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This paper focuses on the acceleration of the Schwarz method by the Aitken's acceleration of the convergence technique with taken into account the special structure of the error operator. This allows an enhancement of the building of the low rank space approximating the solution at the gathered interfaces of all subdomains computed by singular values decomposition of the sequence of iterated solutions presents in the Aitken-Schwarz technique. The new method Sparse-Aitken Schwarz method builds low rank spaces associated to each subdomain's interfaces. Comparisons between Aitken-Schwarz and Sparse-Aitken Schwarz results obtained on a 3D Darcy flow application show the improvement by using the special structure of the propagation error operator.

INTRODUCTION

Schwarz domain decomposition methods is nowadays widely used to solve linear problems of the form Ax = b because it is well suited for parallel computing. Indeed, it is based on the splitting of the global problem into subproblems. Artificial boundary conditions arise from the decomposition of the domain into subdomains. Then, the Schwarz method consists of the solution of subproblems, and the update of the artificial boundary conditions. In practice, this implies local communications between neighboring subdomains. The main drawback of Schwarz domain decomposition methods is the slow convergence, that depends on the nature of the problem, the geometry of the subdomains and the overlap. There exist several method for the acceleration of convergence, they are all based on the solution of small problem coupling all subdomains. The classical Aitken-Schwarz method [START_REF] Garbey | On some Aitken-like acceleration of the Schwarz method[END_REF](A-S: the dash is to avoid the confusion with Additive Schwarz ) consists in the approximation of the interface problem [START_REF] Tromeur-Dervout | Meshfree Adaptative Aitken-Schwarz Domain Decomposition with application to Darcy Flow[END_REF], and its solution via the Aitken's formula. This idea was first given in [START_REF] Garbey | On some Aitken-like acceleration of the Schwarz method[END_REF] with the restriction to have problem with separable operator and regular mesh at the interfaces in order to use Fourier approximation for building the acceleration. This technique use the pure linear convergence of the Schwarz method i.e the error propagation operator does not depend ot he itretation. The pure algebraical version of the acceleration of Schwarz by Aitken's technique (for non separable operator and independent of the mesh at the artificial interface) was given in [START_REF] Tromeur-Dervout | Meshfree Adaptative Aitken-Schwarz Domain Decomposition with application to Darcy Flow[END_REF] and the first massively parallel implementation was studied in [START_REF] Berenguer | Aitken's acceleration of the schwarz process using singular value decomposition for heterogeneous 3d groundwater flow problems[END_REF]. This technique uses the Singular Values Decomposition (SVD)of the matrix gathering the iterated Schwarz solutions at all artificial interfaces of the domain decomposition to build a low rank approximation of the searched converged solution. In this talk, we take into account the sparsity structure of the of error propagation operator to build low rank approximations of the solution associated to individual artificial interface. The resulting method named the Sparse Aitken-Schwarz (SA-S) method shows better results of convergence and good parallel efficiency on 3D Darcy flow problem.

Numerical acceleration of the Schwarz method

A domain of n unknowns is split in N overlapping subdomains. The ith subdomain has n i if the overlap is included, or n i if the overlap is excluded. In that case,

n = Σ N -1 i=0 n i . Let R i ∈ R n i ×n (respectively R i ∈ R n i ×n
) be the restriction operator of a global vector to the ith subdomain, including the overlap (respectively setting to 0 the components of the overlap). The additive Schwarz method with Dirichlet boundary conditions on the artificial boundary conditions can be written as the Richardson process:

x k+1 = x k + M -1 RAS b -Ax k (1) 
with the matrix M -1 RAS is the Restricted Additive Schwarz (RAS) preconditioner [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF]:

M -1 RAS = N -1 i=0 R T i R i AR T i -1 R i = N -1 i=0 R T i A -1 i R i . (2)
If x ∞ is the exact solution of the linear system Ax = b, and x k the solution at the kth Schwarz iteration, then subtracting two Schwarz iterations:

x k -x ∞ = I -M -1 RAS A x k-1 -x ∞ (3) 
which shows the purely linear convergence. This property still holds if we consider only the artificial interfaces. Let R Γ be the operator that restrict a vector to the artificial interface. The restriction of Eq.(1) to the interface is

R Γ M -1 RAS AR T Γ I-P R Γ x y = R Γ M -1 RAS b c . ( 4 
)
where the matrix

P := R Γ I -M -1 RAS A R T Γ is the error propagation operator since e k+1 = P e k if e k = y k -y ∞ is the error on the interface at iteration k. If the matrix [y n Γ -y n Γ -1 , • • • , y 1 -y 0 ]
is not singular,the error propagation operator P can be computed as:

P = [y n Γ +1 -y n Γ , . . . , y 2 -y 1 ] [y n Γ -y n Γ -1 , . . . , y 1 -y 0 ]
-1 . The solution y ∞ can be computed as:

y ∞ = (I -P ) -1 y n Γ +1 -P y n Γ . (5) 
In practice, it may not be possible to use the exact acceleration for 2D and 3D problems because it requires n Γ + 1 Schwarz iterations, where n Γ is the number of unknowns on the artificial interface. Then, the acceleration is approximated in a low-dimensional space U and an approximated propagation error operator P .

Approximation of the interface problem

In order to approximate the exact solution y ∞ ∈ R n Γ on Γ, we replace the error propagation operator P ∈ R n Γ ×n Γ of (5) by a low-rank approximation of it. This approximation is P = U U T P U U T where U ∈ R n Γ ×l is a matrix with orthonormal columns. The interface problem solved by the Aitken's formula is (I -P )y ∞ = c with c = R Γ M -1 RAS b. The Aitken's acceleration is computed in span(U ), the space spanned by the columns of U .

In the ideal case, that is to say if y ∞ ∈ span(U ), then

I -U U T P U U T y ∞ = y ∞ -U U T P y ∞ = U U T c. ( 6 
)
where we used that y ∞ is such that y ∞ = P y ∞ + c. One can avoid the computation of U U T c if there exists an integer q such that y q and y q-1 ∈ span(U ). In such cases

U U T c = U U T (y q -P y q-1 ) = U U T y q -U U T P U U T y q-1 . (7) 
In practice y ∞ / ∈ span(U ), but we will form the matrix U such that y ∞ -U U T y ∞ is small. Furthermore, the matrix P will be an approximation of U U T P U U T . Finally, the y i are neither exact, since the local problems can be solved with an iterative Krylov method. For all these reasons, the interface problem becomes:

I -P y ∞ = y k -P y k-1 (8)
where y ∞ is an approximation of y ∞ . It is sometimes possible to find a matrix U a priori, for example when y ∞ can be written in the Fourier space with a few modes. Nevertheless we will consider only the case of a matrix U computed a posteriori from q + 1 traces [y q , . . . , y 0 ] coming from q Schwarz iterations. The computation of the matrices U and P will be detailed in the next section. Eq.( 8) require the inversion of an n Γ × n Γ matrix, which may not be possible for 3D problems. Eq.( 5) can be written as (9) that requires the inversion of a matrix of size l << n Γ .

y ∞ ≈ y ∞ = U I -P -1 U T y q -P U T y q-1 (9)
According to the Woodbury matrix identities, the following equalities hold:

I -U P U T -1 = I -U I -P -1 -1 U T = I -U I -I -P -1 U T . (10) 
Using the fact that y q and P y q-1 belong to span(U ), we can write:

y ∞ := I -P -1 y q -P y q-1 = I -U I -I -P -1 U T y q -P y q-1 = I -U U T y q -P y q-1 =0 +U I -P -1 U T y q -P y q-1 = U I -P -1 U T y q -U T P U U T y q-1 = U I -P -1 U T y q -P U T y q-1 .
The Aitken's acceleration is given in Algorithm 1. The step 3 of this algorithm is the restriction of the Schwarz iterations to the interface, which is implemented as in Eq.(1). Each iteration of the step 3 requires the solution of the local problems and the exchange of the artificial boundary conditions. It has been considered that the operator P was Algorithm 1 Approximated Aitken's Acceleration Require: y 0 an initial guess 1: repeat 2:

for i = 1 . . . q do 3:

y i ← P y i-1 + c //Schwarz iterations 4:
end for

5:

Compute a matrix U with orthonormal columns such that y q and y q-1 ∈ span(U )

6:

Compute P an approximation of U T P U 7:

y 0 ← U I -P -1
U T y q -P U T y q-1 8: until convergence approximated from q + 1 successive Richardson's iterations. In step 5 the U is computed with the SVD of the matrix [y 0 , . . . , y q ] = U ΣV T . So far, the approximation P of P given by U P U T was a full matrix but in fact the matrix P can be very sparse. We propose a new methods, called sparse Aitken-Schwarz, to approximate the Aitken's acceleration that preserves the null blocks of the matrix P corresponding to independent subdomains. The operator P can actually be computed from q arbitrary vectors and their images after one Schwarz iteration.

A space spanned by the last traces

We discuss the low-rank space in which the approximation of the matrix P is computed from the matrix Y = [y 0 , • • • , y q ] ∈ R n Γ ×(q+1) that contains q + 1 consecutive traces. The singular value decomposition (SVD) [START_REF] Gene | Matrix computations[END_REF] of the matrix Y gives Eq.( 11), where U is an n Γ × n Γ matrix with orthonormal columns, and S is an n Γ × (q + 1) diagonal matrix such that S ii = σ i , 1 ≤ i ≤ (q + 1), and the matrix V ∈ R (q+1)×(q+1) is orthogonal.

Y = U S V T (11) 
In practice, we use an economical version of the SVD that computes only the q + 1 first columns of U required to write Eq.( 12), where U i and V i are the ith last columns of U of V, and σ i is the iit largest singular value.

Y = q+1 i=1 σ i U i V T i ( 12 
)
The truncation of the SVD of Y to its l largest singular values gives the matrix Y of rank l minimizing the Frobenius norm ||Y -Y || F . This truncated SVD is given in Eq.( 13).

Y = l i=1 σ i U i V T i ( 13 
)
In the following, we will denote by U the matrix corresponding to the l first columns of U associated to the l largest singular values, that is to say the significant ones.

Approximation of the error propagation error

Since the restriction of the Schwarz iterations to the interfaces y k = P y k-1 + c, after q iterations we can write: y qy q-1 , . . . , y 2y 1 = P y q-1y q-2 , . . . , y 1y 0 (14) then :

U T [y qy q-1 , . . . , y 2y 1 ] = U T P [y q-1y q-2 , . . . , y 1 -

y 0 ] = U T P U U T [y q-1 -y q-2 , . . . , y 1 -y 0 ] +U T P I -U U T [y q-1 -y q-2 , . . . , y 1 -y 0 ] . (15) 
Because the SVD is truncated to its l largest singular values, there is

I -U U T y q-1 -y q-2 , . . . , y 1 -y 0 2 ≤ 2σ l+1 . (16) 
Furthermore, if the Schwarz method converges, then P 2 < 1. If we neglect U T P I -U U T [y q-1y q-2 , . . . , y 1y 0 ], we have the following approximation of U T P U :

U T P U ≈ P := U T y qy q , . . . , y 2y 1 U T y q-1y q-2 , . . . , y 1y 0 + (17

)
where E + is the Moore-Penrose pseudoinverse of the matrix E, which is equal to E -1 if E is invertible. Finally, the low-rank approximation of the matrix P is is P = U P U T . When the Schwarz method converges, the q + 1 last traces of the Schwarz process

[y 0 , • • • , y q ] converges toward [y ∞ , • • • , y ∞ ]. Then, the matrix U converges toward [y ∞ / y ∞ 2 , 0, • • • , 0] and the limit of U U T y ∞ -y ∞ 2 is 0.
The Aitken's acceleration was introduced in a general subspace spanned by the q + 1 traces, that is the Krylov subspace K q+1 . The Richardson process accelerated by the Aitken's formula cannot converge faster than the GMRES method without restart.

We propose to take advantage of the sparse structure of the matrix P , that is equivalent to compute the acceleration in a subspace larger than the Krylov subspace associated to the q + 1 iterations. The idea is to by approximating independently each block of the operator P associated to each subdomain. This can be related to the sparse approximation of the Schur complement of the matrix A discussed in [START_REF] Giraud | Sparse approximations of the Schur complement for parallel algebraic hybrid linear solvers in 3D[END_REF] and to the local approximation of the Dirichlet-to-Neumann map proposed in [START_REF] Nataf | A coarse space construction based on local Dirichlet-to-Neumann maps[END_REF].

So far, the approximation of

P = R Γ (I -M -1 RAS A)R T Γ ,
given by U P U T was a full matrix but the matrix P can be very sparse. This sparsity can be explained by the fact that the solution at one subdomain interface depends only on the solution of the neighboring subdomains.

We first consider only the case of two subdomains.

For two subdomains, let denote by v i 0 and v i 1 the solutions at the interface of the two subdomains at the ith iteration. We also denote by R Γ 0 and R Γ 1 the restriction operators to these two interfaces. Then, v i 0 = R Γ 0 x i . The purely linear convergence of the Schwarz process can be written as

v i+1 0 -v i 0 v i+1 1 -v i 1 = R Γ I -M -1 RAS A R T Γ v i 0 -v i-1 0 v i 1 -v i-1
1 where the matrix P = R Γ (I -M -1 RAS A)R T Γ can be decomposed P = 0 P 0 P 1 0 .

Let e n 0 = v i+1 0 v i 0 and e i 1 = v i+1 1 v i 1 then:

P 0 e 0 1 , . . . , e q-1 1 = e 1 0 , . . . , e q 0 and P 1 e 0 0 , . . . , e q-1 0 = e 1 1 , . . . , e q 1 .

In order to approximate the acceleration in low dimensional space, we compute independently the SVD of the trace of each interface.

U i Σ i V T i = [v 0 i , . . . , v q+1 i ] for i = 0, 1. Then P 0 := U T 0 [e 1 0 , . . . , e q 0 ] U T 1 e 0 1 , . . . , e q-1 1 -1 ≈ U T 0 P 0 U 1 P 1 := U T 1 [e 1 1 , . . . , e q 1 ] U T 0 e 0 0 , . . . , e q-1 0 -1 ≈ U T 1 P 1 U 0 . (19) 
The approximation preserving the diagonal null blocs of the matrix P is

P ≈ 0 U 0 P 0 U T 1 U 1 P 1 U T 0 0 = U 0 0 0 U 1 U × 0 P 0 P 1 0 P × U 0 0 0 U 1 T U T . ( 20 
)
The Aitken's acceleration is computed after q iterations, the dimension of the Krylov subspace is q + 1. The matrix U has l ≤ 2q + 2 columns linearly independent, spanning a subspace larger than the Krylov subspace if l > q + 1. The Aitken's acceleration in which each blocs of P has been approximated independently is more suitable for parallel computing because there is one SVD per interface instead of one global SVD.

Implementation details and results

The Schwarz method is often implemented using one processor per subdomain. Even this can be relevant when the Schwarz method is used to precondition the Krylov iteration, it does not allow us to achieve a competitive solver. Generally speaking, Schwarz solver are not as efficient as classical solvers such as parallel Krylov solver. Nevertheless, these classical solvers require numerous communications between the process, and their extensibility reach a limit. Then it is relevant to use Schwarz method when we have to solve a problem that cannot be solved using a classical solver. The Aitken-Schwarz methods allows us to couple multiple instances of a classical parallel solver.

Two levels of parallelism

The first level corresponds to the parallel solver chosen for the subdomains problems. The second level is the Schwarz method, implemented using MPI, that couples these local linear solvers. The Aitken's acceleration has implemented as follows:

One processor of each interface gathers all traces and compute their SVD. We could have chosen to compute the SVD in parallel to avoid this bottleneck, but their relative precision than sequential algorithms (i.e. DGESVD from Lapack).

The acceleration in the low rank space in computed on a single processor and redistributed to the interfaces. This step requires global synchronization between all subdomains.

An illustration of the two levels of parallelism is given in Figure 1. The Schwarz method requires communications only between the processors that handles a part of the artificial interfaces. If the decomposition of the mesh is regular, as in Figure 1, then each processor communicate with one and only one other processor during the exchange of boundary conditions.

The problem to be solved

The groundwater flow in saturated media can be modelled using the Darcy's laws and the conservation of mass that gives Eq.( 21), where u is the hydraulic head K(x, y, z) is the permeability field.

∇. (K(x, y, z) ∇u) = 0 in Ω u = α, on Γ L , u = β, on Γ R , ∂u ∂n = 0, on ∂Ω \ (Γ 1 ∪ Γ 2 ) (21)
The domain Ω is a parallelepiped, with two Dirichlet boundary conditions on the left Γ L and right Γ R wall, and homogeneous Neumann boundary conditions on the other walls. The problem is discretized using a standard 7 points stencil on a regular grid.

The permeability field can be deterministic or generated randomly using a log-normal distribution which has two parameters: λ the correlation length and σ the standard deviation.

L. Berenguer and D. Tromeur-Dervout topology and boundary conditions regular data distribution scheme over processors We first compare the numerical behavior of the classical Aitken-Schwarz method and the sparse approach. In order to highlight the numerical noise arising from the classical method, we consider the following problem:

Schwarz domain decomposition

1 st level parallelism overlap overlap parallel Krylov solvers 2 nd level parallelism Ω 0 Ω 1 Ω 2 Γ L Γ R Γ L Γ R Γ L Γ R no f low f ixed head f ixed head no f low
The domain is Ω = [0, 1] × [0, 1] × [0, 30].
The mesh size is 64 × 64 × 1920, distributed over 120 cores.

The domain is decomposed in 5 subdomains, and the overlap is 4 .

We consider the homogeneous Poisson problem: K(x, y, z) = 1.

The Dirichlet boundary conditions are 1.0 on the left and 10.0 on the right.

Each subproblem is solved with a relative tolerance of 10 -8 by a preconditioned Krylov method.

The initial guess is x 0 = 0 and the absolute tolerance for the global residual is 10 -7 . This 3D problem is actually very close to 1D problem because the successive solution of the Schwarz methods are constant in xy cuts if the subproblems are solved exactly.

The standard deviation of the solution (the values has been centered in 0) is plotted in Figure 2. This shows that the classical Aitken's acceleration produces a numerical noise on the interface, then this numerical noise is damped by the Schwarz iterations. In the case of sparse Aitken-Schwarz, the standard deviation remains lower than 10 -8 after the first acceleration. tolerance is obtained after the acceleration for the sparse approach, but not for the classical one. The second acceleration for the classical method is inefficient because the numerical noise has not been damped: there are not enough Schwarz iterations between the two accelerations. The traces of the Schwarz methods are not exactly constant because of the tolerance of the Krylov method. This affects the columns of the matrix U . This noise is amplified and propagated in the classical approach because the approximation of P is dense.

We now consider a domain Ω = [0, 1] × [0, 1] × [0, 15] discretized in 128 × 128 × 1920 points. The permeability field is given by: K(x, y, z) = 10 2×sin(πx)×sin(πy)×sin (πz) .

(

) 22 
The number of subdomains in increased, keeping constant the number of processors (i.e. the number of processors per subdomain is decreased). Table 1 shows the number of Schwarz iteration and the computational times of the Aitken-Schwarz method. This computational times does not include the setup of the matrix and the output of the final solution. Let us remark that the sparse Aitken-Schwarz gives lower times. Furthermore, the difference increases with the number of subdomains. This can be explained by the fact that the analytical matrix P become sparser and sparse when the number of subdomains increases. Let remark that the best computational are obtained for 2 subdomains. Indeed, the combination of GMRES and Hypre is very efficient for solving this problems on a small scale. The solution of the first local linear system required 14.6 seconds for the two subdomains case, and 11.2 for 15 subdomains. In other words, the solution time of the local linear systems by GMRES with multigrid preconditioning is multiplied by 1.3 when the size of the problem is multiplied by 7.5. These solution times included the computation of the coarse grids, that is done only once.

L. Berenguer and D. Tromeur-Dervout

Weak scaling

In order to test the weak scaling of our implementation, we set the size of one subdomain to 512 × 512 × 256, and we increase the number of subdomains. Nine Schwarz iterations are computed before the acceleration, and one after. Table 2 shows the computational times and their repartition. The total number of Schwarz iterations is 10 for all considered sizes of meshes. This means that the required tolerance b -Ax 2 / b 2 < 10 -5 has been reached after the first acceleration. The computational times could have been reduced for 2 subdomains, performing the acceleration after 7 or 8 Schwarz iterations. In the other cases, 9 is the optimal number of Schwarz iterations.

Only the time of the Aitken-Schwarz method has been considered. In particular, the output of the final solution is not included of time measurements. The code has been run twice, and the averages are given. The maximum difference between two identical runs is 12 seconds. The FMGRES method preconditioned by BoomerAMG of Hypre requires a lot of communications, and the duration of these communications depends on the load of the network.

The computational time is spent in the local solver mostly. Let also remark that the number of Krylov iterations may vary from one domain to another. The time spend in the local solver given in Table 2 included these idle times.

The time for the Aitken's acceleration included the singular value decomposition and the communications. This time increases when the number of subdomain increases, because the acceleration requires global synchronizations, and the dimension of the low-rank space increases with respect of the number of interfaces.

The computational time of the Schwarz exchanges is small, but in increases with respect of the number of subdomains. For this particular problem, the total number of communications increases when the number of subdomain is increased, but not the size of each communication.

The remaining time is mostly due to the computation of the global residual, that involves a global synchronization.

Figure 1 :

 1 Figure 1: Example of two levels of for a 2D problem, the center part shows the domain decomposition, the lower part shows the data distributions over 18 processors.

Figure 2 :

 2 Figure 2: Standard deviation of the solution at the interfaces for the homogeneous Poisson problem.

Figure 3 :

 3 Figure 3: Residuals of the additive Schwarz method for the homogeneous Poisson problem.

Table 1 :

 1 Number of Schwarz iterations and computational times.

	subdomains	Traces	A-S	SA-S
	2	9	18 (63.9s)	9 (42.7s)
	5	9	120 (353.8s)	18 (61.0s)
	10	19	n.c	19 (66.3s)
	15	19	n.c	19 (65.1s)
	A-S: classical Aitken-Schwarz , SA-S: sparse Aitken-Schwarz	
	Mesh distributed over 120 cores.		
	Dirichlet B.C. of 1.0 on the left and 10.0 on the right.	
	Subproblems solved by GMRES preconditioned by Hypre, relative tolerance of 10 -10 .
	Stopping criterion: relative tolerance of 10 -8 for the residual norm.	
	n.c : non-convergence after 200 Schwarz iterations.	

Table 2 :

 2 Repartition of the computational time of SA-S(9) Dirichlet b.c. of 1.0 on the left and 10.0 on the right. 8 overlapping points between each subdomains. Subproblems solved by FGMRES preconditioned by Hypre with a relative tolerance of 10 -12 .

	Subd.	Cores	Time (s)	Local solution	Aitken	Exchanges	Remaining
	2 4 8 16	512 1024 2048 4096	752 811 828 817	99.444% 99.051% 98.548% 98.063%	0.123% 0.186% 0.168% 0.208%	1.54 × 10 -3 % 2.86 × 10 -3 % 4.35 × 10 -3 % 5.00 × 10 -3 %	0.431% 0.761% 1.280% 1.724%
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