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Let q = p r be the power of a prime p and (β1, . . . , βr) be an ordered basis of Fq over Fp. For ξ = r j=1 xjβj ∈ Fq with digits xj ∈ Fp, we define the Rudin-Shapiro function R on Fq by

For a non-constant polynomial f (X) ∈ Fq[X] and c ∈ Fp we study the number of solutions ξ ∈ Fq of R(f (ξ)) = c. If the degree d of f (X) is fixed, r ≥ 6 and p → ∞, the number of solutions is asymptotically p r-1 for any c. The proof is based on the Hooley-Katz Theorem.

Introduction

In recent years, many spectacular results have been obtained on important problems combining some arithmetic properties of the integers and some conditions on their digits in a given basis, see for example [START_REF] Bourgain | Prescribing the binary digits of primes[END_REF][START_REF] Bourgain | Prescribing the binary digits of primes[END_REF][START_REF] Drmota | Normality along squares[END_REF][START_REF] Mauduit | La somme des chiffres des carrés[END_REF][START_REF] Mauduit | Sur un problème de Gelfond : la somme des chiffres des nombres premiers[END_REF][15][START_REF] Müllner | The Rudin-Shapiro sequence and similar sequences are normal along squares[END_REF][START_REF] Sun | On the maximum order complexity of subsequences of the Thue-Morse and Rudin-Shapiro sequence along squares[END_REF][START_REF] Swaenepoel | Prime numbers with a positive proportion of preassigned digits[END_REF]. In particular, Drmota, Mauduit and Rivat [START_REF] Drmota | Normality along squares[END_REF] and Müllner [START_REF] Müllner | The Rudin-Shapiro sequence and similar sequences are normal along squares[END_REF] showed that Thue-Morse sequence and Rudin-Shapiro sequence along squares are both normal, that is, each binary pattern of the same length appears asymptotically with the same frequency.

A natural question is to study analog problems in finite fields, see for example [START_REF] Dartyge | Polynomial values and generators with missing digits in finite fields[END_REF][START_REF] Dartyge | The sum of digits functions in finite fields[END_REF][START_REF] Dietmann | Prescribing the binary digits of squarefree numbers and quadratic residues[END_REF][START_REF] Mikhail | On the squares in the set of elements of a finite field with constraints on the coefficients of its basis expansion[END_REF][START_REF] Mattheus | Trace of products in finite fields from a combinatorial point of view[END_REF][START_REF] Porritt | Irreducible polynomials over a finite field with restricted coefficients[END_REF][START_REF] Swaenepoel | On the sum of digits of special sequences in finite fields[END_REF][START_REF] Swaenepoel | Prescribing digits in finite fields[END_REF][START_REF] Swaenepoel | Trace of products in finite fields[END_REF]. Many of these problems can be solved for finite fields although their analogs for integers are actually out of reach.

In particular, it is conjectured but not proved yet that the subsequences of the Thue-Morse sequence and Rudin-Shapiro sequence along any polynomial of degree d ≥ 3 are normal, see [8, Conjecture 1]. Even the weaker problem of determining the frequency of 0 and 1 in the subsequence of the Thue-Morse sequence and Rudin-Shapiro sequence along any polynomial of degree d ≥ 3 seems to be out of reach, see [8, above Conjecture 1]. However, the analog of the latter weaker problem for the Thue-Morse sequence in the finite field setting was settled by the first author and Sárközy [START_REF] Dartyge | The sum of digits functions in finite fields[END_REF].

This paper deals with the following analog of the frequency problem for the Rudin-Shapiro sequence along polynomials.

Let q = p r be the power of a prime p and B = (β 1 , . . . , β r ) be an ordered basis of the finite field F q over F p . Then any ξ ∈ F q has a unique representation ξ = r j=1

x j β j with x j ∈ F p , j = 1, . . . , r.

The coefficients x 1 , . . . , x r are called the digits with respect to the basis B.

In order to consider the finite field analogue of the Rudin-Shapiro sequence along polynomial values, we define the Rudin-Shapiro function R(ξ) for the finite field F q with respect to the basis B by

R(ξ) = r-1 i=1 x i x i+1 , ξ = x 1 β 1 + • • • + x r β r ∈ F q , r ≥ 2. For f (X) ∈ F q [X] and c ∈ F p we put R(c, f ) = {ξ ∈ F q : R(f (ξ)) = c}.
Our goal is to prove that the size of R(c, f ) is asymptotically the same for all c.

Our main result is the following theorem.

Theorem 1. Let f (X) ∈ F q [X] be of degree d ≥ 1. For c ∈ F p we have |R(c, f )| -p r-1 ≤ C d,r p (3r+1)/4-hr,c
, where h r,c is defined by

h r,c =       
3/4, r even and c = 0, 1/2, r odd and c = 0, 1/4, r even and c = 0, 0, r odd and c = 0, and C d,r is a constant depending only on d and r.

In particular, we have for fixed d,

lim p→∞ |R(c, f )| p r-1
= 1 for c = 0 and r ≥ 4 or c = 0 and r ≥ 6.

For d = 1, or more generally, for any permutation polynomial f (X) of F q , it is easy to see that

|R(c, f )| = p r-1 -p ⌊(r-1)/2⌋ , c = 0, p r-1 + p ⌊(r+1)/2⌋ -p ⌊(r-1)/2⌋ , c = 0, r ≥ 2.
For the convenience of the reader we will provide a very short proof in Section 2. Hence, it remains to prove Theorem 1 for d ≥ 2.

A commonly used idea, for example in [START_REF] Dartyge | Polynomial values and generators with missing digits in finite fields[END_REF], to estimate the number of solutions of certain equations over finite fields is to apply the Weil bound. In some special situations the Deligne bound [START_REF] Deligne | La conjecture de Weil[END_REF]Théorème 8.4] provides stronger results. The Weil bound has the only condition d ≥ 1 but is too weak for our purpose. The Deligne bound needs some more intricate technical conditions which are not satisfied in our situation, see Section 6. Our main tool is a generalization of Deligne's Theorem for projective surfaces [START_REF] Deligne | La conjecture de Weil[END_REF], the Hooley-Katz Theorem [START_REF] Hooley | On the number of points on a complete intersection over a finite field[END_REF], see Lemma 1 in Section 3 below. The crucial steps in the proof are:

1. Identify R(f (X)) with a multivariate polynomial of the form

Q(Y 0 , . . . , Y r-1 ) = r-1 j,k=0 a j,k f j (Y j )f k (Y k ),
which is done in Section 4. Note that this polynomial has coefficients in F q .

2. Estimate the dimensions of the singular loci, defined in Section 3 below, of Qc and its homogeneous part of largest degree, see Lemma 2 below.

3. We complete the proof in Section 4. After a linear variable substitution, Q is transformed to a polynomial F of the same degree as Q but with coefficients in F p . In particular, the dimensions of the singular loci are invariant under this linear transformation. Then we apply the Hooley-Katz Theorem to Fc.

The case of permutation polynomials

For a permutation polynomial f (X) of F q , |R(c, f )| is the number N r (c) of solutions (x 1 , . . . , x r ) ∈ F r p of the equation

x 1 x 2 + . . . + x r-1 x r = c.
We have

N r (c) = p r-1 -p ⌊(r-1)/2⌋ , c = 0, p r-1 + p ⌊(r+1)/2⌋ -p ⌊(r-1)/2⌋ , c = 0, r ≥ 2,
which can be easily verified using the recursion

N r (c) = pN r-2 (c) + (p -1)p r-2 , r ≥ 4.
This recursion is obtained by distinguishing the cases x r-1 = 0 and x r-1 = 0.

The Hooley-Katz Theorem

We denote by F p the algebraic closure of F p . The (affine) singular locus L(F ) of a polynomial F over F p in r variables is the set of common zeros in F p r of the polynomials

F, ∂F ∂X 1 , . . . , ∂F ∂X r .
Our main tool is the following result, see [START_REF]Handbook of finite fields[END_REF]Theorem 7.1.14], which is the affine version of the Hooley-Katz Theorem [START_REF] Hooley | On the number of points on a complete intersection over a finite field[END_REF].

Lemma 1 (Hooley-Katz). Let F be a polynomial over F p in r variables of degree D ≥ 1 such that the dimensions of the singular loci of F and its homogeneous part

F D of degree D satisfy max{dim(L(F )), dim(L(F D )) -1} ≤ s. Then the number N of zeros of F in F r p satisfies N -p r-1 ≤ C D,r p (r+s)/2 ,
where C D,r is a constant depending only on D and r.

We remark, that in the statement dim(L(F D )) denotes the dimension of the affine singular locus of the homogeneous polynomial F D while in [16, Theorem 7.1.14] the dimension of the projective singular locus is considered. The difference of these dimensions is 1.

Proof of Theorem 1

First, we express the Rudin-Shapiro function R(ξ) of F q in terms of the trace and the dual basis.

Let ϕ be the Frobenius automorphism defined by

ϕ(ξ) = ξ p for ξ ∈ F q .
We extend ϕ to the polynomial ring

F q [X 1 , . . . , X r ] by ϕ(X i ) = X i , i = 1, . . . , r. Let Tr(ξ) = ξ + ϕ(ξ) + • • • + ϕ r-1 (ξ) ∈ F p
denote the (absolute) trace of ξ ∈ F q . Let (δ 1 , . . . , δ r ) denote the (existent and unique) dual basis of the basis B = (β 1 , . . . , β r ) of F q , see for example [START_REF] Lidl | Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications[END_REF], that is,

Tr(δ i β j ) = 1 if i = j, 0 if i = j, 1 ≤ i, j ≤ r. (1) 
Then we have

Tr(δ i ξ) = x i for any ξ = r j=1 x j β j ∈ F q with x j ∈ F p .
For f (X) ∈ F q [X] we obtain that

R(f (ξ)) = r-1 i=1 Tr(δ i f (ξ))Tr(δ i+1 f (ξ)) = r-1 i=1 r-1 j,k=0 ϕ j (δ i )ϕ k (δ i+1 )ϕ j (f (ξ))ϕ k (f (ξ)). Write F (X 1 , . . . , X r ) = r-1 j,k=0 a j,k f j (β p j 1 X 1 + • • • + β p j r X r )f k (β p k 1 X 1 + • • • + β p k r X r ), (2) 
where

a j,k = r-1 i=1 ϕ j (δ i )ϕ k (δ i+1 ), j, k = 0, . . . , r -1, (3) 
and

f j = ϕ j (f ) ∈ F q [X]. Verify ϕ(F ) = F , that is, F ∈ F p [X 1 , . . . , X r ] and R(f (ξ)) = F (x 1 , . . . , x r ) for ξ = r i=1 x i β i , x i ∈ F p .
Theorem 1 follows from Lemma 1 and the following lemma which we prove in the next section.

Lemma 2. Let f (X) ∈ F q [X] be of degree d with 2 ≤ d < p and F ∈ F p [X 1 , . . . , X r ] be defined by [START_REF] Bourgain | Prescribing the binary digits of primes[END_REF]. Then F has degree 2d. Moreover, for any c ∈ F p we have

dim(L(F -c)) ≤        r/2 -1,
r even and c = 0, (r -1)/2, r odd and c = 0, r/2, r even and c = 0, (r + 1)/2, r odd and c = 0.

Furthermore, if F 2d ∈ F p [X 1 , . . . , X r ] is the homogeneous part of F of degree 2d, then dim(L(F 2d )) ≤
r/2, r even, (r + 1)/2, r odd.

Proof of Lemma 2

Consider the linear transformation on F p r

y i = r j=1 β p i j x j , i = 0, . . . , r -1. 
It is invertible with inverse

x k = r-1 i=0 δ p i k y i , k = 1, . . . , r, (4) 
by [START_REF] Bourgain | Prescribing the binary digits of primes[END_REF].

Then we denote by Q the polynomial obtained from F , defined by (2), with the corresponding variable transformation,

F (X 1 , . . . , X r ) = r-1 j,k=0 a j,k f j (Y j )f k (Y k ) = Q(Y 0 , . . . , Y r-1 ),
where

Y i = r j=1 β p i j X j , i = 0, . . . , r -1. ( 5 
)
As the degree and the dimension, see [3, Corollary 9.5.3], of singular loci are invariant under the regular transformation [START_REF] Dartyge | The sum of digits functions in finite fields[END_REF], it is enough to show the results for the polynomial Q.

We may assume that f (X) is monic since otherwise we multiply the basis B element-wise with the leading coefficient of f (X). The degree 2d homogeneous

part of Q is Q 2d (Y 0 , . . . , Y r-1 ) = r-1 j,k=0 a j,k Y d j Y d k .
By the definition (3) of a j,k we have

r-1 j=0 a j,0 β p j 1 = r-1 i=1 δ i+1 Tr(β 1 δ i ) = δ 2 = 0.
Hence, a j,0 = 0 for some j. Since Y d j Y d k , 0 ≤ j, k < r, are linearly independent over F q , we get that Q 2d is not the zero polynomial. In particular we have

deg(F ) = deg(Q) = deg(Q 2d ) = 2d.
We estimate the dimension of the singular locus L(Qc). The bound for the dimension of L(Q 2d ) corresponds to the special case f (X) = X d and c = 0, that is, Q = Q 2d in this case.

To estimate dim(L(Qc)), consider the partial derivatives

∂(Q -c) ∂Y ℓ (Y 0 , . . . , Y r-1 ) = f ′ ℓ (Y ℓ ) r-1 k=0 (a k,ℓ + a ℓ,k )f k (Y k ), ℓ = 0, . . . , r -1. The condition 2 ≤ d < p implies that f ′ (X) = f ′ 0 (X) is not constant and so f ′ ℓ (X) is not constant for ℓ = 0, . . . , r -1. Note that L(Q -c) = L⊆{0,...,r-1} (V L ∩ C L ),
where V L is the (affine) variety in F p r of solutions of the system of equations

Q(Y 0 , . . . , Y r-1 ) = c, r-1 k=0 (a k,ℓ + a ℓ,k )f k (Y k ) = 0, ℓ ∈ L, (6) 
and C L the variety of solutions of Proof. For any L ⊂ {0, . . . , r -1} we consider the variety W L obtained by replacing Z j = f (Y j ) for j = 0, . . . , r -1 in the defining equations ( 6) of V L . The variety W L is the set of solutions (ζ 0 , . . . , ζ r-1 ) ∈ F p r of the system

Q(Y 0 , . . . , Y r-1 ) = c, f ′ ℓ (Y ℓ ) = 0, ℓ ∈ {0, 1, . . . , r -1} \ L. Hence, dim(L(Q -c)) ≤ max{min{dim(V L ), dim(C L )} : L ⊆ {0, . . . , r -1}}, (7) since dim(U ∪ V ) = max{dim(U ), dim(V )} and dim(U ∩ V ) ≤ min{dim(U ), dim(V )},
r-1 j,k=0 a j,k Z j Z k = c (8) r-1 k=0 (a k,ℓ + a ℓ,k )Z k = 0, ℓ ∈ L. First we show dim(V L ) ≤ dim(W L ). ( 9 
)
Put s = dim(W L ). Since otherwise ( 9) is trivial we may assume s < r. By Let W L be the F p -linear space of solutions of the system of linear equations

r-1 k=0 (a k,ℓ + a ℓ,k )Z k = 0, ℓ ∈ L. First we compute dim( W {0,1,...,r-1} ), that is, we determine (ζ 0 , . . . , ζ r-1 ) ∈ F p r satisfying r-1 k=0 (a ℓ,k + a k,ℓ )ζ k = 0, ℓ = 0, . . . , r -1,
and thus

r-1 k=0 r-1 ℓ=0 β p ℓ m (a ℓ,k + a k,ℓ )ζ k = 0, m = 1, . . . , r. Since r-1 ℓ=0 β p ℓ m (a ℓ,k + a k,ℓ ) = r-1 i=1 δ p k i+1 Tr(β m δ i ) + δ p k i Tr(β m δ i+1 ) =      δ p k 2 , m = 1, δ p k m-1 + δ p k m+1 , m = 2, . . . , r -1, δ p k r-1 , m = r, for k = 0, . . . , r -1, we get r-1 k=0 δ p k 2 ζ k = 0, r-1 k=0 δ p k m-1 + δ p k m+1 ζ k = 0, m = 2, . . . , r -1, r-1 k=0 
δ p k r-1 ζ k = 0. (10) 
For even r this implies

r-1 k=0 δ p k m ζ k = 0, m = 1, . . . , r,
and since the transformation ( 4) is regular we get ζ k = 0 for all k and thus dim( W {0,...,r-1} ) = 0. For odd r, (10) implies

r-1 k=0 δ p k m ζ k = 0, m even, (-1) (m-1)/2 λ, m odd, m = 1, . . . , r, where r-1 k=0 δ p k 1 ζ k = λ for some λ ∈ F p .
We get dim( W {0,...,r-1} ) = 1. Now for any proper subset L of {0, . . . , r-1} the variety is defined by deleting j = r -|L| equations from the definition of W {0,...,r-1} . That is, its dimension is increased by at most r -|L|. The vector space W L is of dimension t with t ≤ r -|L| for even r and t ≤ min{r, r -|L| + 1} for odd r.

Let (u 1 , . . . , u t ) be basis of W L so that each z = (ζ 0 , . . . , ζ r-1 ) ∈ W L is of the form z = t i=1 λ i u i with λ 1 , . . . , λ t ∈ F p . If we write each u i = (µ 0,i , . . . , µ r-1,i ) for i = 1, . . . , t, then the coordinates of z satisfy

ζ k = λ 1 µ k,1 + • • • + λ t µ k,t for 0 ≤ k ≤ r -1.
After the linear variable substitution

Z k = t i=1 µ ki L i the first equation of (8) becomes r-1 j,k=0 a j,k t i=1 µ j,i L i t i=1 µ k,i L i = c.
The left hand side is a quadratic form in L 1 , . . . , L t . If this form is identically zero, then W L = ∅ if c = 0 and W L = W L if c = 0. If the form is not identically zero, then the variables L 1 , . . . , L t are algebraically dependent and we get dim(W L ) ≤ dim( W L ) -1 by [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]Corollary 9.5.4].

It is easy to see that dim(C L ) ≤ |L| [START_REF] Lidl | Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications[END_REF] by removing the equation Q(Y 0 , . . . , Y r-1 ) = 0 and having the same argument as in the proof of Lemma 3, this time substituting Z j = f ′ j (Y j ) for j = 0, . . . , r -1 and applying [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]Corollary 9.5.4].

Combining [START_REF] Dietmann | Prescribing the binary digits of squarefree numbers and quadratic residues[END_REF], Lemma 3 and (11) we get

dim(L(Q -c)) ≤        r/2 -1,
r even and c = 0, (r -1)/2, r odd and c = 0, r/2, r even and c = 0, (r + 1)/2, r odd and c = 0.

Final remarks

Some cases with singular locus L(Q 2d ) of positive dimension Unfortunately, we cannot apply the Deligne bound to obtain a better result if the singular locus L(Q 2d ) has positive dimension.

It is clear from the proof of Lemma 3 that for odd r the singular locus of Q 2d is of dimension at least 1. For some special choices of the dual basis, L(Q 2d ) has also positive dimension for any r ≥ 4.

Namely, if

r-1 i=1 δ i δ i+1 = 0, (12) 
the coefficients a j,j , j = 0, . . . , r-1, defined by (3) vanish. Then each (η 0 , . . . , η r-1 ) ∈ F p r with only one non-zero coordinate is a singular point of Q 2d .

Now we construct such a dual basis. Let α be a defining element of F q over F p , that is, F q = F p (α). Then, for sufficiently large p with respect to r, (δ 1 , . . . , δ r ) defined by

δ 2i+1 = α r-1-i , i = 0, 1, . . . , ⌊r/2⌋ -1, δ 2i+2 = α i , i = 0, 1, . . . , ⌊(r -1)/2⌋ -1, δ r = - (r/2 -1)(α r/2-1 + α r/2-2 ), r even, r-1 2 α (r+1)/2 + r-3 2 α (r-1)/2 , r odd, r ≥ 4,
is a basis of F q over F p , since α ⌊(r-1)/2⌋ appears only in δ r , satisfying [START_REF] Mattheus | Trace of products in finite fields from a combinatorial point of view[END_REF].

The Thue-Morse function of F q for monomials

The Thue-Morse function T for F q with respect to the basis B is

T (ξ) = r i=1 x i , ξ = x 1 β 1 + . . . + x r β r ∈ F q , where x 1 , . . . , x r ∈ F p . For f (X) ∈ F q [X] of degree d ≥ 1 and c ∈ F p we put T (c, f ) = {ξ ∈ F q : T (f (ξ)) = c}.
The first author and Sárközy [5, Theorem 1.2] proved We may assume d < p. Then the only common zero of all partial derivatives is (0, . . . , 0). However, (0, . . . , 0) is not a zero of Q for c = 0.

|T (c, f )| -p r-1 ≤ (d - 
The Hooley-Katz Theorem can also be applied for general f (X) ∈ F q [X] of degree d ≥ 2 but would give an improvement of [START_REF] Dartyge | The sum of digits functions in finite fields[END_REF]Theorem 1.2] A singular point (η 0 , . . . , η r-1 ) ∈ F p r satisfies f ′ ℓ (η ℓ ) = 0 for ℓ = 0, . . . , r -1. [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] This singular point has to be also a zero of Q, that is,

c = r-1 i=0 δ p ℓ f ℓ (η ℓ ).
For all other c ∈ F p there are no singular points. Since [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] has at most (d -1) r solutions in F p r we have |C| ≤ (d -1) r .

see for example [ 3 ,Lemma 3 .

 33 Propositions 9.4.8 and 9.4.1]. It remains to estimate the dimensions of V L and C L . For L ⊆ {0, 1, . . . , r -1} the (affine) variety V L is of dimension at most    r -|L| -1, r even and c = 0, r -|L|, r even and c = 0 or r odd and c = 0, r -|L| + 1, r odd and c = 0.

[ 3 ,

 3 Corollary 9.5.4] for all {i 1 , . . . , i s+1 } ⊆ {0, . . . , r -1}, there exists a nonzero polynomial P in s + 1 variables with coefficients in F p such thatP (ζ i1 , . . . , ζ is+1 ) = 0 for all (ζ 0 , . . . , ζ r-1 ) ∈ W Land thus P (f i1 (η i1 ), . . . , f is+1 (η is+1 )) = 0 for all (η 0 , . . . , η r-1 ) ∈ V L . Since the polynomial F (Y i1 , . . . , Y is+1 ) = P (f i1 (Y i1 ), . . . , f is+1 (Y is+1 )) is obviously not the zero polynomial we deduce dim(V L ) ≤ s by [3, Corollary 9.5.4]. It remains to show dim(W L ) ≤    r -|L| -1, r even and c = 0, r -|L|, r even and c = 0 or r odd and c = 0, r -|L| + 1, r odd and c = 0.

1 ℓ=0 δ p ℓ Y d ℓ -c is of dimension - 1 ,

 11 1)p r/2 , gcd(d, p) = 1.For monomials f (X) = X d , c = 0, fixed d ≥ 2 and fixed r, the Hooley-Katz Theorem provides the improvement|T (c, X d )|p r-1 ≤ C d,r p (r-1)/2 , c = 0.In particular, we getlim p→∞ |T (c, X d )| p r-1 = 1, c = 0, also for r = 2.The crucial step is to show that the singular locus ofQ(Y 0 , . . . , Y r-1 ) =rwhere we used the same notation as before and δ = r i=1 δ i = 0, since δ 1 , . . . , δ r are linearly independent. Now the partial derivatives are ∂Q ∂Y ℓ = δ p ℓ dY d-1 ℓ , ℓ = 0, . . . , r -1.

  only for c ∈ F p \ C where C is a subset of F p with at most (d -1) r elements, where d and r are fixed and p is sufficiently large. The polynomial Q for a general f becomesQ(Y 0 , . . . , Y r-1 ) = r-1 ℓ=0 δ p ℓ f ℓ (Y ℓ )c,with f ℓ = ϕ ℓ (f ) as in Section 4.
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