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. We also obtain several numerical results for different non-linearities and investigate on the value of the blow up time relatively to some parameters.

Introduction

Various physical applications stimulate the interest to explore and study the solution behavior of systems of coupled nonlinear Schrödinger (CNLS) equations. Among them, one recovers several applications of nonlinear optics (birefringent optics fibers [START_REF] Poullet | Applications of Nonlinear Fiber Optics[END_REF], filamentation, waves guided plasmonics, for example).

Hereafter, a basic model of propagation of weakly dispersive waves is considered by a system of the CNLS equations written as follows:

   ı∂ t u = -∆u + κv + ıγu -(g 1 |u| 2 + g|v| 2 )u, ı∂ t v = -∆v + κu -ıγv -(g|u| 2 + g 2 |v| 2 )v, (u(t = 0), v(t = 0)) = (u 0 (x), v 0 (x)), x ∈ R d , t = 0, (1) 
where the coefficients of the nonlinear parts are reals, the ı is the complex such that ı 2 = -1 and the coefficients κ and γ are positives constants which characterize gain and loss in wave components and (u 0 , v 0 ) is the initial condition. The system (1) can be viewed as a slight extension of that is considered by researchers in optics for which g 1 = g 2 is the self-phase modulation (SPM) and g is the cross-phase modulation (XPM) [START_REF] Konotop | Nonlinear waves in PT-symmetric systems[END_REF].

Let us recall that when the coefficients g 1 and g 2 are equal, the system (1) obeys the formal property called Parity-Time (PT) symmetry which means that if the pair (u(x, t), v(x, t)) is solution of the system (1), then the pair (u P T (x, t), v P T (x, t)) = (v(x, -t), ū(x, -t)) is also solution of the same system (hereafter an overbar stands for the complex conjugation). This concept of PT-symmetry which emerged from quantum mechanics [START_REF] Bender | Real spectra in non-Hermitian Hamiltonians having PT -symmetry[END_REF] (and references therein) has gained a particular relevance due to its importance in several areas of nonlinear Physics.

Moreover, the behavior of the solution of system (1) is linked to the interaction between this property and the nonlinear potentiel. In the one dimension case, we have proven recently that as soon as the symmetry is unbroken (0 < γ < κ), the solution cannot blow up in finite time in H 1 norm, while if γ ≥ κ there exists a global solution that tends to infinity in L 2 norm (as soon as t tends to infinity) [START_REF] Destyl | On the global behavior of solutions of a coupled system of nonlinear Schrödinger equation[END_REF]. But in two dimension, this result is not so obvious. The nonlinearity terms seems to have more influence than PT-symmetry onto the solution behavior. Indeed, Dias et al. proved that in supercritical case (d ≥ 3), the sufficient conditions of the existence of the finite time blow up does not rely on the PT-symmetry property [START_REF] Dias | Supercritical blow up in coupled parity-time-symmetric nonlinear Schrödinger equations[END_REF]. In a recent paper, Dias et al. extended their result of the existence of the finite time blow up of solution to the critical case but only for κ = 0 and γ > 0 [START_REF] Dias | The Cauchy problem for coupled nonlinear Schrödinger equations with linear damping: local and global existence and blow up of solutions[END_REF]. In our recent paper [START_REF] Destyl | Critical blow up in coupled Parity-Time-symmetric nonlinear Schrödinger equations[END_REF], sufficient conditions for the solution blow up have been obtained in two dimension case.

In this paper, a numerical study of the coupled system of nonlinear Schrödinger equations is made notably in the two dimension case, where, to our knowledge, the mathematical problems are still open. Recall that the system has a cubic nonlinearity, therefore, in the case of dimension 2, there is necessarily a L 2 -critical dimension. In this case, the solution of the problem can be global or blow up in finite time. It should also be noted that this two-dimensional system has been partially approached in the particular case of a Manakov PT-symmetric system (see [START_REF] Pelinovsky | Global existence of solutions to coupled PT-symmetric nonlinear Schrodiger equations[END_REF]). These authors have provided sufficient conditions that allow to obtain theoretical results on the overall existence and the blow up of the solution in finite time. To our knowledge, all the theoretical results already proved have never been illustrated by numerical simulations, and that also motivated us to propose some in this paper.

The main purpose of this work is to develop a numerical solver for the CNLS system [START_REF] Poullet | Applications of Nonlinear Fiber Optics[END_REF] and to analyse the results. Although the original problem is defined on R 2 , the discret one must be define on a open bounded domain without boundary conditions specified by Physics.

In the case of a single NLS equation, several types of boundary conditions have been used, eg periodic boundary conditions, absorbing boundary conditions [START_REF] Menza | Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain[END_REF], perfectly matched layers (PML) [START_REF] Zheng | A perfectly matched layer approach to the nonlinear Schrödinger wave equations[END_REF], and transparent or exact boundary conditions ([3], [START_REF] Antoine | Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF]).

We consider initial conditions of Gaussian type centered at (0, 0) in a square domain I = ] -L, L[×] -L, L[. This constant L will be assumed large enough so that the contribution of the homogeneous Dirichlet boundary condition stays negligible. As soon as this last one is no longer, the maximum time of the simulation is achieved, and then the truncated solution of [START_REF] Poullet | Applications of Nonlinear Fiber Optics[END_REF] is strongly affected by the boundary condition.

Thus, the chosen initial conditions are:

u 0 (x, y) = Ae -(x 2 +y 2 ) and v 0 (x, y) = Be -(x 2 +y 2 ) (2) 
with A and B are real constants.

Let us consider the density and the energy which characterize the solution:

Q(t) = |u| 2 + |v| 2 dx
and

E(t) = |∇u| 2 + |∇v| 2 + κ(ūv + uv) - g 1 2 |u| 4 - g 2 2 |v| 4 -g|u| 2 |v| 2 dx
For γ = 0, these quantities (for the Hamiltonian version) of the generalized Manakov equations (1) are conserved. Then, adding the product of the first equation times 2ū and the second by 2v, one obtains after integration in space, that the imaginary part of the expression leads to

dQ dt (t) = 2γ |u| 2 -|v| 2 dx.
Next, summing the product of the first equation by 2∂ t ū and the second by 2∂ t v, one obtains after integration in space, that the real part of the expression gives:

dE dt (t) = 2γ |∇u| 2 -|∇v| 2 -g 1 |u| 4 + g 2 |v| 4 dx.
We also define the H 1 semi-norm of the solution of the system (1) by

D(t) = |∇u| 2 + |∇v| 2 dx.
For the next consideration, the introduction of the Stokes variables is needed in the explicit form,

S 1 = (ūv + uv)dx, S 2 = ı (ūv -uv)dx, S 3 = (|u| 2 -|v| 2 )dx.
In the Manakov case (g 1 = g 2 = g) and the PT-symmetry unbroken (γ < κ), using the derivative of previous quantities, one shows that the density is solution of a second order ODE [START_REF] Pelinovsky | Global existence of solutions to coupled PT-symmetric nonlinear Schrodiger equations[END_REF][START_REF] Destyl | On the global behavior of solutions of a coupled system of nonlinear Schrödinger equation[END_REF]. It can therefore be written in this new form

Q(t) = κC ω 2 + A 1 cos(2ωt) + A 2 sin(2ωt) (3) 
where

ω 2 = κ 2 -γ 2 , C = κQ(0) -γS 2 , A 1 = Q(0) - κC ω 2 , and A 2 = 1 2ω dQ dt (0).
This new expression provides an upper bound for the density:

Q(t) < Q max , where Q max = κC ω 2 + A 2 1 + A 2 2 .
The paper is organized as follows. The first section describes the numerical methods and algorithm that have been implemented to solve the Cauchy problem. The next section addresses the error analysis of the scheme and the performance of the two methods that have been used.

The numerical results using Gaussian beams as initial conditions for the PT-symmetric model are gathered in the third section. We end up with some concluding remarks and perspectives.

Numerical scheme

Let us denote by L and T , 2 positive real constants, the former being the half-length of the physical domain in 1D, the latter, a maximal time. The system (1) is then considered in a

square domain I =] -L, L[×] -L, L[ for t ∈ [0, T ]
. This square I is uniformly divided into a spatial grid of size δx × δy and the gridpoints are defined by x i = x 0 + iδx and y j = y 0 + jδy,

where x 0 = y 0 = -L.
Let δt be the time step, and (U n , V n ) the approximate solution of the model (1) at time t n = nδt. We get the following semi-discrete system using Crank-Nicolson scheme as follows:

ı U n+1 -U n δt = -∆ U n+1 +U n 2 + ıγ U n+1 +U n 2 + κ V n+1 +V n 2 -Θ(g 1 ,g,U n+1 ,U n ,V n ) (4) ı V n+1 -V n δt = -∆ V n+1 +V n 2 -ıγ V n+1 +V n 2 + κ U n+1 +U n 2 -Θ(g 2 ,g,V n+1 ,V n ,U n ) (5) with Θ(a, b, c, d, e) = 1 2 a(|c| 2 c + |d| 2 d) + b|e| 2 (c + d) .
Let us denote by (U n i,j , V n i,j ) the value of (U n , V n ) at the point (x i , y j ) for the time t n . By using second order centered finite differences, the Laplacian terms are approximated by :

-(∆U n )(x i , y j ) ≈ 1 δx 2 2U n i,j -U n i+1,j -U n i-1,j + 1 δy 2 2U n i,j -U n i,j+1 -U n i,j-1 (6) 
These discrete Laplacian terms [START_REF] Bender | Real spectra in non-Hermitian Hamiltonians having PT -symmetry[END_REF] with the discrete values allow to obtain the full nonlinear system from (4) and [START_REF] Bender | Observation of PT phase transition in a simple mechanical system[END_REF]. Two solvers are considered to solve this coupled non linear system: a fixed point iteration that is combined with a splitting between the two equations [START_REF] Destyl | Modélisation et analyse de systèmes d'équations de Schrödinger non linéaire[END_REF], and the Newton method (see hereafter).

In fact, at each time step, one uses an inexact Newton method, which consists of seeking the solution of the nonlinear system of equations:

F (W ) = F 1 (W ) F 2 (W ) = 0 0 , with W = U n+1 , V n+1 .
By assuming that F is C 2NxNy -differentiable and the Jacobian DF (W ) is regular, a sequence (W k ) k≥0 is defined recursively by,

W 0 = (U n , V n ) W k+1 is the solution of DF (W k )(W k+1 -W k ) = -F (W k ), k ≥ 0.
The inner linear systems are solved by GMRES algorithm for complex-valued functions, and the sequence (W k ) k≥0 converges to (U n+1 , V n+1 ), the root of the nonlinear complex function.

Program implementation and validation

In this section, we wish to testify to all the attention that has been paid to build our solver.

First of all, specific care must be made to chose the programming language that is suitable to our algorithm implementation. To combine the flexibility of a language and the performance of the application is most of time impossible in a simply way. So, one proposes a multilanguage implementation using an interpreted language (Python) and a compiled one (Fortran).

Therefore, the characteristics of these two languages are mixed, in order to create a robust and efficient application via C language interfaces. Both languages have a standard way to write C-interfaces, ctype in Python (a part of Numpy library) and C binding in Fortran.

In order to compare the two iterative methods, as no analytical solution exists, one uses a referent solution computed with very fine mesh δx = δy = 2 × 10 -3 and the step time

δt = 2 × 10 -4
. This solution will be denoted by (U n ref , V n ref ) for which computations have been made with parameters equal to κ = 1, γ = 0.5 and g 1 = g 2 = g = 1.

Spatial error analysis

In order to check the accuracy in space of the scheme, solutions have been computed with various spatial steps, for the same time step δt = 2.10 -4 (see Tab. 1).

Let us denote these solutions by U n s for δx s = δy s = 4.10 -3 (for s = 1), 8.10 -3 (for s = 2), 1.6 10 -2 , 3.2 10 -2 . Comparing each solution with the referent solution, the numerical error is calculated by

err(U s ) 2 = N n=1 ||U n ref -U n s || 2 2 for each s = 1, . . . , 4.
Then, computing the ratios for each value of s,

log(err(U s )) -log(err(U s-1 )) log(δx s ) -log(δx s-1 )
, and log(err(V s )) -log(err(V s-1 )) log(δx s ) -log(δx s-1 ) , we get the spatial scheme order. The numerical results that have been given in Tab. 1 concern the fixed point iteration method. Similar results have been obtained for Newton method, which was not surprising. Indeed in our scheme, the only term involving the spatial mesh is the discrete Laplace operator which does not depend of the temporal approximation scheme. Without surprise, one obtains that our scheme seems to being at least second order accurate whatever the temporal approximation is chosen.

Figure 1: Convergence for the scheme using the fixed point iteration method

Error analysis in time

Following the convergence analysis in space, the temporal approximation is examined. In each direction, the spatial step has been fixed to δx = δy = 2 × 10 -3 . Then, the approximate solutions denoted here by U n s with various time steps : δt s = 4 × 10 -4 , 8 × 10 -4 , 1.6 × 10 -3 , 3.2 × 10 -3 (for each s = 0, . . . , 4). Each solution U s is compared with the referent solution, allowing to compute a global truncation error for each time step, by

err(U n s ) 2 = N n=1 ||U n ref -U n s || 2 2 , err(V n s ) 2 = N n=1 ||V n ref -V n s || 2 2 .
s Time step Error Order 0 4.0 × 10 -4 1.30 × 10 -6 1 8.0 × 10 -4 4.30 × 10 -6

1.62 2 1.6 × 10 -3 1.06 × 10 2.17 1.97 2 1.6 × 10 -3 2.28 × 10 -7

1.99 3 3.2 × 10 -3 1.01 × 10 -6 2.140 (b) Results for the 2 nd equation Table 3: 2 (]0, T [; 2 (I))-error behavior of the scheme with the Newton method

The results confirm that the scheme with the fixed point iteration method is of order 1.5 (one obtains 1.6, see Tab. 2 and Fig. 2a), while the convergence of the scheme with Newton's method is quadratic (see Tab. 3 and Fig. 2b). Therefore, as it was expected, the rate of convergence of the Newton method is higher than those of the fixed-point iteration one. Moreover, from a computational point of view, the scheme using the Newton method is more efficient. One can also notice a curious result from Tab. 2 (last line for δt = 3.2 10 -3 ), and also a change of slope in the error decrease (see Fig. 2a). Indeed, the order of more than 4 is not significant caused by a too coarse time step. To conclude this section, the two algorithms that have been studied have the expected behavior and give suitable results.

Numerical experiments

This section is the main part of this work. Here, the results related to the qualitative behavior of the solution of the system (1) are given. First, one gathers the results concerning the Manakov case, then the generalized Manakov case. 

The Manakov case

Numerical results are given in the Manakov case, i.e. when the coefficients of all nonlinear terms are equal. For the computations, the choice of nonlinear parameters value is g 1 = g 2 = g = 1, to keep more flexibility on the other parameters. Our results confirm the theoretical results given in [START_REF] Pelinovsky | Global existence of solutions to coupled PT-symmetric nonlinear Schrodiger equations[END_REF]. In case of γ < κ and an initial condition that verifies the condition Q max < 1 2 ||R|| 2 2 , there exists a global solution for the system (1) (with Q max being the upper bound of the density, R being a ground state solution of the stationnary equation ∆R-R+R 3 = 0, ||R|| 2 2 ≈ (1.86255) π, see [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]). According to our numerical results, four quantities stay bounded in time: the L 2 norm of the solution, the L 2 norm of its gradient and the L ∞ norm of the solution; also, the density Q(t) is oscillating, but stays bounded. Moreover the semi-norm D(t) does not blow up in finite time, that would mean that the solution of the system exists overall in time (see Fig. 3). Under the condition γ < κ but using an initial condition such that Q max ≥ ||R|| 2 2 , one knows that the solution does not exist after a finite time [START_REF] Pelinovsky | Global existence of solutions to coupled PT-symmetric nonlinear Schrodiger equations[END_REF]. This result is illustrated by numerical computations which confirm that the L 2 norm of the gradient of the solution, the L ∞ norm of the solution and the quantity D(t) grow infinitely over time; the solution blows up in finite time (see Fig. 5). The first Stokes variable S 1 is analytically conserved in time when all nonlinear coefficients are equals (the Manakov case). One can notice that the computations confirm this conservative behavior property over time (S 1 has a quasi flat magenta curve see Fig. 3).

However, as soon as the initial condition is such that

1 2 ||R|| 2 2 ≤ Q max < ||R|| 2 2
, no theoretical result exists, up to our knowledge. But, the numerical results reported at the fourth and fifth line of the table 4 seem to attest that the solution exists all time long (see also Fig. 8).

Figure 5: Thus, it is known that in the Manakov case, for γ < κ and for initial conditions such as 

||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (
Q max < 1 2 ||R|| 2 2 ,

The non Manakov case

When the coefficients of the nonlinear terms of the system (1) are not equal, the study of the blow up phenomenon in finite time has been studied (theoretically and numerically) in supercritical dimension by Dias (see [START_REF] Dias | Supercritical blow up in coupled parity-time-symmetric nonlinear Schrödinger equations[END_REF]). Before this work, the qualitative study of the solution of the system (1) in the critical case was still an open problem. Subsequently, the model was address partially in the Manakov case, in the critical dimension by Pelinovsky (see [START_REF] Pelinovsky | Global existence of solutions to coupled PT-symmetric nonlinear Schrodiger equations[END_REF]) and this result is illustrated by numerical results in this paper. For instance, there is not really any global result on this model in critical dimension as revealed in [START_REF] Konotop | Nonlinear waves in PT-symmetric systems[END_REF]. Here, numerical approximations are presented to show the global existence and blow up in finite time of the solution of the system in the critical dimension. For this group of tests, the model parameters are chosen as follows: κ = 1, γ = 0.5 and g 1 = g 2 = 1 = g = 0.5. But also to maintain the stability of the PT-symmetry, the option γ < κ has been made [START_REF] Konotop | Nonlinear waves in PT-symmetric systems[END_REF]. Firstly, an initial condition was chosen and defined by ( 2) with (A, B) = (0.1, 0.2). The results of these experiments are presented in Fig. 10 and12. The L 2 -norm and L ∞ -norm of the components of the solution, as well as the L 2 -norm of its gradient are all bounded (see Fig. 10). Moreover, the density Q(t) and the L 2 -norm of the gradient of the solution, D(t) remain bounded during the evolution over time of the solution. Furthermore, Fig. 10 brings to light that even if the coefficients of the nonlinear terms of (1) are not all equal, an initial condition can be suffisiently small for which the solution exists overall.

Moreover, keeping the same physical parameters for the model, a choice of an initial condition is made, defined by ( 2) with (A, B) = (1, 3). Despite the limitations due to the boundary condition, the result of these experiments confirms that the system solution explodes in finite time (see Fig. 11 and13). Indeed, the L ∞ -norm of the components of the solution and the L 2 -norm of the gradient of the components of the solution increase infinitely with a vertical 1 tangent at a certain time (see Fig. 11). It is important to remind that all the previous computations were carried out on a delimited domain and with a Dirichlet boundary condition. But as one can see, all conserved quantities remain so, even when the boundary conditions influence the computed solution, which is, a priori, one of the limits of our approach. This is remarkable, so it is a conjecture, which will certainly be a subject for our future work. parameters of linear and nonlinear coupling, on the blow up time.

One of the unresolved problems in this paper concerns a theoretical estimate of the blow up time. For the coupled system with (1), defining absorbing boundary conditions or perfectly matched layers (PML) will be a subject for our future work. We will also need to improve our code, including the processing of the boundary conditions used with the numerical approximation domain, in order to be able to use it over longer periods of time. In addition, it will also be interesting to pass the code to dimension 3 to illustrate the theoretical results. Then, from 3D case, it would make it possible to speculate on results for the 2D case where there are still open problems.
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Figure 2 :

 2 Figure 2: Convergence in time of the scheme

Figure 3 :

 3 Figure 3: ||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial condition (2) such that (A, B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.

Figure 4 :

 4 Figure 4: Modulus squared of the computed density (1st component in red, 2nd one in blue) at several times, in the Manakov case, for an initial condition (2) such that (A, B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.

  Figure 5: ||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (green) et D(t) (celestial blue) for an initial condition (2) such that (A, B) = (5, 1), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.

Figure 6 :

 6 Figure 6: Behavior of S 1 versus time for initial condition (2) such that (A, B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.

Figure 7 :

 7 Figure 7: Surfaces of the position density |u(x, t)| 2 (red) and |v(x, t)| 2 (blue) at time t = 0.0, t = 0.032 (upper row) and for t = 0.05, t = 0.062 (lower row) in the Manakov case, for the initial condition (2) such that (A, B) = (5, 1), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.

Figure 8 :

 8 Figure 8: ||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (purple) and D(t) celestial blue) for initial condition (2) such that (A, B) = (1.5, 1.5), (κ, γ) = (3, 0.5) and g 1 = g 2 = g = 1.

Figure 9 :

 9 Figure 9: ||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial condition (2) such that (A, B) = (1.5, 1.5), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.
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Figure 10 :

 10 Figure 10: ||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial condition (2) with (A, B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g 1 = g 2 = 1 = g = 0.5.

Figure 11 :

 11 Figure 11: ||u|| L 2 (green), ||v|| L 2 (blue), ||∇u|| 2 L 2 (yellow), ||∇v|| 2 L 2 (brown), ||u|| 2 L ∞ (black) and ||v|| 2 L ∞ (red), S 1 (t) (magenta), Q(t) (purple) et D(t) (celestial blue) for initial conditions (2) with (A, B) = (1, 3), (κ, γ) = (1, 0.5) and g 1 = g 2 = 1 = g = 0.5.

  (a) the solution at time t = 0.0, t = 0.0472 (b) the solution at time t = 5.506, t = 9.998

Figure 12 :

 12 Figure 12: Surfaces of the position density |u(x, t)| 2 (red) and |v(x, t)| 2 (blue) at time t = 0.0, t = 5.014 (upper row) and for t = 9.718, t = 10.0 (lower row) in the general model case, for the inital condition (2) with (A, B) = (0.1, 0.2), (κ, γ) = (1, 0.5) and g 1 = g 2 = g = 1.

Table 1 :

 1 Convergence for the fixed point iteration method

Table 2 :

 2 

	s Time step	Error	Order
	0 4.0 × 10 -4 9.88 × 10 -9	
	1 8.0 × 10 -4 4.14 × 10 -8	2.06
	2 1.6 × 10 -3 1.73 × 10 -7	2.06
	3 3.2 × 10 -3 7.79 × 10 -7	

2 

(]0, T [; 2 (I))-error behavior of the scheme using the fixed point iteration method

Table 4 :

 4 the solution of the Cauchy problem exists globally, while for initial conditions for which Q max ≥ ||R||2 2 , the solution can blow up in finite time. Nevertheless, the value ofQ max doesnot depend only on initial conditions but it also relies on the values of the linear parameters γ and κ. The table 4 provides informations in this case. The blow up time noted t * depends on the initial condition and the parameters γ and κ in the Manakov case. The first and the second lines of this table indicate that for sufficiently small initial conditions and some values of γ and κ, the solution exists and does not blow up in finite time. However, for values γ and κ sufficiently large the solution can blow up in finite time (see third line). From the sixth to the ninth row of the table 4, configurations for which the value of Q max exceeds ||R|| 2 2 , are gathered: then the solution blows up in finite time. Finally, in Manakov case, a configuration of a global existence of the solution is reported at the tenth line of table 4 which corresponds to Fig. 3. Whereas another configuration with initial conditions with higher value of Q max is illustrated at the last line, and corresponds to figure 5. It is valuable to be able to know the behavior of the solution when 1 2 ||R|| 2 2 < Q max < ||R|| 2 2 . So, in this case, our numerical resultsshow that the solution of the system seems to exist overall, according to the fourth line in the table 4 and the figures 8, 9. Blow up time according to initial conditions and linear parameters γ and κ in the Manakov case PT-symmetric; t * is the computed value of the blow up time and (-) means there is no blow up.

	No Q(0)	κ	γ	ω	Q max	t *
	1	0.410	3	1	2.828	0.602	-
	2	0.410 100	80	536	2.018	-
	3	0.410 200 199.75 9.997 326.695 0.077
	4	7.070	3	0.50	2.958	7.47	-
	5	7.070	1	0.50	0.866	11.7	-
	6	7.070	1	0.55	0.835 13.199	5.513
	7	7.070	1	0.60	0.800 15.021	5.566
	8	7.070	5	3.50	5.571	20.65	0.368
	9	7.070	7	6	3.605	46	0.2252
	10	0.075	1	0.5	0.866	0.133	-
	11 40.841	1	0.5	0.866 80.127	0.062
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Concluding remarks and perpectives

In this paper, we have numerically studied the behavior of the solution of the two coupled nonlinear Schrödinger equations, which one includes gains and the second includes losses. The numerical resolution of the system (1) has been made in a square domain by the second order centered finite different method and the scheme of Crank-Nicolson. Two iterative strategies are proposed the treat the non-linearity of the problem: the fixed point and the Newton method.

An error analysis attest the numerical scheme is second order in space and it is 2nd order in time for the Newton method, and for the fixed point the scheme is 1.5 order in time. Numerical tests validate the existing theoretical results namely that for small initial conditions the solution exists globally over time. But also for large initial values conditions, the solution can blow up in finite time. Moreover, some experiments are made in order to study the influence of the