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Abstract6

In this paper, we study the solution behavior of two coupled non–linear Schrödinger7

equations (CNLS) in the critical case, where one equation includes gain, while the other8

includes losses. Next, we present two numerical methods for solving the CNLS equations,9

for which we have made a comparison. These numerical experiments permit to illustrate10

other theoretical results proven by the authors [11]. We also obtain several numerical results11

for different non–linearities and investigate on the value of the blow up time relatively to12

some parameters.13
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Introduction1

Various physical applications stimulate the interest to explore and study the solution behavior2

of systems of coupled nonlinear Schrödinger (CNLS) equations. Among them, one recovers3

several applications of nonlinear optics (birefringent optics fibers[1], filamentation, waves guided4

plasmonics, for example).5

Hereafter, a basic model of propagation of weakly dispersive waves is considered by a system6

of the CNLS equations written as follows:7 
ı∂tu = −∆u+ κv + ıγu− (g1|u|2 + g|v|2)u,
ı∂tv = −∆v + κu− ıγv − (g|u|2 + g2|v|2)v,

(u(t = 0), v(t = 0)) = (u0(x), v0(x)), x ∈ Rd, t = 0,
(1)

where the coefficients of the nonlinear parts are reals, the ı is the complex such that ı2 = −18

and the coefficients κ and γ are positives constants which characterize gain and loss in wave9

components and (u0, v0) is the initial condition. The system (1) can be viewed as a slight10

extension of that is considered by researchers in optics for which g1 = g2 is the self–phase11

modulation (SPM) and g is the cross–phase modulation (XPM) [17].12

Let us recall that when the coefficients g1 and g2 are equal, the system (1) obeys the formal13

property called Parity–Time (PT) symmetry which means that if the pair (u(x, t), v(x, t)) is14

solution of the system (1), then the pair (uPT (x, t), vPT (x, t)) = (v̄(x,−t), ū(x,−t)) is also15

solution of the same system (hereafter an overbar stands for the complex conjugation). This16

concept of PT–symmetry which emerged from quantum mechanics [6] (and references therein)17

has gained a particular relevance due to its importance in several areas of nonlinear Physics.18

Moreover, the behavior of the solution of system (1) is linked to the interaction between this19

property and the nonlinear potentiel. In the one dimension case, we have proven recently that20

as soon as the symmetry is unbroken (0 < γ < κ), the solution cannot blow up in finite time in21

H1 norm, while if γ ≥ κ there exists a global solution that tends to infinity in L2 norm (as soon22

as t tends to infinity) [7]. But in two dimension, this result is not so obvious. The nonlinearity23

terms seems to have more influence than PT–symmetry onto the solution behavior. Indeed,24

Dias et al. proved that in supercritical case (d ≥ 3), the sufficient conditions of the existence25

of the finite time blow up does not rely on the PT–symmetry property [11]. In a recent paper,26

Dias et al. extended their result of the existence of the finite time blow up of solution to the27

critical case but only for κ = 0 and γ > 0 [12]. In our recent paper [9], sufficient conditions for28

the solution blow up have been obtained in two dimension case.29

In this paper, a numerical study of the coupled system of nonlinear Schrödinger equations is30

made notably in the two dimension case, where, to our knowledge, the mathematical problems31

are still open. Recall that the system has a cubic nonlinearity, therefore, in the case of dimen-32

sion 2, there is necessarily a L2–critical dimension. In this case, the solution of the problem33

can be global or blow up in finite time. It should also be noted that this two–dimensional sys-34

tem has been partially approached in the particular case of a Manakov PT–symmetric system35

(see [19]). These authors have provided sufficient conditions that allow to obtain theoretical36

results on the overall existence and the blow up of the solution in finite time. To our knowledge,37

all the theoretical results already proved have never been illustrated by numerical simulations,38

and that also motivated us to propose some in this paper.39

The main purpose of this work is to develop a numerical solver for the CNLS system (1)40

and to analyse the results. Although the original problem is defined on R2, the discret one41
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must be define on a open bounded domain without boundary conditions specified by Physics.1

In the case of a single NLS equation, several types of boundary conditions have been used,2

eg periodic boundary conditions, absorbing boundary conditions [13], perfectly matched layers3

(PML) [23], and transparent or exact boundary conditions ([3], [2]).4

We consider initial conditions of Gaussian type centered at (0, 0) in a square domain I =5

] − L,L[×] − L,L[. This constant L will be assumed large enough so that the contribution of6

the homogeneous Dirichlet boundary condition stays negligible. As soon as this last one is no7

longer, the maximum time of the simulation is achieved, and then the truncated solution of (1)8

is strongly affected by the boundary condition.9

Thus, the chosen initial conditions are:10

u0(x, y) = Ae−(x2+y2) and v0(x, y) = Be−(x2+y2) (2)

with A and B are real constants.11

Let us consider the density and the energy which characterize the solution:12

Q(t) =

∫ (
|u|2 + |v|2

)
dx

and13

E(t) =

∫ (
|∇u|2 + |∇v|2 + κ(ūv + uv̄)− g1

2
|u|4 − g2

2
|v|4 − g|u|2|v|2

)
dx

For γ = 0, these quantities (for the Hamiltonian version) of the generalized Manakov equa-14

tions (1) are conserved. Then, adding the product of the first equation times 2ū and the second15

by 2v̄, one obtains after integration in space, that the imaginary part of the expression leads16

to17

dQ

dt
(t) = 2γ

∫ (
|u|2 − |v|2

)
dx.

Next, summing the product of the first equation by 2∂tū and the second by 2∂tv̄, one obtains18

after integration in space, that the real part of the expression gives:19

dE

dt
(t) = 2γ

∫ (
|∇u|2 − |∇v|2 − g1|u|4 + g2|v|4

)
dx.

We also define the H1 semi–norm of the solution of the system (1) by20

D(t) =

∫ (
|∇u|2 + |∇v|2

)
dx.

For the next consideration, the introduction of the Stokes variables is needed in the explicit21

form,22

S1 =

∫
(ūv + uv̄)dx, S2 = ı

∫
(ūv − uv̄)dx, S3 =

∫
(|u|2 − |v|2)dx.

In the Manakov case (g1 = g2 = g) and the PT–symmetry unbroken (γ < κ), using the23

derivative of previous quantities, one shows that the density is solution of a second order ODE24

[19, 7]. It can therefore be written in this new form25

Q(t) =
κC

ω2
+A1 cos(2ωt) +A2 sin(2ωt) (3)
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where1

ω2 = κ2 − γ2, C = κQ(0)− γS2,
2

A1 = Q(0)− κC

ω2
, and A2 =

1

2ω

dQ

dt
(0).

This new expression provides an upper bound for the density:3

Q(t) < Qmax, where Qmax =
κC

ω2
+
√
A2

1 +A2
2.

The paper is organized as follows. The first section describes the numerical methods and4

algorithm that have been implemented to solve the Cauchy problem. The next section addresses5

the error analysis of the scheme and the performance of the two methods that have been used.6

The numerical results using Gaussian beams as initial conditions for the PT–symmetric model7

are gathered in the third section. We end up with some concluding remarks and perspectives.8

1 Numerical scheme9

Let us denote by L and T , 2 positive real constants, the former being the half-length of the10

physical domain in 1D, the latter, a maximal time. The system (1) is then considered in a11

square domain I =] − L,L[×] − L,L[ for t ∈ [0, T ]. This square I is uniformly divided into a12

spatial grid of size δx× δy and the gridpoints are defined by xi = x0 + iδx and yj = y0 + jδy,13

where x0 = y0 = −L.14

Let δt be the time step, and (Un, V n) the approximate solution of the model (1) at time15

tn = nδt. We get the following semi–discrete system using Crank–Nicolson scheme as follows:16

ı
(
Un+1−Un

δt

)
= −∆

(
Un+1+Un

2

)
+ ıγ

(
Un+1+Un

2

)
+ κ

(
V n+1+V n

2

)
−Θ(g1,g,Un+1,Un,V n) (4)

ı
(
V n+1−V n

δt

)
= −∆

(
V n+1+V n

2

)
− ıγ

(
V n+1+V n

2

)
+ κ

(
Un+1+Un

2

)
−Θ(g2,g,V n+1,V n,Un) (5)

with Θ(a, b, c, d, e) = 1
2

(
a(|c|2c+ |d|2d) + b|e|2(c+ d)

)
.17

18

Let us denote by (Uni,j , V
n
i,j) the value of (Un, V n) at the point (xi, yj) for the time tn. By19

using second order centered finite differences, the Laplacian terms are approximated by :20

−(∆Un)(xi, yj) ≈
1

δx2

(
2Uni,j − Uni+1,j − Uni−1,j

)
+

1

δy2

(
2Uni,j − Uni,j+1 − Uni,j−1

)
(6)

These discrete Laplacian terms (6) with the discrete values allow to obtain the full nonlinear21

system from (4) and (5). Two solvers are considered to solve this coupled non linear system: a22

fixed point iteration that is combined with a splitting between the two equations [10], and the23

Newton method (see hereafter).24

In fact, at each time step, one uses an inexact Newton method, which consists of seeking the25

solution of the nonlinear system of equations:26

F (W ) =

(
F1(W )
F2(W )

)
=

(
0
0

)
, with W =

(
Un+1, V n+1

)
.
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By assuming that F is C2NxNy -differentiable and the Jacobian DF (W ) is regular, a sequence1

(Wk)k≥0 is defined recursively by,2 {
W0 = (Un, V n)
Wk+1 is the solution of DF (Wk)(Wk+1 −Wk) = −F (Wk), k ≥ 0.

The inner linear systems are solved by GMRES algorithm for complex-valued functions, and3

the sequence (Wk)k≥0 converges to (Un+1, V n+1), the root of the nonlinear complex function.4

2 Program implementation and validation5

In this section, we wish to testify to all the attention that has been paid to build our solver.6

First of all, specific care must be made to chose the programming language that is suitable to7

our algorithm implementation. To combine the flexibility of a language and the performance8

of the application is most of time impossible in a simply way. So, one proposes a multi–9

language implementation using an interpreted language (Python) and a compiled one (Fortran).10

Therefore, the characteristics of these two languages are mixed, in order to create a robust and11

efficient application via C language interfaces. Both languages have a standard way to write12

C–interfaces, ctype in Python (a part of Numpy library) and C binding in Fortran.13

In order to compare the two iterative methods, as no analytical solution exists, one uses14

a referent solution computed with very fine mesh δx = δy = 2 × 10−3 and the step time15

δt = 2 × 10−4. This solution will be denoted by (Unref, V
n
ref) for which computations have been16

made with parameters equal to κ = 1, γ = 0.5 and g1 = g2 = g = 1.17

2.1 Spatial error analysis18

In order to check the accuracy in space of the scheme, solutions have been computed with19

various spatial steps, for the same time step δt = 2.10−4 (see Tab. 1).20

Let us denote these solutions by Uns for δxs = δys = 4.10−3 (for s = 1), 8.10−3 (for s = 2),21

1.6 10−2, 3.2 10−2. Comparing each solution with the referent solution, the numerical error is22

calculated by23

err(Us)
2 =

N∑
n=1

||Unref − Uns ||22 for each s = 1, . . . , 4.

Then, computing the ratios for each value of s,24

log(err(Us))− log(err(Us−1))

log(δxs)− log(δxs−1)
, and

log(err(Vs))− log(err(Vs−1))

log(δxs)− log(δxs−1)
,

we get the spatial scheme order. The numerical results that have been given in Tab. 1 concern25

the fixed point iteration method. Similar results have been obtained for Newton method,26

which was not surprising. Indeed in our scheme, the only term involving the spatial mesh is27

the discrete Laplace operator which does not depend of the temporal approximation scheme.28
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s Spatial step Error Order

0 4.0× 10−3 4.0× 10−8

1 8.0× 10−3 2.0× 10−7 2.32

2 1.6× 10−2 8.4× 10−7 2.07

3 3.2× 10−2 3.4× 10−6 2.01

(a) Results for the 1st equation

s Spatial step Error Order

0 4.0× 10−3 6.15× 10−8

1 8.0× 10−3 3.07× 10−7 2.32

2 1.6× 10−2 1.29× 10−6 2.07

3 3.2× 10−2 5.22× 10−6 2.01

(b) Results for the 2nd equation

Table 1: Convergence for the fixed point iteration method

Without surprise, one obtains that our scheme seems to being at least second order accurate1

whatever the temporal approximation is chosen.2

Figure 1: Convergence for the scheme using the fixed point iteration method

2.2 Error analysis in time3

Following the convergence analysis in space, the temporal approximation is examined. In each4

direction, the spatial step has been fixed to δx = δy = 2 × 10−3. Then, the approximate5

solutions denoted here by Uns with various time steps : δts = 4 × 10−4, 8 × 10−4, 1.6 × 10−3,6

3.2 × 10−3 (for each s = 0, . . . , 4). Each solution Us is compared with the referent solution,7

allowing to compute a global truncation error for each time step, by8

err(Uns )2 =

N∑
n=1

||Unref − Uns ||22, err(V n
s )2 =

N∑
n=1

||V n
ref − V n

s ||22.

s Time step Error Order

0 4.0× 10−4 1.30× 10−6

1 8.0× 10−4 4.30× 10−6 1.62

2 1.6× 10−3 1.06× 10−5 1.30

3 3.2× 10−3 1.98× 10−4 4.22

(a) Results for the 1st equation

s Time step Error Order

0 4.0× 10−4 1.04× 10−6

1 8.0× 10−4 3.22× 10−6 1.62

2 1.6× 10−3 7.96× 10−6 1.30

3 3.2× 10−3 2.52× 10−5 1.66

(b) Results for the 2nd equation

Table 2: `2(]0, T [; `2(I))-error behavior of the scheme using the fixed point iteration method
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s Time step Error Order

0 4.0× 10−4 9.88× 10−9

1 8.0× 10−4 4.14× 10−8 2.06

2 1.6× 10−3 1.73× 10−7 2.06

3 3.2× 10−3 7.79× 10−7 2.17

(a) Results for the 1st equation

s Time step Error Order

0 4.0× 10−4 1.47× 10−8

1 8.0× 10−4 5.75× 10−8 1.97

2 1.6× 10−3 2.28× 10−7 1.99

3 3.2× 10−3 1.01× 10−6 2.140

(b) Results for the 2nd equation

Table 3: `2(]0, T [; `2(I))-error behavior of the scheme with the Newton method

The results confirm that the scheme with the fixed point iteration method is of order 1.5 (one1

obtains 1.6, see Tab. 2 and Fig. 2a), while the convergence of the scheme with Newton’s method2

is quadratic (see Tab. 3 and Fig. 2b). Therefore, as it was expected, the rate of convergence3

of the Newton method is higher than those of the fixed–point iteration one. Moreover, from a4

computational point of view, the scheme using the Newton method is more efficient. One can5

also notice a curious result from Tab. 2 (last line for δt = 3.2 10−3), and also a change of slope6

in the error decrease (see Fig.2a). Indeed, the order of more than 4 is not significant caused by7

a too coarse time step.8

(a) Results with fixed point method (b) Results with Newton’s method

Figure 2: Convergence in time of the scheme

To conclude this section, the two algorithms that have been studied have the expected9

behavior and give suitable results.10

11

12

3 Numerical experiments13

This section is the main part of this work. Here, the results related to the qualitative behavior of14

the solution of the system (1) are given. First, one gathers the results concerning the Manakov15

case, then the generalized Manakov case.16
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Figure 3: ||u||L2 (green), ||v||L2 (blue), ||∇u||2L2 (yellow), ||∇v||2L2 (brown), ||u||2L∞ (black) and
||v||2L∞ (red), S1(t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial condition (2)
such that (A,B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g1 = g2 = g = 1.

3.1 The Manakov case1

Numerical results are given in the Manakov case, i.e. when the coefficients of all nonlinear terms2

are equal. For the computations, the choice of nonlinear parameters value is g1 = g2 = g = 1, to3

keep more flexibility on the other parameters. Our results confirm the theoretical results given4

in [19]. In case of γ < κ and an initial condition that verifies the condition Qmax <
1
2 ||R||

2
2, there5

exists a global solution for the system (1) (with Qmax being the upper bound of the density, R6

being a ground state solution of the stationnary equation ∆R−R+R3 = 0, ||R||22 ≈ (1.86255)π,7

see [22]). According to our numerical results, four quantities stay bounded in time: the L2
8

norm of the solution, the L2 norm of its gradient and the L∞ norm of the solution; also, the9

density Q(t) is oscillating, but stays bounded. Moreover the semi–norm D(t) does not blow10

up in finite time, that would mean that the solution of the system exists overall in time (see11

Fig. 3).12
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(a) the solution at time t = 0.0, t = 5.0.14

(b) the solution at time t = 9.718, t = 10.0

Figure 4: Modulus squared of the computed density (1st component in red, 2nd one
in blue) at several times, in the Manakov case, for an initial condition (2) such that
(A,B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g1 = g2 = g = 1.

Under the condition γ < κ but using an initial condition such that Qmax ≥ ||R||22, one knows1

that the solution does not exist after a finite time [19]. This result is illustrated by numerical2

computations which confirm that the L2 norm of the gradient of the solution, the L∞ norm of3

the solution and the quantity D(t) grow infinitely over time; the solution blows up in finite time4

(see Fig. 5). The first Stokes variable S1 is analytically conserved in time when all nonlinear5

coefficients are equals (the Manakov case). One can notice that the computations confirm6

this conservative behavior property over time (S1 has a quasi flat magenta curve see Fig. 3).7

However, as soon as the initial condition is such that 1
2 ||R||

2
2 ≤ Qmax < ||R||22, no theoretical8

result exists, up to our knowledge. But, the numerical results reported at the fourth and fifth9

line of the table 4 seem to attest that the solution exists all time long (see also Fig. 8).10
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Figure 5: ||u||L2 (green), ||v||L2 (blue), ||∇u||2L2 (yellow), ||∇v||2L2 (brown), ||u||2L∞ (black) and
||v||2L∞ (red), S1(t) (magenta), Q(t) (green) et D(t) (celestial blue) for an initial condition (2)
such that (A,B) = (5, 1), (κ, γ) = (1, 0.5) and g1 = g2 = g = 1.

Figure 6: Behavior of S1 versus time for initial condition (2) such that (A,B) = (0.1, 0.2),
(κ, γ) = (1, 0.5) and g1 = g2 = g = 1.
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(a) the solution at time t = 0.0 et t = 0.032

(b) the solution at time t = 0.05 et t = 0.062

Figure 7: Surfaces of the position density |u(x, t)|2 (red) and |v(x, t)|2 (blue) at time t = 0.0,
t = 0.032 (upper row) and for t = 0.05, t = 0.062 (lower row) in the Manakov case, for the
initial condition (2) such that (A,B) = (5, 1), (κ, γ) = (1, 0.5) and g1 = g2 = g = 1.

Thus, it is known that in the Manakov case, for γ < κ and for initial conditions such as1

Qmax <
1
2 ||R||

2
2, the solution of the Cauchy problem exists globally, while for initial conditions2

for which Qmax ≥ ||R||22, the solution can blow up in finite time. Nevertheless, the value of3

Qmax does not depend only on initial conditions but it also relies on the values of the linear4

parameters γ and κ. The table 4 provides informations in this case. The blow up time noted5

t∗ depends on the initial condition and the parameters γ and κ in the Manakov case. The first6

and the second lines of this table indicate that for sufficiently small initial conditions and some7

values of γ and κ, the solution exists and does not blow up in finite time. However, for values γ8

and κ sufficiently large the solution can blow up in finite time (see third line). From the sixth9

to the ninth row of the table 4, configurations for which the value of Qmax exceeds ||R||22, are10

gathered: then the solution blows up in finite time. Finally, in Manakov case, a configuration11

of a global existence of the solution is reported at the tenth line of table 4 which corresponds12

to Fig. 3. Whereas another configuration with initial conditions with higher value of Qmax is13

11



illustrated at the last line, and corresponds to figure 5. It is valuable to be able to know the1

behavior of the solution when 1
2 ||R||

2
2 < Qmax < ||R||22. So, in this case, our numerical results2

show that the solution of the system seems to exist overall, according to the fourth line in the3

table 4 and the figures 8, 9.4

No Q(0) κ γ ω Qmax t∗

1 0.410 3 1 2.828 0.602 –

2 0.410 100 80 536 2.018 –

3 0.410 200 199.75 9.997 326.695 0.077

4 7.070 3 0.50 2.958 7.47 –

5 7.070 1 0.50 0.866 11.7 –

6 7.070 1 0.55 0.835 13.199 5.513

7 7.070 1 0.60 0.800 15.021 5.566

8 7.070 5 3.50 5.571 20.65 0.368

9 7.070 7 6 3.605 46 0.2252

10 0.075 1 0.5 0.866 0.133 –

11 40.841 1 0.5 0.866 80.127 0.062

Table 4: Blow up time according to initial conditions and linear parameters γ and κ in the
Manakov case PT–symmetric; t∗ is the computed value of the blow up time and (−) means
there is no blow up.

Figure 8: ||u||L2 (green), ||v||L2 (blue), ||∇u||2L2 (yellow), ||∇v||2L2 (brown), ||u||2L∞ (black) and
||v||2L∞ (red), S1(t) (magenta), Q(t) (purple) and D(t) celestial blue) for initial condition (2)
such that (A,B) = (1.5, 1.5), (κ, γ) = (3, 0.5) and g1 = g2 = g = 1.
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Figure 9: ||u||L2 (green), ||v||L2 (blue), ||∇u||2L2 (yellow), ||∇v||2L2 (brown), ||u||2L∞ (black) and
||v||2L∞ (red), S1(t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial condition (2)
such that (A,B) = (1.5, 1.5), (κ, γ) = (1, 0.5) and g1 = g2 = g = 1.

3.2 The non Manakov case1

When the coefficients of the nonlinear terms of the system (1) are not equal, the study of2

the blow up phenomenon in finite time has been studied (theoretically and numerically) in3

supercritical dimension by Dias (see [11]). Before this work, the qualitative study of the solution4

of the system (1) in the critical case was still an open problem. Subsequently, the model was5

address partially in the Manakov case, in the critical dimension by Pelinovsky (see [19]) and this6

result is illustrated by numerical results in this paper. For instance, there is not really any global7

result on this model in critical dimension as revealed in [17]. Here, numerical approximations8

are presented to show the global existence and blow up in finite time of the solution of the9

system in the critical dimension. For this group of tests, the model parameters are chosen as10

follows: κ = 1, γ = 0.5 and g1 = g2 = 1 6= g = 0.5. But also to maintain the stability of the11

PT-symmetry, the option γ < κ has been made [17]. Firstly, an initial condition was chosen12

and defined by (2) with (A,B) = (0.1, 0.2). The results of these experiments are presented in13

Fig. 10 and 12. The L2−norm and L∞−norm of the components of the solution, as well as14

the L2−norm of its gradient are all bounded (see Fig. 10). Moreover, the density Q(t) and15

the L2−norm of the gradient of the solution, D(t) remain bounded during the evolution over16

time of the solution. Furthermore, Fig. 10 brings to light that even if the coefficients of the17

nonlinear terms of (1) are not all equal, an initial condition can be suffisiently small for which18

the solution exists overall.19

Moreover, keeping the same physical parameters for the model, a choice of an initial condi-20

tion is made, defined by (2) with (A,B) = (1, 3). Despite the limitations due to the boundary21

condition, the result of these experiments confirms that the system solution explodes in finite22

time (see Fig. 11 and 13). Indeed, the L∞−norm of the components of the solution and the23

13



L2−norm of the gradient of the components of the solution increase infinitely with a vertical1

tangent at a certain time (see Fig. 11).2

Figure 10: ||u||L2 (green), ||v||L2 (blue), ||∇u||2L2 (yellow), ||∇v||2L2 (brown), ||u||2L∞ (black) and
||v||2L∞ (red), S1(t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial condition (2)
with (A,B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g1 = g2 = 1 6= g = 0.5.

Figure 11: ||u||L2 (green), ||v||L2 (blue), ||∇u||2L2 (yellow), ||∇v||2L2 (brown), ||u||2L∞ (black) and
||v||2L∞ (red), S1(t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial conditions (2)
with (A,B) = (1, 3), (κ, γ) = (1, 0.5) and g1 = g2 = 1 6= g = 0.5.

14



(a) the solution at time t = 0.0, t = 0.0472

(b) the solution at time t = 5.506, t = 9.998

Figure 12: Surfaces of the position density |u(x, t)|2 (red) and |v(x, t)|2 (blue) at time t = 0.0,
t = 5.014 (upper row) and for t = 9.718, t = 10.0 (lower row) in the general model case, for
the inital condition (2) with (A,B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g1 = g2 = g = 1.

It is important to remind that all the previous computations were carried out on a delimited1

domain and with a Dirichlet boundary condition. But as one can see, all conserved quantities2

remain so, even when the boundary conditions influence the computed solution, which is, a3

priori, one of the limits of our approach. This is remarkable, so it is a conjecture, which will4

certainly be a subject for our future work.5
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(a) the solution at time t = 0.0, t = 3.86

(b) the solution at time t = 4.708 et t = 4.746

Figure 13: Surfaces of the position density |u(x, t)|2 (red) and |v(x, t)|2 (blue) at time t = 0.0,
t = 3.860 (upper row) and for t = 4.708, t = 4.746 (lower row) in the general model case, for
initioal condition (2) with (A,B) = (1, 3), (κ, γ) = (1, 0.5) and g1 = g2 = 1 6= g = 0.5.

Concluding remarks and perpectives1

In this paper, we have numerically studied the behavior of the solution of the two coupled2

nonlinear Schrödinger equations, which one includes gains and the second includes losses. The3

numerical resolution of the system (1) has been made in a square domain by the second order4

centered finite different method and the scheme of Crank–Nicolson. Two iterative strategies are5

proposed the treat the non–linearity of the problem: the fixed point and the Newton method.6

An error analysis attest the numerical scheme is second order in space and it is 2nd order in7

time for the Newton method, and for the fixed point the scheme is 1.5 order in time. Numerical8

tests validate the existing theoretical results namely that for small initial conditions the solution9

exists globally over time. But also for large initial values conditions, the solution can blow up10

in finite time. Moreover, some experiments are made in order to study the influence of the11

16



parameters of linear and nonlinear coupling, on the blow up time.1

One of the unresolved problems in this paper concerns a theoretical estimate of the blow2

up time. For the coupled system with (1), defining absorbing boundary conditions or perfectly3

matched layers (PML) will be a subject for our future work. We will also need to improve our4

code, including the processing of the boundary conditions used with the numerical approxima-5

tion domain, in order to be able to use it over longer periods of time. In addition, it will also6

be interesting to pass the code to dimension 3 to illustrate the theoretical results. Then, from7

3D case, it would make it possible to speculate on results for the 2D case where there are still8

open problems.9

Acknowledgements.10

The authors are unanimously grateful to Prof. Ezzedine Zahrouni who suggested to us the11

topic of this paper. This is the main reason why, we wish to dedicate this paper in memory12

of Ezzedine Zahrouni. We will miss his fullness frienship and his capability of finding fruitful13

research topics. The authors are also pleased to acknowledge the Centre Commun de Calcul14
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