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Abstract

Let q = pr be the power of a prime p and (β1, . . . , βr) be an ordered
basis of Fq over Fp. For

ξ =
r∑

j=1

xjβj ∈ Fq with digits xj ∈ Fp,

we define the Rudin-Shapiro function R on Fq by

R(ξ) =

r−1∑

i=1

xixi+1, ξ ∈ Fq.

For a non-constant polynomial f(X) ∈ Fq[X] and c ∈ Fp we study the
number of solutions ξ ∈ Fq of R(f(ξ)) = c. If the degree d of f(X) is
fixed, r ≥ 6 and p → ∞, the number of solutions is asymptotically pr−1

for any c. The proof is based on the Hooley-Katz Theorem.

MSC 2020. 11A63,11T23, 11T30

Keywords. finite fields, digit sums, Hooley-Katz Theorem, polynomial equa-
tions, Rudin-Shapiro function

1

http://arxiv.org/abs/2006.02791v3


1 Introduction

In recent years, many spectacular results have been obtained on important prob-
lems combining some arithmetic properties of the integers and some conditions
on their digits in a given basis, see for example [1,2,8,13–15,17,19,23]. In partic-
ular, Drmota, Mauduit and Rivat [8] and Müllner [17] showed that Thue-Morse
sequence and Rudin-Shapiro sequence along squares are both normal, that is,
each binary pattern of the same length appears asymptotically with the same
frequency.

A natural question is to study analog problems in finite fields, see for example
[4, 5, 7, 9, 12, 18, 20–22]. Many of these problems can be solved for finite fields
although their analogs for integers are actually out of reach.

In particular, it is conjectured but not proved yet that the subsequences of
the Thue-Morse sequence and Rudin-Shapiro sequence along any polynomial of
degree d ≥ 3 are normal, see [8, Conjecture 1]. Even the weaker problem of
determining the frequency of 0 and 1 in the subsequence of the Thue-Morse
sequence and Rudin-Shapiro sequence along any polynomial of degree d ≥ 3
seems to be out of reach, see [8, above Conjecture 1]. However, the analog of
the latter weaker problem for the Thue-Morse sequence in the finite field setting
was settled by the first author and Sárközy [5].

This paper deals with the following analog of the frequency problem for the
Rudin-Shapiro sequence along polynomials.

Let q = pr be the power of a prime p and B = (β1, . . . , βr) be an ordered
basis of the finite field Fq over Fp. Then any ξ ∈ Fq has a unique representation

ξ =

r∑

j=1

xjβj with xj ∈ Fp, j = 1, . . . , r.

The coefficients x1, . . . , xr are called the digits with respect to the basis B.
In order to consider the finite field analogue of the Rudin-Shapiro sequence

along polynomial values, we define the Rudin-Shapiro function R(ξ) for the finite
field Fq with respect to the basis B by

R(ξ) =

r−1∑

i=1

xixi+1, ξ = x1β1 + · · ·+ xrβr ∈ Fq, r ≥ 2.

For f(X) ∈ Fq[X ] and c ∈ Fp we put

R(c, f) = {ξ ∈ Fq : R(f(ξ)) = c}.

Our goal is to prove that the size of R(c, f) is asymptotically the same for all c.
Our main result is the following theorem.

Theorem 1. Let f(X) ∈ Fq[X ] be of degree d ≥ 1. For c ∈ Fp we have

∣∣|R(c, f)| − pr−1
∣∣ ≤ Cd,rp

(3r+1)/4−hr,c ,
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where hr,c is defined by

hr,c =





3/4, r even and c 6= 0,
1/2, r odd and c 6= 0,
1/4, r even and c = 0,
0, r odd and c = 0,

and Cd,r is a constant depending only on d and r.

In particular, we have for fixed d,

lim
p→∞

|R(c, f)|

pr−1
= 1 for c 6= 0 and r ≥ 4 or c = 0 and r ≥ 6.

For d = 1, or more generally, for any permutation polynomial f(X) of Fq, it
is easy to see that

|R(c, f)| =

{
pr−1 − p⌊(r−1)/2⌋, c 6= 0,

pr−1 + p⌊(r+1)/2⌋ − p⌊(r−1)/2⌋, c = 0,
r ≥ 2.

For the convenience of the reader we will provide a very short proof in Section 2.
Hence, it remains to prove Theorem 1 for d ≥ 2.

A commonly used idea, for example in [4], to estimate the number of solu-
tions of certain equations over finite fields is to apply the Weil bound. In some
special situations the Deligne bound [6, Théorème 8.4] provides stronger results.
The Weil bound has the only condition d ≥ 1 but is too weak for our purpose.
The Deligne bound needs some more intricate technical conditions which are
not satisfied in our situation, see Section 6. Our main tool is a generalization
of Deligne’s Theorem for projective surfaces [6], the Hooley-Katz Theorem [10],
see Lemma 1 in Section 3 below. The crucial steps in the proof are:

1. Identify R(f(X)) with a multivariate polynomial of the form

Q(Y0, . . . , Yr−1) =

r−1∑

j,k=0

aj,kfj(Yj)fk(Yk),

which is done in Section 4. Note that this polynomial has coefficients
in Fq.

2. Estimate the dimensions of the singular loci, defined in Section 3 below,
of Q− c and its homogeneous part of largest degree, see Lemma 2 below.

3. We complete the proof in Section 4. After a linear variable substitution,
Q is transformed to a polynomial F of the same degree as Q but with
coefficients in Fp. In particular, the dimensions of the singular loci are
invariant under this linear transformation. Then we apply the Hooley-
Katz Theorem to F − c.
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2 The case of permutation polynomials

For a permutation polynomial f(X) of Fq, |R(c, f)| is the number Nr(c) of
solutions (x1, . . . , xr) ∈ F

r
p of the equation

x1x2 + . . .+ xr−1xr = c.

We have

Nr(c) =

{
pr−1 − p⌊(r−1)/2⌋, c 6= 0,
pr−1 + p⌊(r+1)/2⌋ − p⌊(r−1)/2⌋, c = 0,

r ≥ 2,

which can be easily verified using the recursion

Nr(c) = pNr−2(c) + (p− 1)pr−2, r ≥ 4.

This recursion is obtained by distinguishing the cases xr−1 = 0 and xr−1 6= 0.

3 The Hooley-Katz Theorem

We denote by Fp the algebraic closure of Fp.
The (affine) singular locus L(F ) of a polynomial F over Fp in r variables is

the set of common zeros in Fp
r
of the polynomials

F,
∂F

∂X1
, . . . ,

∂F

∂Xr
.

Our main tool is the following result, see [16, Theorem 7.1.14], which is the
affine version of the Hooley-Katz Theorem [10].

Lemma 1 (Hooley-Katz). Let F be a polynomial over Fp in r variables of
degree D ≥ 1 such that the dimensions of the singular loci of F and its homo-
geneous part FD of degree D satisfy

max{dim(L(F )), dim(L(FD))− 1} ≤ s.

Then the number N of zeros of F in F
r
p satisfies

∣∣N − pr−1
∣∣ ≤ CD,rp

(r+s)/2,

where CD,r is a constant depending only on D and r.

We remark, that in the statement dim(L(FD)) denotes the dimension of the
affine singular locus of the homogeneous polynomial FD while in [16, Theo-
rem 7.1.14] the dimension of the projective singular locus is considered. The
difference of these dimensions is 1.
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4 Proof of Theorem 1

First, we express the Rudin-Shapiro function R(ξ) of Fq in terms of the trace
and the dual basis.

Let ϕ be the Frobenius automorphism defined by

ϕ(ξ) = ξp for ξ ∈ Fq.

We extend ϕ to the polynomial ring Fq[X1, . . . , Xr] by

ϕ(Xi) = Xi, i = 1, . . . , r.

Let
Tr(ξ) = ξ + ϕ(ξ) + · · ·+ ϕr−1(ξ) ∈ Fp

denote the (absolute) trace of ξ ∈ Fq. Let (δ1, . . . , δr) denote the (existent and
unique) dual basis of the basis B = (β1, . . . , βr) of Fq, see for example [11], that
is,

Tr(δiβj) =

{
1 if i = j,

0 if i 6= j,
1 ≤ i, j ≤ r. (1)

Then we have

Tr(δiξ) = xi for any ξ =

r∑

j=1

xjβj ∈ Fq with xj ∈ Fp.

For f(X) ∈ Fq[X ] we obtain that

R(f(ξ)) =

r−1∑

i=1

Tr(δif(ξ))Tr(δi+1f(ξ))

=

r−1∑

i=1

r−1∑

j,k=0

ϕj(δi)ϕ
k(δi+1)ϕ

j(f(ξ))ϕk(f(ξ)).

Write

F (X1, . . . , Xr)

=

r−1∑

j,k=0

aj,kfj(β
pj

1 X1 + · · ·+ βpj

r Xr)fk(β
pk

1 X1 + · · ·+ βpk

r Xr), (2)

where

aj,k =

r−1∑

i=1

ϕj(δi)ϕ
k(δi+1), j, k = 0, . . . , r − 1, (3)

and fj = ϕj(f) ∈ Fq[X ]. Verify ϕ(F ) = F , that is, F ∈ Fp[X1, . . . , Xr] and

R(f(ξ)) = F (x1, . . . , xr) for ξ =
r∑

i=1

xiβi, xi ∈ Fp.
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Theorem 1 follows from Lemma 1 and the following lemma which we prove
in the next section.

Lemma 2. Let f(X) ∈ Fq[X ] be of degree d with 2 ≤ d < p and F ∈
Fp[X1, . . . , Xr] be defined by (2). Then F has degree 2d. Moreover, for any c ∈
Fp we have

dim(L(F − c)) ≤





r/2− 1, r even and c 6= 0,
(r − 1)/2, r odd and c 6= 0,
r/2, r even and c = 0,
(r + 1)/2, r odd and c = 0.

Furthermore, if F2d ∈ Fp[X1, . . . , Xr] is the homogeneous part of F of degree 2d,
then

dim(L(F2d)) ≤

{
r/2, r even,
(r + 1)/2, r odd.

5 Proof of Lemma 2

Consider the linear transformation on Fp
r

yi =

r∑

j=1

βpi

j xj , i = 0, . . . , r − 1.

It is invertible with inverse

xk =
r−1∑

i=0

δp
i

k yi, k = 1, . . . , r, (4)

by (1).
Then we denote by Q the polynomial obtained from F , defined by (2), with

the corresponding variable transformation,

F (X1, . . . , Xr) =

r−1∑

j,k=0

aj,kfj(Yj)fk(Yk) = Q(Y0, . . . , Yr−1),

where

Yi =

r∑

j=1

βpi

j Xj, i = 0, . . . , r − 1. (5)

As the degree and the dimension, see [3, Corollary 9.5.3], of singular loci are
invariant under the regular transformation (5), it is enough to show the results
for the polynomial Q.

We may assume that f(X) is monic since otherwise we multiply the basis B
element-wise with the leading coefficient of f(X). The degree 2d homogeneous
part of Q is

Q2d(Y0, . . . , Yr−1) =
r−1∑

j,k=0

aj,kY
d
j Y

d
k .
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By the definition (3) of aj,k we have

r−1∑

j=0

aj,0β
pj

1 =
r−1∑

i=1

δi+1Tr(β1δi) = δ2 6= 0.

Hence, aj,0 6= 0 for some j. Since Y d
j Y

d
k , 0 ≤ j, k < r, are linearly independent

over Fq, we get that Q2d is not the zero polynomial. In particular we have

deg(F ) = deg(Q) = deg(Q2d) = 2d.

We estimate the dimension of the singular locus L(Q − c). The bound for
the dimension of L(Q2d) corresponds to the special case f(X) = Xd and c = 0,
that is, Q = Q2d in this case.

To estimate dim(L(Q − c)), consider the partial derivatives

∂(Q− c)

∂Yℓ
(Y0, . . . , Yr−1) = f ′

ℓ(Yℓ)
r−1∑

k=0

(ak,ℓ + aℓ,k)fk(Yk), ℓ = 0, . . . , r − 1.

The condition 2 ≤ d < p implies that f ′(X) = f ′
0(X) is not constant and

so f ′
ℓ(X) is not constant for ℓ = 0, . . . , r − 1.
Note that

L(Q − c) =
⋃

L⊆{0,...,r−1}

(VL ∩ CL),

where VL is the (affine) variety in Fp
r
of solutions of the system of equations

Q(Y0, . . . , Yr−1) = c,

r−1∑

k=0

(ak,ℓ + aℓ,k)fk(Yk) = 0, ℓ ∈ L,
(6)

and CL the variety of solutions of

Q(Y0, . . . , Yr−1) = c,

f ′
ℓ(Yℓ) = 0, ℓ ∈ {0, 1, . . . , r − 1} \ L.

Hence,

dim(L(Q − c)) ≤ max{min{dim(VL), dim(CL)} : L ⊆ {0, . . . , r − 1}}, (7)

since
dim(U ∪ V ) = max{dim(U), dim(V )}

and
dim(U ∩ V ) ≤ min{dim(U), dim(V )},

see for example [3, Propositions 9.4.8 and 9.4.1].
It remains to estimate the dimensions of VL and CL.
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Lemma 3. For L ⊆ {0, 1, . . . , r− 1} the (affine) variety VL is of dimension at
most 




r − |L| − 1, r even and c 6= 0,
r − |L|, r even and c = 0 or r odd and c 6= 0,
r − |L|+ 1, r odd and c = 0.

Proof. For any L ⊂ {0, . . . , r − 1} we consider the variety WL obtained by
replacing Zj = f(Yj) for j = 0, . . . , r − 1 in the defining equations (6) of VL.

The variety WL is the set of solutions (ζ0, . . . , ζr−1) ∈ Fp
r
of the system

r−1∑

j,k=0

aj,kZjZk = c (8)

r−1∑

k=0

(ak,ℓ + aℓ,k)Zk = 0, ℓ ∈ L.

First we show
dim(VL) ≤ dim(WL). (9)

Put s = dim(WL). Since otherwise (9) is trivial we may assume s < r. By [3,
Corollary 9.5.4] for all {i1, . . . , is+1} ⊆ {0, . . . , r − 1}, there exists a nonzero
polynomial P in s+ 1 variables with coefficients in Fp such that

P (ζi1 , . . . , ζis+1
) = 0 for all (ζ0, . . . , ζr−1) ∈ WL

and thus

P (fi1(ηi1 ), . . . , fis+1
(ηis+1

)) = 0 for all (η0, . . . , ηr−1) ∈ VL.

Since the polynomial F (Yi1 , . . . , Yis+1
) = P (fi1(Yi1), . . . , fis+1

(Yis+1
)) is obvi-

ously not the zero polynomial we deduce dim(VL) ≤ s by [3, Corollary 9.5.4].
It remains to show

dim(WL) ≤





r − |L| − 1, r even and c 6= 0,
r − |L|, r even and c = 0 or r odd and c 6= 0,
r − |L|+ 1, r odd and c = 0.

Let W̃L be the Fp-linear space of solutions of the system of linear equations

r−1∑

k=0

(ak,ℓ + aℓ,k)Zk = 0, ℓ ∈ L.

First we compute dim(W̃{0,1,...,r−1}), that is, we determine (ζ0, . . . , ζr−1) ∈

Fp
r
satisfying

r−1∑

k=0

(aℓ,k + ak,ℓ)ζk = 0, ℓ = 0, . . . , r − 1,

8



and thus
r−1∑

k=0

r−1∑

ℓ=0

βpℓ

m (aℓ,k + ak,ℓ)ζk = 0, m = 1, . . . , r.

Since

r−1∑

ℓ=0

βpℓ

m (aℓ,k + ak,ℓ) =

r−1∑

i=1

(
δp

k

i+1Tr(βmδi) + δp
k

i Tr(βmδi+1)
)

=





δp
k

2 , m = 1,

δp
k

m−1 + δp
k

m+1, m = 2, . . . , r − 1,

δp
k

r−1, m = r,

for k = 0, . . . , r − 1, we get

r−1∑

k=0

δp
k

2 ζk = 0,

r−1∑

k=0

(
δp

k

m−1 + δp
k

m+1

)
ζk = 0, m = 2, . . . , r − 1,

r−1∑

k=0

δp
k

r−1ζk = 0.

(10)

For even r this implies

r−1∑

k=0

δp
k

m ζk = 0, m = 1, . . . , r,

and since the transformation (4) is regular we get ζk = 0 for all k and thus

dim(W̃{0,...,r−1}) = 0.
For odd r, (10) implies

r−1∑

k=0

δp
k

m ζk =

{
0, m even,

(−1)(m−1)/2λ, m odd,
m = 1, . . . , r,

where
∑r−1

k=0 δ
pk

1 ζk = λ for some λ ∈ Fp. We get dim(W̃{0,...,r−1}) = 1.
Now for any proper subset L of {0, . . . , r−1} the variety is defined by deleting

j = r − |L| equations from the definition of W̃{0,...,r−1}. That is, its dimension

is increased by at most r − |L|. The vector space W̃L is of dimension t with
t ≤ r − |L| for even r and t ≤ min{r, r − |L|+ 1} for odd r.

Let (u1, . . . , ut) be basis of W̃L so that each z = (ζ0, . . . , ζr−1) ∈ W̃L is of the
form z =

∑t
i=1 λiui with λ1, . . . , λt ∈ Fp. If we write each ui = (µ0,i, . . . , µr−1,i)

for i = 1, . . . , t, then the coordinates of z satisfy

ζk = λ1µk,1 + · · ·+ λtµk,t for 0 ≤ k ≤ r − 1.
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After the linear variable substitution

Zk =

t∑

i=1

µkiLi

the first equation of (8) becomes

r−1∑

j,k=0

aj,k

(
t∑

i=1

µj,iLi

)(
t∑

i=1

µk,iLi

)
= c.

The left hand side is a quadratic form in L1, . . . , Lt. If this form is identically
zero, then WL = ∅ if c 6= 0 and WL = W̃L if c = 0. If the form is not
identically zero, then the variables L1, . . . , Lt are algebraically dependent and
we get dim(WL) ≤ dim(W̃L)− 1 by [3, Corollary 9.5.4].

It is easy to see that
dim(CL) ≤ |L| (11)

by removing the equation Q(Y0, . . . , Yr−1) = 0 and having the same argument as
in the proof of Lemma 3, this time substituting Zj = f ′

j(Yj) for j = 0, . . . , r− 1
and applying [3, Corollary 9.5.4].

Combining (7), Lemma 3 and (11) we get

dim(L(Q − c)) ≤





r/2− 1, r even and c 6= 0,
(r − 1)/2, r odd and c 6= 0,
r/2, r even and c = 0,
(r + 1)/2, r odd and c = 0.

6 Final remarks

Some cases with singular locus L(Q2d) of positive dimension

Unfortunately, we cannot apply the Deligne bound to obtain a better result if
the singular locus L(Q2d) has positive dimension.

It is clear from the proof of Lemma 3 that for odd r the singular locus of Q2d

is of dimension at least 1. For some special choices of the dual basis, L(Q2d)
has also positive dimension for any r ≥ 4.

Namely, if
r−1∑

i=1

δiδi+1 = 0, (12)

the coefficients aj,j , j = 0, . . . , r−1, defined by (3) vanish. Then each (η0, . . . , ηr−1) ∈

Fp
r
with only one non-zero coordinate is a singular point of Q2d.
Now we construct such a dual basis. Let α be a defining element of Fq

over Fp, that is, Fq = Fp(α). Then, for sufficiently large p with respect to r,

10



(δ1, . . . , δr) defined by

δ2i+1 = αr−1−i, i = 0, 1, . . . , ⌊r/2⌋ − 1,

δ2i+2 = αi, i = 0, 1, . . . , ⌊(r − 1)/2⌋ − 1,

δr = −

{
(r/2 − 1)(αr/2−1 + αr/2−2), r even,
r−1
2 α(r+1)/2 + r−3

2 α(r−1)/2, r odd,
r ≥ 4,

is a basis of Fq over Fp, since α⌊(r−1)/2⌋ appears only in δr, satisfying (12).

The Thue-Morse function of Fq for monomials

The Thue-Morse function T for Fq with respect to the basis B is

T (ξ) =

r∑

i=1

xi, ξ = x1β1 + . . .+ xrβr ∈ Fq,

where x1, . . . , xr ∈ Fp. For f(X) ∈ Fq[X ] of degree d ≥ 1 and c ∈ Fp we put

T (c, f) = {ξ ∈ Fq : T (f(ξ)) = c}.

The first author and Sárközy [5, Theorem 1.2] proved
∣∣|T (c, f)| − pr−1

∣∣ ≤ (d− 1)pr/2, gcd(d, p) = 1.

For monomials f(X) = Xd, c 6= 0, fixed d ≥ 2 and fixed r, the Hooley-Katz
Theorem provides the improvement

∣∣|T (c,Xd)| − pr−1
∣∣ ≤ Cd,rp

(r−1)/2, c 6= 0.

In particular, we get

lim
p→∞

|T (c,Xd)|

pr−1
= 1, c 6= 0,

also for r = 2.
The crucial step is to show that the singular locus of

Q(Y0, . . . , Yr−1) =

r−1∑

ℓ=0

δp
ℓ

Y d
ℓ − c

is of dimension −1, where we used the same notation as before and

δ =

r∑

i=1

δi 6= 0,

since δ1, . . . , δr are linearly independent. Now the partial derivatives are

∂Q

∂Yℓ
= δp

ℓ

dY d−1
ℓ , ℓ = 0, . . . , r − 1.

11



We may assume d < p. Then the only common zero of all partial derivatives
is (0, . . . , 0). However, (0, . . . , 0) is not a zero of Q for c 6= 0.

The Hooley-Katz Theorem can also be applied for general f(X) ∈ Fq[X ]
of degree d ≥ 2 but would give an improvement of [5, Theorem 1.2] only for
c ∈ Fp \ C where C is a subset of Fp with at most (d − 1)r elements, where d
and r are fixed and p is sufficiently large. The polynomial Q for a general f
becomes

Q(Y0, . . . , Yr−1) =

r−1∑

ℓ=0

δp
ℓ

fℓ(Yℓ)− c,

with fℓ = ϕℓ(f) as in Section 4.
A singular point (η0, . . . , ηr−1) ∈ Fp

r
satisfies

f ′
ℓ(ηℓ) = 0 for ℓ = 0, . . . , r − 1. (13)

This singular point has to be also a zero of Q, that is,

c =

r−1∑

i=0

δp
ℓ

fℓ(ηℓ).

For all other c ∈ Fp there are no singular points. Since (13) has at most (d−1)r

solutions in Fp
r
we have |C| ≤ (d− 1)r.
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