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ALPHABETS, REWRITING TRAILS AND PERIODIC REPRESENTATIONS IN

ALGEBRAIC BASES

DENYS DUTYKH† AND JEAN-LOUIS VERGER-GAUGRY‡

ABSTRACT. For β > 1 a real algebraic integer (the base), the finite alphabets A ⊂ Z

which realize the identity Q(β ) = PerA (β ), where PerA (β ) is the set of complex numbers

which are (β ,A )-eventually periodic representations, are investigated. Comparing with

the greedy algorithm, minimal and natural alphabets are defined. The natural alphabets are

shown to be correlated to the asymptotics of the Pierce numbers of the base β and Lehmer’s

problem. The notion of rewriting trail is introduced to construct intermediate alphabets

associated with small polynomial values of the base. Consequences on the representations

of neighbourhoods of the origin in Q(β ), generalizing Schmidt’s theorem related to Pisot

numbers, are investigated. Applications to Galois conjugation are given for convergent

sequences of bases γs := γn,m1,...,ms such that γ−1
s is the unique root in (0,1) of an almost

Newman polynomial of the type −1+x+xn+xm1 + . . .+xms , n ≥ 3, s ≥ 1, m1 −n≥ n−1,

mq+1 −mq ≥ n− 1 for all q ≥ 1. For β > 1 a reciprocal algebraic integer close to one, the

poles of modulus < 1 of the dynamical zeta function of the β -shift ζβ (z) are shown, under

some assumptions, to be zeroes of the minimal polynomial of β .

Keywords: alphabet, periodic representation, Pierce number, Galois conjugate, beta-

shift, dynamical zeta function.
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1. INTRODUCTION

For a general complex number β ∈C, |β |> 1, and a finite alphabet A ⊂C, we define the

(β ,A )-representations as expressions of the form ∑k≥−L akβ−k, ak ∈ A , for some integer

L ∈ Z. They are Laurent series of 1/β . We define

PerA (β ) := {x ∈ C | x hasaneventuallyperiodic(β ,A )−representation}.
In this note attention is focused on the complex numbers β which are real algebraic integers

> 1, close to 1, assuming that β has no conjugate on the unit circle, and on the alphabets

A ⊂ Z, depending upon β , involved in the identity:

Q(β ) = PerA (β ).

We write Q for the set of rational numbers, Q(β ) for the smallest sub-field of C containing

β . Indeed, such an identity always holds by the following theorem.

Theorem 1.1 (Kala -Vávra [13]). Let β ∈ C be an algebraic number of degree d, |β |> 1,

and let adxd − ad−1xd−1 − . . .− a1x− a0 ∈ Z[x] be its minimal polynomial. Suppose that

|β ′| 6= 1 for any conjugate β ′ of β . Then there exists a finite alphabet A ⊂ Z such that

(1.0.1) Q(β ) = PerA (β ).

Theorem 1.1 is a generalization of a previous theorem of Baker, Masáková, Pelantová

and Vávra [1] in which 1/ad was assumed to belong to Z[β ,β−1], an assumption removed

in [13].

In Section 2 we revisit the construction of an alphabet A ⊂ Z, symmetrical with respect

to the origin, which allows (1.0.1) to hold, given in [12]. We show that the size of this

alphabet is correlated to the Pierce numbers ∆N(β ) of β . The numerical explosion of ∆N(β )
with N has been investigated in [7]. Pierce numbers play an important role in the Mahler

measure of β and the search of big prime numbers (Lehmer [19], Einsiedler, Everest and

Ward [7]). The alphabet constructed by this means is called the natural alphabet realizing

(1.0.1). We denote it by A
(nat)

β
. It has no reason to be the smallest one realizing (1.0.1).

Remark 1.2. Denote by

Â :=
{
{−m,−m+1, . . . ,−1,0,+1, . . . ,m−1,m} | m ∈ N\{0}

}

the set of symmetrical alphabets with digits in Z. It is totally ordered by inclusion. If

A1 = {−m1, . . . ,0, . . . ,m1}, A2 = {−m2, . . . ,0, . . . ,m2}, are two elements of Â , then

A1 ⊂ A2 i f and only i f m1 ≤ m2.

The explicit construction of the map β →A
(nat)

β
∈ Â , as in Section 2, proves the existence

of at least one alphabet say Aβ ∈ Â realizing (1.0.1), included (a priori not necessarily

strictly) in A
(nat)

β
. This justifies the terminology “natural” for A

(nat)
β

. Let us note that, if a

finite alphabet Aβ ∈ Â realizes (1), then any of its finite supersets does that, and could be

bigger than A
(nat)

β
. Therefore there is interest in characterizing the symmetrical alphabets

Aβ ⊂A
(nat)

β
which realize (1.0.1). Because of the total ordering of Â , among all of them,

there is an unique smallest element, say Amini. We have
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{−1,0,+1} ⊂ . . .⊂ Amini ⊂ . . .⊂ Aβ ⊂ . . .⊂ A
(nat)

β
⊂ . . .

Problem: For β any real algebraic integer > 1 such that β has no conjugate on the unit

circle, what is the minimal symmetrical alphabet A ⊂ Z, A ∈ Â , realizing (1.0.1)?

The minimal alphabet Amini a priori depends upon β . Intermediate alphabets between

Amini and A
(nat)

β
realizing (1.0.1) are investigated by introducing rewriting trails in Section

3.

If β is a Pisot number the problem is solved by the following theorem [23], with the

minimal alphabet A = {−1,0,+1} (independent of β ). The set Per{0,1}(β ) is the set of

(eventually) periodic points for the β -transformation Tβ : x →{βx} on [0,1), i.e. for the set

of points whose orbits under Tβ , are finite. The (β ,{−1,0,1})-eventually periodic repre-

sentations of the elements x ∈Q(β )∩(−1,+1) are the Rényi expansions, equivalently they

are constructed from the greedy algorithm. Then all the elements of Q(β ) have eventually

periodic representations.

Theorem 1.3 (K. Schmidt [23]). Let β > 1 be a real number.

(1) If Q∩ [0,1)⊂ Per{0,1}(β ), then β is either a Pisot or a Salem number.

(2) If β is a Pisot number, then Per{0,1}(β ) =Q(β )∩ [0,1].

If β is a Pisot number and x ∈ [−1,0]∩Q(β ), then −x admits an eventually periodic

representation in base β , with digits in {−1,0}, which is the opposite of the one of |x|,
so that any x ∈ [−1,+1], hence any x ∈ Q(β ), has an eventually periodic representation

with digits in the symmetric alphabet {−1,0,+1}. By comparison, the natural alphabets

A
(nat)

βk
associated to the Pisot numbers βk belonging to an increasing sequence tending to

(1+
√

5)/2, calculated by means of Proposition 2.1, are studied in Section 2.2.

Daróczy and Kátai [4], and later Thurston [27], have proved that for any non-real β ∈
C, |β | > 1, there exists a finite alphabet A ⊂ C such that every x ∈ C has a (β ,A )-
representation. The search for periodic representations in radix systems goes back to

Kovács [15] and to Kovács and Környei [16] (see also Pethő [22]). For the Rényi-Parry

numeration system in base β > 1, the idea of the enlargement of the alphabet to obtain

the eventual periodicity for the representations of the elements of the number field Q(β ) is

recurrent.

Theorem 1.4 extends Schmidt’s Theorem 1.3 to the representations of the elements of

Q(γ)∩V where V is a neighbourhood of the origin, and γ > 1 an algebraic integer, root

of a polynomial with coefficients in {−1,0,1}, having no conjugate on the unit circle. In

Section 3.1 we introduce the notion of rewriting trail. We show that intermediate alphabets,

between the minimal and the natural ones, are produced by rewriting trails. The proof of

Theorem 1.4 is based on rewriting trails, and makes use of Kala - Vavra’s Theorem 1.1.

Theorem 1.4. Let γ > 1 be an algebraic integer, root of a polynomial Sγ(X) = X s −
∑s−1

i=0 ts−iX
i, with s ≥ 1, ti ∈ Z, |ti| ≤ 1, not necessarily irreducible, such that |γ ′| 6= 1 for

any conjugate γ ′ of γ .

Let P(X) = 1+ a1X + a2X2 + . . .+ ad−1Xd−1 + adXd ∈ Z[X ], d = degP ≥ 1, be an

integer polynomial. Denote by H = maxi=1,...,d |ai| the height of P.
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Let 0 < η < 1 and suppose 0 6= |P(γ)| < η . Then the polynomial value P(γ) ∈ Q(γ)
admits at least one eventually periodic representation

(1.0.2) P(γ) = R(γ−1)+
1

γL

∞

∑
j=0

1

γ jr
T (γ−1) ∈ PerA (γ)

with

(i) alphabet A = {−m, . . . ,+m} ⊂ Z , m = ⌈2((2d −1)H +2d)/3⌉, independent of s

and γ ,

(ii) R(X) ∈A [X ], degR ≤ s−1, T (X) ∈A [X ], degT ≤ s−1, and L and r being some

integers satisfying L > degR, r > degT ,

(iii) preperiod

R(γ−1) =
aw

γw
+

aw+1

γw+1
+ . . .+

aw+s−1

γw+s−1
, a j ∈ A , j = w, . . . ,w+ s−1, aw 6= 0,

with w ≥ 1 satisfying
κγ ,A

η ≤ γw−1 for some positive constant κγ ,A depending upon

γ and A .

Remark 1.5. In Theorem 1.4 the polynomial Sγ(X) could have some zeroes of modulus

one. For instance, if it is of the form Sγ(X) = A(X)×C(X) with A(X) a product of cy-

clotomic polynomials and C(X) the minimal polynomial of γ . The assumption that the

conjugates γ ′ do not lie on the unit circle only concerns the zeroes of C(X).

In Section 3.2 Theorem 1.4 is applied to the Galois conjugation of eventually periodic

representations of polynomial values of the base γ for γ runing over a sequence of real alge-

braic integers converging towards a reciprocal algebraic integer β > 1. The consequences

on the Galois conjugates of β of modulus < 1 are investigated in the context of automor-

phisms of complex numbers (Kestelman [14], Yales [30]); the absence of continuity of the

Q-automorphisms of conjugation is compensated in some sense by the eventual periodicity

of the representations. Proposition 3.5 reports some consequences on the relations between

the poles of the dynamical zeta function ζβ (z) of the β -shift (see e.g. Solomyak [25]) and

the zeroes of the minimal polynomial of β . Examples of natural alphabets related to se-

quences of polynomials of the class B are studied in Section 3.3, in terms of sequences of

Mahler measures.

2. NATURAL ALPHABETS IN (β ,A )-PERIODIC REPRESENTATIONS OF Q(β )

Let t ≥ 1. A polynomial Q(X) = ∑d
i=0 aiX

i ∈ Z[X ] is said to have a dominant coef-

ficient, resp. to be a t-polynomial, if there exists an integer j ∈ {0,1, . . . ,d} such that

|a j|> ∑d
i=0,i 6= j |ai|, resp. |a j|> t ∑d

i=0,i 6= j |ai| . Let β be an algebraic integer > 1 having no

conjugate on the unit circle. If the ideal (Pβ ) = Pβ (X)Z[X ] generated by the minimal poly-

nomial Pβ (X) of β contains a 1-polynomial ∑d
i=0 aiX

i , of dominant coefficient a j, then, by

Proposition 5.1 in [12] and Theorem 25 in [1], the alphabet

(2.0.1) {−m, . . . ,0, . . . ,m}, with m := ⌈|a j|−1

2
⌉+

d

∑
i=0,i 6= j

|ai|,

satisfies (1.0.1). Here ⌈⌉ denotes the upper integer part. In Section 2.1 we recall an effective

construction of such a 1-polynomial in (Pβ ). The proof of Proposition 2.1 is reproduced
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from [12] to fix the notations. The way it is obtained comes from a necessarily finite

number of successive iterations of the companion matrix of Pβ .

2.1. Pierce numbers of the base and integer polynomials with a dominant coefficient.

Proposition 2.1. Let α be an algebraic integer, of degree d, |α|> 1, of minimal polynomial

Pα(X) = ∏d
j=1(X −α( j)), with α = α(1) and |α( j)| 6= 1 for j = 2,3, . . . ,d. Denote by j0 the

number of conjugates α( j) of α which have a modulus > 1. Then, for any t ≥ 1, there exist

an integer N and a polynomial

Q(X) = XdN +a1X (d−1)N +a2X (d−2)N + . . .+ad−1XN +ad ∈ Z[X ]

such that Q(α) = 0, setting a0 = 1, with

(2.1.1) |a j0|> t ∑
i∈{0,1,2,...,d}\{ j0}

|ai|.

Proof. We have j0 ≥ 1. The minimal polynomial

Pα(X) =
d

∏
j=1

(X −α( j)) = Xd +g1Xd−1 +g2Xd−2 + . . .+gd−1X +gd ∈ Z[X ]

can be written as the characteristic polynomial of α , from the companion matrix [18]

H =




0 0 . . . 0 −gd

1 0 0 . . . 0 −gd−1

0 1 0 . . . 0 −gd−2
...
... 1 0 −g2

0 . . . 0 1 −g1



.

We have: det(H−X Id) = (−1)dPα(X), where Id is the identity matrix. The eigenvalues of

H are the zeroes of Pα(X). For n ≥ 2 let us define

Pα,n(X) := (−1)d det(Hn −X Id) ∈ Z[X ].

The polynomial Pα,n(X), of degree d, has integer coefficients

Pα,n(X) =
d

∏
j=1

(X −αn
( j)) = Xd +g1(n)X

d−1+g2(n)X
d−2+ . . .+gd−1(n)X +gd(n).

We set: g j = g j(1) for j = 1,2, . . . ,n and g0 = g0(n) = 1 for n ≥ 1. The coefficients g j(n)
are related to the symmetric functions of the roots. Without loss of generality, let us assume:

|α(1)| ≥ |α(2)| ≥ . . .≥ |α( j0)|> |α( j0+1)| ≥ . . .≥ |α(d)|,

where j0 := max{i : 1 < |α(i)|}. The choice of j0 guarantees

∣∣∣∣∣
α(i1)α(i2) . . .α(ir)

α(1)α(2) . . .α( j0)

∣∣∣∣∣< 1
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for any subset {i1, i2, . . . , ir} ⊂ {1,2, . . . ,d} and {i1, i2, . . . , ir} 6= {1,2, . . . , j0}. Then, for

all choices of {i1, i2, . . . , ir} 6= {1,2, . . . , j0}, we have:

lim
n→∞

αn
(i1)

αn
(i2)

. . .αn
(ir)

αn
(1)

αn
(2)

. . .αn
( j0)

= 0.

Now, for all n ≥ 1,1 ≤ j ≤ d, we have:

g j(n) = ∑
{i1,i2,...,i j}∈S j

αn
(i1)

αn
(i2)

. . .αn
(i j)

where S j = {P ⊂ {1,2, . . . ,d} : #P = j} is the set of all subsets of {1,2, . . . ,d} with

cardinality j. Since

lim
n→∞

g j(n)

αn
(1)α

n
(2) . . .α

n
( j0)

=

{
0 for all j = 1,2, . . . ,d and j 6= j0

(−1) j for j = j0
,

we deduce that, for any t > 0, there exists an integer N = N(t) such that

|g j0(N)|
|αN

(1)
αN
(2)

. . .αN
( j0)

| > t ∑
j∈{0,1,2,...,d}, j 6= j0

|g j(N)|
|αN

(1)
αN
(2)

. . .αN
( j0)

|

equivalently

(2.1.2) |g j0(N)|> t ∑
j∈{0,1,2,...,d}, j 6= j0

|g j(N)|.

This inequality gives the result (2.1.1), with Q(X) = Pα,N(X
N). �

Definition 2.2. The smallest integer N = N(t) for which (2.1.2) is satisfied is called the

dominance index of Pα (or of α) for the value t ≥ 1. For t = 1, N(1) is called the dominance

index of Pα (or of α).

Definition 2.3. Let α > 1 be a real algebraic integer. With the same notations as in Propo-

sition 2.1 and its proof, the alphabet := {−m, . . . ,0, . . . ,m}, with

m := ⌈|g j0(N)|−1

2
⌉+

d

∑
j=0, j 6= j0

|g j(N)|

and N the dominance index of α , is called the natural alphabet of α , and denoted by

A
(nat)

α .

For α > 1 any real algebraic integer, the existence of the natural alphabet A
(nat)

α implies

that α satisfies the weak representation of zero property, or, for short, α is WRZ, in the ter-

minology of [12]. Then, in the Sections 4 and 5 in [12], Frougny, Pelantova and Svobodova

provide a parallel algorithm “Algorithm II” which gives access to (1.0.1).

Proposition 2.4. Let α > 1 be a real algebraic integer. With the same notations as in

Proposition 2.1 and its proof, with N = N(t) the smallest value which satisfies (2.1.2), we

have:

(2.1.3) |g j0(N)|> t

1+ t
∆N(α),
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where |Pα,N(1)| = ∆N(α) =
∣∣∏d

j=1(1 −αN
( j))

∣∣ is the N-th Pierce number of α , and the

natural alphabet A
(nat)

α = {−m, . . . ,0, . . . ,m} is such that

m ≥ ⌈2−1(2−1∆N(α)−1)⌉.

Proof. In the continuation of (2.1.2), we have

∑
j∈{0,1,2,...,d}, j 6= j0

|g j(N)| ≥
∣∣∣

d

∑
j=0

g j(N)−g j0(N)
∣∣∣=

∣∣∣Pα,N(1)−g j0(N)
∣∣∣

≥
∣∣∣|Pα,N(1)|− |g j0(N)|

∣∣∣≥ ∆N(α)−|g j0(N)|.

Therefore

(2.1.4) |g j0(N)|> t ∆N(α)− t |g j0(N)|,
equivalently (2.1.3). We now take t = 1, N = N(1) the dominance index of α , and apply

Proposition 5.1 in [12] and Theorem 25 in [1]. �

Remark 2.5. To each polynomial of the form Pα as in Proposition 2.1 there is an as-

sociated endomorphism TPα of the d-torus, given by the natural action of the compan-

ion matrix of Pα . TPα is an ergodic transformation with respect to Lebesgue measure,

and ∆N(Pα) is the number of points of period N under TPα [8]. The Mahler measure

M(α) = ∏d
i=1 max{1, |α(i)|} of α is related to the dynamical properties of the correspond-

ing toral endomorphism. The condition of having no root on the unit circle implies expan-

siveness of TPα as a topological dynamical system. The topological entropy of TPα is equal

to LogM(α) [20].

Remark 2.6. The link between the natural alphabet A
(nat)

β
and the Mahler measure M(α)

of the base of numeration α naturally comes from Proposition 2.1 where j0 counts the

number of roots outside the closed unit disk. It can be estimated roughly as follows: first

the N-th Pierce number of α is

∆N(α) =
∆N(α)

∆N−1(α)
× ∆N−1(α)

∆N−2(α)
× . . .× ∆2(α)

∆1(α)
∆1(α),

with ∆1(α) = |Pα(1)|. From Lehmer [19],

M(α) = lim
q→∞

∆q+1(α)

∆q(α)
,

we deduce, without taking into account the type of convergence towards M(α), as a rough

estimate for the lower bound,

(2.1.5) |g j0(N)|> 1

2
M(α)N−1|Pα(1)|,

and the approximate lower bound ⌈2−1(2−1M(α)N−1|Pα(1)|−1)⌉ for m. Let us note that

the sequence (∆n(α))n is fairly chaotic, as the sequence of the Pierce numbers of α , from

the heuristics of Einsiedler, Everest and Ward [7].
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FIGURE 1. Natural alphabets of the Pisot numbers βk.

2.2. Natural alphabets for a convergent sequence of Pisot numbers. In this paragraph

we examplify the hugeness of the natural alphabets for a sequence of Pisot numbers.

Let us consider the sequence of irreducible integer polynomials (from Theorem 7.2.1 in

[3])

P2k(z) = (1− z2k(1+ z− z2))/(1− z), k ≥ 1.

The dominant root of P2k(z) is denoted βk > 1. All the other roots have a modulus < 1. For

all k ≥ 1, we have: βk < (1+
√

5)/2. The sequence (βk)k≥1 is an increasing sequence of

Pisot numbers, with limit: limk→∞ βk =
1+

√
5

2
. For k = 1 we have P2(z) = z3 − z− 1 and

β1 is the smallest Pisot number. Let τ = β∞ = (1+
√

5)/2. It is the dominant root of the

trinomial z2 − z−1.

The dominance index of τ is 3, and the natural alphabet A
(nat)

τ is = {−3, . . . ,+3}. The

growth rate of the natural alphabet A
(nat)

βk
= {−mk, . . . ,mk} is represented as a function of

k in Figure 1.

3. SMALL HEIGHTS AND EVENTUALLY PERIODIC REPRESENTATIONS OF

POLYNOMIAL VALUES OF THE BASE

3.1. Rewriting trails, intermediate alphabets - Proof of Theorem 1.4. Denote by S∗γ (X)=

X sSγ(1/X) = 1− t1X − t2X2− . . .− ts−1X s−1 − tsX
s the reciprocal polynomial of Sγ(X) =

X s −∑s−1
i=0 ts−iX

i. The coefficients ti are in {−1,0,+1}. The algebraic integer γ is called

the base and S∗γ(γ
−1) = 0.

We want to express P(γ) as a (γ,A )- eventually periodic representation with a certain

alphabet A to be defined. This objective means that, first, we have to express P(γ) as a

Laurent series of 1/γ .

We now introduce a construction, that we call “rewriting trail from “S∗γ ” to “P”, at

γ−1”, to reach this objective, and which will allow us to show that a symmetrical alphabet



ALPHABETS, REWRITING TRAILS AND PERIODIC REPRESENTATIONS IN ALGEBRAIC BASES 9

A = {−m, . . . ,0, . . . ,m} can be defined and is such that m depends upon H and deg(P),
independently of s and γ .

The starting point is the identity 1 = 1, to which we add 0 =−S∗γ(γ
−1) in the right hand

side. Then we define a rewriting trail from

(3.1.1) 1 = 1−S∗γ(γ
−1) = t1γ−1 + t2γ−2 + . . .+ ts−1γ−(s−1)+ tsγ

−s

to

−a1γ−1 −a2γ−2 + . . .−ad−1γ−(d−1)−adγ−d = 1−P(γ−1).

A rewriting trail will be a sequence of integer polynomials, whose role will consist in

“restoring” the coefficients of 1−P(γ−1) one after the other, from the left, by adding “0”

conveniently at each step to both sides of (3.1.1). At the first step we add 0 = (−a1 −
t1)γ

−1S∗γ(γ
−1); and we obtain

1 =−a1γ−1

+(−(−a1 − t1)t1+ t2)γ
−2 +(−(−a1 − t1)t2 + t3)γ

−3 + . . .

so that the height of the polynomial

(−(−a1 − t1)t1+ t2)X
2+(−(−a1 − t1)t2+ t3)X

3+ . . .

is ≤ H +2. At the second step we add 0 = (−a2 − (−(−a1 − t1)t1+ t2))γ
−2S∗γ (γ

−1). Then

we obtain

1 =−a1γ−1 −a2γ−2

+[(−a2 − (−(−a1 − t1)t1 + t2))t1+(−(−a1 − t1)t2+ t3)]γ
−3 + . . .

where the height of the polynomial

[(−a2 − (−(−a1 − t1)t1 + t2))t1+(−(−a1 − t1)t2+ t3)]X
3+ . . .

is ≤ H +(H +2)+(H +2) = 3H +4. Iterating this process d times we obtain

1 =−a1γ−1 −a2γ−2 − . . .−adγ−d

+ polynomial remainder in γ−1.

Denote by V (γ−1) this polynomial remainder in γ−1, for some V (X) ∈ Z[X ], and X spe-

cializing in γ−1. If we denote the upper bound of the height of the polynomial remainder

V (X), at step q, by λqH + vq, we readily deduce: vq = 2q, and λq+1 = 2λq +1, q ≥ 1, with

λ1 = 1; then λq = 2q −1.

To summarize, we obtain a sequence (A′
q(X))q≥1 of rewriting polynomials involved in

this rewriting trail; for q≥ 1, A′
q ∈Z[X ], deg(A′

q)≤ q and A′
q(0) =−1. The first polynomial

A′
1(X) is −1+(−a1 − t1)X . The second polynomial A′

2(X) is −1+(−a1 − t1)X +(−a2 −
(−(−a1 − t1)t1+ t2))X

2, etc.

For q ≥ deg(P), all the coefficients of P are restored; denote by (h′q, j) j=0,1,...,s−1 the

s-tuple of integers produced by this rewriting trail, at step q. It is such that

(3.1.2) A′
q(γ

−1)S∗γ(γ
−1) =−P(γ−1)+ γ−q−1

(s−1

∑
j=0

hq, jγ
− j
)
.
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Then take q = d. The lhs of (3.1.2) is equal to 0. Thus

P(γ−1) = γ−d−1
(s−1

∑
j=0

hd, jγ
− j
)

=⇒ P(γ) =
s−1

∑
j=0

hd, jγ
− j−1.

The height of the polynomial W (X) :=∑s−1
j=0 hd, jX

j+1 is ≤ (2d −1)H+2d . We now assume

|P(γ)| < η . By Kala-Vavra’s Theorem 1.1 there exist an alphabet A ⊂ Z, a preperiod

R(X) ∈ A [X ], a period T (X) ∈ A [X ] such that

W (γ−1) = P(γ) = R(γ−1)+ γ−degR−1
∞

∑
j=0

1

γ j(degT+1)
T (γ−1)

Since the relation S∗γ(γ
−1) = 1− t1γ−1− t2γ−2− . . .− ts−1γ−s+1− tsγ

−s = 0 holds, we may

assume degR ≤ s−1, degT ≤ s−1. Then, for X specialized at γ−1, we have the identity

(3.1.3) W (X) = R(X)+XL T (X)

1−X r

for some positive integers L,r. The height of (1−X r)W (X) is ≤ 2((2d − 1)H + 2d) and,

with A assumed = {−m, . . . ,0, . . . ,+m}, the height of (1−X r)R(X)+XLT (X) is less than

3m. Therefore m is ≤ 2((2d −1)H +2d)/3. We can take m = ⌈2((2d −1)H +2d)/3⌉.

Since the algebraic norm N(γ) is equal to ±1 we cannot expect the uniqueness of the

representations (3.1.3), for X = γ−1, by [16]. However, for any (γ,A )-eventually periodic

representation of P(γ)

P(γ) =W (γ−1) =
a′w
γw

+
a′w+1

γw+1
+

a′w+2

γw+2
+ . . . , with |a′j| ≤ m, j = w,w+1, . . .

with a′w 6= 0, the exponent w appearing in the first term tends to infinity if η tends to

0. Indeed, from Theorem 4, Remarks 5 to 7, in [1], there exists a positive real number

κγ ,A > 0 such that w is the minimal integer such that

γw−1 ≥ κγ ,A

|P(γ)| ≥
κγ ,A

η
.

3.2. Application to Galois conjugation: convergence and eventually periodic repre-

sentations along a sequence of almost Newman polynomials. Newman polynomials are

polynomials with coefficients in {0,1}. In [5] almost Newman polynomials have been in-

troduced: an almost Newman polynomial is an integer polynomial which has coefficients

in {0,1} except the constant term equal to −1.

Definition 3.1. The collection of lacunary almost Newman polynomials of the type:

f (x) :=−1+ x+ xn + xm1 + xm2 + . . .+ xms

where n ≥ 2, s ≥ 0, m1−n ≥ n−1, mq+1−mq ≥ n−1 for 1 ≤ q < s, is called the class B.

The case “s = 0” corresponds to the trinomials Gn(z) :=−1+z+zn. The subclass Bn ⊂B

is the set of polynomials f (x) ∈ B whose third monomial is exactly xn, so that the union

B = ∪n≥2Bn is disjoint.

The “Asymptotic Reducibility Conjecture”, formulated in [5], says that 75% of the poly-

nomials f (x) ∈ B are irreducible. The factorization and the zeroes of the polynomials of

the class Bn, n ≥ 2, have been studied in [5].
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Theorem 3.2 (Selmer [24]). Let n≥ 2. The trinomials Gn(x) are irreducible if n 6≡ 5 (mod 6),
and, for n ≡ 5 (mod 6), are reducible as product of two irreducible factors whose one is the

cyclotomic factor x2−x+1, the other factor (−1+x+xn)/(x2−x+1) being nonreciprocal

of degree n−2.

By definition, for n ≥ 2, θn is the unique root of the trinomial −1+x+xn in the interval

(0,1). The algebraic integers θ−1
n > 1 are Perron numbers. The sequence (θ−1

n )n≥2 is

decreasing, tends to 1 if n tends to +∞.

Theorem 3.3 (Dutykh - Verger-Gaugry [5]). For any f ∈ Bn, n ≥ 3, denote by

f (x) = A(x)B(x)C(x) =−1+ x+ xn + xm1 + xm2 + . . .+ xms ,

where s ≥ 1, m1 −n ≥ n−1, m j+1 −m j ≥ n−1 for 1 ≤ j < s, the factorization of f where

A is the cyclotomic part, B the reciprocal noncyclotomic part, C the nonreciprocal part.

Then

(i) the nonreciprocal part C is nontrivial, irreducible and never vanishes on the unit

circle,

(ii) if γ > 1 denotes the real algebraic number uniquely determined by the sequence

(n,m1,m2, . . . ,ms) such that 1/γ is the unique real root of f in (θn−1,θn), −C∗(X)
is the minimal polynomial Pγ(X) of γ , and γ is a nonreciprocal algebraic integer.

Now let us assume the existence of a reciprocal algebraic integer β in the interval

(θ−1
n ,θ−1

n−1) for some integer n ≥ 3 (n is fixed), with M(β )< 1.176280 . . . Lehmer’s num-

ber. It is canonically associated with, and characterized by, two analytic functions:

(i) its minimal polynomial, say Pβ , which is monic and reciprocal meaning

XdegPβ Pβ (1/X) = Pβ (X); denote d := degPβ , H := the height of Pβ ; the minimal

polynomial Pβ (X) of β > 1 can be written

(3.2.1) Pβ (X) = P̃β (X
r)

for some integer r ≥ 1 and some Z-minimal integer polynomial P̃β (X). The integer

r is the largest one such that (3.2.1) holds; it depends upon β . The β s such that

r ≥ 2 are excluded in the following.

(ii) the Parry Upper function fβ (x) at β−1, which is the generalized Fredholm determi-

nant of the β -transformation Tβ [2] which is a power series with coefficients in the

alphabet {0,1} except the constant term equal to −1, with distanciation between

the exponents of the monomials:

fβ (x) :=−1+ x+ xn + xm1 + xm2 + . . .+ xms + . . .

where m1−n ≥ n−1, mq+1−mq ≥ n−1 for q ≥ 1. β−1 is the unique zero of fβ (x)
in the unit interval (0,1). The analytic function fβ (z) is related to the dynamical

zeta function ζβ (z) of the β -shift [11] [17] [21] by: fβ (z) =−1/ζβ (z). Since β is

reciprocal, with the two real roots β and 1/β , the series fβ (x) is never a polynomial,

by Descartes’s rule on sign changes on the coefficient vector. The algebraic integer

β is associated with the infinite sequence of exponents (m j).
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All the polynomial sections S∗γs
(x) := −1+ x+ xn + xm1 + xm2 + . . .+ xms of fβ (x) are

polynomials of the class Bn, mostly irreducible by the asymptotic reducibility conjecture,

but not necessarily irreducible. For every s ≥ 1, denote by γs > 1 the (non-reciprocal)

algebraic integer which is such that γ−1
s is the unique zero in (0,1) of the polynomial

section S∗γs
(x) of fβ (x). We have: degγ−1

s = degS∗γs
if and only if S∗γs

(x) is irreducible.

Moreover fβ (β
−1) = 0 and lims→∞ γs = β .

We now apply Theorem 1.4:

The integer n ≥ 3 is fixed. For all s such that degS∗γs
≥ degPβ , the identity

Q(γs) = PerA (γs),

holds with A = {−m, . . . ,+m} ⊂ Z , m = ⌈2((2d − 1)H + 2d)/3⌉. By Theorem 3.3, for

any s ≥ 0, γ−1
s has no conjugate on the unit circle. The polynomial value Pβ (γs) ∈Q(γs) is

eventually periodic

(3.2.2) Pβ (γs) = R(γ−1
s )+

1

γL
s

∞

∑
j=0

1

γ
jρ

s

T (γ−1
s ) ∈ PerA (γs)

with L,ρ and R(X),T(X), depending upon s. This representation of Pβ (γs) starts as

=
aw,(s)

γw
s

+
aw+1,(s)

γw+1
s

+ . . .+
aw+ms−1,(s)

γw+ms−1
s

+ . . . , a j,(s) ∈ A , j = w, . . . ,w+ms −1,

with aw,(s) 6= 0 and w = ws ≥ 1, depending upon s, satisfies
κγs,A

η ≤ γws−1
s for some positive

constant κγs,A depending upon γ and A . Since A is independent of s, and that the sequence

(γs) is convergent with limit β > 1, there exists a (true) constant κ > 0 such that κ
η ≤ γws−1

s

from Theorem 4, Remarks 5 to 7, in [1]. Since lims→∞ Pβ (γs) = 0 = Pβ (β ), we take η =
ηs := |Pβ (γs)|. The sequence (ηs) tends to 0. We deduce lims→∞ ws =+∞.

Let Ω 6= β−1 be a zero of modulus < 1 of fβ (x). We assume the existence of a small

disk D(Ω,r) centered at Ω of radius r > 0, included in the open unit disk, which has the

property that the only zero of fβ (x) in D(Ω,r) is Ω. It is possible since the domain of

existence of fβ (x) is at least the open unit disk D(0,1).
The zero Ω is limit point of a sequence of zeroes of the polynomial sections of fβ (x). As

soon as s≥ s0 for some s0, we assume that the disk D(Ω,r) contains only one zero of S∗γs
(x).

Denote by rs this zero. Let us assume that rs is a Galois conjugate of γ−1
s , and denote by

σs : γ−1
s → rs the Q-automorphism of conjugation. This assumption is reasonable by the

Asymptotic Reducibility Conjecture which says that 75 % of the polynomial sections are

irreducible.

The lenticular zeroes of fβ are peculiar zeroes, off the unit circle. Let us briefly recall

what is a lenticular zero of fβ . Many examples of lenticular zeroes are given in [5]. The

following theorem is Theorem 4 in [5].

Theorem 3.4. Let n ≥ 260. There exist two positive constants cn and cA,n , cA,n < cn, such

that the roots of any f ∈ Bn,

f (x)−1+ x+ xn + xm1 + xm2 + . . .+ xms ,
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where s ≥ 1, m1 −n ≥ n−1, m j+1 −m j ≥ n−1 for 1 ≤ j < s, lying in −π/18 < argz <
+π/18 either belong to

{z ∈ C | ||z|−1|< cA,n

n
}, or to {z ∈ C | ||z|−1| ≥ cn

n
}.

The lenticulus of zeroes ω of f is then defined as

Lβ := {ω ∈ C | f (ω) = 0, |ω|< 1,− π

18
< argω <+

π

18
, ||ω|−1| ≥ cn

n
}

where 1/β ∈ Lβ is the positive real zero of f . If a zero of f belongs to Lβ we say that it

is a lenticular zero of f .

Let us go back to the above assumption. If Ω is a lenticular zero of fβ (x), then, by [5],

all the polynomial sections S∗γs
(x) do have also a (unique) lenticular zero close to Ω which

is a conjugate of γ−1
s . For the non-lenticular zeroes of fβ (x), very close to the unit circle,

the above assumption is necessary.

To summarize, for s ≥ s0:

fβ (Ω) = 0, S∗γs
(rs) = 0, rs = σs(γ

−1
s ), |Ω−σs(γ

−1
s )|< r, lim

s→∞
rs = Ω.

Let us show that Pβ (Ω) = 0. Let us conjugate (3.1.3) for X = γ−1
s . The power series (3.2.2)

specialized at γ−1
s is eventually periodic, therefore can be conjugated term by term, once

the image of γ−1
s by the conjugation σs is such that |σs(γ

−1
s )| < 1, to ensure convergence.

Then

(3.2.3) σs(Pβ (γs)) =W (rs) = R(rs)+ rL
s

T (rs)

1− r
ρ
s

= aws,(s)r
ws
s +aws+1,(s)r

ws+1
s + . . .

with
κ

|Pβ (γs)|
≤ γws−1

s and |rs|< |Ω|+ r < 1, s ≥ s0.

We have, with m = ⌈2((2d −1)H +2d)/3⌉,

|W (rs)| ≤ |aws,(s)||rws
s |+ |aws+1,(s)||rws+1

s |+ . . .

≤ m
(
|rws

s |+ |rws+1
s |+ . . .

)
= m|rws

s |
(
1+ |rs|+ |rs|2 + . . .

)
.

Then

(3.2.4) |W (rs)| ≤ |rs|ws
m

1−|rs|
.

Let us observe that within a period of period length ρ in the power series (3.2.3) a certain

number of coefficients are equal to zero, and therefore that the upper bound (3.2.4) can be

improved using the period length ρ and the degree of T . However it is sufficient for below.

We deduce

Pβ (Ω) = lim
s→∞

W (rs) = 0.

Under the above assumptions, we have proved:

Proposition 3.5.

fβ (Ω) = 0 =⇒ Pβ (Ω) = 0.
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Remark 3.6. As a consequence the properties of the analytic function

fβ (x) :=−1+ x+ xn + xm1 + xm2 + . . .+ xms + . . . , |x|< 1,

where m1−n ≥ n−1, mq+1−mq ≥ n−1 for q ≥ 1 can be used to investigate the geometry

of the zeroes of the polynomial Pβ (X), in particular the existence of integer polynomials

having a very small Mahler measure below Lehmer’s number 1.176280 . . .. Let us note that

the Parry Upper function fβ (z) at β (here reciprocal) is related to the dynamical zeta func-

tion ζβ (z) of the β -shift by: fβ (z) = −1/ζβ (z) ([17]; see Solomyak [25] for the zeroes).

In this respect, Proposition 3.5 says that the poles of modulus < 1 of the meromorphic ex-

tension of ζβ (z) in the open unit disk are, under some assumptions (as mentioned above),

zeroes of the minimal polynomial of β .

3.3. Natural and intermediate alphabets along sequences of almost Newman polyno-

mials: examples. When the base γ is fixed, as in Theorem 1.4, the intermediate alphabet

produced by a rewriting trail has a size growing linearly with the height H of the polyno-

mial P. Leaving γ fixed and varying H in P, when H becomes very large, this intermediate

alphabet reaches the natural alphabet A
(nat)

γ , becomes equal to it, exceeds it; so that there

is no interest to proceed with rewriting trails for such polynomials having a large height,

i.e. for H above a certain critical value.

The natural alphabets A
(nat)

γs
along the sequence of the polynomial sections S∗γ j

(X) =

−1+ x+ xn + xm1 + xm2 + . . .+ xm j , j ≥ 1, of a given Parry Upper function

(3.3.1) fβ (z) =−1+ x+ xn + xm1 + xm2 + . . .+ xm j + . . .

i.e. along a sequence of bases (γs), as in Section 3.2, are huge and do not remain constant.

Let us take examples. The following alphabets A
(nat)

γ j
= {−mγ j

, . . . ,+mγ j
} are calculated

by (2.0.1) and Proposition 2.1. Denote m = mγ j
for short. The integer j is the number of

monomials added to the trinomial −1+ x+ x11. All the polynomials are irreducible, of the

same degree (= 101), and belong to the class B11:

j =1: p := x101 + x11 + x−1,

m = 2.617526038∗10365

j = 2: p := x101 + x21 + x11 + x−1,

m = 4.088496786∗10288;

j = 3: p := x101 + x35 + x21 + x11 + x−1,

m = 3.196582086∗10151;

j = 4: p := x101 + x45 + x35 + x21 + x11 + x−1,

m = 3.823048784∗10462;

j = 5: p := x101 + x57 + x45 + x35 + x21 + x11 + x−1,

m = 8.866692051∗10248;

j = 6: p := x101 + x69 + x57 + x45 + x35 + x21 + x11 + x−1,

m = 4.851172757∗10224;

j = 7: p := x101 + x80 + x69 + x57 + x45 + x35 + x21 + x11 + x−1,

m = 6.062823380∗10222;
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FIGURE 2. Mahler measures M j = M(S∗γ j
) of jth-polynomial sections S∗γ j

of fβ (z) for various θ−1
77 < β < θ−1

76 , as a function of the degree m j :=

degS∗γ j
. The initial value is M0 = M(−1+ x+ x77)≈ 1.38 by [9] [29].

j = 7: p := x101 + x81 + x69 + x57 + x45 + x35 + x21 + x11 + x−1,

m = 4.617819094∗101083;

j = 8: p := x101 + x91 + x80 + x69 + x57 + x45 + x35 + x21 + x11 + x−1,

m = 2.085371358∗10536;

j = 8: p := x101 + x90 + x80 + x69 + x57 + x45 + x35 + x21 + x11 + x−1,

m = 3.484819567∗10196;

No simple law of mγ j
appears as a function of j: for j = 7, resp. j = 8, a big difference

appear in the size of the alphabets, obtained by varying just one monomial in the definition

of p.

On the contrary, the alphabets obtained by rewriting trails along the sequence of the

polynomial sections S∗γ j
(X), from a given polynomial, remain constant.

Given fβ (x) as in (3.3.1), the growth rate of the natural alphabets A
(nat)

γ j
with the degree

m j and the number j of monomials is investigated, in the Figures 2 to 7, in terms of the

Mahler measures

M(S∗γ j
) = M(−1+ x+ xn + xm1 + xm2 + . . .+ xm j);

this is sufficient according to the approximate lower bounds

1

2
M(γ j)

N j−1|S∗γ j
(1)| = j+1

2
M(γ j)

N j−1

by (2.1.5), where the j-th integer N j is the dominance index relative to γ j, and that the

identities M(S∗γ j
) = M(γ j), Sγ j

(X) = Pγ j
(X), hold for 75 % of the polynomial sections,

by the Asymptotic Reducibility Conjecture. Mahler measures are calculated by means of

Graeffe’s method [10] and in PARI/GP [26]. The Mahler measure M(S∗γ j
) is a function

of the geometry of the roots of S∗γ j
(X) which lie inside the open unit disk; the respective

roles of the non-lenticular roots with respect to the lenticular roots [5] are investigated in

[6]. The fairly large values N j of the dominance indices, arising from the arithmetics of the

iteration of the companion matrix of Pβ , are not indicated. The values N j are related to the

dynamical system with polynomial action, see Remark 2.5.
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FIGURE 3. Mahler measures M j = M(S∗γ j
) of jth-polynomial sections S∗γ j

of fβ (z) for various θ−1
12 < β < θ−1

11 , as a function of the number j of mono-

mials added to −1+x+x12 . The initial value is M(−1+x+x12)≈ 1.38 by

[9] [29].

FIGURE 4. Mahler measures M j = M(S∗γ j
) of jth-polynomial sections S∗γ j

of fβ (z) for various θ−1
77 < β < θ−1

76 , as a function of the number j of mono-

mials added to −1+x+x77 . The initial value is M(−1+x+x77)≈ 1.38 by

[9] [29].

Along the sequence of the polynomial sections S∗γ j
(X) of fβ (z), for θ−1

n < β < θ−1
n−1,

n ≥ 3, any algebraic integer, the sequence of the exponents (m j) satisfies

(3.3.2) 1+
n−1

m j

≤ m j+1

m j

, limsup
j→∞

m j+1

m j

≤ Log(M(β ))

Logβ

by Theorem 1.1 in [28], so that the lacunarity in fβ (z) remains moderate, and the number of

monomials in a section S∗γ j
(X) is always increasing with j with positive density. The topo-

logical entropies LogM(β ) and Logβ are related to the two dynamical systems involved

in the sequences of coefficients of fβ (z), see Remark 2.5 and [28].

In Figure 3 to Figure 6 the Mahler measures M j = M(S∗γ j
) of the jth-polynomial sections

S∗γ j
of fβ (z) are represented for various θ−1

n < β < θ−1
n−1, as a function of the number j of

monomials added to −1+ x+ xn, for different values of n: n = 12,77,149,220. The initial

value is M(−1+ x+ xn) ≈ 1.38 by [9], [29]. The growth rates are close to obey a linear

growth with j. Each time, the growth of M j occurs with j, without stabilization except in
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FIGURE 5. Mahler measures M j = M(S∗γ j
) of jth-polynomial sections S∗γ j

of fβ (z) for various θ−1
149 < β < θ−1

148, as a function of the number j of mono-

mials added to −1+ x+ x149 . The initial value is M(−1+ x+ x149) ≈ 1.38

by [9] [29].

FIGURE 6. Mahler measures M j = M(S∗γ j
) of jth-polynomial sections S∗γ j

of fβ (z) for various θ−1
220 < β < θ−1

219, as a function of the number j of mono-

mials added to −1+ x+ x220 . The initial value is M(−1+ x+ x220) ≈ 1.38

by [9] [29].

Figure 7 where a plateau appears when the sequence of exponents (m j) is purely periodic

(with period length n−1).
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FIGURE 7. Minimal lacunarity: Mahler measure M j = M(S∗γ j
) of the even-

tually periodic section S∗γ j
(x)=−1+x+xn+xm1 + . . .+xm j , m1−n= n−1,

mq+1 −mq = n− 1 for q ≥ 1, as a function of the number of monomials j

added to the trinomial −1+x+xn, for various values of n. The initial value

is M(−1+ x+ xn) ≈ 1.38 by [9] [29]. The increase of M j is followed by a

plateau.
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