,j = P n,M (ih j ), (56) 
L n,j = P n,M (i hj ).

(57)

Its projection on hn is given by

Pn,M -i µ s -η ln s s 2 + η s 2 + θ (s) q = - µ s -η ln s s 2 + η s 2 + θ (s)   -q n -δ qn + M j=n+1
Kn,j q j + Ln,j qj

  ,
where Kn,j and Ln,j defined as follows Kn,j = Pn,M (ih j ), (58) Ln,j = Pn,M (i hj ).

(59)

Using the fact that q(s) ∈ V A (s) defined 3.1, the error estimates can be improved Corollary 3.2 For all A ≥ 1, there exists s 10 (A) ≥ 1 such that for all s ≥ s 10 (A), if q ∈ V A (s) and |θ (s)| ≤ CA 10 s 5 2

, then: a) For all 1 ≤ n ≤ M , we have

P n,M -i µ s -η ln s s 2 + η s 2 + θ (s) q ≤ C A n s n+3 2 . b) For 1 ≤ n ≤ M , we have Pn,M -i µ s -η ln s s 2 + η s 2 + θ (s) q ≤ C A n s n+3 2 .
In particular, when n = 0, 2, 4, we can get smaller bounds as follows: c) For n = 0, we have the following in particular

P 0,M -i µ s -η ln s s 2 + η s 2 + θ (s) q + µ s -η ln s s 2 + η s 2 + θ (s) {δq 0 + (1 + δ 2 )q 0 + K 0,2 q 2 + L 0,2 q2 } ≤ C A 4 ln s s 4 , P0,M -i µ s -η ln s s 2 + η s 2 + θ (s) q + µ s -η ln s s 2 + η s 2 + θ (s) {-q 0 -δ q0 + K0,2 q 2 + L0,2 q2 } ≤ C A 4 ln s s 4 , d)
For n = 2, we have

P 2,M -i µ s -η ln s s 2 + η s 2 + θ (s) q + µ s -η ln s s 2 + η s 2 + θ (s) [δq 2 + (1 + δ 2 )q 2 ] ≤ C A 4 ln s s 4 , P2,M -i µ s -η ln s s 2 + η s 2 + θ (s) q + µ s -η ln s s 2 + η s 2 + θ (s) -q 2 -δ q2 + K2,4 q 4 + L2,4 q4 ≤ C A 5 s 4 , e)
For n = 3, we have

P 3,M -i µ s -η ln s s 2 + η s 2 + θ (s) q ≤ C A 2 s 4 , P3,M -i µ s -η ln s s 2 + η s 2 + θ (s) q ≤ C A 2 s 4 , f )
For n = 4, we have

P 4,M -i µ s -η ln s s 2 + η s 2 + θ (s) q ≤ C A 5 s 4 , P4,M -i µ s -η ln s s 2 + η s 2 + θ (s) q ≤ C A 5 s 4 , Fourth term: V 1 q + V 2 q.
We recall Lemma 5.5 given in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] Lemma 3.12 (Projection of V 1 q and V 2 q ) (i) It holds that

|V i (y, s)| ≤ C (1 + |y| 2 ) s , for all y ∈ R and s ≥ 1, ( 60 
)
and for all k

∈ N * V i (y, s) = k j=1 1 s j W i,j (y) + Wi,k (y, s), (61) 
where W i,j is an even polynomial of degree 2j and Wi,k (y, s) satisfies for all s ≥ 1 and

|y| ≤ √ s, Wi,k (y, s) ≤ C (1 + |y| 2k+2 ) s k+1 . ( 62 
)
(ii) The projection of V 1 q and V 2 q on (1 + iδ)h n and ih n , and we have

| Pn (V 1 q)| + | Pn (V 1 q)| ≤ C s M j=n-2 (|q j | + |q j |) + n-3 j=0 C s n-j 2 (|q j | + |q j |) + C s q - 1 + |y| M +1 L ∞ , ( 63 
)
and the same holds for V 2 q Remark 3.13 Note that, when n ≤ 2, the first sum in (63) runs for j = 0 to M and the second sum doesn't exist.

By the fact that q(s) ∈ V A (s), the error estimates can be bounded improved as follows Corollary 3.3 For all A ≥ 1, there exists s 11 (A) ≥ 1 such that for all s ≥ s 11 (A), if q ∈ V A (s), then for 3 ≤ n ≤ M , we have

Pn (V 1 q + V 2 q) + |P n (V 1 q + V 2 q)| ≤ CA n-2 s n+1 2
.

Next, we study some asymptotic of P2,M (V 1 q), P2,M (V 2 q), P 0,M (V 1 q) and P 0,M (V 2 q): Lemma 3.14 (Projection of V 1 q and V 2 q on ĥ0 , h0 , ĥ2 , h2 , ĥ4 and h 4 ) Using the definition of V 1 , V 2 , the following hold:

(i) It holds that for i = 1, 2

∀s ≥ 1 and |y| ≤ s 1/2 , V i (y, s) - 1 s W i,1 (y) ≤ C s 2 (1 + |y| 4 ), ( 64 
)
where

W 1,1 (y) = -(p+1)b 2(p-1) 2 (1 + iδ)(y 2 -2(1 -δβ)), W 2,1 (y) = -(1 + iδ) b 2(p-1) 2 (p -1 + 2iδ) (y 2 -2(1 -βδ)). (65) 
(ii) The projection of V 1 q and V 2 q on h2 satisfy

Pn (V 1 q + V 2 q) - 1 s j≥0 [ Cn,j q j + Dn,j qj ] ≤ C s 2 j≥0 [|q j | + |q j |] + 1 s q -(., s) 1 + |y| M L ∞ , ( 66 
)
and

P n (V 1 q + V 2 q) - 1 s j≥0 [C n,j q j + D 2,j qj ] ≤ C s 2 j≥0 [|q j | + |q j |] + 1 s q -(., s) 1 + |y| M L ∞ . ( 67 
)
where for all n, j ≥ 0, we have

C n,j = P n,M (W 1,1 h j + W 2,1 hj ) Cn,j = Pn,M (W 1,1 h j + W 2,1 hj ), (68) D n,j = P n,M (W 1,1 hj + W 2,1 hj ) Dn,j = Pn,M (W 1,1 hj + W 2,1 hj ). (69)
In particular, using the fact that q(s) ∈ V A (s), the error estimates can be improved as follows:

Corollary 3.4 For all A ≥ 1, there exists s 12 (A) ≥ 1 such that for all s ≥ s 12 (A), if q(s) ∈ V A (s), then

P 0,M (V 1 q + V 2 q) -C 0,0 q 0 s + D 0,0 q0 s + C 0,2 q 2 s + D 0,2 q2 s ≤ C ln s s 4 , P0,M (V 1 q + V 2 q) -D0,0 q0 s + C0,2 q 2 s + D0,2 q2 s ≤ C ln s s 4 , P 2,M (V 1 q + V 2 q) - D 2,0 q0 s + C 2,2 q 2 s + D 2,2 q2 s ≤ C ln s s 4 , P2,M (V 1 q + V 2 q) - 1 s q0 D2,0 + q 2 C2,2 + q2 D2,2 ≤ C ln s s 4 , P 4,M (V 1 q + V 2 q) -C 4,2 q 2 s + D 4,2 q2 s ≤ C ln s s 4 , P4,M (V 1 q + V 2 q) -C4,2 q 2 s + D4,2 q2 s ≤ C ln s s 4 .
and

|P 3,M (V 1 q + V 2 q)| ≤ CA 2 s 4 , P3,M (V 1 q + V 2 q) ≤ CA 2 s 4 .
Fifth term: B(q, y, s) Let us recall from (23) that:

B(q, y, s) = (1+iδ) |ϕ + q| p-1 (ϕ + q) -|ϕ| p-1 ϕ -|ϕ| p-1 q -p -1 2 |ϕ| p-3 ϕ(ϕq + φq) .

We have the following Lemma 3.15 The function B = B(q, y, s) can be decomposed for all s ≥ 1 and |q| ≤ 1 as

sup |y|≤s 1/2 B - M l=0 0 ≤ j, k ≤ M + 1 2 ≤ j + k ≤ M + 1 1 s l B l j,k ( y s 1/2 )q j qk + Bl j,k (y, s)q j qk ≤ C|q| M +2 + C s M +1 2
, where B l j,k ( y s 1/2 ) is an even polynomial of degree less or equal to M and the rest Bl j,k (y, s) satisfies

∀s ≥ 1 and |y| < s 1/2 , Bl j,k (y, s) ≤ C 1 + |y| M +1 s M +1 2
.

Moreover,

∀s ≥ 1 and |y| < s 1/2 , B l j,k (

y s 1/2 ) + Bl j,k (y, s) ≤ C.
On the other hand, in the region |y| ≥ s 1/2 , we have

|B(q, y, s)| ≤ C|q| p, (70) 
for some constant C where p = min(p, 2).

Proof: See the proof of Lemma 5.9, page 1646 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF].

Lemma 3.16 (The quadratic term B(q, y, s)) For all A ≥ 1, there exists s 13 ≥ 1 such that for all s ≥ s 13 , if q(s) ∈ V A (s), then: a) the projection of B(q, y, s) on h n and on hn , for n ≥ 3 satisfy Pn,M (B(q, y, s))

+ |P n,M (B(q, y, s))| ≤ C A n s n+2 2 . (71) 
b) For n = 0, 1, 2, 3, 4, we have Pn,M (B(q, y, s))

+ |P n,M (B(q, y, s))| ≤ C ln 2 s s 4 . (72) 
Proof : See Lemma 5.10 given in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] .

Sixth term: R * (θ , y, s) In the following, we expand R * as a power series of 1 s as s → ∞, uniformly for |y| ≤ s 1/2 . Lemma 3.17 (Power series of R * as s → ∞) For all n ∈ N,

R * (θ , y, s) = Π n (θ , y, s) + Πn (θ , y, s), (73) 
where,

Π n (θ , y, s) = n-1 k=0 1 s k+1 P k (y)-i -η ln s s 2 + η s 2 + θ (s) a s (1 + iδ) + n-1 k=0 e k y 2k s k , (74) and ∀|y| < s 1/2 , Πn (θ , y, s) ≤ C(1 + s|θ (s)|) (1 + |y| 2n ) s n+1 , (75) 
where P k is a polynomial of order 2k for all k ≥ 1 and e k ∈ R.

In particular,

sup |y|≤s 1/2 R * (θ , y, s) - 1 k=0 1 s k+1 P k (y) + i -η ln s s 2 + η s 2 + θ κ + (1 + iδ) s a - bκy 2 (p -1) 2 ≤ C 1+|y| 4 s 3 + C ln s s 2 + |θ | y 4 s 2 . ( 76 
)
Proof: The proof is quite the same Lemma 5.11 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] In the following, we introduce F j (R * )(θ, s) as the projection of the rest term R * (θ , y, s) on the standard Hermite polynomial, introduced in Lemma 2.1.

Lemma 3.18 (Projection of R * on the eigenfunction of L) It holds that F j (R * )(θ , s) ≡ 0 when j is odd, and |F j (R * )(θ , s)| ≤ C 1+s|θ (s)| s j 2 +1
, when j is even and j ≥ 4.

Proof: See Lemma 5.12 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF].

More precisely, we can describe the projection of R * as follows:

Lemma 3.19 (Projection of R * on the eigenfunction h and h n ) Let us consider R * defined as in the above, then the following hold: (i) For j ≥ 4 which is even, then Pj (R * )(θ , s) and P j (R * )(θ , s) are

O 1+s|θ | s j 2 +1
.

(ii) For all j odd, we have Pj (R * )(θ , s) = P j (R * )(θ , s) = 0.

(iii) For j = 0, we have

P 0,M (R * (θ (s), s)) = R * 0,0 s + R * 0,1 s 2 + R * 0,2 s 3 + θ (s) -κ + Θ * 0,0 s + O 1 s 2 + ln s s 2 ηκ + T * 0,0 s + O 1 s 2 + 1 s 2 -ηκ + T * * 0,0 s + O 1 s 2 + O 1 s 4 , P0,M (R * (θ (s), s)) = R * 0,0 s + R * 0,1 s 2 + R * 0,2 s 3 + θ (s) Θ * 0,0 s + O 1 s 2 + ln s s 2 T * 0,0 s + O 1 s 2 + 1 s 2 T * * 0,0 s + O 1 s 2 + O 1 s 4 .
(iv) For j = 2, we have

P 2,M (R * (θ (s), s)) = R * 2,1 s + R * 2,2 s 3 + θ (s) Θ * 2,0 s + O 1 s 2 + ln s s 2 T * 2,0 s + O 1 s 2 + 1 s 2 T * * 2,0 s + O 1 s 2 + O 1 s 4 , P2,M (R * (θ (s), s)) = R * 2,1 s 2 + R * 2,1 s 3 + θ (s) Θ * 2,0 s + O 1 s 2 + ln s s 2 T * 2,0 s + O 1 s 2 + 1 s 2 T * * 2,0 s + O 1 s 2 + O 1 s 4 .
where R * j,k , R * j,k , Θ * j,k , Θ * j,k are constants, depending on p, δ, β only. For more details see page 49 and equation (98).

(v) In particular, we choose

         a = 2(1-δβ)b (p-1) 2 , µ = -2βb (p-1) 2 (1 + δ 2 ), b = (p-1) 2 4(p-δ 2 -(p+1)δβ) .
Then, we have

R * 0,0 = R * 0,0 = R * 2,1 = 0. ( 77 
)
Proof: For the details, we kindly refer the readers to Appendix C.

Part 2: Proof of Proposition 3.9

In this part, we consider A ≥ 1 and take s large enough so that Part 1 is satisfied.

+ The proof of item (i): We control θ (s), from the projection of ( 22) on h 0 (y) = i, we obtain

q 0 = c 2 q2 + P 0,M -i µ s - η ln s s 2 + η s 2 + θ q + P 0,M (V 1 q + V 2 q) + P 0,M (B) + P 0,M (R * (θ (s), s)), (78) 
where c 2 = 2β(1 + δ 2 ), defined as in Lemma 2.1. In addition to that, from the fact that q 0 ≡ 0 by the modulation, we also obtain that q 0 ≡ 0.

Using the fact that q ∈ V A (s) given Definition 3.1; Corollaries 3.1 and 3.4; Lemmas 3.10, 3.16 3.19, we obtain the following:

P 0,M (L δ,β q) = c 2 q2 + O( 1 s M +2 2 ) P 0,M -i µ s - η log s s 2 + η s 2 + θ q = - µ s - η log s s 2 + η s 2 + θ (s) {δq 0 + (1 + δ 2 )q 0 + K 0,2 q 2 + L 0,2 q2 } + O ln s s 4 , and 
P 0,M (V 1 q + V 2 q) = C 0,0 q 0 s + D 0,0 q0 s + C 0,2 q 2 s + D 0,2 q2 s + O ln s s 4 P 0,M (B(q)) = O ln 2 s s 4 P 0,M (R * ) = -κ + Θ * 0,0 s + O 1 s 2 θ (s) + (R * 0,1 -ηκ) s 2 + R * 0,2 s 3 + ηκ ln s s 2 + T * 0,1 ln s s 3 + O ln s s 4 , -κθ (s) + c 2 q2 - µ s {(1 + δ 2 )q 0 + K 0,2 q 2 + L 0,2 q2 } + D 0,0 q0 s + C 0,2 q 2 s + D 0,2 q2 s + (ηκ) ln s s 2 + (R * 0,1 -ηκ) s 2 + (R * 0,2 -T * * 0,0 ) s 3 + T * 0,0 ln s s 3 + c 2 Θ * 0,0 κ q2 s + Θ * 0,0 (R * 0,1 -ηκ) κ 1 s 3 + Θ * 0,0 (ηκ) ln s κs 3 ≤ C ln 2 s s 4 . (79) 
In particular, we use again the fact that q ∈ V A that

c 2 q2 (s) + (R * 0,1 -ηκ) s 2 + ηκ ln s s 2 ≤ A 10 ln 2 s s 3 .
which can be written

q2 (s) - Ã2 ln s s 2 - B2 s 2 ≤ A 10 ln 2 s s 3 , where Ã2 = - ηκ c 2 and B2 = - (R * 0,1 -ηκ) c 2 .
Thus, we obtain

θ (s) ≤ CA 10 ln 2 s s 3 , (80) 
and

-κθ (s) + c 2 q2 (s) + (R * 0,1 -ηκ) s 2 + ηκ ln s s 2 ≤ C ln s s 3 , (81) 
which concludes item (i) of Proposition 3.9.

+ The proof of item (iii): Let us project equation ( 22) on h2 , we get

q 2 = P2,M (L β,δ q) + P2,M -i µ s - η ln s s 2 + η s 2 + θ (s) q + P2,M (V 1 q + V 2 q) + P2,M (B(q)) + P2,M (R * (θ (s), s)). (82) 
Using the fact that q(s) ∈ V A (s) for all s ∈ [τ, s 1 ], we repeat the same process as for q0 by Corollaries 3.1 and 3.4; Lemmas 3.10, 3.16 3.19, we can obtain some bounds for the terms in the right hand side of (82):

P2,M (∂ s q) = ∂ s q2 (83) P2,M (L β,δ q) ≤ A M +1 s M +2 2 , (84) 
In particular, we also have the following expansion:

Terms coming from P2,M -i µ s -η ln s s 2 + η s 2 + θ (s) q We have P2,M -i µ s - η ln s s 2 + η s 2 + θ (s) q = - µ s (-q 2 -δ q2 ) + O ln s s 4 . Terms coming from P2,M (V 1 q + V 2 q) P2,M (V 1 q + V 2 q) = 1 s q0 D2,0 + q 2 C2,2 + q2 D2,2 + O ln s s 4 .
This yields the following,

P2 (V 1 q + V 2 q) = D2,2 s q2 + 1 s 3 C2,2 R * 2,1 -D2,0 R * 0,1 + O ln s s 4 .
Terms coming from P2,M (B(q)):

| P2,M (B)| ≤ C ln 2 s s 4 . Terms coming from P2,M (R * ) P2,M (R * ) = T * 2,0 ln s s 3 + ( R * 2,2 + T * * 2,0 ) s 3 + θ (s)κ s -δb (p -1) 2 + O ln s s 4 = T * 2,0 ln s s 3 + ( R * 2,2 + T * * 2,0 ) s 3 + c 2 q2 (s) + (R * 0,1 -ηκ) s 2 + ηκ ln s s 2 -δb s(p -1) 2 + O ln s s 4 = - c 2 δb (p -1) 2 s q2 - δb (p -1) 2 s 3 R * 0,1 + R * 2,2 s 3 + O ln s s 4 .
Note that we combined the facts given (80) and (81); and µ, b and a given as in (77). Finally, by adding these estimates, we obtain the following

q 2 = q2 s δµ + D2,2 - c 2 δb (p -1) 2 + 1 s 3 µR * 2,1 + C2,2 R * 2,1 -D2,0 R * 0,1 + R2,2 - δb (p -1) 2 R * 0,1 (85) +O ln 2 s s 4 . ( 86 
)
Let we remark that even thought there exists the order of ln s s 3 in the ODE of q2 , it will be cancelled when we add all terms in the ODE. From the explicit formulas of µ, b, c 2 and D2,2 , we can compute

δµ + D2,2 - c 2 δb (p -1) 2 = -2.
In addition to that, using the definition of Q2 given as in (46), we establish the following

Q 2 = -2 Q2 s + 1 s 3 -Ã2 + µR * 2,1 + C2,2 R * 2,1 -D2,0 R * 0,1 + R2,2 - δb (p -1) 2 R * 0,1 + O ln 2 s s 4 .
In fact, we now prove that there exists η such that the order 1 s 3 is canceled. Indeed, we choose η such that

-Ã2 + µR * 2,1 + C2,2 R * 2,1 -D2,0 R * 0,1 + R2,2 - δb (p -1) 2 R * 0,1 = 0.
Using the fact that Ã2 = -ηκ c 2 , we derive

η = - c 2 κ - δb (p -1) 2 R * 0,1 + (µ + C2,2 )R * 2,1 -D2,0 R * 0,1 + R2,2 . ( 87 
)
In addition to that, the explicit formula of eta will be given the Appendix .

Q 2 = - 2 s Q2 + O A 8 ln s 2 s 4 ,
which implies item (iii) of Proposition 3.9 .

For the others estimates, we kindly refer the readers to find in Proposition 4.6 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] and Proposition 4.10 in [START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF]. For that reason, we finish our proof here.

3.2.2

The infinite dimensional part: q - The proof is quite the same as Section 5.2 in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF]. So, we will sketch the main step and the readers can find the details in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF]. Using the definition of the projection P -, defined in (36), we apply to equation ( 22)

P - ∂q ∂s = P - ∂q ∂s + P -[-i µ s -η ln s s 2 + η s 2 + θ (s) q] + P -(V 1 q + V 2 q) + P -(B(q, y, s)) + P -(R * (θ , y, s)). (88)
In particular, we get First term: ∂q ∂s From (37), its projection is

P - ∂q ∂s = ∂q - ∂s .
Second term: Lβ,δ q From (22), we have the following,

P -(L β,δ q) = L β q -+ P -[(1 + iδ) q -].
Third term: -i µ s -η ln s s 2 + η s 2 + θ (s) q Since P -commutes with the multiplication by i, we deduce that

P -[-i µ s -η ln s s 2 + η s 2 + θ (s) q] = -i µ s -η ln s s 2 + η s 2 + θ (s) q -.
Fourth term: V 1 q and V 2 q

P -(V 1 q) 1 + |y| M +1 L ∞ ≤ V 1 L ∞ q - 1 + |y| M +1 L ∞ + C A M s M +2 2
, and

P -(V 2 qq) 1 + |y| M +1 L ∞ ≤ V 1 L ∞ q - 1 + |y| M +1 L ∞ + C A M s M +2 2
, Fifth term: B(q, y, s): Using (24), we have the following estimate from Lemmas A.3 and 3.15. P -(B(q, y, s))

1 + |y| M +1 L ∞ ≤ C(M ) A M +2 s 1 2 p + A 5+(M +1) 2 s 1 s M +1 2 , ( 89 
)
where p = min(p, 2).

Sixth term: R * (θ , y, s): Using the fact that θ (s) ≤ CA 10 ln 2 s s 4

, then the following holds P -(R * (θ , y, s))

1 + |y| M +1 ≤ C s M +3 2
.

Using (88) and Duhamel's integral equation, we get for all s ∈ [τ, s 1 ],

q -(s) = e (s-τ )L β q -(τ ) + s τ e (s-s )L β P -[(1 + iδ) q -]ds + s τ e (s-s )L β P --i( µ s - η ln s (s ) 2 + η s 2 + θ (s ))q ds + s τ
e (s-s )L β P -V 1 q + V 2 q + B(q, y, s ) + R * (θ , y, s ) ds .

Using Lemma A.2, we get

q -(s) 1+|y| M +1 L ∞ ≤ e -M +1 2 (s-τ ) q -(τ ) 1 + |y| M +1 L ∞ + s τ e -M +1 2 (s-s ) 1 + δ 2 q - 1 + |y| M +1 L ∞ ds + s τ e -M +1 2 (s-s ) P --i( µ s -η ln s (s ) 2 + η s 2 + θ (s ))q 1 + |y| M +1 L ∞ ds + s τ e -M +1 2 (s-s ) P -[V 1 q + V 2 q + B(q, y, s ) + R * (θ , y, s )] 1 + |y| M +1 L ∞ ds .
By using the above estimates, we derive

q -(s) 1+|y| M +1 L ∞ ≤ e -M +1 2 (s-τ ) q -(τ ) 1 + |y| M +1 L ∞ + s τ e -M +1 2 (s-s ) 1 + δ 2 + |V 1 | + |V 2 | L ∞ q - 1 + |y| M +1 L ∞ ds +C(M ) s τ e -M +1 2 (s-s ) A (M +1) 2 +5 (s ) M +3 2 + A (M +2)p (s ) p-1 2 1 (s ) M +2 2 + A M (s ) M +2 2
ds .

Since we have already fixed M in (34) such that

M ≥ 4 1 + δ 2 + 1 + 2 max i=1,2,y∈R,s≥1
|V i (y, s)| , using Gronwall's lemma, we deduce that

e M +1 2 s q -(s) 1+|y| M +1 L ∞ ≤ e M +1 4 (s-τ ) e M +1 2 τ q -(τ ) 1 + |y| M +1 L ∞ +e M +1 2 s 2 M +3 4 A (M +1) 2 +5 s M +3 4 + A (M +2)p s p-1 2 1 (s ) M +2 2 + A M s M +2 2
which concludes the proof of the last but one identity in (iv) of Proposition 3.9.

The outer region: q e

As a matter of fact, our shrinking set, V A (s) is quiet the same as [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF]. In particular, the estimate of q e is exactly the same. For that reason, we also ignore the detail computation. The below is the main idea, for more details, the readers can find in that work. In fact, using the fact that q(s) ∈ V A (s) for all s ∈ [τ, s 1 ] and item (i) of Proposition 3.9, we derive the following rough estimates

q(s) L ∞ (|y|≤2Ks 1/2 ) ≤ C A M +1 s 1/2 and |θ (s)| ≤ CA 10 ln 2 s s 4 . (90) 
In particular, using the definition of q e , given as in (21), q e reads ∂q e ∂s = L β q e -1 p-1 q e + (1 -χ)e iδ p-1 s {L(q, θ , y, s) + R * (θ , y, s)}

-e iδ p-1 s q(s) ∂ s χ + (1 + iβ)∆χ + 1 2 y • ∇χ + 2e iδ p-1 s (1 + iβ)div(q(s)∇χ).
(91) In addition to that, we can write (91) under Duhamel's integral equation and take a L ∞ estimate

q e (s) L ∞ ≤ e -s-τ p-1 q e (τ ) L ∞ , + s τ e -s-s p-1 (1 -χ)L(q, θ , y, s ) L ∞ + (1 -χ)R * (θ , y, s ) L ∞ ds + s τ e -s-s p-1 q(s ) ∂ s χ + (1 + iβ)∆χ + 1 2 y • ∇χ L ∞ ds + s τ e -s-s p-1 1 1 -e -(s-s ) q(s )∇χ L ∞ ds .
Thanks to a detail computation given in Subsection 5.3 of [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF], we obtain

q e (s) L ∞ ≤ e -s-τ p-1 q e (τ ) L ∞ + s τ e -s-s p-1 1 2(p -1) q e (s ) L ∞ + C A M +1 √ s + C A M +1 s 1 1 -e -(s-s )
ds .

BY using Gronwall's inequality, we derive

q e (s) L ∞ ≤ e - (s-τ ) 2(p-1) q e (τ ) L ∞ + CA M +1 τ 1 4 (s -τ + √ s -τ ),
which yields the proof of intem (iv) of Proposition 3.9.

The case β = 0

We here give an argument to the special case where β = 0. The main reason comes from Definition (3.1) for V A (s), in particular, (47). In particular, there is only one bound that becomes singular Ã2 = -R * 0,1 c 2 . Naturally, we change this bound by the new one

Q2 = q2 - Ã2 ln s s 2 + B2 s 2 ≤ A 10 ln 2 s s 3 ,
where Ã2 is defined by (47) and B2 can be chosen arbitrary. In addition to that, we also denote the new shrinking set by V A (s). In particular, Proposition 3.9 remains valid, expect the ODEs of θ (s) and Q2 .

-For θ (s): Repeat the process for the case β = 0, we derive

κθ (s) - R * 0,1 s 2 + T * 0,1 ln s s 2 ≤ C ln s s 3 .
When β = 0, R * 0,1 = 0. However, the leading order

T * 0,1 ln s s 2 , will generate θ(s) ∼ θ 0 ln s s .
This violates our purpose that θ(s) ln s s .

Hence, it imposes η = 0.

Note that constants T * i,j , T * i,j = 0. Thus, we get the following

κθ (s) - R * 0,1 s 2 ≤ C ln s s 3 . (92) 
It is sufficient to prove item (iii) in Proposition 3.9. Indeed, taking projection of equation ( 22) of P2,M as in page 35. In particular, plugging (92) into

P2,M (R * ) = R * 2,2 s 3 + θ (s)κ s -δb (p -1) 2 + O ln s s 4 , we obtain P2,M (R * ) = R * 2,2 s 3 + R * 0,1 s 2 -δb s(p -1) 2 + O ln s s 4 = R * 2,2 - δbR * 0,1 (p -1) 2 1 s 3 + O ln s s 4 .
Note that, when β = 0, we have δµ + D2,2 = -2, and T * 2,2 -

T * 0,1 δb (p -1) 2 = 0.
Hence, we have

q 2 = - 2q 2 s + 1 s 3 µR * 2,1 + C2,2 R * 2,1 -D2,0 R * 0,1 + R2,2 - δb (p -1) 2 R * 0,1 + O ln 2 s s 4 .
Using the decomposition Q2 = q2 -Ã2 (β=0) ln s s 2

+ B2 (β=0) s 2 , then Q2 reads Q2 = - 2 s Q2 + -Ã2 + µR * 2,1 + C2,2 R * 2,1 -D2,0 R * 0,1 + R2,2 - δb (p -1) 2 R * 0,1 1 s 3 + O ln 2 s s 4 .
Note that, it is not similar to the case β = 0, the role of η vanishes. The order 1 s 3 is cancelled by

A 2 = µR * 2,1 + C2,2 R * 2,1 -D2,0 R * 0,1 + R2,2 - δb (p -1) 2 R * 0,1 . (93) 
In particular, when β = δ = 0, we can explicitly compute

Ã2 = -C2,2 R * 2,1 + R * 2,2 = -- 1 4 5κ 8p - 5 32 κ (5p -4) p 2 = - 5κ(p -1) 8p 2 .
This constant exactly matches to the formal approach given by Velázquez, Galaktionov, and Herrero [START_REF] Velázquez | The space structure near a blow-up point for semilinear heat equations: a formal approach[END_REF].

A Spectral properties of L β

In this Appendix, we recall from Appendix A of [MZ08] some properties associated to the operator L β , defined in (19). We recall that:

L β v = (1 + iβ)∆v - 1 2 y • ∇v = 1 ρ β div(ρ β ∇w).
where

ρ β (y) = e - |y| 2 4(1+iβ) (4π(1 + iβ)) N/2 .
Moreover, the operator L β is self adjoint with respect to the weight ρ β in the sense that (94)

In one space dimension (N = 1), the eigenfunction f n of L β are dilations of standard Hermite polynomials H n (y):

f n (y) = H n ( y 2 √ 1 + iβ ),where L β H n = - n 2 H n .
If N ≥ 2, its eigenfunction f α (y 1 , ..., y N ) where α = (α 1 , ..., α N ) ∈ N N is a multi-indic are given by

f α (y) = Π N i=1 f α i (y i ) = Π N i=1 H α i ( y i 2 √ 1 + iβ ).
The family f α is orthogonal in the sense that for all α and ξ ∈ N N ,

f α f ξ ρ β dy = δ α,ξ f 2 α ρ β dy.
The semigroup generated by L β is well defined and has the following kernel:

e sL β (y, x) = 1 [4π(1 + iβ)(1 -e -s )] N/2 exp - |x -ye -s 2 | 2 4(1 + iβ)(1 -e -s )
.

In the following, we give some properties associated to the kernel.

Lemma A.1 a) The semigroup associated to L β satisfies the maximum principle:

e sL β ϕ L ∞ ≤ ϕ L ∞ .
b) Moreover, we have

e sL β div (ϕ) L ∞ ≤ C √ 1 -e -s ϕ L ∞ ,
where C only depends on β.

Proof: a) It follows directly by part, this also follows from the definition of the semigroup (95). b) Using an integration by part, this also follows from the definition of the semigroup (95). Proof: This also follows directly from the semigroup's definition, through an integration by part, for a similar case see page 556-558 from [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF]. Moreover, we have the following useful lemma about P -.

Lemma A.3 For all k ≥ 0, we have B Details of expansions of the potential terms: V 1 and V 2

P -(φ) 1 + |y| M +k
In this section, we aim at giving some expansions of V 1 and V 2 in order to give the conclusion of item (i) from Lemma 3.14 and some related constants. Indeed, we recall the definition of V 1 and V 2 Then, using Taylor expansion, we claim to the following asymptotic behaviors where (T * i,j , T * i,j ) = -η(Θ * i,j , Θ * i,j ) and (T * * i,j , T * * i,j = η(Θ * i,j , Θ * i,j ).

V 1 (y, s) = 1 s W 1
Finally, we aim at giving the explicit of η here: Indeed, we have the following formula from (87) 

  where µ and a and b are well known in [MZ08] µ = -2bβ(1 + δ 2 ) (p -1) 2 , and a = 2κ(1 -βδ) b (p -1) 2 , and b = (p -1) 2 4(p -δ 2 -(p + 1)δβ)

  Proposition 3.7 (Local in time solution and modulation for problem (22)-(50) with initial data (49)-(

Proof

  iii)(Transverse crossing) There exists ω ∈ {-1, 1} such that ω Q0 (s 1 ) = ) > 0. (iii)(Transverse crossing) There exists ω ∈ {-1, 1} such that ω Q0 (s 1 ) = See the proof in Page 23. Assume the result of the previous proposition, for which the proof is given below in page 21, and continue the proof of Proposition 3.5. Let A ≥ A 4 and s 0 ≥ s 04 (A). It follows from Proposition 3.8, part (ii) that Q0 , q1 (s * ) ∈ ∂ -

  )L β w(y)ρ β (y)dy = R N w(y)L β u(y)ρ β (y)dy.

Lemma A. 2

 2 There exists a constant C such that if φ satisfies∀x ∈ R |φ(x)| ≤ (1 + |x| M +1 )then for all y ∈ R, we have|e sL β P -(φ(y))| ≤ Ce -M +1 2 s (1 + |y| M +1 )

.

  |y| M +k .Proof: Using (35), we have|φ n | ≤ C φ 1 + |y| M +k L ∞ Since for all m ≤ M , |h m (y)| ≤ C(1 + |y| m+k ) and |φ| ≤ C φ 1 + |y| M +k L ∞ (1 + |y| m+k ),the result follows from definition (33) of φ.

  where F (w) = |w| p-1 w, Θ(y, s) = -i ϕ 0 (y, s) + a(1+iδ) s , T * 1 = -ηΘ and T * * = ηΘ.Expansion of R *1 (y, s) in terms oh h j and hj As a matter of fact, we can expand R * 1 in series of 1 s j as follows 2 (y) + R(y, s),where R satisfies| R(y, s)| ≤ C(1 + |y| 6 ) s 4 , which implies that |P j,M ( R)| + | Pj,M ( R)| ≤ C s 4 .In addition to that, we can write R j (y) in the basis generated by h k , and hk as followsR j (y) = j k=0 (R * j,k h k + R * j,k hk ).Replying the method given at Section D in[START_REF] Duong | Construction of blowup solutions for the Complex Ginzburg-Landau equation with critical parameters[END_REF], we can explicitly find the formulas of the constants R * i,j and R * i,j . Here we only give the results:+ (p + 1)δβ -δ 2 )b 2 (p -1) 4 -κb (p -1) 2 , R * 2,1 = 2κb 2 (δ + 3pβ + 3pδ 2 β -β + δ 3 + δ 4 β) (p -1) 4 R * 0,1 = 2κb 2 (p -1) 4 (3δ 3 β + (2pβ 2 + 6β 2 -5)δ 2 + (-7β -10pβ)δ + 5p -3pβ 2 + β 2 ) R * 0,1 = -4βκb 2 (p -1) 4 (2δ 4 + βδ 3 + 3pδ 2 + βδ + 3p -1) 4 δ 3 β -2δ 2 -(2p + 1)δβ + 2p -2κb 3 (p -1) 6 {3β 2 δ 6 -12βδ 5 + (9 -12β 2 -6pβ 2 )δ 4 + (42pβ + 42β)δ 3 + (70pβ 2 + 19p 2 β 2 -78p -6β 2 )δ 2 + (-98p 2 β + 36β -74pβ)δ -20p + 49p 2 + 18pβ 2 -30p 2 β 2 }.Besides that, we don't need to formulate to the other constants.Expansion of θ (s)Θ(y)We introduceΘ(y, s) = -i ϕ 0 (y, s) + a(1 + iδ) √ s ,where ϕ 0 and a defined as in (16) and (15), respectively. Using Taylor expansions, we writeΘ(y, s) = -iκ + κ(δ -i) y 2 s b (p -1) 2 + a(δ -i) 1 s + κ(1 -iβ)δ(p + 1) -1) 4 + Θ(y, s),where Θ(y, s) satisfies the following Θ(y, s) ≤ C(1 + |y| 6 ) s 3 , which yields|P j,M ( Θ)| + | Pj,M ( Θ)| ≤ C s 3 . and -iκ + κ(δ -i) y 2 s b (p -1) 2 + a(δ -i) 1 s + κ(1 -iβ)δ(p + 1) 4 s 2 ). (98)In addition to that, we can calculate these constants and we obtainΘ * 0,0 = 4(1 + δ 2 )δβ κb (p -1) 2 , Θ * 0,0 = -β(1 + δ 2 )κb (p -1) 2 , = -3δ(p + 1)(-β 2 + βδ -2) κb 2 (p -1) 4 .In particular, we also habe the following expansions of T * = -ηΘ and T * * = ηΘ as follows

  of the constant in η, we obtain AREVOIRη = -β(1 + δ 2 ) 8(p -(p + 1)δβ -δ 2 ) 3 × (99) {δ 6 β 2 + 3δ 5 β + (3β 2 p + 10)δ 4 + (5β + 18pβ)δ 3 + (2β 2 p 2 + 7β 2 + 10p + β 2 p)δ 2 + (-18β + 18pβ + 20p 2 β)δ + 10p -2β 2 + 12β 2 p 2 -2β 2 p -10p 2 }.

  > s 0 , and the interval [s 0 , s * ] is not empty. Using the continuity of Q2 and the definition of s * , it is clearly that Q2 (s * ) is the maximal value of Q2 in [s

	where ω = ±1. As a matter of fact, we can reduce to the case positive case
	where ω = 1 (the case ω = -1 also work by the same way). Note by item
	(iv) in Proposition 3.6 that						
	q2 (s 0 ) -	Ã2 ln s 0 s 2 0	+	B2 s 2 0	<	A 10 ln 2 s 0 0 s 3	,
	thus s						
								,
	for all and						
		s ∈ [s 0 , s * [			
	and						
	q2 (s) -	Ã2 ln s s 2 +	B2 s 2	<	A 10 ln 2 s s 3	,

* * * -, s * ] with > 0 and small enough in one hand, recalling, from (iii) Proposition 3.9 that

  Using the definition of ϕ, the fact that ϕ 0 satisfies (17) and (22), we see that R * is defined

	R * =	(1 + iβ) s	∆ z ϕ 0 (z) +	1 2s	z • ∇ϕ 0 +	a s 2 (1 + iδ) -	(1 + iδ) 2 a (p -1)s
	+ (1 + iδ) F ϕ 0 (z) +	a s	(1 + iδ) -F (ϕ 0 (z))
	-i	µ s	-η	ln s s 2 +	η s 2 + θ (s) ϕ 0 (z) +	a s	(1 + iδ) ,
	= R * 1 (y, s) +	ln s s 2 T 1 +	1 s 2 T
								,1 (y) +	1 s 2 W 1,2 + O	1 + |y| 6 s 3	,	(96)
	and	V 2 (y, s) =	1 s	W 2,1 (y) +	1 s 2 W 2,2 (y) + O(	1 + |y| 6 s 3 ),	(97)

where C Details of expansions of R * (y, s, θ (s)) 2 + +θ (s)Θ(y, s),

For the proof of ( 96) and (97), we kindly refer the readers to see the Appendix B.

In addition to that, we aim at determining the constants given in item (ii) of Lemma 3.14:

= -b 2(p -1) 2 {32δ + 24δ 5 β 2 + 64δ 2 β + 48δ 3 β 2 + 64δ 4 β + 32δ 3 + 24δβ 2 + 96pδ 3 β 2 + 96pδβ 2 }, L 0,2 = P 0,M (i h2 ) = 4δβ + 4δ 3 β.