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Bateman and Duquette have initiated the study of Salem elements in positive characteristic. This work extends their results to 2-Salem elements whose minimal polynomials are of the type

This work provides an analogue of their results for 2-Salem elements whose minimal polynomials meet certain requirements.

1. Introduction 2. Salem series in F q ((X -1 )) 3. Multiplicative properties of 2-Salem series 4. A first characterization of 2-Salem series 5. Criteria of existence of roots and conjugates in F q ((X -1 )) 6. Proof of Theorem 1.2 7. A criterium of irreducibility References

INTRODUCTION

A Salem number is a real algebraic integer θ > 1 of even degree at least 4, having θ -1 as a conjugate over Q, having all its conjugates θ i excluding θ and θ -1 , of modulus exactly 1 [START_REF] Smyth | Seventy Years of Salem Numbers: a Survey[END_REF]. The monic minimal polynomial, over Q, Λ(z) of a Salem number θ is reciprocal: it satisfies the equation z deg Λ(z) Λ( 1z ) = Λ(z). To put is simply, this means that its coefficients form a palindromic sequence: they read the same backwards as forwards. Therefore θ + θ -1 is a real algebraic integer θ > 2 such that its conjugates = θ + θ -1 lie in the real interval [-2, 2]. The Mahler measure M(θ

) := deg θ ∏ i=1 max{1, |θ i |} of θ satisfies M(θ ) = θ . A Salem number is the Mahler measure of itself.
The set of Salem numbers is traditionally denoted by T [START_REF] Bertin | Pisot and Salem Numbers[END_REF]. The smallest known element of T is Lehmer's number β 0 = 1.1762 . . . of degree 10 , as dominant root ("i.e. if β is another root, then |β | < β 0 ") of Lehmer's polynomial:

(1.0.1) P(X ) = X 10 + X 9 -X 7 -X 6 -X 5 -X 4 -X 3 + X + 1.

The Surveys [START_REF] Smyth | Seventy Years of Salem Numbers: a Survey[END_REF] [10] take stock of various problems on Salem numbers and more generally Mahler measures in all their forms. Kerada [START_REF] Kerada | Une caractérisation de certaines classes d'entiers algébriques généralisant les nombres de Salem[END_REF] defined and studied, as a generalization of a Salem number, j-Salems, j ≥ 2 (also called j-Salem numbers in the literature, e.g. in [START_REF] Umemoto | The Growth Function of Coxeter Dominoes and 2-Salem Numbers[END_REF]). In particular, a 2-Salem is a pair (β 1 , β 2 ) of conjugate algebraic integers of modulus > 1 whose remaining conjugates have modulus at most 1, with at least one having modulus exactly 1. The set of 2-Salems is denoted by T 2 . It is partitioned as T 2 = T ′ 2 ∪ T ′′ 2 where T ′ 2 is the set of 2-Salems with β 1 , β 2 ∈ R and T ′′ 2 the set of 2-Salems for which β 1 and β 2 are complex non-real (and so complex conjugates of one another, β 1 = β2 ).

In 1962 Bateman and Duquette [START_REF] Bateman | The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series[END_REF] introduced and characterized the Salem and Pisot (PV) elements in the field of Laurent series. We first start recalling their theorem prior to stating an analogue theorem for 2-Salem elements, extending Kerada's study.

Theorem 1.1 (Bateman -Duquette). An element ω in F q ((X -1 )) is a Salem (resp. Pisot) element if and only if its minimal polynomial can be written

Λ(Y ) = Y s + λ s-1 Y s-1 + . . . + λ 0 , λ i ∈ F q [X ] for i = 0, . . ., s -1, with |λ s-1 | = |ω| > 1 and |λ s-1 | = max 0≤i≤s-2 |λ i | (resp. |λ s-1 | > max 0≤i≤s-2 |λ i |).
In this work, instead of the classical setting of the real numbers, the analogues of Kerada's 2-Salems over the ring of formal Laurent series over finite fields are investigated. In the context of the original study of Salem elements in positive characteristic by Bateman and Duquette [START_REF] Bateman | The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series[END_REF], 2-Salem elements in positive characteristic will also be called 2-Salem series. The objectives of the present note consist in extending some of the results of Bateman and Duquette to 2-Salem series over F q [X ], q = 2 r , and to study the analogues of the above-mentioned properties of 2-Salem series. More precisely, let F q denote the finite field having q elements, q ≥ 3, and let p be the characteristic of F q ; q is a power of p. Let X be an indeterminate over F q and denote k := F q (X ). Let ∞ be the unique place of k which is a pole of X , and denote k ∞ := F q (( 1 X )). Let C ∞ be a completion of an algebraic closure of k ∞ . Then C ∞ is algebraically closed and complete, and we denote by υ ∞ the valuation on C ∞ normalized by υ ∞ (X ) = -1. We fix an embedding of an algebraic closure of k in C ∞ so that all the finite extensions of k mentioned in this work will be contained in C ∞ . An explicit description of υ ∞ is done in section 2. For simplicity's sake the algebraic closure of k ∞ will be often denoted by F q ((X -1 )).

2-Salem series over F q [X ] may belong to k ∞ or to finite extensions of k ∞ . By analogy with Kerada's notations we denote by T * 2 the set of 2-Salem series. It can be partitioned as

T * 2 = T ′ * 2 ∪ T ′′ * 2 where T ′ *
2 is by definition those 2-Salem series (ω 1 , ω 2 ) over F q [X ] which (both) belong to F q ((X -1 )), and T ′′ * 2 , by definition, those 2-Salem series, not in F q ((X -1 )), such that (ω n 1 , ω n 2 ) ∈ T ′ * 2 for some integer n ≥ 2. Theorem 1.2. Suppose q = 2 r for any integer r ≥ 1, and n ≥ 3. Let Λ be the polynomial defined by

(1.0.2) Λ(Y ) = Y n + λ n-1 Y n-1 + λ n-2 Y n-2 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ],
assumed irreducible and such that λ 0 = 0. Let us assume

deg λ n-1 < deg λ n-2 = max i =n-2 deg(λ i ).
Denote by ω 1 and ω 2 the dominant roots of Λ.

Then (i) for n ≥ 4: if deg λ n-2 > 2 deg λ n-1 , then (ω 1 , ω 2 ) ∈ T ′ * 2 if and only if deg λ n-2 is even, the dominant coefficient α 2s of λ n-2 = α 2s X 2s + . . . + α 0 is equal to -a 2 for some a ∈ F * q , and deg λ n-3 < deg λ n-2 , (ii) for n = 3: if deg λ 1 > 2 deg λ 2 , then (ω 1 , ω 2 ) ∈ T ′ * 2 if and only if deg λ 1 is even, the dominant coefficient α 2s of λ 1 = α 2s X 2s + . . . + α 0 is equal to -a 2 for some a ∈ F * q , (iii) for n ≥ 3: if deg λ n-2 < 2 deg λ n-1 , then (ω 1 , ω 2 ) ∈ T ′ *
2 . The paper is organized as follows. In section 2 the fields of formal power series and the valuations used in this study are recalled. The main Theorem 1.1 of Bateman and Duquette, characterizing Salem elements, is stated above with these notations. Section 3 is devoted to the arithmetical and topological properties of 2-Salem series in F q ((X -1 )). In section 4 Weiss's method of the upper Newton polygon is explicited to characterize 2-Salem series in F q ((X -1 )). In section 5 attention is focused on those 2-Salem series which lie in the field F q ((X -1 )), by establishing criteria discriminating whether they belong to F q ((X -1 )) or to F q ((X -1 )) \ F q ((X -1 )). The proof of Theorem 1.2 is given in section 6. In Theorem 1.2 the polynomial given by (1.0.2) is assumed irreducible. More generally, the question of irreducibility of a polynomial Λ of the general form (1.0.2) is discussed in section 7 under the hypothesis that Λ has no root in F q .

2. SALEM SERIES IN F q ((X -1 ))

For p a prime and q a power of p, let F q ((X -1 )) be the set of Laurent series over F q which is defined as follows

F q ((X -1 )) = {ω = ∑ i≥n 0 ω i X -i : n 0 ∈ Z and ω i ∈ F q }.
We know that every algebraic element over F q [X ] can be written explicitly as a formal series because F q [X ] ⊆ F q ((X -1 )). However, as F q ((X -1 )) is not algebraically closed, such an element is not necessarily expressed as a power series. We refer to Kedlaya [START_REF] Kedlaya | The algebraic closure of the power series field in positive characteristic[END_REF] for a full characterization of the algebraic closure of F q [X ]. We denote by F q ((X -1 )) an algebraic closure of F q ((X -1 )). Indifferently we will speak of 2-Salem elements or 2-Salem series in the present context.

Let ω be an element of F q ((X -1 )), its polynomial part is denoted by [ω] ∈ F q [X ] and {ω} its fractional part. We can remark that ω = [ω] + {ω}. If ω = 0, then the polynomial degree deg ω of ω is γ(ω) = sup{-i : ω i = 0}, the degree of the highest-degree nonzero monomial in ω, with the convention γ(0) = -∞. The generic form of ω, with n 0 ∈ Z and 

ω i ∈ F q , n 0 = -γ(ω), is ω = ∑ i≥n 0 ω i X -i . Note that if [ω] = 0 then γ(ω)
ν| = max (|ω|, |ν|) i f |ω| = |ν|. Definition 2.1. A Salem element ω in F q ((X -1 )
) is an algebraic integer over F q [X ] such that |ω| > 1, whose remaining conjugates in F q ((X -1 )) have an absolute value no greater than 1, and at least one has absolute value exactly 1. A Pisot element ω in F q ((X -1 )) is an algebraic integer over F q [X ] such that |ω| > 1, whose remaining conjugates in F q ((X -1 )) have an absolute value strictly less than 1. The set of Salem elements, resp. Pisot elements, is denoted T * , resp. S * .

In the following we will focus on 2-Salem series in k ∞ : a 2-Salem element is a pair of series (ω 1 , ω 2 ) in F q ((X -1 )) × F q ((X -1 )), which has an absolute value greater than 1, in the sense that it is such that ω 1 is an algebraic integer over F q [X ], with the property that all of its conjugates ω i , i = 1, 2, lie on or within the unit circle, and at least one conjugate lies on the unit circle. This implies that all 2-Salem elements are necessarily separable over F q (X ). Note that the pair (ω 1 , ω 2 ) is not ordered.

Let us remark that it is easy to construct a 2-Salem element over F q with q = 2 and then to show that 2-Salem elements do exist without the assumption q = 2 r , r ≥ 1, taken in Theorem 1.2. The exclusion case q = 2 r of Theorem 1.2 will arise in a general setting from Lemma 5.2 and its consequences.

MULTIPLICATIVE PROPERTIES OF 2-SALEM

SERIES Proposition 3.1. Let (ω 1 , ω 2 ) ∈ T ′ * 2 , then (ω n 1 , ω n 2 ) ∈ T ′ * 2 , for all n ≥ 1. Proof. Let M ∈ F q [X ][Y ]
the minimal polynomial of the algebraic integer ω = ω 1 of degree d and ω 2 , . . ., ω d the conjugates of ω. We consider that the conjugate ω 2 of ω 1 is the only conjugate which lies outside the unit disk. Evidently, since ω 1 is an algebraic integer over F q [X ], ω n 1 , for n ≥ 1, is also an algebraic integer over F q [X ].

Let n ≥ 1 and Λ ∈ F q [X ][Y ] be the minimal polynomial of ω n 1 . We consider the embedding σ i of F q (X )(ω 1 ) into F q ((X -1 )), which fixes F q (X ) and maps ω 1 to ω i . Obviously, for i = 1, 2, . . ., d, ω n i is a root of the equation Λ(Y ) = 0, and ω n 1 , ω n 2 , . . . , ω n d are all the roots of Λ, since

Λ(ω n i ) = Λ((σ i (ω 1 )) n )) = Λ(σ i (ω n 1 )) = σ i (Λ(ω n 1 )) = σ i (0) = 0. We deduce deg(Λ) ≤ deg(M) since [F q (X )(ω n 1 ) : F q (X )] ≤ [F q (X )(ω 1 ) : F q (X )]. If 3 ≤ i ≤ d, then |ω n i | = |ω i | n ≤ 1 and there exists at least one j, 3 ≤ j ≤ n, such that |ω n j | = |ω j | n = 1. Therefore (ω n 1 , ω n 2 ) ∈ T ′ *
2 , for all n ≥ 1. Note that the converse is false in general. For instance, take q = 3, d = 4 and n = 2. Then, the polynomial Y 4 -2X 2 Y 2 + 2X 2 over F 3 is irreducible and its two roots of absolute value > 1 defined by

(ω 1 , ω 2 ) = (( √ 2(X - 1 X 3 + . . .), -( √ 2(X - 1 X 3 + . . .)), not lie in F 3 ((X -1 )).
The other conjugates defined by

(ω 3 , ω 4 ) = (1 - 1 X 2 + . . . , -(1 + 1 X 2 + . . .)). We can see that (ω 2 1 , ω 2 2 ) lie in F 3 ((X -1 )).
For a 2-Salem series θ , let us define its trace by Tr(θ

) := deg θ ∑ i=1 θ i . The 2-Salem series
have the following basic property, as it can easily be seen by considering its trace. Recall that in the real case the trace of a Salem number is an integer (∈ Z) which is not bounded and can take arbitrary negative values [START_REF] Mckee | There are Salem Numbers of Every Trace[END_REF].

Proposition 3.2. Let (ω 1 , ω 2 ) ∈ T ′ * 2 , then the sequence ({ω n 1 + ω n 2 }) n≥1 is bounded. Proof. Let (ω 1 , ω 2 )
be a 2-Salem series and ω 3 , . . ., ω d the other conjugates of ω 1 and ω 2 . From Proposition 3.1, for all n ≥ 1, ω n 1 and ω n 2 are the roots of the same irreducible polynomial, say Λ n in F q [X ], of degree d. We have

Tr(Λ n ) = d ∑ i=1 ω n i ∈ F q [X ].
Thus {Tr(Λ n )} = 0, which can be rewritten

0 = {Tr(Λ n ) = d ∑ i=1 ω n i } = {ω n 1 + ω n 2 + d ∑ i=3 ω n i }. But |ω i | ≤ 1, for 3 ≤ i ≤ d,
and there exists at least one j, 3 ≤ j ≤ n such that |ω n j | = |ω j | n = 1. Therefore, taking the absolute values, we deduce

|{ω n 1 + ω n 2 }| = |{ω n 3 } + {ω n 4 } + . . . + {ω n d }| and lim n →+∞ { d ∑ i=3 ω n i } ≤ max i=3,...,d {ω n i } ≤ C ∈ F q ,
and then

{ω n 1 + ω n 2 } is bounded. Remark 3.3. If the 2-Salem series (ω 1 , ω 2 ) ∈ T ′ *
2 of Proposition 3.2 admits only one root ω 3 having absolute value equal to 1 and for which the other conjugates have an absolute value strictly less than 1, then lim

n→+∞ {ω n 1 + ω n 2 } = 0.
Proof. It is a consequence of the definition of the upper Newton polygon of the polynomial Λ n , recalled in Proposition 4.1 below. From Proposition 4.1 we can see that ω 3 ∈ F q ((X -1 )).

Thus (3.0.1) lim n →+∞ {ω n 3 } = 0.
From the proof of Proposition 3.2, we have

ω n 1 + ω n 2 = Tr(ω n 1 ) -ω n 3 -ω n 4 -. . . -ω n d , n ≥ 1, what implies |{ω n 1 + ω n 2 }| = |{ω n 3 } + {ω n 4 } + . . . + {ω n d }| ≤ |{ω n 3 } + ω n 4 + . . . + ω n d | ≤ max i=4,...,d {|{ω n 3 }|, |ω n i |}.
Since |ω i | < 1 for i = 4, . . ., d and by (3.0.1), the assertion of the Remark follows.

Proposition 3.4. Let (ω 1 , ω 2 ) ∈ T ′ * 2 be a 2-Salem series. Assume that Λ ∈ F q [X ][Y ]
is its minimal polynomial, that the degree of Λ is equal to 4 and ω 1 , ω 2 , ω 3 , ω 4 are its four roots, the root ω 3 satisfying deg ω

3 = 0. If Λ(0) ∈ F * q , then ω 1 ω 2 ω 3 ∈ T * . Proof. Let (ω 1 , ω 2 ) ∈ T ′ * 2 and Λ(Y ) = Y 4 + λ 3 Y 3 + λ 2 Y 2 + λ 1 Y + λ 0 ,
λ 0 ∈ F * q , the minimal polynomial of ω 1 and ω 2 . We have

λ 0 = ω 1 ω 2 ω 3 ω 4 . Consider the reciprocal polynomial of Λ Q(Y ) := Y 4 Λ( 1 Y ).
Clearly Q is an irreducible polynomial over F q [X ], and admits the four roots

1 ω 1 , 1 ω 2 , 1 ω 3 = λ -1 0 ω 1 ω 2 ω 4 and 1 ω 4 = λ -1 0 ω 1 ω 2 ω 3 .
We have

| 1 ω 3 | = |ω 1 ω 2 ω 4 | = 1, | 1 ω 4 | = |ω 1 ω 2 ω 3 | > 1 and | 1 ω i | < 1, for i = 1, 2. Therefore ω 1 ω 2 ω 3 = λ 0 ω 4 is a Salem series.

A FIRST CHARACTERIZATION OF 2-SALEM SERIES

The theory of the Newton polygon of a bivariate polynomial is used in the present study. The following Proposition of Weiss in [START_REF] Weiss | Algebraic number theory[END_REF] is the main tool for our purposes. Let us recall it. Let (4.0.1)

Λ(X ,Y ) = λ n Y n + λ n-1 Y n-1 + . . . + λ 1 Y + λ 0 ∈ F q [X ,Y ] = F q [X ][Y ]
be a nonzero polynomial. To each monomial λ i Y i = 0, we assign the point

(i, deg(λ i )) ∈ Z 2 .
For λ i = 0, we ignore the corresponding point (i, -∞). If we consider the upper convex hull of the set of points

{(0, deg(λ 0 )), . . ., (n, deg(λ n ))},
we obtain the upper Newton polygon of Λ(X ,Y ) with respect to Y . The polygon is a sequence of line segments E 1 , E 2 , . . . E t , with monotonous decreasing slopes. The slope of a segment of the Newton polygon of Λ(X ,Y ) joins, for instance, the point

(r, deg(A r )) to (r + s, deg(A r+s )) for some 0 ≤ r < r + s ≤ m. The corresponding slope is k = deg(A r+s ) -deg(A r ) s .
Denote by K Λ the set of the slopes. For any slope k ∈ K Λ , denote by s the length of the facet of slope k.

Proposition 4.1 (Weiss). Let Λ(X ,Y ) = Y n + λ n-1 Y n-1 + . . . + λ 1 Y + λ 0 ∈ F q [X ,Y ]
and K Λ the set of the slopes of its upper Newton polygon. Then, for every k ∈ K Λ , i) Λ(X ,Y ), as a polynomial in Y , has s roots α 1 , . . ., α s with the same degree -k and 

|α 1 | = . . . = |α s | = q -k , ii) the polynomial Λ k (X ,Y ) = s ∏ i=1 (Y -α i ) ∈ F q ((X -1 ))[Y ] divides Λ(X ,Y ), with Λ(X ,Y ) = ∏ k∈K Λ Λ k (X ,Y ).
4.2. Let Λ(X ,Y ) = λ n Y n + λ n-1 Y n-1 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ]. (4.0.2)
and ω a root of Λ.

If |λ n | = max 0≤k≤n |λ k |, then |ω| ≤ 1. Corollary 4.3. Let n ≥ 3. Let (4.0.3) Λ(X ,Y ) = Y n + λ n-1 Y n-1 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ]
with λ 0 = 0. Let us assume

deg λ n-1 < max 0≤k<n-2 deg λ k = deg λ n-2 < 2 deg λ n-1 .
Then, Λ has only two roots ω 1 , ω 2 ∈ F q ((X -1 )) satisfying |ω 1 | > 1 and |ω 2 | > 1 and at least one conjugate which lies on the unit circle.

Proof. First let us notice that the stated condition implies that deg λ n-1 > 0. Moreover the upper Newton polygon of Λ contains the line with a slope k 1 joining (n -1, deg λ n- 1) and (n, 0), the line with a slope k 2 joining (n -2, deg λ n- 2) and (n -1, degλ n-1 ) and the line with a slope

k 3 = 0 joining (n -2, deg λ n-2 ) and (n -k, deg λ n-k = deg λ n-2 ) for some 0 ≤ k < n -2. We have: deg λ n-2 -deg λ n-1 < deg λ n-1
. By Proposition 4.1 (i), Λ has exactly two dominant roots ω 1 , ω 2

|ω 1 | = q deg λ n-1 = q -k 1 > 1, |ω 2 | = q deg λ n-2 -deg λ n-1 = q -k 2 > 1.
There exists 0 ≤ k < n -2 such that deg λ k = deg λ n-2 ; hence Λ has one root, say ω 3 , such that

|ω 3 | = q -deg λ n-2 +deg λ k n-2-k = q -k 3 = 1. By Proposition 4.1 (ii), Λ admits the two factors Λ k 1 (X ,Y ) = (Y -ω 1 ) ∈ F q ((X -1 ))[Y ] and Λ k 2 (X ,Y ) = (Y -ω 2 ) ∈ F q ((X -1 ))[Y ].
Hence ω 1 and ω 2 ∈ F q ((X -1 )).

Theorem 4.4. Let Λ be the polynomial of degree n ≥ 3 defined by

Λ(Y ) = Y n + λ n-1 Y n-1 + λ n-2 Y n-2 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ]
with λ 0 = 0. Then, Λ has exactly 2 roots in F q ((X -1 )) which have an absolute value strictly greater than 1 and the remaining roots in F q ((X -1 )) which have an absolute value less or equal to 1, with at least one conjugate lying on the unit circle, if and only if the following conditions are satisfied: 

|λ n-1 | < |λ n-2 | = max 0≤i<n-2 |λ i |.
|λ n-k | = ∑ 1≤i 1 <i 2 <...<i k ≤n ω i 1 ω i 2 . . . ω i k ≤ |ω 1 ω 2 . . . ω k | ≤ |ω 1 ω 2 | = |λ n-2 | and |λ n-j | = ∑ 1≤i 1 <i 2 <...<i j ≤n ω i 1 ω i 2 . . . ω i j = |ω 1 ω 2 . . . ω j | = |ω 1 ω 2 | = |λ n-2 |. Then |λ n-2 | = max i =n-2 |λ i |.
The conditions are sufficient. The converse easily follows from Proposition 4.1.

Example 4.5.

Let Λ(Y ) = Y 3 + (X + 1)Y 2 + (X 4 + X 3 )Y + X 4 + X 3 + X 2 + X + 1 ∈ F 2 [X ][Y ].
By Theorem 4.4, Λ(Y ) has two roots ω 1 and ω 2 having absolute value strictly greater than 1 and one root ω 3 which has an absolute value exactly equal to 1. Using the facts that

• [ω 1 + ω 2 + ω 3 ] = X + 1, • [ω 1 ω 2 + ω 1 ω 3 + ω 2 ω 3 ] = X 4 + X 3 , • [ω 1 ω 2 ω 3 ] = X 4 + X 3 + X 2 + X + 1,
then ω 1 , ω 2 and ω 3 are defined by:

     ω 1 = X 2 + 1 + 1 Z 1 such that |Z 1 | > 1, ω 2 = X 2 + X + 1 Z 2 such that |Z 2 | > 1,
and

ω 3 = 1 + 1 Z 3 such that |Z 3 | > 1.
For j = 1, resp. j = 2, the fact that Λ(ω j ) = 0 implies that Z 1 , resp. Z 2 , is a root of the polynomial H 1 , resp. H 2 , defined by (4.0.4)

H 1 = Z 3 + (X 3 + 1)Z 2 + (X 2 + X )Z + 1, resp. (4.0.5) H 2 = (X 2 + X + 1)Z 3 + (X 3 + X 2 )Z 2 + (X 2 + 1)Z + 1.
Applying Proposition 4.1 to the equations (4.0.4) and (4.0.5), we obtain Z 1 , Z 2 ∈ F 2 ((X -1 )).

Therefore ω 1 , ω 2 ∈ F 2 ((X -1 )). Since Λ is monic and irreducible over F 2 [X ], we deduce that (ω 1 , ω 2 ) is a 2-Salem series and Λ is the minimal polynomial of ω 1 .

CRITERIA OF EXISTENCE OF ROOTS AND CONJUGATES

IN F q ((X -1 ))
Before giving the proof of our results, we establish some lemmas that will be needed.

Lemma 5.1. Let n ≥ 3. Let Λ be defined by

Λ(Y ) = Y n + λ n-1 Y n-1 + λ n-2 Y n-2 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ],
with λ 0 = 0. Suppose max i =n-2

deg λ i = deg λ n-2 ≥ 2 deg λ n-1 . If deg(λ n-2
) is odd, then Λ has no root in F q ((X -1 )) with absolute value > 1.

Proof. By Theorem 4.4, Λ has two roots ω 1 and ω 2 such that |ω 1 | > 1 and |ω 2 | > 1. The remaining roots ω 3 , . . . , ω n have an absolute value less or equal to 1 and at least one conjugate ω j lies on the unit circle for 3 ≤ j ≤ n. As deg λ n-2 ≥ 2 deg λ n-1 , then the upper Newton polygon of Λ contains the line connecting the points (n -2, deg λ n-2 ) and (n, 0).

The slope of this line is

k = - deg λ n-2 2 . By Proposition 4.1 (i), Λ has n -(n -2) = 2 roots
ω 1 and ω 2 having the absolute value q -k > 1. Since they have the same absolute value q -k , we would have

(5.0.1) deg ω 1 = deg ω 2 = -k = deg λ n-2 2 / ∈ Z.
Therefore ω 1 , ω 2 / ∈ F q ((X -1 )).

Lemma 5.2. Let q = 2 r for any r ≥ 1 and n ≥ 3. Let Λ be the polynomial defined by

Λ(Y ) = Y n + λ n-1 Y n-1 + λ n-2 Y n-2 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ] with λ 0 = 0. Suppose deg λ n-2 ≥ max i =n-2 deg(λ i ) and deg λ n-2 > 2 deg λ n-1 . Let ω 1 be a root of Λ such that |ω 1 | > 1. If deg λ n-3 = deg λ n-2 , then ω 1 ∈ F q ((X -1 )) \ F q ((X -1 )).
Proof. By Theorem 4.4 the polynomial Λ has exactly two roots ω 1 , ω 2 , such that |ω 1 | > 1, |ω 2 | > 1, and at least one, ω 3 , such that |ω 3 | = 1. According to Lemma 5.1, we conclude that deg λ n-2 is even. Set deg λ n-2 = 2s > 0, then deg ω 1 = deg ω 2 = s. Let us assume ω 1 ∈ F q ((X -1 )). Consider (5.0.2)

ω 1 = s ∑ i=0 a i X i + 1 Z 1 , resp. ω 2 = s ∑ i=0 b i X i + 1 Z 2 such that a s = 0, b s = 0 and |Z 1 | > 1, |Z 2 | > 1. Let λ n = 1, λ i = m i ∑ k i =0 α (k i ,i) X k i
with m i ≤ 2s for i = 0, . . ., n -4, m n-3 = 2s, and

λ n-2 = 2s ∑ j=0 α ( j,n-2) X j
such that α (2s,n-2) = 0. We now prove that necessarily

|Z 1 | ≤ 1, in contradiction with |Z 1 | > 1. Indeed, the identity Λ(ω 1 ) = 0 implies 0 = [ω 1 ] + 1 Z 1 n + λ n-1 [ω 1 ] + 1 Z 1 n-1 + λ n-2 [ω 1 ] + 1 Z 1 n-2 + . . . + λ 1 [ω 1 ] + 1 Z 1 + λ 0 .
Multiplying it by Z n 1 , we obtain

Z n 1 n ∑ k=0 λ k [ω 1 ] k + Z n-1 1 n ∑ k=1 kλ k [ω 1 ] k-1 + Z n-2 1 n ∑ k=2 k(k -1) 2 λ k [ω 1 ] k-2 + . . . + Z n-j 1 n ∑ k= j k(k -1) . . .(k -j + 1) j! λ k [ω 1 ] k-j + . . . + 1 = 0.
Whence Z 1 is the root of the polynomial H defined by

H(Z) = A n Z n + A n-1 Z n-1 + . . . + 1 ∈ F q [X ][Z]
where

A i = i ∑ k=0 n -k i -k λ n-k [ω 1 ] i-k , 0 ≤ i ≤ n. (5.0.3) Moreover (5.0.4) -λ n-1 = [ω 1 ] + [ω 2 ] + [ω 3 ]
and

λ n-2 = ω 1 ω 2 + ω 1 ω 3 + . . . + ω n-1 ω n (5.0.5) = [ω 1 ][ω 2 ] + Q (5.0.6) with Q ∈ F q [X ] and deg Q ≤ s -1. Notice that deg λ n-2 > 2 deg λ n-1 implies (5.0.7) deg λ n-1 = deg([ω 1 ] + [ω 2 ]) < s. then a s + b s = 0. Hence [ω 1 ] -[ω 2 ] = 2a s X s + (a s-1 -b s-1 )X s-1 + . . . + (a 0 -b 0 ). Since q = 2 r , for any r ≥ 1, then deg([ω 1 ] -[ω 2 ]) = s.
It follows from (5.0.4) and (5.0.5) that, for 0

≤ i ≤ n, 0 ≤ k ≤ i, deg(λ n-k [ω 1 ] i-k ) = is for k = 0, 2, deg(λ n-k [ω 1 ] i-k ) < is for k = 0, 2. Then deg A i ≤ is, 0 ≤ i ≤ n.
In view of (5.0.3), (5.0.4) and (5.0.5), we can write

A n = [ω 1 ] n + λ n-1 [ω 1 ] n-1 + λ n-2 [ω 1 ] n-2 + . . . + λ 0 = -[ω 3 ][ω 1 ] n-1 + [ω 1 ] n-2 Q + λ n-3 [ω 1 ] n-3 + . . . + λ 0 .
Thus deg A n = (n -1)s. Again, by (5.0.3), it is easy to show

deg A i ≤ (n -1)s, for 0 ≤ i ≤ n -1.
As a result, by applying Corollary 4.2, we obtain |Z 1 | ≤ 1, a contradiction.

PROOF OF THEOREM 1.2

For establishing the proof of Theorem 1.2 the cases n = 3 and n ≥ 4 are dissociated. Proposition 6.1 and Theorem 6.2, interesting in their own rights, play an important role in the characterization of the 2-Salem elements. Proposition 6.1. Let Λ be the polynomial defined by (6.0.1)

Λ(Y ) = Y 3 + λ 2 Y 2 + λ 1 Y + λ 0 ∈ F q [X ][Y ]
where

2 deg λ 2 < deg λ 1 = deg λ 0 . Suppose q = 2 r for any r ≥ 1. Let ω 1 be a root of Λ such that |ω 1 | > 1. Then ω 1 ∈ F q ((X -1 )) if and only if [ω 1 ] ∈ F q [X ] and deg λ 1 is even ( = 0).
Proof. The condition is necessary. Indeed, from Theorem 4.4, the root ω 1 belongs to F q ((X -1 )).

Imposing ω 1 ∈ F q ((X -1 )) implies [ω 1 ] ∈ F q [X ]
, and, from Lemma 5.1, deg λ 1 is even. For sufficiency, we consider that the decomposition

ω 1 = [ω 1 ] + 1/Z 1 , with |Z 1 | > 1,
holds, and we keep the same notations for [ω 1 ] as in (5.0.2). Then the steps of the proof are those of the proof of Lemma 5.2 until the equality (5.0.7). In view of (5.0.3), with deg λ 1 = 2s > 0, we can write

A 3 = [ω 1 ] 3 + λ 2 [ω 1 ] 2 + λ 1 [ω 1 ] + λ 0 = [ω 1 ] 3 -([ω 1 ] + [ω 2 ] + [ω 3 ])[ω 1 ] 2 + ([ω 1 ][ω 2 ] + [ω 1 ][ω 3 ] + [ω 2 ][ω 3 ] + Q)[ω 1 ] -[ω 1 ][ω 2 ][ω 3 ] + Q ′ = Q"
where deg Q ≤ s -1, and Q ′ and Q" are two polynomials with degree less than or equal to 2s -1. Thus deg

A 3 ≤ 2s -1. Notice that deg λ 1 > 2 deg λ 2 implies (6.0.2) deg λ 2 = deg([ω 1 ] + [ω 2 ] + [ω 3 ]) < s.
then a s + b s = 0. Hence

[ω 1 ] -[ω 2 ] = 2a s X s + (a s-1 -b s-1 )X s-1 + . . . + (a 0 -b 0 ). Since q = 2 r , then deg([ω 1 ] -[ω 2 ]) = s. Since A 2 = 3[ω 1 ] 2 + 2λ 2 [ω 1 ] + λ 1 = ([ω 1 ] -[ω 2 ] + [ω 3 ])[ω 1 ] + [ω 2 ][ω 3 ] + Q we have deg A 2 = deg([ω 1 ] -[ω 2 ]) + s = 2s. We have deg A 1 = s. Notice that A 3 = 0; if not, by Corollary 4.2, we would have |Z 1 | ≤ 1, a contradiction. We conclude that deg A 2 > max i =2 deg A i .
Finally, by Proposition 4.1, the only root of H with an absolute value > 1 is Z 1 and H admits the factor

(Z -Z 1 ) ∈ F q ((X -1 ))[Z]. Then Z 1 ∈ F q ((X -1 )) and ω 1 = [ω 1 ]+ 1 Z 1 ∈ F q ((X -1 )),
completing the proof.

Theorem 6.2. Let n ≥ 4 and suppose q = 2 r for any r ≥ 1. Let Λ be the polynomial

(6.0.3) Λ(Y ) := Y n + λ n-1 Y n-1 + λ n-2 Y n-2 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ] with λ 0 = 0. Suppose deg λ n-2 = max i =n-2 deg(λ i ) and deg λ n-2 > 2 deg λ n-1 . Let ω 1 be a root of Λ such that |ω 1 | > 1. Then ω 1 ∈ F q ((X -1 )) if and only if [ω 1 ] ∈ F q [X ], deg λ n-2 is even ( = 0) and deg λ n-3 < deg λ n-2 .
Proof. Let us show that the condition is necessary. From Theorem 4.4 the root ω 1 belongs to F q ((X -1 )). Assuming

ω 1 ∈ F q ((X -1 )) implies [ω 1 ] ∈ F q [X ]; from Lemma 5.1, deg λ n-2
is even, and, from Lemma 5.2, deg λ n-3 < deg λ n-2 .

For sufficiency, we consider that the root ω 1 ∈ F q ((X -1 )) can be decomposed as

ω 1 = [ω 1 ] + 1/Z 1 , with |Z 1 | > 1 and [ω 1 ] ∈ F q [X ].
We keep the same notations for [ω 1 ] as in (5.0.2). The steps of the proof are now those of the proof of Lemma 5.2 until the equality (5.0.7). Denote 2s := deg λ n-2 > 0. We have deg λ n-3 ≤ 2s -1.

Since n ≥ 4, the assumption deg

λ n-2 = max i =n-2
deg(λ i ) means that the upper Newton polygon of Λ has an horizontal facet of length ≥ 2. Then there exists at least one root of Λ, say ω 3 , such that |ω 3 | = 1. Using the expressions of the symmetric functions λ j s of the roots ω 1 , ω 2 , ω 3 , . . . as functions of [ω 1 ], [ω 2 ], [ω 3 ], . . ., as above, in (5.0.3), i.e. in

A n = [ω 1 ] n + λ n-1 [ω 1 ] n-1 + λ n-2 [ω 1 ] n-2 + . . . + λ 0 , we deduce deg A n ≤ (n -1)s -1. From the assumption 2s = deg λ n-2 > 2 deg λ n-1 we deduce (6.0.4) deg λ n-1 = deg([ω 1 ] + [ω 2 ] + [ω 3 ] + n ∑ j=4 [ω j ]) < s. Hence a s + b s = 0. The condition q = 2 r , r ≥ 1, implies a s = b s and [ω 1 ] = [ω 2 ]. Hence the degree of [ω 1 ] -[ω 2 ] = 2a s X s + (a s-1 -b s-1 )X s-1 + . . . + (a 0 -b 0 ) is exactly deg([ω 1 ] -[ω 2 ]) = s.
Now the expressions of the coefficients A n-1 and A n-2 are respectively:

A n-1 = [ω 1 ] n-2 ([ω 1 ] -[ω 2 ]) + (n -2)(Q[ω 1 ] n-3 + λ n-3 [ω 1 ] n-4 ) -λ n-3 [ω 1 ] n-4 + (n -4)λ n-4 [ω 1 ] n-5 + . . . + λ 1
and

A n-2 = (n -1)[ω 1 ] n-3 ([ω 1 ] -[ω 2 ]) + [ω 1 ] n-3 [ω 2 ] + + (n -2)(n -3) 2 [ω 1 ] n-4 Q + (n -3)(n -4) 2 λ n-3 [ω 1 ] n-5 + . . . + λ 1 . Therefore deg A n-1 = (n -2)s + deg([ω 1 ] -[ω 2 ]) = (n -1)s and deg A n-2 = (n -2)s.
We have: deg 

A n < deg A n-1 , deg A n-2 < deg A n-1 and it is easy to show max i =n-1 deg A i < deg A n-1 . Now A n = 0; if not,
factor (Z -Z 1 ) ∈ F q ((X -1 ))[Z]. Then Z 1 ∈ F q ((X -1 )) and ω 1 = [ω 1 ] + 1 Z 1 ∈ F q ((X -1 )),
completing the proof.

Remark 6.3.

(i) We mention that Theorem 6.2 is not always true in characteristic 3 in the case deg λ n-2 = 2 deg λ n-1 (see Example 6.4). (ii) We note also that this theorem is not always true for any field of characteristic p = 2 (see Example 4.5).

Example 6.4.

Let (6.0.5) Λ(Y ) = Y 3 + (X + 1)Y 2 + X 2 Y -X 2 + 2 ∈ F 3 [X ][Y ].
By Theorem 4.4, Λ(Y ) has two roots ω 1 and ω 2 having an absolute value strictly greater than 1 and one root ω 3 having an absolute value equal to 1. Set

ω 1 = X + 1 Z 1 ∈ F 3 ((X -1 )) such that |Z 1 | > 1.
Z 1 is the root of the polynomial defined by (6.0.6) 2Z 3 + 2X Z 2 + (X + 1)Z + 1 = 0.

By Proposition 4.1, we deduce that Z 1 ∈ F 4 ((X -1 )) and ω 1 ∈ F 3 ((X -1 )).

Now set ω 2 = X + 1 + 1 Z 2 ∈ F 3 ((X -1 )) with |Z 2 | > 1.
We obtain Z 2 as a root of the polynomial defined by (6.0.7)

Z 3 + (X 2 + X + 1)Z 2 + (2X 2 + X + 2)Z + 1 = 0.
Again by Proposition 4.1, we deduce that Z 2 ∈ F 3 ((X -1 )) and ω 2 ∈ F 3 ((X -1 )).

Since Λ is monic and irreducible over F 3 [X ], it follows that (ω 1 , ω 2 ) is a 2-Salem series and Λ is the minimal polynomial of ω 1 .

Proof of Theorem 1.2. Let us prove the necessary condition for (i) and (ii). Assume that ω 1 ∈ F q ((X -1 )) and n ≥ 3. By Proposition 6.1 or Theorem 6.2, and the notations in their respective proofs, we deduce that deg λ n-2 is even and = 0. Still with these notations, set 

λ n-2 = α 2s X 2s + α 2s-1 X 2s-1 + . . . + α 0 = [ω 1 ][ω 2 ] + Q (6.0.8) = (a s X s + a s-1 X s-1 + . . . + a 0 )(b s X s + b s-1 X s-1 + . . . + b 0 ) + Q. ( 6 
ω j = c ( j) 0 + c ( j) -1 X -1 + . . . ∈ F q ((X -1 )), j = 3, . . . , 3 + k -1.
From Proposition 4.1 (ii), we can see 3+k-1 ∑ j=3 ω j ∈ F q ((X -1 )) and therefore 3+k-1

∑ i=3 c (i) 0 ∈ F q . Now λ n-1 = β s X s + β s-1 X s-1 + . . . + β 0 = -[ω 1 ] + [ω 2 ] + 3+k-1 ∑ i=3 c (i) 0 .
Thus (6.0.10)

-β i = a i + b i , 1 ≤ i ≤ s. and (6.0.11) -β 0 = a 0 + b 0 + 3+k-1 ∑ i=3 c (i) 0 .
Suppose α 2s = -a 2 where s ≥ 1 and a ∈ F q is nonzero. Let us put a s = a. Then b s = -a and β s = 0. We deduce α 2s-1 = a s b s-1 + a s-1 b s = a(b s-1a s-1 ), then b s-1a s-1 ∈ F q . Since q = 2 r , for any r ≥ 1, and that b s-1 + a s-1 = -β s-1 ∈ F q , we have a s-1 , b s-1 ∈ F q . Let us show recursively that a s-i , b s-i ∈ F q , i = 2, 3, . . ., s.

Let us assume that a s-j , b s-j ∈ F q holds for j = 0, 1, . . ., i -1. From (6.0.9), we deduce

α 2s-i = a s b s-i + a s-1 b s-i+1 + . . . + a s-i b s = a(b s-i -a s-i ) + d s-i where d s-i := a s-1 b s-i+1 + . . . + b s-1 a s-i+1 ∈ F q , i = 2, . . . , s. Hence (6.0.12) b s-i -a s-i = a -1 (α 2s-i -d s-i ) ∈ F q . Since b s-i + a s-i = -β s-i ∈ F q , we have a s-i , b s-i ∈ F q .
Let us note d s-1 = 0. Combining (6.0.10) (6.0.11) and (6.0.12), we obtain (6.0.13)

a i = -2 -1 (β i + a -1 (α s+i -d i )), 0 ≤ i ≤ s -1.
Therefore, [ω 1 ] ∈ F q [X ] and from Theorem 6.2, we obtain ω 1 ∈ F q ((X -1 )). In the same way, we can show that ω 2 ∈ F q ((X -1 )). As Λ is monic and irreducible over F q [X ], then ω 1 is an algebraic integer. Therefore (ω 1 , ω 2 ) is a 2-Salem element in T ′ * 2 . Let us give the proof of the sufficency condition for (ii), in the same way. By Theorem 4.4 the polynomial Λ has two roots ω 1 and ω 2 such that |ω 1 | > 1, |ω 2 | > 1, and the third one ω 3 is on the unit circle. For n = 3, the assumptions deg λ 1 = deg(λ 0 ) and deg λ 1 > 2 deg(λ 2 ) hold. Then Proposition 6.1 can be applied to obtain the result. We have just to show that

[ω 1 ] ∈ F q [X ]. For proving [ω 1 ] ∈ F q [X
] we proceed as above, from (6.0.8) to (6.0.13), except that -β 0 is now equal to a 0 + b 0 + c 0 with Let Λ the polynomial over F 3 [X ] which is defined by (6.0.5). Then, in view of the above, Λ satisfies the conditions deg λ n-2 = 2 deg λ n-1 and -1 is not a square in F 3 . In contrast, Λ has two dominant roots ω 1 , ω 2 ∈ F 3 ((X -1 )). Example 6.7.

ω 3 = c 0 + c 1 X -1 + . . . ∈ F q ((X -1 )).
with deg B 0 = deg(ω 3 ) = 0, and then B 0 = b 0 ∈ F q \{0}. This is in contradiction with the assumption.

Then we can conclude that Λ 1 (ω 1 ) = 0 and Λ 2 (ω 2 ) = 0. The remaining roots of Λ 1 and Λ 2 have an absolute value ≤ 1.

( * * * ) Let us continue the generic case, assuming Λ 1 (ω 1 ) = Λ 1 (ω 3 ) = 0 and Λ 2 (ω 2 ) = 0. Since -A s-1 (resp. -B m-1 ) is the sum of the roots of Λ 1 (resp. Λ 2 ) and by the symmetric functions of the roots, it follows that

deg A s-1 = deg ω 1 = max i =s-1 deg A i and deg B m-1 = deg ω 2 > max j =m-1 deg B j .
In particular we have:

|A s-2 | ≤ |ω 1 | and |B m-2 | < |ω 2 |. Then deg λ n-2 = deg(A s-2 + A s-1 B m-1 + B m-2 ) = deg A s-1 + deg B m-1 . But the assumption deg λ n-2 ≥ 2 deg λ n-1 means that deg A s-1 + deg B m-1 ≥ 2 max{deg A s-1 , deg B m-1 }, from which we deduce deg A s-1 = deg B m-1 ,
and then deg λ n-2 = 2 deg A s-1 . By Lemma 5.1, Λ would have no root in F q ((X -1 )) with absolute value > 1, a contradiction. We deduce the irreducibility of Λ over F q [X ].

Theorem 7.2. Let n ≥ 4 and suppose q = 2 r for any r ≥ 1. Let Λ be the polynomial

(7.0.3) Λ(Y ) := Y n + λ n-1 Y n-1 + λ n-2 Y n-2 + . . . + λ 1 Y + λ 0 ∈ F q [X ][Y ].
Suppose that Λ has no root in F q , and assume that the coefficients λ i satisfy (i) max Then (ω 1 , ω 2 ) is a 2-Salem element and Λ is its minimal polynomial.

Proof. By Corollary 4.3, Λ(Y ) has two roots ω 1 and ω 2 in F q ((X -1 )), such that |ω 1 | > 1 and |ω 2 | > 1, and there is exactly one conjugate ω 3 which lies on the unit circle. Denote s := deg(ω 2 ) and m := deg(ω 1 ) respectively. They satisfy

1 < |ω 2 | = q deg λ n-2 -deg λ n-1 = q m < |ω 1 | = q deg λ n-1 = q s .
The other conjugates ω 4 , . . . , ω n ∈ F q ((X -1 )) have an absolute value strictly less than 1. as in (7.0.1). Then we discard the impossible cases as in the proof of Lemma 7.1, i.e. from (7.0.1) until ( * * * ) in the same steps. We conclude that Λ 1 (ω 1 ) = 0 and Λ 2 (ω 2 ) = 0. Now suppose that Λ 2 (ω 3 ) = 0, without loss of generality; so we obtain ω 1 ∈ S * and ω 2 ∈ T * . Applying Theorem 1.1, we get Let us examine the degrees of the terms of the sum. First we can see that Λ 1 (ω 4 ) = 0. Indeed, if we assume Λ 1 (ω 4 ) = 0, by the symmetric functions of the roots of Λ 2 we would obtain, using (i) and ( 7 

Corollary 4 .

 4 2 is an application of Proposition 4.1 obtained by Ben Nasr and Kthiri in[START_REF] Ben Nasr | Characterization of 2-Pisot elements in the field of Laurent series over a finite field[END_REF] in the context of 2-Pisot elements. In the case of 2-Salem elements, Proposition 4.1 has several direct consequences: the following Corollary 4.3 and Theorem 4.4.

Corollary

  

Proof. Let ω 1 ,

 1 ω 2 , . . . , ω n be the roots of Λ. The conditions are necessary. Suppose |ω 1 | ≥ |ω 2 | > 1 ≥ |ω 3 | ≥ . . . ≥ |ω n | and that there exists at least one j, 3 ≤ j ≤ n, such that |ω j | = 1. We have |λ n-2 | > |λ n-1 |. For k ∈ {1, . . ., n}, k = 2,

  .0.9) From (6.0.2) or (6.0.4), we have degλ n-1 < s. Hence a s = -b s ∈ F q , what implies the claim -α 2s = -a s b s = a 2 s = 0. In addition, for n ≥ 4, Theorem 6.2 implies that deg λ n-3 < deg λ n-2 holds.Let us prove the sufficient condition for (i). By Theorem 4.4 the polynomial Λ has two roots ω 1 and ω 2 such that |ω 1 | > 1, |ω 2 | > 1, with at least one conjugate ω j , 3 ≤ j ≤ n, on the unit circle. Let k denote the length of the horizontal facet of the upper Newton polygon. Since deg λ n-3 < deg λ n-2 , we have k ≥ 2. There are k conjugates ω j , j = 3, . . ., 3 + k -1, on the unit circle, by Proposition 4.1. Let

(Remark 6 . 5 .

 65 iii) This assertion follows immediately from Corollary 4.3. ✷ Note that Theorem 1.2 (i) is not always true in the case deg λ n-2 = 2 deg λ n-1 . To show this, we construct two counter-examples. Example 6.6.

i∈{1, 2 ,

 2 ...,n-4}∪{n-1} deg λ i < deg λ n-3 = deg λ n-2 < 2 deg λ n-1 , (ii) deg λ i+1 + deg λ i-1 2 < deg λ i for 1 ≤ i ≤ n -4, (iii) deg λ n-2 -deg λ n-1 < deg λ n-4 < deg λ n-1 .

Since deg λ i+1 + deg λ i-1 2 <

 2 deg λ i , for 1 ≤ i ≤ n -4, then deg λ i+1 -deg λ i < deg λ ideg λ i-1 ;all the facets of the upper Newton polygon of Λ are of length 1. We have|ω j | = q -k j < 1, 4 ≤ j ≤ n, with (7.0.4) -k j = deg ω j = deg λ n-jdeg λ n-j+1 .We now assume that Λ is reducible and show the contradiction. With the same notations as in the proof of Lemma 7.1, let us suppose that Λ(Y ) admits the decompositionΛ(Y ) = Λ 1 (Y ).Λ 2 (Y ) (7.0.5) = (Y s + A s-1 Y s-1 + . . . + A 1 Y + A 0 )(Y m + B m-1 Y m-1 + . . . + B 1 Y + B 0 )

( 7 .

 7 0.6) s = deg A s-1 = deg ω 1 > max i≤s-2 deg A i and (7.0.7) m = deg B m-1 = deg B m-2 = deg ω 2 > max j≤m-3 deg B j .The contradiction will come from the coefficient λ n-4 . From (7.0.5),(7.0.8) λ n-4 = A s-4 + A s-3 B m-1 + A s-2 B m-2 + A s-1 B m-3 + B m-4 .

  .0.4), deg B m-3 = deg(ω 2 ω 3 ω 4 ) = deg λ n-4 -deg λ n-1 < 0, a contradiction. In the list {ω 1 , ω 2 , ω 3 , ω 4 , . . . , ω n } the roots ω 1 and ω 4 are roots of Λ 1 , the roots ω 2 and ω 3 are roots of Λ 2 , and the other roots are distributed as roots of Λ 1 or Λ 2 .Then deg B m-3 > 1. From (7.0.6) we deduce (7.0.9) max{degA s-3 , deg A s-4 } < s = deg A s-1 < deg A s-1 + deg B m-3 = deg(A s-1 B m-3 ).On the other hand, deg A s-2 > 0. From (7.0.7) we deducemax{deg B m-3 , deg B m-4 } < deg B m-2 = m = deg B m-1 < deg A s-2 + deg B m-2 .Let us show that deg(As-2 B m-2 ) < s. Indeed, from (iii), λ n-4 < deg λ n-1 = s; then deg λ n-4 = deg(ω 1 ω 2 ω 3 ω 4 ) = deg(ω 1 ) + deg(ω 2 ) + deg(ω 4 ) = s + m + deg(ω 4 ) < s. Thus deg(ω 4 ) <deg(ω 2 ) = -m, what means deg(A s-2 B m-2 ) = deg(ω 1 ) + deg(ω 4 ) + deg B m-1 < sm + m = s.In the same way, using (ii), deg(A s-3 B m-1 ) = deg(ω 1 ) + deg(ω 4 ) + deg(ω 5 ) + deg B m-1 < sm -(m + 1) + m < s. We deduce deg(λ n-4 ) = deg(A s-1 B m-3 ).

  is the degree of the polynomial [ω]. Thus, we define the absolute value

	|ω| =	q γ(ω) for ω = 0; 0 for ω = 0.
	Since |.| is not archimedean, |.| fulfills the strict triangle inequality
	|ω + ν| ≤ max (|ω|, |ν|) and |ω +

The polynomial

satisfies the conditions deg λ n-2 = 2 deg λ n-1 and -1 is a square in F 5 . By Proposition 4.1 (i), Λ 2 has exactly two dominant roots ω 1 and ω 2 with

The other conjugated roots ω 3 and ω 4 have the same degree equal to 0. Suppose [ω 1 ] ∈ F 5 [X ], using the fact that

These equations have no solutions in F 5 .

A CRITERIUM OF IRREDUCIBILITY

In the following the assumption "λ 0 = 0" is replaced by the stronger hypothesis "Λ has no root in F q " in order to reach the property of being irreducible. 

Suppose that Λ has no root in F q and max i<n-3

Proof. By considering the upper Newton polygon of Λ, the polynomial Λ has exactly two roots ω 1 and ω 2 such that |ω 1 | > 1 and |ω 2 | > 1, one root ω 3 such that |ω 3 | = 1 and the remaining roots ω 4 , . . . , ω n have an absolute value strictly less than 1. Suppose that Λ(Y ) admits the decomposition

There are several cases to show the contradiction. If we had Λ 1 (ω i ) = 0 for i = 1, 2, 3, all the roots of Λ 2 would have an absolute value strictly less 1, which is a contradiction, because |B 0 | > 1. If we had Λ 1 (ω i ) = 0 for i = 1, 2, and Λ 2 (ω 3 ) = 0, with m = deg Λ 2 > 1, then one of the roots of Λ 2 would have an absolute value equal to 1 and the other roots of Λ 2 have an absolute value strictly less 1, which is a contradiction, since |B 0 | > 1. Now, if Λ 1 (ω 1 ) = Λ 1 (ω 2 ) = 0, and Λ 2 (ω 3 ) = 0 with deg Λ 2 = 1, all the other conjugates of ω 1 are roots of Λ 1 , then, from (7.0.1), (7.0.2)

But, from (7.0.9), we have

The contradiction comes from (iii) since deg(λ n-4 ) should be

We deduce from Theorem 7.2 that Λ is irreducible over F 3 [X ] and has 5 roots defined by

. . These roots correspond to the facets of the upper Newton polygon associated with the 2-Salem minimal polynomial Λ. Since Λ is monic then w 1 is an algebraic integer. Therefore (ω 1 , ω 2 ) is a 2-Salem element.
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