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ABSTRACT. Bateman and Duquette have initiated the study of Salem elements in positive

characteristic. This work extends their results to 2-Salem elements whose minimal polyno-

mials are of the type Y n +λn−1Y n−1 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ] where n ≥ 2,λ0 6= 0 and

degλn−1 < degλn−2 = max
i6=n−2

deg(λi). This work provides an analogue of their results for

2-Salem elements whose minimal polynomials meet certain requirements.
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1. INTRODUCTION

A Salem number is a real algebraic integer θ > 1 of even degree at least 4, having

θ−1 as a conjugate over Q, having all its conjugates θi excluding θ and θ−1, of modulus

exactly 1 [8]. The monic minimal polynomial, over Q, Λ(z) of a Salem number θ is

reciprocal: it satisfies the equation zdegΛ(z)Λ(1
z
) = Λ(z). To put is simply, this means that

its coefficients form a palindromic sequence: they read the same backwards as forwards.

Therefore θ +θ−1 is a real algebraic integer θ > 2 such that its conjugates 6= θ +θ−1 lie

in the real interval [−2,2]. The Mahler measure M(θ) :=
degθ

∏
i=1

max{1, |θi|} of θ satisfies

M(θ) = θ . A Salem number is the Mahler measure of itself.

The set of Salem numbers is traditionally denoted by T [2]. The smallest known element

of T is Lehmer’s number β0 = 1.1762 . . . of degree 10 , as dominant root (“i.e. if β is

another root, then |β |< β0”) of Lehmer’s polynomial:

(1.0.1) P(X) = X10 +X9 −X7 −X6 −X5−X4 −X3 +X +1.

The Surveys [8] [10] take stock of various problems on Salem numbers and more generally

Mahler measures in all their forms.

Kerada [5] defined and studied, as a generalization of a Salem number, j-Salems, j ≥ 2

(also called j-Salem numbers in the literature, e.g. in [9]). In particular, a 2-Salem is a

pair (β1,β2) of conjugate algebraic integers of modulus > 1 whose remaining conjugates

have modulus at most 1, with at least one having modulus exactly 1. The set of 2-Salems

is denoted by T2. It is partitioned as T2 = T ′
2 ∪ T ′′

2 where T ′
2 is the set of 2-Salems with

β1,β2 ∈ R and T ′′
2 the set of 2-Salems for which β1 and β2 are complex non-real (and so

complex conjugates of one another, β1 = β̄2).

In 1962 Bateman and Duquette [1] introduced and characterized the Salem and Pisot

(PV) elements in the field of Laurent series. We first start recalling their theorem prior to

stating an analogue theorem for 2-Salem elements, extending Kerada’s study.

Theorem 1.1 (Bateman - Duquette). An element ω in Fq((X
−1)) is a Salem (resp. Pisot)

element if and only if its minimal polynomial can be written

Λ(Y ) =Y s +λs−1Y s−1 + . . .+λ0, λi ∈ Fq[X ] for i = 0, . . . ,s−1,

with |λs−1|= |ω|> 1 and |λs−1|= max
0≤i≤s−2

|λi| (resp. |λs−1|> max
0≤i≤s−2

|λi|).

In this work, instead of the classical setting of the real numbers, the analogues of Ker-

ada’s 2-Salems over the ring of formal Laurent series over finite fields are investigated. In

the context of the original study of Salem elements in positive characteristic by Bateman

and Duquette [1], 2-Salem elements in positive characteristic will also be called 2-Salem

series. The objectives of the present note consist in extending some of the results of Bate-

man and Duquette to 2-Salem series over Fq[X ], q 6= 2r, and to study the analogues of the

above-mentioned properties of 2-Salem series. More precisely, let Fq denote the finite field

having q elements, q ≥ 3, and let p be the characteristic of Fq; q is a power of p. Let X be

an indeterminate over Fq and denote k := Fq(X). Let ∞ be the unique place of k which is

a pole of X , and denote k∞ := Fq((
1
X
)). Let C∞ be a completion of an algebraic closure of

k∞. Then C∞ is algebraically closed and complete, and we denote by υ∞ the valuation on
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C∞ normalized by υ∞(X) = −1. We fix an embedding of an algebraic closure of k in C∞

so that all the finite extensions of k mentioned in this work will be contained in C∞. An

explicit description of υ∞ is done in section 2. For simplicity’s sake the algebraic closure

of k∞ will be often denoted by Fq((X
−1)).

2-Salem series over Fq[X ] may belong to k∞ or to finite extensions of k∞. By analogy

with Kerada’s notations we denote by T ∗
2 the set of 2-Salem series. It can be partitioned as

T ∗
2 = T ′∗

2 ∪T ′′∗
2 where T ′∗

2 is by definition those 2-Salem series (ω1,ω2) over Fq[X ] which

(both) belong to Fq((X
−1)), and T ′′∗

2 , by definition, those 2-Salem series, not in Fq((X
−1)),

such that (ωn
1 ,ω

n
2 ) ∈ T ′∗

2 for some integer n ≥ 2.

Theorem 1.2. Suppose q 6= 2r for any integer r ≥ 1, and n ≥ 3. Let Λ be the polynomial

defined by

(1.0.2) Λ(Y ) =Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ],

assumed irreducible and such that λ0 6= 0. Let us assume

degλn−1 < degλn−2 = max
i 6=n−2

deg(λi).

Denote by ω1 and ω2 the dominant roots of Λ. Then

(i) for n ≥ 4: if degλn−2 > 2degλn−1, then (ω1,ω2) ∈ T ′∗
2 if and only if degλn−2 is

even, the dominant coefficient α2s of λn−2 = α2sX
2s + . . .+α0 is equal to −a2 for

some a ∈ F∗
q, and degλn−3 < degλn−2,

(ii) for n = 3: if degλ1 > 2degλ2, then (ω1,ω2) ∈ T ′∗
2 if and only if degλ1 is even, the

dominant coefficient α2s of λ1 = α2sX
2s+ . . .+α0 is equal to −a2 for some a ∈ F∗

q,

(iii) for n ≥ 3: if degλn−2 < 2degλn−1, then (ω1,ω2) ∈ T ′∗
2 .

The paper is organized as follows. In section 2 the fields of formal power series and the

valuations used in this study are recalled. The main Theorem 1.1 of Bateman and Duquette,

characterizing Salem elements, is stated above with these notations. Section 3 is devoted

to the arithmetical and topological properties of 2-Salem series in Fq((X−1)). In section 4

Weiss’s method of the upper Newton polygon is explicited to characterize 2-Salem series

in Fq((X−1)). In section 5 attention is focused on those 2-Salem series which lie in the

field Fq((X
−1)), by establishing criteria discriminating whether they belong to Fq((X

−1))

or to Fq((X−1))\Fq((X
−1)). The proof of Theorem 1.2 is given in section 6. In Theorem

1.2 the polynomial given by (1.0.2) is assumed irreducible. More generally, the question of

irreducibility of a polynomial Λ of the general form (1.0.2) is discussed in section 7 under

the hypothesis that Λ has no root in Fq.

2. SALEM SERIES IN Fq((X
−1))

For p a prime and q a power of p, let Fq((X
−1)) be the set of Laurent series over Fq

which is defined as follows

Fq((X
−1)) = {ω = ∑

i≥n0

ωiX
−i : n0 ∈ Z and ωi ∈ Fq}.

We know that every algebraic element over Fq[X ] can be written explicitly as a formal series

because Fq[X ] ⊆ Fq((X
−1)). However, as Fq((X

−1)) is not algebraically closed, such an
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element is not necessarily expressed as a power series. We refer to Kedlaya [4] for a full

characterization of the algebraic closure of Fq[X ]. We denote by Fq((X−1)) an algebraic

closure of Fq((X
−1)). Indifferently we will speak of 2-Salem elements or 2-Salem series

in the present context.

Let ω be an element of Fq((X
−1)), its polynomial part is denoted by [ω] ∈ Fq[X ] and

{ω} its fractional part. We can remark that ω = [ω]+{ω}. If ω 6= 0, then the polynomial

degree degω of ω is γ(ω) = sup{−i : ωi 6= 0}, the degree of the highest-degree nonzero

monomial in ω , with the convention γ(0) = −∞. The generic form of ω , with n0 ∈ Z and

ωi ∈ Fq, n0 =−γ(ω), is

ω = ∑
i≥n0

ωiX
−i.

Note that if [ω] 6= 0 then γ(ω) is the degree of the polynomial [ω]. Thus, we define the

absolute value

|ω|=
{

qγ(ω) for ω 6= 0;

0 for ω = 0.

Since |.| is not archimedean, |.| fulfills the strict triangle inequality

|ω +ν| ≤ max (|ω|, |ν|) and

|ω +ν| = max (|ω|, |ν|) i f |ω| 6= |ν|.

Definition 2.1. A Salem element ω in Fq((X
−1)) is an algebraic integer over Fq[X ] such

that |ω| > 1, whose remaining conjugates in Fq((X−1)) have an absolute value no greater

than 1, and at least one has absolute value exactly 1. A Pisot element ω in Fq((X
−1)) is an

algebraic integer over Fq[X ] such that |ω| > 1, whose remaining conjugates in Fq((X−1))
have an absolute value strictly less than 1. The set of Salem elements, resp. Pisot elements,

is denoted T ∗, resp. S∗.

In the following we will focus on 2-Salem series in k∞: a 2-Salem element is a pair of

series (ω1,ω2) in Fq((X
−1))×Fq((X

−1)), which has an absolute value greater than 1, in

the sense that it is such that ω1 is an algebraic integer over Fq[X ], with the property that

all of its conjugates ωi, i 6= 1,2, lie on or within the unit circle, and at least one conjugate

lies on the unit circle. This implies that all 2-Salem elements are necessarily separable over

Fq(X). Note that the pair (ω1,ω2) is not ordered.

Let us remark that it is easy to construct a 2-Salem element over Fq with q = 2 and

then to show that 2-Salem elements do exist without the assumption q 6= 2r,r ≥ 1, taken in

Theorem 1.2. The exclusion case q 6= 2r of Theorem 1.2 will arise in a general setting from

Lemma 5.2 and its consequences.

3. MULTIPLICATIVE PROPERTIES OF 2-SALEM SERIES

Proposition 3.1. Let (ω1,ω2) ∈ T ′∗
2 , then (ωn

1 ,ω
n
2 ) ∈ T ′∗

2 , for all n ≥ 1.

Proof. Let M ∈ Fq[X ][Y ] the minimal polynomial of the algebraic integer ω = ω1 of degree

d and ω2, . . . ,ωd the conjugates of ω . We consider that the conjugate ω2 of ω1 is the only

conjugate which lies outside the unit disk. Evidently, since ω1 is an algebraic integer over

Fq[X ], ωn
1 , for n ≥ 1, is also an algebraic integer over Fq[X ].
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Let n ≥ 1 and Λ ∈ Fq[X ][Y ] be the minimal polynomial of ωn
1 . We consider the embed-

ding σi of Fq(X)(ω1) into Fq((X−1)), which fixes Fq(X) and maps ω1 to ωi. Obviously,

for i = 1,2, . . . ,d, ωn
i is a root of the equation Λ(Y ) = 0, and ωn

1 ,ω
n
2 , . . . ,ω

n
d are all the roots

of Λ, since

Λ(ωn
i ) = Λ((σi(ω1))

n)) = Λ(σi(ω
n
1 )) = σi(Λ(ω

n
1 )) = σi(0) = 0.

We deduce deg(Λ)≤ deg(M) since

[Fq(X)(ωn
1) : Fq(X)]≤ [Fq(X)(ω1) : Fq(X)].

If 3 ≤ i ≤ d, then |ωn
i | = |ωi|n ≤ 1 and there exists at least one j, 3 ≤ j ≤ n, such that

|ωn
j |= |ω j|n = 1. Therefore (ωn

1 ,ω
n
2 ) ∈ T ′∗

2 , for all n ≥ 1. �

Note that the converse is false in general. For instance, take q = 3,d = 4 and n = 2.

Then, the polynomial

Y 4 −2X2Y 2 +2X2

over F3 is irreducible and its two roots of absolute value > 1 defined by

(ω1,ω2) = ((
√

2(X − 1

X3
+ . . .),−(

√
2(X − 1

X3
+ . . .)),

not lie in F3((X
−1)). The other conjugates defined by

(ω3,ω4) = (1− 1

X2
+ . . . ,−(1+

1

X2
+ . . .)).

We can see that (ω2
1 ,ω

2
2 ) lie in F3((X

−1)).

For a 2-Salem series θ , let us define its trace by Tr(θ) :=
degθ

∑
i=1

θi. The 2-Salem series

have the following basic property, as it can easily be seen by considering its trace. Recall

that in the real case the trace of a Salem number is an integer (∈ Z) which is not bounded

and can take arbitrary negative values [6].

Proposition 3.2. Let (ω1,ω2) ∈ T ′∗
2 , then the sequence ({ωn

1 +ωn
2})n≥1 is bounded.

Proof. Let (ω1,ω2) be a 2-Salem series and ω3, . . . ,ωd the other conjugates of ω1 and

ω2. From Proposition 3.1, for all n ≥ 1, ωn
1 and ωn

2 are the roots of the same irreducible

polynomial, say Λn in Fq[X ], of degree d. We have

Tr(Λn) =
d

∑
i=1

ωn
i ∈ Fq[X ].

Thus {Tr(Λn)}= 0, which can be rewritten

0 = {Tr(Λn) =
d

∑
i=1

ωn
i }= {ωn

1 +ωn
2 +

d

∑
i=3

ωn
i }.

But |ωi| ≤ 1, for 3≤ i≤ d, and there exists at least one j, 3≤ j ≤ n such that |ωn
j |= |ω j|n =

1. Therefore, taking the absolute values, we deduce |{ωn
1 +ωn

2}| = |{ωn
3}+{ωn

4}+ . . .+
{ωn

d}| and

lim
n7→+∞

∣

∣

∣
{

d

∑
i=3

ωn
i }

∣

∣

∣
≤ max

i=3,...,d

{
∣

∣{ωn
i }

∣

∣

}

≤C ∈ Fq,
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and then {ωn
1 +ωn

2} is bounded. �

Remark 3.3. If the 2-Salem series (ω1,ω2) ∈ T ′∗
2 of Proposition 3.2 admits only one root

ω3 having absolute value equal to 1 and for which the other conjugates have an absolute

value strictly less than 1, then lim
n→+∞

{ωn
1 +ωn

2}= 0.

Proof. It is a consequence of the definition of the upper Newton polygon of the polyno-

mial Λn, recalled in Proposition 4.1 below. From Proposition 4.1 we can see that ω3 ∈
Fq((X

−1)). Thus

(3.0.1) lim
n7→+∞

{ωn
3}= 0.

From the proof of Proposition 3.2, we have ωn
1 +ωn

2 = Tr(ωn
1 )−ωn

3 −ωn
4 − . . .−ωn

d , n ≥ 1,

what implies

|{ωn
1 +ωn

2}| = |{ωn
3}+{ωn

4}+ . . .+{ωn
d}|

≤ |{ωn
3}+ωn

4 + . . .+ωn
d |

≤ max
i=4,...,d

{|{ωn
3}|, |ωn

i |}.

Since |ωi|< 1 for i = 4, . . . ,d and by (3.0.1), the assertion of the Remark follows. �

Proposition 3.4. Let (ω1,ω2) ∈ T ′∗
2 be a 2-Salem series. Assume that Λ ∈ Fq[X ][Y ] is its

minimal polynomial, that the degree of Λ is equal to 4 and ω1,ω2,ω3,ω4 are its four roots,

the root ω3 satisfying degω3 = 0. If Λ(0) ∈ F∗
q, then ω1ω2ω3 ∈ T ∗.

Proof. Let (ω1,ω2) ∈ T ′∗
2 and

Λ(Y ) = Y 4 +λ3Y 3 +λ2Y 2 +λ1Y +λ0, λ0 ∈ F∗
q,

the minimal polynomial of ω1 and ω2. We have λ0 = ω1ω2ω3ω4. Consider the reciprocal

polynomial of Λ

Q(Y ) :=Y 4Λ(
1

Y
).

Clearly Q is an irreducible polynomial over Fq[X ], and admits the four roots

1

ω1
,

1

ω2
,

1

ω3
= λ−1

0 ω1ω2ω4 and
1

ω4
= λ−1

0 ω1ω2ω3.

We have

| 1

ω3
|= |ω1ω2ω4|= 1, | 1

ω4
|= |ω1ω2ω3|> 1

and | 1

ωi
|< 1, for i = 1,2. Therefore ω1ω2ω3 =

λ0

ω4
is a Salem series. �

4. A FIRST CHARACTERIZATION OF 2-SALEM SERIES

The theory of the Newton polygon of a bivariate polynomial is used in the present study.

The following Proposition of Weiss in [11] is the main tool for our purposes. Let us recall

it. Let

(4.0.1) Λ(X ,Y ) = λnY n +λn−1Y n−1 + . . .+λ1Y +λ0 ∈ Fq[X ,Y ] = Fq[X ][Y ]
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be a nonzero polynomial. To each monomial λiY
i 6= 0, we assign the point (i,deg(λi))∈Z2.

For λi = 0, we ignore the corresponding point (i,−∞). If we consider the upper convex hull

of the set of points

{(0,deg(λ0)), . . . ,(n,deg(λn))},
we obtain the upper Newton polygon of Λ(X ,Y ) with respect to Y . The polygon is a

sequence of line segments E1,E2, . . .Et , with monotonous decreasing slopes.

The slope of a segment of the Newton polygon of Λ(X ,Y ) joins, for instance, the point

(r,deg(Ar)) to (r+ s,deg(Ar+s)) for some 0 ≤ r < r+ s ≤ m. The corresponding slope is

k =
deg(Ar+s)−deg(Ar)

s
.

Denote by KΛ the set of the slopes. For any slope k ∈ KΛ, denote by s the length of the facet

of slope k.

Proposition 4.1 (Weiss). Let

Λ(X ,Y ) =Y n +λn−1Y n−1 + . . .+λ1Y +λ0 ∈ Fq[X ,Y ]

and KΛ the set of the slopes of its upper Newton polygon. Then, for every k ∈ KΛ,

i) Λ(X ,Y ), as a polynomial in Y , has s roots α1, . . . ,αs with the same degree −k and

|α1|= . . .= |αs|= q−k,

ii) the polynomial

Λk(X ,Y) =
s

∏
i=1

(Y −αi) ∈ Fq((X
−1))[Y ]

divides Λ(X ,Y ), with

Λ(X ,Y ) = ∏
k∈KΛ

Λk(X ,Y ).

Corollary 4.2 is an application of Proposition 4.1 obtained by Ben Nasr and Kthiri in [7]

in the context of 2-Pisot elements. In the case of 2-Salem elements, Proposition 4.1 has

several direct consequences: the following Corollary 4.3 and Theorem 4.4.

Corollary 4.2. Let

Λ(X ,Y ) = λnY n +λn−1Y n−1 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ].(4.0.2)

and ω a root of Λ. If |λn|= max
0≤k≤n

|λk|, then |ω| ≤ 1.

Corollary 4.3. Let n ≥ 3. Let

(4.0.3) Λ(X ,Y ) = Y n +λn−1Y n−1 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ]

with λ0 6= 0. Let us assume

degλn−1 < max
0≤k<n−2

degλk = degλn−2 < 2degλn−1.

Then, Λ has only two roots ω1,ω2 ∈ Fq((X
−1)) satisfying |ω1| > 1 and |ω2| > 1 and at

least one conjugate which lies on the unit circle.
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Proof. First let us notice that the stated condition implies that degλn−1 > 0. Moreover the

upper Newton polygon of Λ contains the line with a slope k1 joining (n−1,degλn−1) and

(n,0), the line with a slope k2 joining (n− 2,degλn−2) and (n− 1,degλn−1) and the line

with a slope k3 = 0 joining (n− 2,degλn−2) and (n− k,degλn−k = degλn−2) for some

0 ≤ k < n− 2. We have: degλn−2 − degλn−1 < degλn−1. By Proposition 4.1 (i), Λ has

exactly two dominant roots ω1, ω2
{

|ω1|= qdegλn−1 = q−k1 > 1,

|ω2|= qdegλn−2−degλn−1 = q−k2 > 1.

There exists 0 ≤ k < n−2 such that degλk = degλn−2; hence Λ has one root, say ω3, such

that

|ω3|= q
−degλn−2+degλk

n−2−k = q−k3 = 1.

By Proposition 4.1 (ii), Λ admits the two factors Λk1
(X ,Y ) = (Y −ω1) ∈ Fq((X

−1))[Y ]

and Λk2
(X ,Y) = (Y −ω2) ∈ Fq((X

−1))[Y ]. Hence ω1 and ω2 ∈ Fq((X
−1)). �

Theorem 4.4. Let Λ be the polynomial of degree n ≥ 3 defined by

Λ(Y ) = Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ]

with λ0 6= 0. Then, Λ has exactly 2 roots in Fq((X−1)) which have an absolute value strictly

greater than 1 and the remaining roots in Fq((X−1)) which have an absolute value less or

equal to 1, with at least one conjugate lying on the unit circle, if and only if the following

conditions are satisfied: |λn−1|< |λn−2|= max
0≤i<n−2

|λi|.

Proof. Let ω1,ω2, . . . ,ωn be the roots of Λ. The conditions are necessary. Suppose |ω1| ≥
|ω2|> 1≥ |ω3| ≥ . . .≥ |ωn| and that there exists at least one j, 3≤ j ≤ n, such that |ω j|= 1.

We have |λn−2|> |λn−1|. For k ∈ {1, . . . ,n}, k 6= 2,

|λn−k|=
∣

∣

∣ ∑
1≤i1<i2<...<ik≤n

ωi1ωi2 . . .ωik

∣

∣

∣
≤ |ω1ω2 . . .ωk| ≤ |ω1ω2|= |λn−2|

and

|λn− j|=
∣

∣

∣ ∑
1≤i1<i2<...<i j≤n

ωi1ωi2 . . .ωi j

∣

∣

∣
= |ω1ω2 . . .ω j|= |ω1ω2|= |λn−2|.

Then

|λn−2|= max
i 6=n−2

|λi|.

The conditions are sufficient. The converse easily follows from Proposition 4.1. �

Example 4.5.

Let

Λ(Y ) =Y 3 +(X +1)Y 2 +(X4+X3)Y +X4 +X3 +X2+X +1 ∈ F2[X ][Y ].

By Theorem 4.4, Λ(Y ) has two roots ω1 and ω2 having absolute value strictly greater than

1 and one root ω3 which has an absolute value exactly equal to 1. Using the facts that

• [ω1 +ω2 +ω3] = X +1,
• [ω1ω2 +ω1ω3 +ω2ω3] = X4 +X3,
• [ω1ω2ω3] = X4+X3 +X2 +X +1,
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then ω1, ω2 and ω3 are defined by:










ω1 = X2 +1+
1

Z1
such that |Z1|> 1,

ω2 = X2 +X +
1

Z2
such that |Z2|> 1,

and ω3 = 1+
1

Z3
such that |Z3|> 1. For j = 1, resp. j = 2, the fact that Λ(ω j) = 0 implies

that Z1, resp. Z2, is a root of the polynomial H1, resp. H2, defined by

(4.0.4) H1 = Z3 +(X3 +1)Z2 +(X2 +X)Z+1,

resp.

(4.0.5) H2 = (X2 +X +1)Z3 +(X3 +X2)Z2 +(X2 +1)Z+1.

Applying Proposition 4.1 to the equations (4.0.4) and (4.0.5), we obtain Z1,Z2 ∈F2((X
−1)).

Therefore ω1,ω2 ∈ F2((X
−1)). Since Λ is monic and irreducible over F2[X ], we deduce

that (ω1,ω2) is a 2-Salem series and Λ is the minimal polynomial of ω1.

5. CRITERIA OF EXISTENCE OF ROOTS AND CONJUGATES IN Fq((X
−1))

Before giving the proof of our results, we establish some lemmas that will be needed.

Lemma 5.1. Let n ≥ 3. Let Λ be defined by

Λ(Y ) =Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ],

with λ0 6= 0. Suppose max
i 6=n−2

degλi = degλn−2 ≥ 2degλn−1. If deg(λn−2) is odd, then Λ has

no root in Fq((X
−1)) with absolute value > 1.

Proof. By Theorem 4.4, Λ has two roots ω1 and ω2 such that |ω1| > 1 and |ω2| > 1. The

remaining roots ω3, . . . ,ωn have an absolute value less or equal to 1 and at least one con-

jugate ω j lies on the unit circle for 3 ≤ j ≤ n. As degλn−2 ≥ 2degλn−1, then the upper

Newton polygon of Λ contains the line connecting the points (n−2,degλn−2) and (n,0).

The slope of this line is k =−degλn−2

2
. By Proposition 4.1 (i), Λ has n−(n−2) = 2 roots

ω1 and ω2 having the absolute value q−k > 1. Since they have the same absolute value q−k,

we would have

(5.0.1) degω1 = degω2 =−k =
degλn−2

2
/∈ Z.

Therefore ω1,ω2 /∈ Fq((X
−1)). �

Lemma 5.2. Let q 6= 2r for any r ≥ 1 and n ≥ 3. Let Λ be the polynomial defined by

Λ(Y ) =Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ]

with λ0 6= 0. Suppose degλn−2 ≥ max
i 6=n−2

deg(λi) and degλn−2 > 2degλn−1. Let ω1 be a

root of Λ such that |ω1|> 1. If degλn−3 = degλn−2, then ω1 ∈ Fq((X−1))\Fq((X
−1)).
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Proof. By Theorem 4.4 the polynomial Λ has exactly two roots ω1, ω2, such that |ω1| >
1, |ω2|> 1, and at least one, ω3, such that |ω3|= 1. According to Lemma 5.1, we conclude

that degλn−2 is even. Set degλn−2 = 2s > 0, then degω1 = degω2 = s. Let us assume

ω1 ∈ Fq((X
−1)). Consider

(5.0.2) ω1 =
s

∑
i=0

aiX
i +

1

Z1
, resp. ω2 =

s

∑
i=0

biX
i +

1

Z2

such that as 6= 0,bs 6= 0 and |Z1|> 1, |Z2|> 1. Let λn = 1,

λi =
mi

∑
ki=0

α(ki,i)X
ki

with mi ≤ 2s for i = 0, . . . ,n−4, mn−3 = 2s, and

λn−2 =
2s

∑
j=0

α( j,n−2)X
j

such that α(2s,n−2) 6= 0. We now prove that necessarily |Z1| ≤ 1, in contradiction with

|Z1|> 1.

Indeed, the identity Λ(ω1) = 0 implies 0 =
(

[ω1]+
1

Z1

)n

+λn−1

(

[ω1]+
1

Z1

)n−1

+λn−2

(

[ω1]+
1

Z1

)n−2

+ . . .+λ1

(

[ω1]+
1

Z1

)

+λ0.

Multiplying it by Zn
1 , we obtain

Zn
1

( n

∑
k=0

λk[ω1]
k
)

+Zn−1
1

( n

∑
k=1

kλk[ω1]
k−1

)

+Zn−2
1

( n

∑
k=2

k(k−1)

2
λk[ω1]

k−2
)

+ . . .+Z
n− j
1

( n

∑
k= j

k(k−1) . . .(k− j+1)

j!
λk[ω1]

k− j
)

+ . . .+1 = 0.

Whence Z1 is the root of the polynomial H defined by

H(Z) = AnZn +An−1Zn−1 + . . .+1 ∈ Fq[X ][Z]

where

Ai =
i

∑
k=0

(

n− k

i− k

)

λn−k[ω1]
i−k, 0 ≤ i ≤ n.(5.0.3)

Moreover

(5.0.4) −λn−1 = [ω1]+ [ω2]+ [ω3]

and

λn−2 = ω1ω2 +ω1ω3 + . . .+ωn−1ωn(5.0.5)

= [ω1][ω2]+Q(5.0.6)

with Q ∈ Fq[X ] and degQ ≤ s−1. Notice that degλn−2 > 2degλn−1 implies

(5.0.7) degλn−1 = deg([ω1]+ [ω2])< s.
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then as +bs = 0. Hence [ω1]− [ω2] = 2asX
s +(as−1 −bs−1)X

s−1 + . . .+(a0 −b0). Since

q 6= 2r, for any r ≥ 1, then deg([ω1]− [ω2]) = s. It follows from (5.0.4) and (5.0.5) that,

for 0 ≤ i ≤ n, 0 ≤ k ≤ i,
{

deg(λn−k[ω1]
i−k) = is for k = 0,2,

deg(λn−k[ω1]
i−k)< is for k 6= 0,2.

Then

degAi ≤ is, 0 ≤ i ≤ n.

In view of (5.0.3), (5.0.4) and (5.0.5), we can write

An = [ω1]
n +λn−1[ω1]

n−1 +λn−2[ω1]
n−2 + . . .+λ0

=−[ω3][ω1]
n−1 +[ω1]

n−2Q+λn−3[ω1]
n−3 + . . .+λ0.

Thus

degAn = (n−1)s.

Again, by (5.0.3), it is easy to show

degAi ≤ (n−1)s, for 0 ≤ i ≤ n−1.

As a result, by applying Corollary 4.2, we obtain |Z1| ≤ 1, a contradiction. �

6. PROOF OF THEOREM 1.2

For establishing the proof of Theorem 1.2 the cases n = 3 and n ≥ 4 are dissociated.

Proposition 6.1 and Theorem 6.2, interesting in their own rights, play an important role in

the characterization of the 2-Salem elements.

Proposition 6.1. Let Λ be the polynomial defined by

(6.0.1) Λ(Y ) = Y 3 +λ2Y 2 +λ1Y +λ0 ∈ Fq[X ][Y ]

where 2degλ2 < degλ1 = degλ0. Suppose q 6= 2r for any r ≥ 1. Let ω1 be a root of Λ such

that |ω1|> 1. Then ω1 ∈ Fq((X
−1)) if and only if [ω1] ∈ Fq[X ] and degλ1 is even (6= 0).

Proof. The condition is necessary. Indeed, from Theorem 4.4, the root ω1 belongs to

Fq((X−1)). Imposing ω1 ∈ Fq((X
−1)) implies [ω1] ∈ Fq[X ], and, from Lemma 5.1, degλ1

is even. For sufficiency, we consider that the decomposition ω1 = [ω1]+1/Z1, with |Z1|>
1, holds, and we keep the same notations for [ω1] as in (5.0.2). Then the steps of the proof

are those of the proof of Lemma 5.2 until the equality (5.0.7).

In view of (5.0.3), with degλ1 = 2s > 0, we can write

A3 = [ω1]
3 +λ2[ω1]

2 +λ1[ω1]+λ0

= [ω1]
3 − ([ω1]+ [ω2]+ [ω3])[ω1]

2 +([ω1][ω2]+ [ω1][ω3]+ [ω2][ω3]+Q)[ω1]

− [ω1][ω2][ω3]+Q′

= Q”

where degQ ≤ s−1, and Q′ and Q” are two polynomials with degree less than or equal to

2s−1. Thus

degA3 ≤ 2s−1.
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Notice that degλ1 > 2degλ2 implies

(6.0.2) degλ2 = deg([ω1]+ [ω2]+ [ω3])< s.

then as +bs = 0. Hence

[ω1]− [ω2] = 2asX
s+(as−1 −bs−1)X

s−1+ . . .+(a0 −b0).

Since q 6= 2r, then deg([ω1]− [ω2]) = s. Since

A2 = 3[ω1]
2 +2λ2[ω1]+λ1 = ([ω1]− [ω2]+ [ω3])[ω1]+ [ω2][ω3]+Q

we have

degA2 = deg([ω1]− [ω2])+ s = 2s.

We have

degA1 = s.

Notice that A3 6= 0; if not, by Corollary 4.2, we would have |Z1| ≤ 1, a contradiction. We

conclude that

degA2 > max
i 6=2

degAi.

Finally, by Proposition 4.1, the only root of H with an absolute value > 1 is Z1 and H admits

the factor (Z−Z1)∈Fq((X
−1))[Z]. Then Z1 ∈Fq((X

−1)) and ω1 = [ω1]+
1

Z1
∈Fq((X

−1)),

completing the proof. �

Theorem 6.2. Let n ≥ 4 and suppose q 6= 2r for any r ≥ 1. Let Λ be the polynomial

(6.0.3) Λ(Y ) :=Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ]

with λ0 6= 0. Suppose degλn−2 = max
i 6=n−2

deg(λi) and degλn−2 > 2degλn−1. Let ω1 be a

root of Λ such that |ω1| > 1. Then ω1 ∈ Fq((X
−1)) if and only if [ω1] ∈ Fq[X ], degλn−2 is

even (6= 0) and degλn−3 < degλn−2.

Proof. Let us show that the condition is necessary. From Theorem 4.4 the root ω1 belongs

to Fq((X−1)). Assuming ω1 ∈ Fq((X
−1)) implies [ω1]∈ Fq[X ]; from Lemma 5.1, degλn−2

is even, and, from Lemma 5.2, degλn−3 < degλn−2.

For sufficiency, we consider that the root ω1 ∈ Fq((X−1)) can be decomposed as ω1 =
[ω1] + 1/Z1, with |Z1| > 1 and [ω1] ∈ Fq[X ]. We keep the same notations for [ω1] as in

(5.0.2). The steps of the proof are now those of the proof of Lemma 5.2 until the equality

(5.0.7). Denote 2s := degλn−2 > 0. We have degλn−3 ≤ 2s−1.

Since n≥ 4, the assumption degλn−2 = max
i 6=n−2

deg(λi) means that the upper Newton poly-

gon of Λ has an horizontal facet of length ≥ 2. Then there exists at least one root of Λ, say

ω3, such that |ω3| = 1. Using the expressions of the symmetric functions λ js of the roots

ω1,ω2,ω3, . . . as functions of [ω1], [ω2], [ω3], . . ., as above, in (5.0.3), i.e. in

An = [ω1]
n +λn−1[ω1]

n−1 +λn−2[ω1]
n−2 + . . .+λ0,

we deduce degAn ≤ (n−1)s−1.

From the assumption 2s = degλn−2 > 2degλn−1 we deduce

(6.0.4) degλn−1 = deg([ω1]+ [ω2]+ [ω3]+
n

∑
j=4

[ω j])< s.
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Hence as+bs = 0. The condition q 6= 2r, r ≥ 1, implies as 6= bs and [ω1] 6= [ω2]. Hence the

degree of

[ω1]− [ω2] = 2asX
s +(as−1 −bs−1)X

s−1+ . . .+(a0 −b0)

is exactly deg([ω1]− [ω2]) = s.

Now the expressions of the coefficients An−1 and An−2 are respectively:

An−1 = [ω1]
n−2([ω1]− [ω2])+(n−2)(Q[ω1]

n−3 +λn−3[ω1]
n−4)

−λn−3[ω1]
n−4 +(n−4)λn−4[ω1]

n−5 + . . .+λ1

and

An−2 = (n−1)[ω1]
n−3([ω1]− [ω2])+ [ω1]

n−3[ω2]+

+
(n−2)(n−3)

2
[ω1]

n−4Q+
(n−3)(n−4)

2
λn−3[ω1]

n−5 + . . .+λ1.

Therefore

degAn−1 = (n−2)s+deg([ω1]− [ω2]) = (n−1)s

and

degAn−2 = (n−2)s.

We have: degAn < degAn−1,degAn−2 < degAn−1 and it is easy to show

max
i 6=n−1

degAi < degAn−1.

Now An 6= 0; if not, by Corollary 4.2, we would have |Z1| ≤ 1, a contradiction. Finally, by

Proposition 4.1, the only root of H which has an absolute value > 1 is Z1 and H admits the

factor (Z −Z1) ∈ Fq((X
−1))[Z]. Then Z1 ∈ Fq((X

−1)) and ω1 = [ω1]+
1

Z1
∈ Fq((X

−1)),

completing the proof. �

Remark 6.3.

(i) We mention that Theorem 6.2 is not always true in characteristic 3 in the case

degλn−2 = 2degλn−1 (see Example 6.4).

(ii) We note also that this theorem is not always true for any field of characteristic p = 2

(see Example 4.5).

Example 6.4.

Let

(6.0.5) Λ(Y ) = Y 3 +(X +1)Y 2 +X2Y −X2 +2 ∈ F3[X ][Y ].

By Theorem 4.4, Λ(Y ) has two roots ω1 and ω2 having an absolute value strictly greater

than 1 and one root ω3 having an absolute value equal to 1. Set ω1 = X +
1

Z1
∈ F3((X

−1))

such that |Z1|> 1. Z1 is the root of the polynomial defined by

(6.0.6) 2Z3 +2XZ2 +(X +1)Z+1 = 0.
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By Proposition 4.1, we deduce that Z1 ∈ F4((X
−1)) and ω1 ∈ F3((X

−1)).

Now set ω2 = X +1+
1

Z2
∈ F3((X

−1)) with |Z2| > 1. We obtain Z2 as a root of the poly-

nomial defined by

(6.0.7) Z3 +(X2 +X +1)Z2 +(2X2+X +2)Z+1 = 0.

Again by Proposition 4.1, we deduce that Z2 ∈ F3((X
−1)) and ω2 ∈ F3((X

−1)).
Since Λ is monic and irreducible over F3[X ], it follows that (ω1,ω2) is a 2-Salem series

and Λ is the minimal polynomial of ω1.

Proof of Theorem 1.2. Let us prove the necessary condition for (i) and (ii). Assume that

ω1 ∈ Fq((X
−1)) and n ≥ 3. By Proposition 6.1 or Theorem 6.2, and the notations in their

respective proofs, we deduce that degλn−2 is even and 6= 0. Still with these notations, set

λn−2 = α2sX
2s +α2s−1X2s−1 + . . .+α0 = [ω1][ω2]+Q(6.0.8)

= (asX
s +as−1X s−1 + . . .+a0)(bsX

s+bs−1X s−1 + . . .+b0)+Q.(6.0.9)

From (6.0.2) or (6.0.4), we have degλn−1 < s. Hence as = −bs ∈ Fq, what implies the

claim

−α2s =−asbs = a2
s 6= 0.

In addition, for n ≥ 4, Theorem 6.2 implies that degλn−3 < degλn−2 holds.

Let us prove the sufficient condition for (i). By Theorem 4.4 the polynomial Λ has two

roots ω1 and ω2 such that |ω1|> 1, |ω2|> 1, with at least one conjugate ω j, 3 ≤ j ≤ n, on

the unit circle. Let k denote the length of the horizontal facet of the upper Newton polygon.

Since degλn−3 < degλn−2, we have k ≥ 2. There are k conjugates ω j, j = 3, . . . ,3+ k−1,

on the unit circle, by Proposition 4.1. Let

ω j = c
( j)
0 + c

( j)
−1X−1 + . . . ∈ Fq((X−1)), j = 3, . . . ,3+ k−1.

From Proposition 4.1 (ii), we can see
3+k−1

∑
j=3

ω j ∈ Fq((X
−1)) and therefore

3+k−1

∑
i=3

c
(i)
0 ∈ Fq.

Now

λn−1 = βsX
s+βs−1X s−1 + . . .+β0

=−
(

[ω1]+ [ω2]+
3+k−1

∑
i=3

c
(i)
0

)

.

Thus

(6.0.10) −βi = ai +bi, 1 ≤ i ≤ s.

and

(6.0.11) −β0 = a0 +b0 +
3+k−1

∑
i=3

c
(i)
0 .

Suppose α2s =−a2 where s ≥ 1 and a ∈ Fq is nonzero. Let us put as = a. Then bs =−a

and βs = 0. We deduce

α2s−1 = asbs−1 +as−1bs = a(bs−1 −as−1),
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then bs−1−as−1 ∈ Fq. Since q 6= 2r, for any r ≥ 1, and that bs−1+as−1 =−βs−1 ∈ Fq, we

have

as−1,bs−1 ∈ Fq.

Let us show recursively that

as−i,bs−i ∈ Fq, i = 2,3, . . . ,s.

Let us assume that as− j,bs− j ∈ Fq holds for j = 0,1, . . . , i−1. From (6.0.9), we deduce

α2s−i = asbs−i +as−1bs−i+1 + . . .+as−ibs

= a(bs−i −as−i)+ds−i

where

ds−i := as−1bs−i+1 + . . .+bs−1as−i+1 ∈ Fq, i = 2, . . . ,s.

Hence

(6.0.12) bs−i −as−i = a−1(α2s−i −ds−i) ∈ Fq.

Since bs−i +as−i =−βs−i ∈ Fq, we have

as−i,bs−i ∈ Fq.

Let us note ds−1 = 0. Combining (6.0.10) (6.0.11) and (6.0.12), we obtain

(6.0.13) ai =−2−1(βi +a−1(αs+i −di)), 0 ≤ i ≤ s−1.

Therefore, [ω1] ∈ Fq[X ] and from Theorem 6.2, we obtain ω1 ∈ Fq((X
−1)). In the same

way, we can show that ω2 ∈ Fq((X
−1)). As Λ is monic and irreducible over Fq[X ], then ω1

is an algebraic integer. Therefore (ω1,ω2) is a 2-Salem element in T ′∗
2 .

Let us give the proof of the sufficency condition for (ii), in the same way. By Theorem

4.4 the polynomial Λ has two roots ω1 and ω2 such that |ω1|> 1, |ω2|> 1, and the third one

ω3 is on the unit circle. For n= 3, the assumptions degλ1 = deg(λ0) and degλ1 > 2deg(λ2)
hold. Then Proposition 6.1 can be applied to obtain the result. We have just to show that

[ω1] ∈ Fq[X ]. For proving [ω1] ∈ Fq[X ] we proceed as above, from (6.0.8) to (6.0.13),

except that −β0 is now equal to a0 +b0 + c0 with

ω3 = c0 + c1X−1+ . . . ∈ Fq((X−1)).

(iii) This assertion follows immediately from Corollary 4.3.

✷

Remark 6.5.

Note that Theorem 1.2 (i) is not always true in the case degλn−2 = 2degλn−1. To show

this, we construct two counter-examples.

Example 6.6.

Let Λ the polynomial over F3[X ] which is defined by (6.0.5). Then, in view of the above,

Λ satisfies the conditions degλn−2 = 2degλn−1 and −1 is not a square in F3. In contrast,

Λ has two dominant roots ω1,ω2 ∈ F3((X
−1)).

Example 6.7.
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The polynomial

Λ2 =Y 4 −XY 3 +X2Y 2 +XY +X2+1 ∈ F5[X ][Y ]

satisfies the conditions degλn−2 = 2degλn−1 and −1 is a square in F5. By Proposition 4.1

(i), Λ2 has exactly two dominant roots ω1 and ω2 with

degω1 = degω2 = 1.

The other conjugated roots ω3 and ω4 have the same degree equal to 0. Suppose [ω1] ∈
F5[X ], using the fact that

[ω1]+ [ω2]+ [ω3]+ [ω4] = X ,

this yields that [ω2] ∈ F5[X ]. Let

[ω1] = a1X +a0 , [ω2] = b1X +b0

and

[ω3] = c0 , [ω2] = d0

where a1,b1,c0 and d0 are four integers in F5\{0}. It follows that

a1 +b1 = a1b1 = 1.

These equations have no solutions in F5.

7. A CRITERIUM OF IRREDUCIBILITY

In the following the assumption “λ0 6= 0” is replaced by the stronger hypothesis “Λ has

no root in Fq” in order to reach the property of being irreducible.

Lemma 7.1. Let n ≥ 3. Let Λ be defined by

Λ(Y ) =Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ].

Suppose that Λ has no root in Fq and max
i<n−3

degλi < degλn−3 = degλn−2 ≥ 2degλn−1. If

deg(λn−2) is odd, then Λ is irreducible over Fq[X ].

Proof. By considering the upper Newton polygon of Λ, the polynomial Λ has exactly two

roots ω1 and ω2 such that |ω1| > 1 and |ω2| > 1, one root ω3 such that |ω3| = 1 and the

remaining roots ω4, . . . ,ωn have an absolute value strictly less than 1. Suppose that Λ(Y )
admits the decomposition

Λ(Y ) = Λ1(Y ).Λ2(Y )

(7.0.1) = (Y s +As−1Y s−1 + . . .+A1Y +A0)(Y
m +Bm−1Y m−1 + . . .+B1Y +B0)

with Λ1,Λ2 ∈ Fq[X ][Y ] and s > 0, m > 0.

There are several cases to show the contradiction. If we had Λ1(ωi) = 0 for i = 1,2,3,

all the roots of Λ2 would have an absolute value strictly less 1, which is a contradiction,

because |B0|> 1. If we had Λ1(ωi) = 0 for i = 1,2, and Λ2(ω3) = 0, with m = degΛ2 > 1,

then one of the roots of Λ2 would have an absolute value equal to 1 and the other roots of

Λ2 have an absolute value strictly less 1, which is a contradiction, since |B0| > 1. Now, if

Λ1(ω1) = Λ1(ω2) = 0, and Λ2(ω3) = 0 with degΛ2 = 1, all the other conjugates of ω1 are

roots of Λ1, then, from (7.0.1),

(7.0.2) Λ(Y ) = (Y n−1 +An−2Y n−2 + . . .+A1Y +A0)(Y +B0) ∈ Fq[X ][Y ]
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with degB0 = deg(ω3) = 0, and then B0 = b0 ∈ Fq\{0}. This is in contradiction with the

assumption.

Then we can conclude that Λ1(ω1) = 0 and Λ2(ω2) = 0. The remaining roots of Λ1 and

Λ2 have an absolute value ≤ 1. (∗∗∗)
Let us continue the generic case, assuming Λ1(ω1) =Λ1(ω3) = 0 and Λ2(ω2) = 0. Since

−As−1 (resp. −Bm−1) is the sum of the roots of Λ1 (resp. Λ2) and by the symmetric

functions of the roots, it follows that

degAs−1 = degω1 = max
i 6=s−1

degAi and degBm−1 = degω2 > max
j 6=m−1

degB j.

In particular we have: |As−2| ≤ |ω1| and |Bm−2|< |ω2|. Then

degλn−2 = deg(As−2 +As−1Bm−1 +Bm−2) = degAs−1 +degBm−1.

But the assumption degλn−2 ≥ 2degλn−1 means that

degAs−1 +degBm−1 ≥ 2max{degAs−1,degBm−1},
from which we deduce

degAs−1 = degBm−1,

and then degλn−2 = 2degAs−1. By Lemma 5.1, Λ would have no root in Fq((X
−1)) with

absolute value > 1, a contradiction. We deduce the irreducibility of Λ over Fq[X ]. �

Theorem 7.2. Let n ≥ 4 and suppose q 6= 2r for any r ≥ 1. Let Λ be the polynomial

(7.0.3) Λ(Y ) :=Y n +λn−1Y n−1 +λn−2Y n−2 + . . .+λ1Y +λ0 ∈ Fq[X ][Y ].

Suppose that Λ has no root in Fq, and assume that the coefficients λi satisfy

(i) max
i∈{1,2,...,n−4}∪{n−1}

degλi < degλn−3 = degλn−2 < 2degλn−1,

(ii)
degλi+1+degλi−1

2
< degλi for 1 ≤ i ≤ n−4,

(iii) degλn−2 −degλn−1 < degλn−4 < degλn−1.

Then (ω1,ω2) is a 2-Salem element and Λ is its minimal polynomial.

Proof. By Corollary 4.3, Λ(Y ) has two roots ω1 and ω2 in Fq((X
−1)), such that |ω1| > 1

and |ω2| > 1, and there is exactly one conjugate ω3 which lies on the unit circle. Denote

s := deg(ω2) and m := deg(ω1) respectively. They satisfy

1 < |ω2|= qdegλn−2 −degλn−1 = qm < |ω1|= qdegλn−1 = qs.

The other conjugates ω4, . . . ,ωn ∈ Fq((X−1)) have an absolute value strictly less than 1.

Since
degλi+1 +degλi−1

2
< degλi, for 1 ≤ i ≤ n− 4, then degλi+1 − degλi < degλi −

degλi−1; all the facets of the upper Newton polygon of Λ are of length 1. We have

|ω j|= q−k j < 1, 4 ≤ j ≤ n,

with

(7.0.4) −k j = degω j = degλn− j −degλn− j+1.
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We now assume that Λ is reducible and show the contradiction. With the same notations

as in the proof of Lemma 7.1, let us suppose that Λ(Y ) admits the decomposition

Λ(Y ) = Λ1(Y ).Λ2(Y )

(7.0.5) = (Y s +As−1Y s−1 + . . .+A1Y +A0)(Y
m +Bm−1Y m−1 + . . .+B1Y +B0)

as in (7.0.1). Then we discard the impossible cases as in the proof of Lemma 7.1, i.e. from

(7.0.1) until (∗∗∗) in the same steps. We conclude that Λ1(ω1) = 0 and Λ2(ω2) = 0.

Now suppose that Λ2(ω3) = 0, without loss of generality; so we obtain ω1 ∈ S∗ and

ω2 ∈ T ∗. Applying Theorem 1.1, we get

(7.0.6) s = degAs−1 = degω1 > max
i≤s−2

degAi

and

(7.0.7) m = degBm−1 = degBm−2 = degω2 > max
j≤m−3

degB j.

The contradiction will come from the coefficient λn−4. From (7.0.5),

(7.0.8) λn−4 = As−4 +As−3Bm−1 +As−2Bm−2 +As−1Bm−3 +Bm−4.

Let us examine the degrees of the terms of the sum. First we can see that Λ1(ω4) = 0.

Indeed, if we assume Λ1(ω4) 6= 0, by the symmetric functions of the roots of Λ2 we would

obtain, using (i) and (7.0.4),

degBm−3 = deg(ω2ω3ω4) = degλn−4 −degλn−1 < 0,

a contradiction. In the list {ω1,ω2,ω3,ω4, . . . ,ωn} the roots ω1 and ω4 are roots of Λ1, the

roots ω2 and ω3 are roots of Λ2, and the other roots are distributed as roots of Λ1 or Λ2.

Then degBm−3 > 1. From (7.0.6) we deduce

(7.0.9)

max{degAs−3,degAs−4}< s = degAs−1 < degAs−1 +degBm−3 = deg(As−1Bm−3).

On the other hand, degAs−2 > 0. From (7.0.7) we deduce

max{degBm−3,degBm−4}< degBm−2 = m = degBm−1 < degAs−2 +degBm−2.

Let us show that deg(As−2Bm−2)< s.
Indeed, from (iii), λn−4 < degλn−1 = s; then

degλn−4 = deg(ω1ω2ω3ω4) = deg(ω1)+deg(ω2)+deg(ω4) = s+m+deg(ω4)< s.

Thus

deg(ω4)<−deg(ω2) =−m,

what means

deg(As−2Bm−2) = deg(ω1)+deg(ω4)+degBm−1 < s−m+m = s.

In the same way, using (ii),

deg(As−3Bm−1) = deg(ω1)+deg(ω4)+deg(ω5)+degBm−1 < s−m− (m+1)+m < s.

We deduce

deg(λn−4) = deg(As−1Bm−3).
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But, from (7.0.9), we have

deg(λn−4) = deg(As−1Bm−3)> s.

The contradiction comes from (iii) since deg(λn−4) should be < s = degλn−1.

Therefore Λ(Y ) is irreducible over Fq[X ]. Finally, since Λ(Y ) is monic, then (ω1,ω2) is

a 2-Salem element and Λ is its minimal polynomial. �

Example 7.3. 2-Salem series of degree 5 in F3((X
−1)).

Let

Λ(Y ) =Y 5 +X4Y 4 +X5Y 3 +X5Y 2 +X3Y +1 ∈ F3[X ][Y ].

We deduce from Theorem 7.2 that Λ is irreducible over F3[X ] and has 5 roots defined by






















































ω1 = X5+2X +
1

X2
+ . . .= X5+2X +

1

Z1

such that |Z1|> 1

ω2 = X +1+
1

Z2
such that |Z2|> 1

ω3 = 2+
1

Z3
such that |Z3|> 1

ω4 =
1

X2
+ . . .

ω5 =
2

X3
+ . . .

These roots correspond to the facets of the upper Newton polygon associated with the 2-

Salem minimal polynomial Λ. Since Λ is monic then w1 is an algebraic integer. Therefore

(ω1,ω2) is a 2-Salem element.
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