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Asymptotic properties of M -estimators based on estimating equations
and censored data in semi-parametric models with multiple change

points
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Laboratoire de Mathématiques Appliquées de Compiègne
Université de Technologie de Compiégne

Abstract

Statistical models with multiple change points in presence of censored data are used in many fields; however, the theoretical
properties of M -estimators of such models have received relatively little attention. The main purpose of the present work is
to investigate the asymptotic properties of M -estimators of the parameters of a multiple change-point model for a general
class of models in which the form of the distribution can change from segment to segment and in which, possibly, there are
parameters that are common to all segments, in the setting of a known number of change points. Consistency of the M -
estimators of the change points is established and the rate of convergence is determined. The asymptotic normality of the
M -estimators of the parameters of the within-segment distributions is established. Since the approaches used in the complete
data models are not easily extended to multiple change-point models in the presence of censoring, we have used some general
results of Kaplan-Meier integrals. We investigate the performance of the methodology for small samples through a simulation
study.

Key words: Semiparametric inference; multiple change-points; change-point fraction; common parameter; consistency; con-
vergence rate; M -estimators; Z-estimators; censored data; Kaplan Meier integrals; Argmax theorem; Central limit theorem.
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1 Introduction and motivations
In major real data investigation, the stationarity assumption has been frequently used. However, in practice, time series entail
in their dependence structure and therefore modelling non-stationary processes using stationary methods to capture their time-
evolving dependence aspects most likely result in a crude approximation. Change-point detection plays a critical role in such
situation. Notice that the problem of change-points in a sequence of random variables has a long history. Early work on
this problem can be found in Page (1954, 1955, 1957) who investigated quality control problems and proposed a sequential
scheme for identifying changes in the mean of a sequence of independent random variables. Over time, methods in change
point analysis have been developed to address data analytic questions in fields ranging from biology to finance, and in many
cases such methodology has become standard. The statistical community now enjoys a vast literature on change point analysis
where many of the most natural and common questions have received at least some attention. For a broader presentation of
the field of change-point analysis along with statistical applications, we refer the reader to the monographs by Brodsky and
Darkhovsky (1993), Csörgő and Horváth (1997), Chen and Gupta (2000), Wu (2005) and Pons (2018), just to cite a few. We
refer to the paper of Lee (2010) for a list of comprehensive bibliography of books and research papers on this topic. The
problem of detecting abrupt changes has been discussed intensively in a time series context, we may refer to Jandhyala et al.
(2013) and Aue and Horváth (2013) for a review of the literature. Recent references on the subject include Chen (2019),
Chu and Chen (2019), Garreau and Arlot (2018), Tan and Zhang (2019), Nkurunziza and Fu (2019), Qian et al. (2019) and
El Ktaibi and Ivanoff (2019). Compared to single change-point detection, multiple change-points detection is a much more
challenging problem. Work on detection for multiple change-points began in the 1980s (e.g., Vostrikova (1981), Yin (1988),
Yao (1988)). There exists a rich literature devoted to this field, we refer to Truong et al. (2020) for review of change-point
and some extensions. For the censored setting, there are only a few papers dealing with detection of changes, for single
change-point, we refer to Stute (1996) who provided an estimator of the change point based on the U -statistics. Gombay
and Liu (2000), Hušková and Neuhaus (2004), Al-Awadhi and Aly (2005), Wang and Zheng (2012) have considered tests
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procedures for change-point. He (2015, 2017) considered the multiple change-points for particular distributions. To our best
knowledge there the case where the change occurs for the two variables, i.e., the censored variable and the censorship variable
in general setting was not investigated in the literature up to present. Notice that multiple change-points problem occurs for
the survival function due to hazard change according to evolving time. For example, a cancer survival function can change
abruptly or smoothly at a few time points. For example, Kim et al. (2020) applied their method to find the change-points for
leukemia survival data and identified the change-points. However multiple change-points problems are not much considered
due to its computational complexity and theoretical difficulty. Hušková and Neuhaus (2004) have investigated the problem of
single change when the censored variables are assumed to be independent but not necessarily identically distributed. While
the body of work about the change-point constitutes a rich literature, it mainly deals with the inference of a single change in
a short or moderate sized sequence. Detecting multiple change-points in a very long sequence has emerged as an important
problem that has attracted more and more attention recently, we refer to Niu et al. (2016). There is a large literature on the
change-point problem and their applications and it is not the purpose of the present paper to survey this extensive literature.

The main purpose of the present work is to consider a general framework and the characterization of the asymptotic
properties of semi-parametricM -estimators based on censored data in models with multiple change-points, this generalization
is far from being trivial and harder to control the estimator of Kaplan-Meier of each sample, which form a basically unsolved
open problem in the literature. We aim at filling this gap in the literature by combining results He and Severini (2010)
with techniques handling the Kaplan Meier integrals. However, as will be seen later, the problem requires much more than
“simply” combining ideas from the existing results. In fact, delicate mathematical derivations will be required to cope with
Kaplan Meier integrals in our context.

We start by giving some notations and definitions that are needed for the forthcoming sections. Let X1, . . . , Xn be n
independent random variables censoring by n independent random variables C1, . . . , Cn respectively, where Xi and Ci are
independent for all i, so we observe (

Yi = Xi ∧ Ci, δi = 1I{Xi≤Ci}
)
, for 1 ≤ i ≤ n.

Survival data in clinical trials or failure time data in reliability studies, for example, are often subject to such censoring. To be
more specific, many statistical experiments result in incomplete samples, even under well-controlled conditions. For example,
clinical data for surviving most types of disease are usually censored by other competing risks to life which result in death.
We suppose that there exists unknown change points n1, . . . , nk, such that

0 = n0 < n1 < · · · < nk < nk+1 = n,

where for each j = 1, . . . , k + 1, (Xnj−1+1, Cnj−1+1), . . . , (Xnj , Cnj ), are i.i.d. with distribution function depending
on j. Here, we consider semi-parametric change-points models in which the distribution function of Xnj−1+1, . . . , Xnj is
parametric. We suppose that the theoretical distribution Fn0

j
(·) =: F (α0, θ0

j , ·) of Xi, i = 1, . . . , n, depends on the real
common parameter α0 for all j = 1, . . . , k + 1 and the real within-segment θ0

j , for each j = 1, . . . , k + 1 which are assumed
to be unknown. In this model, there are k real change points n0

1, . . . , n
0
k but unknown, where the number of change point k

is assumed to be known. We estimate the unknown parameters nj , α and θj , j = 1, . . . , k + 1 by maximizing the estimating
equations defined by:

` ≡ `(α, θ1, . . . , θk+1, n1, . . . , nk) =

k+1∑
j=1

(nj − nj−1)

n

∫
R
gj(α, θj , x)dF̂nj (x),

(1.1)

where 1− F̂nj (·) is the usual Kaplan-Meier product limit estimator of 1−Fnj (·) introduced by Kaplan and Meier (1958) and
defined by

1− F̂nj (x) =

nj∏
i=nj−1+1

(
1− di

ni

)1I{Y(i)≤x}
, (1.2)

where

ri =

nj∑
k=nj−1+1

1I{Y(i)≤Yk}

and

di =

nj∑
k=nj−1+1

1I{Y(i)=Yk,δk=1},
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denoting the number of individuals still at risk at time Y(i) and the number of deaths at time Y(i) respectively, and Y(i) denotes
the order statistic of Ynj−1+1, . . . , Ynj and 1IE denoting the indicator function of E. For each sample Xnj−1+1, . . . , Xnj ,
j = 1, . . . , k+ 1, and gj(·) is a given measurable function from Υ×Θj ×R to R; Υ and Θj are the parameter spaces of α,
θj for j = 1, . . . , k + 1, respectively. Simple calculation gives

`(α, θ1, . . . , θk+1, n1, . . . , nk) =
1

n

k+1∑
j=1

nj∑
i=nj−1+1

gj(α, θj , Yi)δi

S
nj
C (Y −i )

, (1.3)

where SnjC (·) is the Kaplan-Meier product limit estimator of 1−Gnj (·), for each sample Cnj−1+1, . . . , Cnj , j = 1, . . . , k+1.
Our result is generalization for the work of He and Severini (2010) in the sense that we consider the M -estimation in the

censored data setting. He and Severini (2010) investigated statistical models with multiple change-points and established the
theoretical properties of the maximum likelihood estimators. Their results are not directly applicable here since we consider
more general framework. These results are not only useful in their own right but essential to establish the theoretical properties
of our estimators. Under no censoring, there are a number of results available on the asymptotic properties of parameter
estimators in change-point models with gj(α, θj , x) = log fj(α, θj , x). See, for example, Hinkley (1970, 1972), Hinkley
and Hinkley (1970), Bhattacharya (1987), Fu and Curnow (1990a,b), Jandhyala and Fotopoulos (2001, 1999) and Hawkins
(2001); the two monographs Chen and Gupta (2000) and Csörgő and Horváth (1997), and for the M -estimators we refer to
Hušková (1996). In Gombay and Horváth (1994), a maximum-likelihood-type statistic is proposed for testing a sequence of
observations for no change in the parameter against a possible change, this work is extended to the semi-parametric setting
in Bouzebda and Keziou (2013) and Bouzebda (2014). It is worth noticing that M -estimators include the least squares
estimators, several robust version of means and notably their predecessor, the maximum likelihood estimate (MLE) with
gj(α, θj , ·) = log fj(α, θj , ·), f(·) being the probability density function. Strong consistency of M -estimators can be verified
as that of the MLEs, and it is possible to avoid the differentiability condition of the density function fj(α, θj , x) in the MLE
case. This approach was first employed by Wald (1949) and later extended, for example, by LeCam (1953), Kiefer and
Wolfowitz (1956), Bahadur (1967), Huber (1967), Pfanzagl (1969) and Perlman (1972) among others. Asymptotic properties
of Huber’s M -estimators based on complete data are well understood nowadays and can be found, for example, in Huber
(1981) and van der Vaart (1998), among others.
In the presence of censoring very little is known about the general large sample properties of M -estimators. Reid (1981) de-
rived the influence function and the asymptotic normality of a truncated type M -estimator. (Some modifications are required
in Reid’s arguments, cf. Andersen et al. (2012). Oakes (1986) considered M -estimators with gj(α, θj , ·) = log fj(α, θj , ·)
and called them approximate MLEs since the corresponding M -estimators are no longer the MLEs. Borgan (1984) studied
the asymptotic properties of the MLE. Another type of M -estimator, based on the cumulative hazard function and aiming at
inclusion of the MLEs under censoring is discussed in Hjort (1985). Wang (1995) has established the strong consistency of
this type of estimators under general conditions which can be applied to parametric, semi-and non-parametric models.

The main objective of our paper is to provide a full theoretical justification of the consistency of M -estimators of the pa-
rameters of a general class of multiple change-points models and gives the asymptotic distribution of the parameters of the
within-segment distributions. This requires the effective application of large sample theory techniques, which were developed
for the empirical processes, refer to Section 4 where we have used results from the work of Pakes and Pollard (1989).

The article is structured as follows. Section 2 is devoted to the statement of our notations and assumptions. In Section 3,
the asymptotic properties of our estimators are derived. The general theory of the Z-estimators is considered in Section 4.
In Section 5, we specify the estimation procedure for the maximum likelihood. The finite sample performance of the latter
is illustrated by means of Monte Carlo simulations in Section 6. Some concluding remarks are given in Section 7. To avoid
interrupting the flow of the presentation, all mathematical developments are relegated to Section 8. Section 9 gives some basic
definitions and preliminaries needed to state our results.
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2 Notation and assumptions
In this section, we introduce notation needed to state the asymptotic results in Section 3. The parameter spaces Υ and Θj are
the subset of Rd and Rdj respectively. Let

λj =
nj
n
, for any j = 1, . . . , k,

λ0
j =

n0
j

n
, for any j = 1, . . . , k,

λ = (λ1, λ2, . . . , λk),

λ0 = (λ0
1, λ

0
2, . . . , λ

0
k),

θ = (θ1, θ2, . . . , θk+1),

θ0 = (θ0
1, θ

0
2, . . . , θ

0
k+1),

φ = (α, θ1, θ2, . . . , θk+1),

φ0 = (α0, θ0
1, θ

0
2, . . . , θ

0
k+1),

SF
n0
j

(·) = 1− Fn0
j
(·),

SG
n0
j

(·) = 1−Gn0
j
(·).

We have for each j = 1, . . . , k,
1−Hn0

j
(·) = (1−Gn0

j
(·))(1− Fn0

j
(·)).

Let τF
n0
j

(·) (resp. τG
n0
j

(·)) be the upper bound of the support of Fn0
j
(·) (resp. Gn0

j
(·)). Note that λ0 is taken to be a constant

vector as n goes to infinity. Let Λ be the set of the configurations of change-points and Φ the set of parameters,

Λ = {(λ1, λ2, . . . , λk) : λj =
nj
n
, j = 1, . . . , k, 0 < n1 < · · · < nk < n},

Φ = Θ1 ×Θ2 × · · · ×Θk+1 ×Υ.

The criterion function computed over the segment j of λ is defined by

Gn(Yj , θj , α) =
(nj − nj−1)

n

∫
R
gj(α, θj , x)dF̂nj (x).

Consequently, we can rewrite the function ` given in (1.1) as

` =

k+1∑
j=1

Gn(Yj , θj , α).

Estimators of all change-points, all within-segment parameters and the common parameter are defined by maximization of the
function ` in Λ×Φ, i.e.,

(α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k) = argmax
0<n1<n2<···<n;θj∈Θj ,1≤j≤k+1,α∈Υ

`. (2.1)

For a given configuration λ,
(
θ̂j(λj), α̂(λj)

)
maximizes Gn(Yj , θj , α). We can remark that, when λ = λ0, the estimate of

(θ0, α0) obtained by maximizing `(α, θ1, . . . , θk+1, n
0
1, . . . , n

0
k) converge to (θ0, α0) under the Assumptions 2.1 and the first

part of the Assumption 2.2 for complete data, by the result of van der Vaart (1998) and by add the first part of Assumption
2.5, we get the convergence for censored data by the result of Wang (1995). In the case where the change point fraction λ0

is unknown, the M -estimators (λ̂, θ̂, α̂) is the value of (λ,θ, α) that maximizes `(α, θ1, . . . , θk+1, n
0
1, . . . , n

0
k) in Λ × Φ.

Thus (θ̂j , α̂)
def
=
(
θ̂j(λ̂j), α̂(λ̂j)

)
is the M -estimator of (θ0

j , α
0
j ) computed in the segment j of the estimated configuration of

change-points n̂j , refer for similar arguments to Lavielle and Ludeña (2000). Let us introduce

L0(α, θ1, . . . , θk+1) =

k+1∑
j=1

(n0
j − n0

j−1)

n

∫
R
gj(α, θj , x)dFn0

j
(x), (2.2)
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whereFn0
j
(·) (respectivementGn0

j
(·)) is the true function of distribution for the sampleXn0

j−1+1, . . . , Xn0
j

(resp. Cn0
j−1+1, . . . , Cn0

j
),

j = 1, . . . , k+ 1. The following decomposition will play an instrumental role in the proofs of Theorem 3.1 and Theorem 3.3.
Define a function W

′
by

W
′

=

k+1∑
j=1

k+1∑
i=1

nji
n

{∫
[gj(α, θj , x)− gi(α0, θ0

i , x)]dFn0
i

}

+
1

n

k+1∑
j=1

nj∑
i=nj−1+1

{
gj(α, θj , Yi)δi

S
nj
C (Y −i )

− E(gj(α, θj , Xi))

}

− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

gj(α0, θ0
j , Yi)δi

S
n0
j

C (Y −i )
− E(gj(α

0, θ0
j , Xi))

 , (2.3)

where nji is the number of observations of the interested variables in the set

[nj−1 + 1, nj ] ∩ [n0
i−1 + 1, n0

i ],

for i, j = 1, . . . , k + 1. We obviously have that

argmax
0<n1<n2<···<n;θj∈Θj ,1≤j≤k+1,α∈Υ

` = argmax
0<n1<n2<···<n;θj∈Θj ,1≤j≤k+1,α∈Υ

W
′
;

thus, the M -estimators may be defined as the maximizers of W
′

rather than as the maximizers of `. Our idea is to replace
EKM S

nj
C (·) in (2.3) by the theoretical survival function SG

n0
j

(·) and to proof the difference between the EKM based on the

estimated survival function and the EKM based on the theoretical survival function is negligible, in probability, as n goes to

infinity, see (8.3). Notice that S
n0
j

C (·) converges to SG
n0
j

(·), so we can replace the EKM, at the price of some complicated

calculations. Let b(α, θj , α0, θ0
i ) be defined by

b(α, θj , α
0, θ0

i ) = E(gj(α, θj , Xi))− E(gi(α
0, θ0

i , Xi))

=

∫
R

[gj(α, θj , x)− gi(α0, θ0
i , x)]dFn0

i
(x), (2.4)

for i, j = 1, . . . , k + 1. We substitute W
′

by W after replacing the EKM by its true survival function and we define

W = W1 + W2,

where

W1 =
k+1∑
j=1

k+1∑
i=1

nji
n
b(α, θj , α

0, θ0
i ) (2.5)

and

W2 =
1

n

k+1∑
j=1

nj∑
i=nj−1+1

gj(α, θj , Yi)δiSG
n0
j

(Y −i )
− E(gj(α, θj , Xi))


− 1

n

k+1∑
j=1

n0
j∑

i=n0
j−1+1

{
gj(α

0, θ0
j , Yi)δi

SGn0
z
(Y −i )

− E(gj(α
0, θ0

j , Xi))

}
.

Alternatively, we may write

W2 =
1

n

k+1∑
j=1

k+1∑
i=1

∑
t∈ñji

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))


−
∑
t∈ñji

[
gi(α

0, θ0
i , Yt)δt

SG
n0
i

(Y −t )
− E(gi(α

0, θ0
i , Xt))

] , (2.6)
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where
ñji = [nj−1 + 1, nj ] ∩ [n0

i−1 + 1, n0
i ].

We note that in the particular case where gj(·) = log fj(·), we get W1 is a weighted sum of the negative Kullback-Leibler
distances, and W2 → 0 as n→ 0, by applying Proposition 9.1.
In our analysis, the following assumptions will be needed.

Assumption 2.1 1. Assume that for j = 1, . . . , k + 1,

gj+1(α0, θ0
j+1, x) 6= gj(α

0, θ0
j , x)

on a set of non-zero measure.

2. For any j = 1, . . . , k + 1, any α, θj; for i = 1, . . . , k + 1,∫
R
(gj(α, θj , x))dFn0

i
(x) ≤

∫
R

(gi(α
0, θ0

i , x))dFn0
i
(x).

The first part of this assumption guarantees that the distributions in two neighboring segments are different. Clearly, this
is required for the change-points to be well defined, and the second part is to ensure that the expectation of the function
associates with the true parameters is the maximum in the true sample, when we consider the particular case gj(·) = log fj(·),
this assumption comes directly from the distance of Kullback-Leibler, for further details, we refer to He and Severini (2010),
or when the function g(·) is independent of the index j, i.e., the same function of all segments for example when the variables
are assumed to be from normal distribution and there is a change in variances and having the same mean, or conversely, so we
have all parameters are in the same set, i.e., θj ∈ Θ for any j = 1, 2, . . . , k + 1, for the uncensored case, another example
if the variables are assumed to follow the Weibull’s distribution. In the M -estimation theory, this condition is required to
ensure that the true parameters are the points that maximizes the criterion function. For more details see also van der Vaart
and Wellner (1996).

Assumption 2.2 Assume that

1. for j = 1, . . . , k + 1, θj and θ0
j are contained in Θj , where Θj is a compact subset of Rdj ; α and α0 are contained in

Υ, where Υ is a compact subset of Rd; here d, d1, . . . , dk+1 are non-negative integers.

2. `(α,θ) is second-order continuously differentiable with respect to α, θ, and there is an interchangeability of integration
and differentiation in (2.2).

Compactness of the parameter space is used to insure that the maximum is achievable and to establish the consistency of the
M -estimators of

n1

n
, . . . ,

nk
n
, θ1, . . . , θk+1, α,

for discussions and details on this condition and its necessity in general model, the reader can refer to Huber (1981) for
complete data and Wang (1995) for censored data. Differentiability of the given function is used to justify some Taylor series
expansions, interchangeability of integration and differentiation is technical assumption used for the variance expression
in (4.5). The second part of the Assumption 2.2 ensures the existence of the variance of the M -estimates. Both parts of
Assumption 2.2 are relatively weak and are essentially the same as conditions used in parametric models for censored data
without change-points, see Wang (1999).

Assumption 2.3 Assume that

1. for any j = 1, . . . , k + 1 and any integers s, t satisfying 0 ≤ s < t ≤ n,

E

 max
θj∈Θj ,α∈Υ

[
t∑

i=s+1

(
k+1∑
z=1

gj(α, θj , Yi)δi

SGn0
z
(Y −i )

1I{nz−1+1≤i≤nz} − E(gj(α, θj , Xi))

)]2
 ≤ C(t− s)r,

where r < 2 and C is a constant.
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2. for any j = 1, . . . , k + 1 and any integers s, t satisfying n0
j−1 ≤ s < t ≤ n0

j ,

E

(
max

θj∈Θj ,α∈Υ

[
t∑

i=s+1

(
k+1∑
z=1

gj(α, θj , Yi)δi

SGn0
z
(Y −i )

1I{nz−1+1≤i≤nz}

−
gj(α

0, θ0
j , Yi)δi

SG
n0
j

(Y −i )
− b(α, θj , α0, θ0

j )

2
≤D(t− s)r,

where b(α, θj , α0, θ0
j ) is introduced in equation (2.4), r < 2 and D is a constant.

Parts 1 and 2 of Assumption 2.3 are technical requirements on the behavior of the function gj(·) between and within segments,
respectively. This condition is used to ensure that the information regarding the within- and between-segment parameters
grows quickly enough to establish consistency and asymptotic normality of the parameter estimators. Note that where gj(·) =
log fj(·) these conditions are relatively weak; it is easy to check that they are satisfied by at least all distributions in the
exponential family, for more details refer to He and Severini (2010).

Assumption 2.4 1. The parameter φ0 is the unique root of ρ(φ) = 0.

2. The matrix C(φ0) defined in (4.3) is finite.

Assumption 2.5 1. Assume that (R1), in the appendix, hold for τF
n0
j

and τG
n0
j

for any j = 1, 2, . . . , k + 1.

2. Assume that (R2) and (R3), in the appendix, hold for any j = 1, 2, . . . , k + 1 when we replace ϕ by ψj(l), 1 ≤ l ≤
d+ d1 + · · ·+ dk+1, γ0(·) by γj0(·), H1(·) by Hj1(·), C(x) by Cj(x) and F (·) by Fn0

j
(·).

Assumption 2.6 Assume that for every j = 1, . . . , k and for t > 0; SnjC (t) > 0 and SG
n0
j

(t) > 0.

The first part of the Assumption 2.4 is quite classical condition in the Z-estimation theory. The second part is used to justify
the existence of variance-covariance expression. We use the Assumption 2.5 for the SLLN and CLT of each true sub-sample
in the presence of censoring. Assumption 2.6 is imposed to justify the finiteness of some expressions when we have SnjC (·)
and SG

n0
j

(·) in the denominator for each j.

3 Asymptotic results
In this section, we establish the consistency of the M -estimators by using the argmax theorem in van der Vaart and Wellner
(1996). For reader convenience, let us recall the basic idea. If the argmax functional is continuous with respect to some metric
on the space of the criterion functions, then convergence in distribution of the criterion functions will imply the convergence
in distribution of their points of maximum, the M -estimators, to the maximum of the limit criterion function. So in this
section we will give our first main result; the weak consistency of the estimators α̂, θ̂1, . . . , θ̂k+1, λ̂1, . . . , λ̂k, which it will be
considered as an initial step for the next results, where we will treat the rate of convergence and the asymptotic distribution of
the estimators α̂, θ̂1, . . . , θ̂k+1. The results presented in this section extends and complements the theory of He and Severini
(2010) in several ways. On the first hand, when all the data are observed and the criterion function is replaced by the probability
density function, i.e., gj(·) = log fj(·), our Theorem 3.1 becomes their Theorem 2.1 and our Theorem 3.3 becomes their
Theorem 2.2. On the other hand, we consider the censored data setting in semi-parametric models that is quite different from
the framework of the last mentioned reference. Let us recall that the estimators (α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k) are defined in
equation (2.1).
The following theorem gives the consistency of the model’s parameters estimators (α̂, θ̂1, . . . , θ̂k+1, n̂1, . . . , n̂k).

Theorem 3.1 (Consistency) Under Assumption 3.1, part 1 of Assumption 3.2, part 1 of Assumption 3.3 and Assumption 3.6,
we have, as n→∞,

λ̂i
P−→ λ0

i , θ̂j
P−→ θ0

j and α̂
P−→ α0,

where

λ̂i =
n̂i
n

for i = 1, . . . , k and j = 1, . . . , k + 1.
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Remark 3.2 It is worth noting that n̂i, i = 1, . . . , k are not consistent. Here we consider the consistency of the change
point fractions λ̂i, i = 1, . . . , k, in a similar spirit as in Hinkley (1970). The weak consistency of the parameters α̂ and θ̂j ,
j = 1, . . . , k+1 is based on the classicalM -estimators techniques for the censored data in the complex setting of the multiple
change-points models.

The proof of this theorem is based on the proof of Theorem 3.1 in He and Severini (2010). The proof of Theorem 3.1 is
captured in the forthcoming Sect. 8.

The following theorem give the convergence rate of the estimator λ̂1, . . . , λ̂k the change-points coefficients λ1, . . . , λk.

Theorem 3.3 (Convergence rate) Under Assumption 3.1, part 1 of Assumption 3.2, Assumption 3.3 and Assumption 3.6, we
have

lim
η→∞

lim
n→∞

P
(
n
∥∥∥λ̂− λ0

∥∥∥
∞
≥ η

)
= 0,

where
λ̂ =

(
λ̂1, . . . , λ̂k

)
,
∥∥∥λ̂− λ0

∥∥∥
∞

= max
1≤j≤k

∣∣∣λ̂j − λ0
j

∣∣∣ .
That is, for i = 1, 2, . . . , k,

λ̂i − λ0
i = OP

(
n−1

)
.

The proof of this theorem is based of the proof of Theorem 2.2 in He and Severini (2010). The proof of Theorem 3.3 is
captured in the forthcoming Sect. 8.

Remark 3.4 The proof of the asymptotic distribution of λ̂1, . . . , λ̂k, should require a complex methodology, and we leave this
problem open for future research.

Remark 3.5 In the comparison of the nonparametric regression estimators, Korostelëv and Tsybakov (1993) argued that the
minimax approach is one of the correct ways. Raimondo (1998) considered the sharp change-point problem as an extension of
earlier problems in change-point analysis related to the nonparametric regression. Raimondo (1998) proposed a test function
for the local regularity of a signal that characterizes such a point as a global maximum and developed a suboptimal wavelet
estimator. Goldenshluger et al. (2008) considered the problem of nonparametric estimation of signal change-points from
indirect and noisy observations, where the estimation problem is analyzed in a general minimax framework. The authors
provide lower bounds for minimax risks and propose rate-optimal estimation procedures, one can refer to the last reference
for more details on the subject. Shiryaev (2016) considered the change-point quickest detection problem for Brownian motion.
The minimax test proposed by Lorden (1971), is used to solve this problem. An original complete and remarkable proof of
the CUSUM statistics optimality is constructed and given in detail. Pergamenchtchikov and Tartakovsky (2019) established
very general conditions for some models under which the weighted Shiryaev-Roberts procedure is asymptotically optimal, in
the minimax sense. In the setting of the multiple change-points when the number of change-points in known, Bai and Perron
(1998) obtained the rate 1/n in the multiple linear regression setting, even the least-squares estimator is consistent with the
optimal rate 1/n; see Hao et al. (2013) and the references therein. Using the maximum likelihood estimators, He and Severini
(2010), obtained the same rate, while in the nonparametric maximum likelihood approach Dumbgen et al. (1991) showed
that the optimal rate is 1/n in the single change-point setting, which is generalized by Zou et al. (2014a) when they fixed the
number of change-points. Notice that the rate 1/n obtained in Theorem 3.3 is the minimax rate when the number of change-
points is known. The rate convergence 1/n of the estimated change-points fractions plays a crucial role to obtain standard
root-n asymptotic normality of the estimated parameter φ̂.

4 Z-estimators
In this section, we give the Z-estimators of φ when the functions gj(·) are differentiable in φ, in two step the first step is
maximizing the equation (1.1) in nj , j = 1, 2 . . . , k, and in the second step, we find the solution to the estimating equation
given by

ρn(α, θ1, . . . , θk+1) =
∂`

∂φ
=

k+1∑
j=1

(n̂j − n̂j−1)

n

∫
R
ψj(α, θj , x)dF̂n̂j (x),

=

k+1∑
j=1

(λ̂j − λ̂j−1)ρn̂j (α, θj), (4.1)
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where n̂j is the maximizers of nj and ψj(α, θj , x) =
∂gj(α,θj ,x)

∂φi
, i = 1, . . . , k + 2, from Υ ×Θj × R to Rd+d1+···+dk+1 ;

satisfies

ρ(α0, θ0
1, . . . , θ

0
k+1) =

k+1∑
j=1

(n0
j − n0

j−1)

n

∫
R
ψj(α

0, θ0
j , x)dFn0

j
(x) = 0,

and, for each j = 1, 2, . . . , k + 1,

ρn0
j
(α0, θ0

j ) =

∫
R
ψj(α

0, θ0
j , x)dFn0

j
(x) = 0.

Let

ρ0
n(α, θ1, . . . , θk+1) =

∂`0

∂φ
=

k+1∑
j=1

(n0
j − n0

j−1)

n

∫
R
ψj(α, θj , x)dF̂n0

j
(x).

=

k+1∑
j=1

(λ0
j − λ0

j−1)ρ0
n0
j
(α, θj).

Notice that Z-estimators include the maximum likelihood estimators, when

ψj(φ, x) =
∂ log fj(φ, x)

∂φ
,

where f(·) is the density function, generalized method of moment estimators when

ψj(φ, x) = h(x)− Eφh(x),

for some function h(·), asymptotic properties are given in Huber (1981), Serfling (1980), van der Vaart and Wellner (1996)
and van der Vaart (1998) among others. For the censored data, the case

ψj(φ, x) =
∂ log fj(φ, x)

∂φ
,

no longer correspond to the maximum likelihood estimators. Oakes (1986) referred to this particular type of Z-estimator as
the approximate maximum likelihood estimators and points out its computational and potential robustness advantages over the
classical maximum likelihood estimators. Wang (1999) has established the strong consistency of this type of estimators. The
asymptotic normality is obtained, under restrictive conditions, by Reid (1981). Wang (1999) established general asymptotic
normality results, which are comparable to those in Cramér (1946), Huber (1967) and subsequent work, he provided the
influence curves of a Z-estimator. In this section, we give the asymptotic results and the rate of convergence of Z-estimators
under censored data in models with multiple change-points, after approximating the points of change and giving the general
conditions for the asymptotic normality, similar to those considered in Wang (1999). The main hurdle for the full development
of the asymptotic properties of Z-estimators is the work of Stute (1995) obtained the most general CLT for

∫
ϕdF̂n with an

arbitrary function ϕ(·). For any j = 1, 2, . . . , k + 1, let ψj(l)(α, θj , ·) denote the l-th component of ψj(α, θj , ·). Replace ϕ(·)
by ψj(l)(α, θj , ·) in (9.3) and (9.5), H0(·) (resp. H1(·), Hpn(·)) by Hj0(·) (resp. Hj1(·), Hj,pn(·)) in (9.1) and (4.2) where

Hj,pn(y) =
1

n0
j − n0

j−1

n0
j∑

i=n0
j−1

1I{Yi≤y,δi=p}, for p = 0, 1, (4.2)

H(·) (resp. F (·),G(·)) byHn0
j
(·) (resp. Fn0

j
(·),Gn0

j
(·)), C(·) by Cj(·) in (9.3) and (9.4) and denote the corresponding γi(·)’s

and U by γji(l)(·), i = 0, 1, 2 and U(ψj(l)) respectively. It now follows from Proposition 9.2, and the multivariate central limit
theorem that,

√
n

∫
R
ψj(α, θj , x)d(F̂n0

j
− Fn0

j
)(x)

converges in distribution to a multivariate normal distribution with zero mean and covariance matrix Cj(ψj , α, θj , Fn0
j
, Gn0

j
),

whose (i, l)-entry is

Cj(il)(ψj , α, θj , Fn0
j
, Gn0

j
) = E(U(ψj(i))U(ψj(l)))

= E
{

[ψj(i)(α, θj , Y )γj0(i)(Y )δ + γj1(i)(Y )(1− δ)− γj2(i)(Y )

∫
R
ψj(i)(α, θj , x)dF (x)]

[ψj(l)(α, θj , Y )γj0(l)(Y )δ + γj1(l)(Y )(1− δ)− γj2(l)(Y )−
∫
R
ψj(l)(α, θj , x)dF (x)]

}
.
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Let

C(φ) =

k+1∑
j=1

(λ0
j − λ0

j )Cj(ψj , α, θj , Fn0
j
, Gn0

j
), (4.3)

and
∂

∂φ
ψj(α, θj , x) =

(
∂

∂φl
ψj(i)(α, θj , x)

)
il

,

denote the (d + d1 + · · · + dk+1) × (d + d1 + · · · + dk+1) derivative matrix of ψ with respect to φ, let ΓF
n0
j

(t) and Γ(t)

denote the (d+ d1 + · · ·+ dk+1)× (d+ d1 + · · ·+ dk+1) matrix with

ΓF
n0
j

(t) =

∫
∂

∂φ
ψj(α, θj , x) |φ=t dFn0

j
(x),

Γ(t) =

k+1∑
j=1

n0
j − n0

j−1

n
ΓF

n0
j

(t), (4.4)

Σ =
[
Γ(φ0)

]−1
C(φ0)

[
Γ(φ0)>

]−1
, (4.5)

where A> denotes the transpose of a matrix A.
The following theorem gives the consistency of φ̂.

Theorem 4.1 Under the Assumptions of Theorem 3.3, the function ρ(·) is continuous and for every ε > 0, for n→∞,

sup
φ∈Φ

∥∥ρ0
n(φ)− ρ(φ)

∥∥ P−→ 0,

inf
φ:‖φ0‖≥ε

‖ρ(φ)‖ > 0 =
∥∥ρ (φ0

)∥∥ .
Then any sequence of estimators φ̂ such that ρn

(
φ̂
)

= oP(1) converges in probability to φ0.

The proof of Theorem 4.1 is captured in the forthcoming Sect. 8.
The conditions of the last theorem are given in van der Vaart (1998) when the data are complete and without change in
distribution, here we give the conditions under the presence of censoring where we use the Kaplan-Meier integral, the first
condition of this theorem is satisfies when the families

Fj = {ψj(α, θj , ·), α ∈ Υ, θj ∈ Θj}

are Glivenko-Cantelli and the functions Fn0
j
(·) are continuous for each j = 1, 2, . . . , k + 1 for more detail see Stute (1995)

and Bae and Kim (2003), compactness of the set Φ and the continuity of ψj(·) for any j = 1, 2, . . . , k + 1 with the first part
of Assumption 2.4 implies the condition 2 of Theorem 4.1.
In the next theorem, we will give weaker conditions than those in the previous theorem, these conditions are introduced in
Pakes and Pollard (1989). Note that the first condition is to insure the estimator φ̂ is taken as any value that comes close
enough to provide a global minimum for ‖ρn(·)‖, since φ0 is included in the set over which the minimum is taken, ‖ρn(φ̂)‖
cannot be much bigger than ‖ρn(φ0)‖. If the quantity ρn(φ0) is eventually close to zero, the second assumption on ρ(φ0)

implies that ρn(φ̂) must also get close to zero. If small values of ‖ρn(φ)‖ can occur only near φ0, this forces φ̂ to be close to
φ0 by the third condition.

Theorem 4.2 Under the following conditions

(i) ∥∥∥ρn (φ̂)∥∥∥ ≤ oP(1) + inf
φ∈Φ
‖ρn(φ)‖;

(ii)
ρn(φ0) = oP(1);

(iii)
sup
‖φ0‖>η

‖ρn(φ)‖−1 = OP(1) for each η > 0.

10



Then any sequence of estimators φ̂ such that ρn
(
φ̂
)

= oP(1) converges in probability to φ0.

The proof of Theorem 4.2 is captured in the forthcoming Sect. 8.
The next theorem gives conditions under which φ̂, which is now assumed to converge in probability to φ0, satisfies a central

limit theorem like a Z-estimator. The argument breaks naturally into two steps. First we establish
√
n-consistency by means

of a comparison between ‖ρ0
n(φ̂)‖ and ‖ρ0

n(φ0)‖. Informally stated, the new equicontinuity condition (iii) implies that

‖ρ(φ)‖ ≤ OP(‖ρn(φ)‖) +OP
(∥∥ρn (φ0

)∥∥)+ oP

(
n−1/2

)
uniformly near φ0. Since φ̂ comes close to minimizing ‖ρn(·)‖, the quantity ‖ρn(φ̂)‖ cannot be much larger than ‖ρn(φ0)‖,
which is of order OP(n−1/2). Approximate linearity of ρ(·) in a neighborhood of φ0 transfers the same rate of convergence to
φ̂−φ0. The argument for the second step need only values of φ in aOP

(
n−1/2

)
neighborhood of φ0 (see page 1040 in Pakes

and Pollard (1989)). The combination of conditions (ii) and (iii) shows that ρ0
n(·) is uniformly well approximated by a linear

function Ln(·). The φ∗n that minimizes ‖Ln(·)‖ has an explicit form, from which asymptotic normality of
√
n(φ∗n − φ

0) is
easily established. A comparison between ‖ρn(φ∗n)‖ and ‖ρ0

n(φ̂)‖ shows that φ̂ must lie within OP(n−1/2) of φ∗n, which
implies the desired central limit theorem.
The following theorem provides the central limit theorem for the estimator φ̂.

Theorem 4.3 Let φ̂ be a consistent estimator of φ0, under the Assumptions of Theorem 3.3, Assumption 2.4 and

(i) ‖ρ0
n(φ̂)‖ ≤ oP(n−1/2);

(ii) ρ(·) is differentiable at φ0 with a derivative matrix Ω of full rank;

(iii) for every sequence ηn of positive numbers that converges to zero,

sup
‖φ−φ0‖<ηn

‖ρ0
n(φ)− ρ(φ)− ρ0

n(φ0)‖
n−1/2 + ‖ρ0

n(φ)‖+ ‖ρ(φ)‖
= oP(1);

(iv) φ0 is an interior point of Φ,

then we have, as n→∞, √
n(φ̂− φ0)

D−→ N
(
0, (Ω−1)C(φ0)(Ω−1)>

)
.

The proof of Theorem 4.3 is captured in the forthcoming Sect. 8.
From Proposition 9.2 the central limit theorem follows. Note that if we can interchange between the integration and differen-
tiation in (4.5), we take

Ω = Γ(φ0).

The proof of Theorem 4.3 is similar to the proof in Pakes and Pollard (1989) but in our case, ρ0
n(·) (resp ρ0

n0
j
(·), j =

1, 2, . . . , k + 1) is not available, we have only ρn(·) (respectively ρn̂j (·), j = 1, 2, . . . , k + 1), the result expression (8.4)
in Lemma 8.4 gives us the asymptotic equivalence when n is large enough. The condition (i) and (iii) are automatically
fulfilled when

(i)
′ ∥∥∥ρ0

n0
j
(α, θj)

∥∥∥ ≤ oP(n−1/2), j = 1, 2, . . . , k + 1;

(iii)
′

sup
‖(α,θj)−(α0,θ0j )‖<ηn

∥∥∥ρ0
n0
j
(α, θj)− ρn0

j
(α, θj)− ρ0

n0
j
(α0, θ0

j )
∥∥∥ = oP(n−1/2), j = 1, 2, . . . , k + 1.

Note that for the conditions (i) (resp (i)
′
) and (iii) (resp (iii)

′
) which they are assumed for ρ0

n(·) (respectively ρ0
n0
j
(·)) the same

under result in Lemma 8.4, we can show this conditions are required also for ρn(·) (respectively ρn̂j (·)) and conversely. In
the next theorem, we give the asymptotic normality of

√
n(φ̂−φ0) for φ̂ as an M -estimator or Z-estimator the proof is much

similar.
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Theorem 4.4 (Asymptotic normality) Under part 2 of Assumption 2.2 for φ in a neighborhood of φ0, and let Γ(φ0) defined
in (4.4) be a finite and non-singular (d+ d1 + · · ·+ dk+1)× (d+ d1 + · · ·+ dk+1) matrix. Assume that the assumptions of
Lemma 8.5 with part 1 of Assumption 2.5 hold for

s(φ, x) =

(
∂

∂φl
ψj(i)(α, θj , x)

)
il

, 1 ≤ i, l ≤ d+ d1 + · · ·+ dk+1,

for any j, and part 2 of Assumption 2.5. Under Assumption 2.3 and Assumption 2.4, any sequence of Z-estimates φ̂ satisfying

φ̂
P→ φ0

is asymptotically normal with √
n(φ̂− φ0)

D−→ N(0,Σ),

where Σ is defined in (4.5).

The proof of Theorem 4.4 is captured in the forthcoming Sect. 8.

Remark 4.5 Change-point detection has received enormous attention due to the emergence of an increasing amount of tem-
poral data. In the present work, we are mainly concerned with the estimation of the model parameters. We have assumed
that the number of changes in the sample is known, which is not the case in real application. Without the need to know the
number of change-points in advance, Zou et al. (2014b) proposed a nonparametric maximum likelihood approach to detecting
multiple change-points. It worth to notice that the determination of the number of change-points k in a dataset has been
crucial to multiple change-points analysis for long times. It is often approached as a model selection problem, since k drives
the model dimension. we can use the binary segmentation (BinSeg) method proposed in Vostrikova (1981), which is a “top
down” procedure, in the sense that one tests all the data to determine if there is at least one change-point and iterates the
procedure in the intervals immediately to the “left” and “right” of the most recently detected change-point. This procedure
is widely used motivated by the low computational complexity and the is conceptually easy to implement compared to the
Exhaustive Search as described by Niu et al. (2016) in Section 3.1. Each stage of BinSeg involves search for a single change-
point, which means that if a given segment contains multiple change-points in certain unfavourable configurations, BinSeg
may fail to perform adequately on it, as it attempts to fit the “wrong” model. Fryzlewicz (2014) shows that relatively restrictive
theoretical assumptions are needed for BinSeg to offer near-optimal performance in terms of the accuracy of estimation of the
change-point locations, refer to Korkas and Fryzlewicz (2017) and Fryzlewicz (2018). In the last reference a new solution is
proposed giving a ‘tail-greedy’, bottom-up transform for one-dimensional data, which results in a nonlinear but conditionally
orthonormal, multiscale decomposition of the data with respect to an adaptatively chosen unbalanced Haar wavelet basis,
which avoids the disadvantages of the classical divisive BinSeg. When the number of changes is unknown, Lavielle (1999),
Lavielle and Ludeña (2000) proposed its its estimation by minimizing a penalized contrast function. Very recently, Zou et al.
(2020) proposed a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods,
including in particular the binary segmentation and the optimal partitioning algorithms. The main idea is to select the number
of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample.
The authors investigated a unified parametric framework which includes classical univariate or multivariate location and
scale problems, ordinary least-squares, generalized linear models, and many others as special cases, provided that the cor-
responding objective (likelihood or loss) function can be recast into their asymptotically equivalent least-squares problems.
In Zou et al. (2014c), the number of change-points is determined by the Bayesian information criterion and the locations of
the change-points can be estimated via the dynamic programming algorithm and the use of the intrinsic order structure of
the likelihood function. Under some general conditions, Zou et al. (2014c) showed that the new method provides consistent
estimation with an optimal rate. We refer to the last reference for more discussions. For more details, we refer to Truong et al.
(2020), where the authors presented a selective survey of algorithms for the offline detection of multiple change-points.

5 Maximum likelihood estimators
In this section we will consider the maximum likelihood estimators in models with multiple change points in censored data
framework. To unburden our notation a bit, we assume that the censoring variables C are independent and identically dis-
tributed with distribution function G(·) and density function g(·), with respect to the Lebesgue measure λ. Let the lifetime X
and the censoring time C be positive continuous random variables assumed to be independent. Recall that, the distribution
function of the lifetime X is F (α, θ, ·) with density function f(α, θ, ·), with respect to the Lebesgue measure λ, where α and
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θ are the unknown parameters to be estimated. In the random censorship from the right model, one observes the pairs (Y, δ),
where Y = min(X,C) and δ = 1I{X 6 C}. Let (Yi, δi) , 1 6 i 6 n, denote a random sample of (Y, δ) that one observes,
and Y(1) < · · · < Y(m) denote the m distinct ordered values of Y ’s. When there are ties among the Y ′s, we have m < n. The
likelihood function for this sample is given by

L(α, θ) =

n∏
i=1

fY,∆ (α, θ, δi, yi) ,

where fY,∆(·) is the density function of the couple (Y,∆) with respect to the product measure λ⊗ µ with λ is the measure of
Lebesgue and µ is the counting measure on the set {0, 1}. The likelihood function can be rewritten as follows

L(α, θ) =

n∏
i=1

fY,∆ (α, θ, δi, yi) =

n∏
i=1

(f (α, θ, δi, yi)G (yi))
δi (g (yi) (1− F (α, θ, δi, yi)))

1−δi . (5.1)

By the hypothesis that the distribution of the censored data is independent of the unknown parameters α and θ so the maxi-
mization of (α, θ) 7→ L(α, θ) is equivalent to the maximization of the pseudo-likelihood given by

L(α, θ) =

n∏
i=1

(f (α, θ, yi))
δi (1− F (α, θ, yi))

1−δi . (5.2)

Now, we consider model with known k change in the distribution, i.e.,

Xi ∼ F (α, θ, x), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n.

In this case, the likelihood function given in (5.2), can be written as follows

L(α, θ1, . . . , θk+1, n1, . . . , nk) =

k+1∏
j=1

nj∏
i=nj−1+1

(f (α, θj , yi))
δi (1− F (α, θj , yi))

1−δi ,

which implies that the log-likelihood function is given by

` ≡ ` (α, θ1, . . . , θk+1, n1, . . . , nk)

=
1

n

k+1∑
j=1

nj∑
i=nj−1+1

{δi log f (α, θj , yi) + (1− δi) log(1− F (α, θj , yi))} , (5.3)

whereF (α, θj , y) > 0 for all j = 1, . . . , k+1. The maximization is taken with respect to the vector (α, θ1, . . . , θk+1, n1, . . . , nk),
so the multiplication by the factor 1/n does not affect the optimization problem, which is needed for asymptotic results.
Although only two examples will be given here, they stand as archetypes for a variety of parametric families that can be
investigated in a similar way. Let us specify the log-likelihood function for the exponential and Gaussian random variables.

Exponential distribution
We consider the following model

Xi ∼ Exp(θj), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n.

Ci ∼ Exp(βj), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n, (5.4)

where β = (β1, . . . , βk+1) is assumed to be known. The log-likelihood function is given by

` (θ1, . . . , θk+1, n1, . . . , nk) =
1

n

k+1∑
j=1

nj∑
i=nj−1+1

{
δi log

(
θje
−θjyi

)
+ (1− δi) log

(
e−θjyi

)}
(5.5)

=
1

n

k+1∑
j=1

nj∑
i=nj−1+1

{δi log (θj)− δiθjyi − (1− δi)θjyi}

=
1

n

k+1∑
j=1

nj∑
i=nj−1+1

{δi log (θj)− θjyi} ,

where yi are the observed values.
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Normal distribution
We now consider the uncensored case, where the variables are normal with change only in mean from segment to segment
and fixed variance, this means that the change occurs only in θj and α ≡ 1, i.e.,

Xi ∼ N (θj , 1), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n. (5.6)

The log-likelihood function in this case is given by

` (θ1, . . . , θk+1, n1, . . . , nk) = − 1

n

k+1∑
j=1

nj∑
i=nj−1+1

(xi − θj)2

2
.

6 Numerical results
This section is concerned with the evaluation of the finite sample performance of the proposed estimation procedure using
the the maximum likelihood in (5.2) with samples of different sizes and different censoring rate. We provide numerical
illustrations regarding the bias, the variance and the root mean-squared error RMSE. The computing program codes were
implemented in R. In our simulation, we choose one sample of 1000 observations with 10 change-points, i.e., k = 10 with
true location;

λ0 = (50, 150, 240, 390, 470, 580, 630, 680, 780, 930)

and the true within-parameter
θ0 = (1, 5, 11, 1, 6, 12, 5, 2, 10, 4, 12).

We will consider different intensities of censoring in the sample. The censoring random variables C1, . . . , Cn are generated
from distribution depending on some parameter β = (β1, . . . , β11) calibrated to attain the desired censoring rate (5%, 10% or
30%). The three scenarios of the censoring rate (proportion) (cr) are given as follows.

(i) cr = 5%, with censoring random variables

Ci ∼ Exp(βj), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n,

where β = (0.05, 0.3, 0.6, 0.05, 0.3, 0.6, 0.3, 0.1, 0.5, 0.2, 0.6);

(ii) cr = 10%, with censoring random variables

Ci ∼ Exp(βj), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n,

where β = (0.1, 0.6, 1.2, 0.1, 0.7, 1.3, 0.6, 0.2, 1, 0.4, 1.3);

(iii) cr = 30%, with censoring random variables

Ci ∼ Exp(βj), nj−1 + 1 ≤ i ≤ nj , j = 1, . . . , k + 1; i = 1, . . . , n,

where β = (0.4, 2, 5, 0.4, 3, 5, 2, 1, 4.3, 1.7, 5).

The simulation results are reported in the following Tables 1-5.
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cr=5%
Parameter True value Mean BIAS SD RMSE

n1 50 58,776 8,776 10,385 13,597
n2 150 149,804 -0,196 4,129 4,134
n3 240 247,018 7,018 5,495 8,913
n4 330 330,128 0,128 3,794 3,796
n5 410 411,926 1,926 7,234 7,486
n6 520 533,803 13,803 6,391 15,211
n7 610 609,971 -0,029 4,402 4,402
n8 710 712,272 2,272 4,332 4,892
n9 820 820,384 0,384 2,86 2,886
n10 930 944,531 14,531 4,047 15,084
θ1 5 4,914 -0,086 0,846 0,851
θ2 3 3,024 0,024 0,353 0,354
θ3 1 1,062 0,062 0,132 0,146
θ4 6 6,244 0,244 0,78 0,817
θ5 2 2,085 0,085 0,287 0,3
θ6 7 6,27 -0,73 0,798 1,081
θ7 3 3,007 0,007 0,396 0,396
θ8 1 1,02 0,02 0,119 0,121
θ9 8 8,061 0,061 0,908 0,91
θ10 2 2,122 0,122 0,221 0,252
θ11 7 7,324 0,324 1,096 1,143

Table 1: Maximum likelihood estimator for censored case sample size 1000, with censoring rate 5%.

cr=10%
Parameter True value Mean BIAS SD RMSE

n1 50 58,449 8,449 9,93 13,038
n2 150 149,689 -0,311 4,266 4,278
n3 240 247,778 7,778 5,48 9,515
n4 330 330,051 0,051 3,77 3,77
n5 410 412,538 2,538 7,926 8,322
n6 520 533,86 13,86 6,1 15,143
n7 610 609,764 -0,236 4,661 4,667
n8 710 712,84 2,84 4,668 5,464
n9 820 820,383 0,383 3,115 3,138
n10 930 944,569 14,569 4,048 15,121
θ1 5 4,91 -0,09 0,85 0,854
θ2 3 3,024 0,024 0,358 0,359
θ3 1 1,069 0,069 0,137 0,153
θ4 6 6,259 0,259 0,797 0,838
θ5 2 2,093 0,093 0,298 0,312
θ6 7 6,267 -0,733 0,816 1,096
θ7 3 3,019 0,019 0,409 0,409
θ8 1 1,027 0,027 0,124 0,127
θ9 8 8,067 0,067 0,937 0,94
θ10 2 2,118 0,118 0,224 0,253
θ11 7 7,349 0,349 1,113 1,167

Table 2: Maximum likelihood estimator for censored case sample size 1000, with censoring rate 10%.
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cr=30%
Parameter True value Mean BIAS SD RMSE

n1 50 58,604 8,604 9,513 12,827
n2 150 149,229 -0,771 4,947 5,006
n3 240 249,918 9,918 5,239 11,216
n4 330 329,484 -0,516 4,45 4,48
n5 410 415,445 5,445 10,287 11,639
n6 520 533,671 13,671 5,708 14,815
n7 610 609,431 -0,569 5,442 5,472
n8 710 715,239 5,239 5,553 7,635
n9 820 819,935 -0,065 3,832 3,832
n10 930 944,803 14,803 3,938 15,318
θ1 5 4,933 -0,067 0,929 0,932
θ2 3 3,041 0,041 0,418 0,42
θ3 1 1,086 0,086 0,149 0,172
θ4 6 6,354 0,354 0,908 0,975
θ5 2 2,117 0,117 0,323 0,343
θ6 7 6,278 -0,722 0,936 1,182
θ7 3 3,045 0,045 0,462 0,464
θ8 1 1,047 0,047 0,14 0,148
θ9 8 8,153 0,153 1,078 1,089
θ10 2 2,1 0,1 0,24 0,26
θ11 7 7,477 0,477 1,268 1,354

Table 3: Maximum likelihood estimator for censored case sample size 1000, with censoring rate 30%.

After we consider the case of complete data, i.e., Yi = Xi and δi = 1 for all i = 1, . . . , n in the same model given in
(5.4), the log-likelihood in (5.5) is written in this form

` (θ1, . . . , θk+1, n1, . . . , nk) =
1

n

k+1∑
j=1

nj∑
i=nj−1+1

{log (θj)− θjyi} ,

with the same true location λ0 and the same true within-parameters θ0, we have the following results in Table 4.
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The uncensored case with exponential distribution
Parameter True value Mean BIAS SD RMSE

n1 50 58,994 8,994 10,59 13,894
n2 150 149,901 -0,099 3,926 3,927
n3 240 246,438 6,438 5,414 8,412
n4 330 330,205 0,205 3,65 3,656
n5 410 411,314 1,314 6,511 6,642
n6 520 533,732 13,732 6,444 15,169
n7 610 610,012 0,012 4,312 4,312
n8 710 711,716 1,716 3,96 4,316
n9 820 820,473 0,473 2,861 2,9
n10 930 944,533 14,533 4,084 15,096
θ1 5 4,904 -0,096 0,835 0,841
θ2 3 3,021 0,021 0,341 0,342
θ3 1 1,057 0,057 0,13 0,143
θ4 6 6,23 0,23 0,745 0,78
θ5 2 2,081 0,081 0,281 0,292
θ6 7 6,27 -0,73 0,78 1,068
θ7 3 3,001 0,001 0,388 0,388
θ8 1 1,015 0,015 0,116 0,117
θ9 8 8,042 0,042 0,88 0,881
θ10 2 2,126 0,126 0,219 0,253
θ11 7 7,287 0,287 1,057 1,095

Table 4: Maximum likelihood estimator for uncensored case sample size 1000, for complete data.

Finally, consider the case of normal distribution for complete data model given in (5.6), with sample size 1000 with 10
change-points, with true location given by

λ = (70, 160, 250, 340, 440, 540, 630, 730, 820, 920)

and the true within-parameter is given

θ = (−5, 3, 0, 4,−1, 3,−3, 10, 4,−2, 0).

The results are reported in Table 5.
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The uncensored case with normal distribution
Parameter True value Mean BIAS SD RMSE

n1 70 69,999 -0,001 0,024 0,024
n2 160 186,845 26,845 13,54 30,066
n3 250 255,279 5,279 9,215 10,621
n4 340 340,029 0,029 0,376 0,377
n5 440 450,289 10,289 16,02 19,04
n6 540 540,721 0,721 3,609 3,68
n7 630 630 0 0 0
n8 730 730,394 0,394 2,201 2,236
n9 820 820,008 0,008 0,17 0,17
n10 920 943,747 23,747 10,356 25,907
θ1 -5 -5,002 -0,002 0,167 0,167
θ2 3 2,354 -0,646 0,299 0,711
θ3 0 0,341 0,341 0,449 0,563
θ4 4 3,937 -0,063 0,158 0,17
θ5 -1 -0,588 0,412 0,444 0,606
θ6 3 2,894 -0,106 0,279 0,298
θ7 -3 -2,988 0,012 0,134 0,135
θ8 10 9,903 -0,097 0,198 0,22
θ9 4 3,968 -0,032 0,142 0,146
θ10 -2 -1,62 0,38 0,173 0,417
θ11 0 -0,011 -0,011 0,177 0,177

Table 5: Maximum likelihood estimator for complete data with sample size 1000, for complete data.

From tables and figures, the best results are obtained when the data is complete, and the results in the censoring case are
satisfactory when the censoring rate is moderate 5% and 10% and the performance are deteriorated when the censoring rate
increase. The following figures are computed for the three rates of censoring and for complete data for model given in (5.4)
with 1000 replicate from samples with sizes from 1000 to 10000 i.e., size = (100, 50, 120, 90, 90, 110, 80, 100, 90, 100, 70)∗k;
k = 1, . . . , 10, and true location given by λ = (100, 150, 270, 360, 450, 560, 640, 740, 830, 930) By inspecting Figures 1-6,
one can see that as in any other inferential context, the greater the sample size, the better. In the literature, it is commonly
used two or three changes in the sample for the finite sample experiments. In the present simulations, we have optimized
the likelihood criterion with respect to 21 parameters (n1, . . . , n10, θ1, . . . , θ11) simultaneously, including 10 changes in the
sample, which has a computational cost. This can be circumvented by using the penalized likelihood criterion. In order to
extract methodological recommendations for the use of the procedures proposed in this work, it will be interesting to conduct
extensive Monte Carlo experiments to compare our procedures with other scenarios presented in the literature, but this would
go well beyond the scope of the present paper.
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7 Concluding remarks
Some important problems in the analysis of multiple change-point models were not considered here. One is that the asymptotic
distribution of the M -estimator of the vector of change points was not considered, see for example Hinkley (1970) for a
treatment of this problem in a single change-point model and Döring (2011) for multiple change points. Thus, this is essentially
a separate research topic. However, the asymptotic properties obtained in this paper are necessary for the establishment of the
asymptotic distribution of the M -estimator of the vector of change points in this model. This will be a subject of investigation
for future work.

Another important problem is to extend the results of this paper to the case in which the number of change points is not
known and must be determined from the data. Another direction of research is that the methods and arguments in this paper
can be extended to other types of incomplete data (e.g. truncation, double censoring, interval censoring etc.) or data subject to
sampling bias, where the Kaplan-Meier product-limit estimate F̂nj (·) will be replaced by an appropriate estimate, usually the
non-parametric maximum likelihood estimate of the true lifetime distribution function. Such an extension is straightforward
whenever, for the suitable choice of F̂nj (·), the CLT of

∫
R ϕ(x)dF̂nj (x) have been established for an arbitrary function ϕ(·).

It would be interesting to cleanly extend the results to this, but this would require further theory which are out of the scope
of the present article. Change point estimation is a classical problem in mathematical statistics which, with its broad range of
applications in learning problems, has started to gain attention in the machine learning community. An important question is
how to apply our findings in such problems. Finally, the optimization problems become computationally complex when the
number of parameter is large, it will be interesting to consider the penalized version of the likelihood function to alleviate such
difficulties.

8 Mathematical developments
This section is devoted to the proofs of our results. The previously defined notation continues to be used below.
The proof of Theorem 3.1 will based on the Lemma 8.1 and Lemma 8.2. The following lemma gives a bound for the term
W1 given in equation (2.5).

Lemma 8.1 Under the Assumption 3.1 and the first part of Assumption 3.2, there exist two positive constants C1 > 0 and
C2 > 0 such that, for any λ and φ, we have

W1 ≤ −max {C1‖λ− λ0‖∞, C2%(φ,φ0)},

where
‖λ− λ0‖∞ = max

j
|λj − λ0

j | and %(φ,φ0) = max
j
|b(α, θj , α0, θ0

j )|.

Proof of Lemma 8.1
The proof of this lemme follows the similar arguments used in the proof of Lemma 3.1 in He and Severini (2010). Recall that

b(α, θj , α
0, θ0

i ) = E(gj(α, θj , Xi))− E(gi(α
0, θ0

i , Xi))

=

∫
R

[gj(α, θj , x)− gi(α0, θ0
i , x)]dFn0

i
(x).

Let us define, for i = 1, 2, . . . , k,

hi(β,φ
0) = sup

1≤j≤k
sup
θj∈Θj

sup
α∈Υ

[βb(α, θj , α
0, θ0

i+1) + (1− β)b(α, θj , α
0, θ0

i )],

where β ∈ [0, 1]. We have
hi(0,φ

0) = hi(1,φ
0) = 0 for i = 1, 2, . . . , k.

One can check that hi(β,φ0) is a convex function with respect to β for any i = 1, 2, . . . , k. Let

Hi(φ
0) = 2hi(1/2,φ

0).

It follows from the Assumption 2.1 that Hi(φ
0) < 0. If we let

H(φ0) = max
1≤i≤k

Hi(φ
0),
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then we have H(φ0) < 0. Let
∆0

λ = min
1≤j≤k−1

|λ0
j+1 − λ0

j |.

Consider the change-point configuration λ in such a way that

‖λ− λ0‖∞ ≤ ∆0
λ/4.

For any j = 1, 2, . . . , k, there are two cases: a candidate change-point fraction λj may be on the left or on the right of the true
change-point fraction λ0

j . For any j with λj on the right of λ0
j , we have that λj−1 ≤ λ0

j ≤ λj . Then

W1 ≤
nj,j+1

n
b(α, θj , α

0, θ0
j+1) +

njj
n
b(α, θj , α

0, θ0
j ).

If we define
βj,j+1 =

nj,j+1

nj,j+1 + njj
,

the case ‖λ− λ0‖∞ ≤ ∆0
λ/4 gives that βj,j+1 ≤ 1/2 and

W1 ≤ (λj − λ0
j )H(φ0).

For any j with λj on the left of λ0
j , we have that λj ≤ λ0

j ≤ λj+1. Similarly, we define

βj,j−1 =
nj,j−1

nj,j−1 + njj
,

we get βj,j−1 ≤ 1/2 and
W1 ≤ (λ0

j − λj)H(φ0).

Therefore, if ‖λ− λ0‖∞ ≤ ∆0
λ/4, we readily obtain that

W1 ≤ ‖λ− λ0‖∞H(φ0).

On the other hand, we have

W1 ≤ min
1≤j≤k+1

b(α, θj , α
0, θ0

j )
njj
n

= − max
1≤j≤k+1

|b(α, θj , α0, θ0
j )|
njj
n
.

For any j, we have njj
n ≥ ∆0

λ/2, so we infer that

W1 ≤ −
1

2
∆0

λ%(φ,φ0).

Now, consider the other case of change-point fraction configuration λ, where

‖λ− λ0‖∞ > ∆0
λ/4.

It is obvious that there exists a pair of integers (i, j) such that nij ≥ n∆0
λ/4, ni,j+1 ≥ n∆0

λ/4 and nij ≥ ni,j+1. Let

βi,j+1 =
ni,j+1

ni,j+1 + nij
.

For any φ, we have

W1 ≤
ni,j+1 + nij

n
[βi,j+1b(α, θi, α

0, θ0
j+1) + (1− βi,j+1)b(α, θi, α

0, θ0
j )]

≤ 1

2

(
∆0

λ

2

)2

H(φ0).

Combining the results from the two cases of ‖λ− λ0‖∞ ≤ ∆0
λ/4 and ‖λ− λ0‖∞ > ∆0

λ/4, it follows that

W1 ≤
1

2

(
∆0

λ

2

)2

H(φ0)‖λ− λ0‖∞,
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and

W1 ≤ −
∆0

λ

2
min

[
%(φ,φ0),−∆0

λ

4
H(φ0)

]
. (8.1)

Note that (8.1) can be simplified. Let us define

ρ(φ,φ0) = max
1≤j≤k+1

sup
θj∈Θj

sup
α∈Υ
|b(α, θj , α0, θ0

j )|.

It follows from the inequality (8.1) that we have

W1 ≤ −
∆0

λ

2
ρ(φ,φ0) min

[
%(φ,φ0)

ρ(φ,φ0)
,−∆0

λ

4
H(φ0)/ρ(φ,φ0)

]
.

If −∆0
λ

4 H(φ0)/ρ(φ,φ0) ≤ 1, then we infer that

W1 ≤ (∆0
λ/2)2(%(φ,φ0)/ρ(φ,φ0))(H(φ0)/2).

If −∆0
λ

4 H(φ0)/ρ(φ,φ0) > 1, we readily obtain

W1 ≤ −(∆0
λ/2)%(φ,φ0).

Letting
C2 = min{(∆0

λ/2)2|H(φ0)|/(2ρ(φ,φ0)),∆0
λ/2},

inequality (8.1) implies that
W1 ≤ −C2%(φ,φ0).

Setting
C1 = (∆0

λ/2)2|H(φ0)|/2,

we finally have the desired result. �
The following lemma describes between-segment properties and within-segment properties of the model.

Lemma 8.2 Under the Assumption 2.6, part 1 and 2 of the Assumption 2.3 respectively, it follows that

(I) For any j = 1, 2, . . . , k + 1, any 0 ≤ m1 < m2 ≤ n and any positive number ε > 0, there exists a constant Aj ,
independent of ε, and a constant r > 2, such that

P

(
max

m1≤s<t≤m2,θj∈Θj ,α∈Υ

∣∣∣∣∣
t∑

i=s+1

(
k+1∑
z=1

gj(α, θj , Yi)δi

SGn0
z
(Y −i )

1I{nz−1+1≤i≤nz} − E(gj(α, θj , Xi))

)∣∣∣∣∣ > ε

)

≤ Aj
(m2 −m1)r

ε2
. (8.2)

(II) For any j = 1, 2, . . . , k + 1 and any positive number ε > 0, there exist a constant Bj , independent of ε, and a constant
r > 2, such that

P

(
max

n0
j−1≤s<t≤n0

j ,θj∈Θj ,α∈Υ

[
t∑

i=s+1

(
k+1∑
z=1

gj(α, θj , Yi)δi

SGn0
z
(Y −i )

1I{nz−1+1≤i≤nz}

−
gj(α

0, θ0
j , Yi)δi

SG
n0
j

(Y −i )
− b(α, θj , α0, θ0

j )

> ε

 ≤ Bj (n0
j − n0

j−1)r

ε2
. (8.3)

Proof of Lemma 8.2
By the fact that all variables at hand are independent and keeping the part 1 of the Assumption 2.1 in mind, equation (8.2)
can be achieved by induction with respect to m2. The induction method is similar to the one used in Móricz et al. (1982), so
its proof is omitted here. Using part 2 of the Assumption 2.1, equation (8.3) can be proved similarly by the same induction
method. For more details, we can refer to He and Severini (2010). �
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Proof of Theorem 3.1
Let us introduce the following notation

Λ = {(λ1, λ2, . . . , λk) : λj =
nj
n
, j = 1, . . . , k; 0 < n1 < · · · < nk < n},

Λη = {λ ∈ Λ : ‖λ− λ0‖∞ > η},
Φ = Θ1 ×Θ2 × · · · ×Θk+1 ×Υ,

Φη = {φ ∈ Φ : %(φ,φ0) > η}.

Then, for any η > 0, it follows from an application of Lemma 8.1 that

− max
λ∈Λη,φ∈Φ

W1 ≥ C1η and − max
λ∈Λ,φ∈Φη

W1 ≥ C2η.

Therefore, we readily obtain that

P(‖λ− λ0‖∞ > η)

≤ P
(

max
λ∈Λη,φ∈Φ

W > 0

)
≤ P

(
max

λ∈Λη,φ∈Φ
W2 > − max

λ∈Λη,φ∈Φ
W1

)
≤ P

(
max

λ∈Λη,φ∈Φ
|W2| > C1η

)

≤ P

 max
λ∈Λη,φ∈Φ

k+1∑
j=1

1

n

∣∣∣∣∣∣
nj∑

i=nj−1+1

gj(α, θj , Yi)δiSG
n0
j

(Y −i )
− E(gj(α, θj , Xi))


∣∣∣∣∣∣ > C1η

2


+ P

k+1∑
j=1

1

n

∣∣∣∣∣∣
n0
j∑

i=n0
j−1+1

gj(α0, θ0
j , Yi)δi

SG
n0
j

(Y −i )
− E(gj(α

0, θ0
j , Xi))


∣∣∣∣∣∣ > C1η

2


≤
k+1∑
j=1

P

 max
0≤nj−1<nj≤n,θj∈Θj ,α∈Υ

1

n

∣∣∣∣∣∣
nj∑

i=nj−1+1

gj(α, θj , Yi)δiSG
n0
j

(Y −i )
− E(gj(α, θj , Xi))


∣∣∣∣∣∣ > C1η

2(k + 1)


+

k+1∑
j=1

P

 1

n

∣∣∣∣∣∣
n0
j∑

i=n0
j−1+1

gj(α0, θ0
j , Yi)δi

SG
n0
j

(Y −i )
− E(gj(α

0, θ0
j , Xi))


∣∣∣∣∣∣ > C1η

2(k + 1)

 .

It follows from Lemma 8.2 that, as n −→ +∞,

P(‖λ− λ0‖∞ > η) ≤ 2

[
2(k + 1)

C1η

]2
k+1∑
j=1

Aj

nr−2 −→ 0.

For the estimator φ̂, we obtain in a similar way that

P(%(φ̂,φ0) > η) ≤ P
(

max
λ∈Λ,φ∈Φη

W > 0

)

≤
k+1∑
j=1

P

 max
0≤nj−1<nj≤n,θj∈Θj ,α∈Υ

1

n

∣∣∣∣∣∣
nj∑

i=nj−1+1

gj(α, θj , Yi)δiSG
n0
j

(Y −i )
− E(gj(α, θj , Xi))


∣∣∣∣∣∣ > C2η

2(k + 1)


+

k+1∑
j=1

P

 1

n

∣∣∣∣∣∣
n0
j∑

i=n0
j−1+1

gj(α0, θ0
j , Yi)δi

SG
n0
j

(Y −i )
− E(gj(α

0, θ0
j , Xi))


∣∣∣∣∣∣ > C2η

2(k + 1)

 .

Once more, an application of Lemma 8.2 shows, as n→ +∞, that

P
(
%(φ̂,φ0) > η

)
−→ 0.

Noting the fact that b(α, θj , α0, θ0
j ) = 0 if and only if α = α0 and θj = θ0

j , for j = 1, . . . , k + 1, completes the proof of
Theorem 3.1. �
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Proof of Theorem 3.3
Let us first define, for any η > 0,

Λη,n =
{
λ ∈ Λ : n‖λ− λ0‖∞ ≥ η

}
.

Making use of the consistency of the change point fraction λ̂, we need to consider only the observations in ñj,j−1, ñj,j and
ñj,j+1 for all j in equation (2.6). Therefore, we have

P
(
n‖λ̂− λ0‖∞ ≥ η

)
≤
k+1∑
j=1

P

 max
λ∈Λη,n,φ∈Φ

 1

n

∑
t∈ñjj

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))


− 1

n

∑
t∈ñjj

gj(α0, θ0
j , Yt)δt

SG
n0
j

(Y −t )
− E(gj(α

0, θ0
j , Xt))

+
1

3(k + 1)
W1

 > 0


+

k+1∑
j=2

P

 max
λ∈Λη,n,φ∈Φ

 1

n

∑
t∈ñj,j−1

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))


− 1

n

∑
t∈ñj,j−1

gj−1(α0, θ0
j−1, Yt)δt

SG
n0
j−1

(Y −t )
− E(gj−1(α0, θ0

j−1, Xt))

+
1

3k
W1

 > 0


+

k∑
j=1

P

 max
λ∈Λη,n,φ∈Φ

 1

n

∑
t∈ñj,j+1

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))


− 1

n

∑
t∈ñj,j+1

gj+1(α0, θ0
j+1, Yt)δt

SG
n0
j+1

(Y −t )
− E(gj+1(α0, θ0

j+1, Xt))

+
1

3k
W1

 > 0


≡
k+1∑
j=1

I1j +

k+1∑
j=2

I2j +

k∑
j=1

I3j .

First, consider the probability formulas I1j in the above equation for any j = 1, 2, . . . , k + 1. The consistency of λ̂ allows us
to restrict our attention to the case njj > 1

2 (n0
j − n0

j−1). For this case, we have that

W1 ≤
n0
j − n0

j−1

2n
b(α, θj , α0, θ

0
j ).

Therefore, we readily obtain that

I1j ≤ P

 max
n0
j−1≤s<t≤n0

j ,θj∈Θj ,α∈Υ

 t∑
i=s+1

 j+1∑
z=j−1

gj(α, θj , Yi)δi

SGn0
z
(Y −i )

1I{nz−1+1≤i≤nz}

−
gj(α

0, θ0
j , Yi)δi

SG
n0
j

(Y −i )
− b(α, θj , α0, θ0

j )

 > a(n0
j − n0

j−1)

6(k + 1)


≤

(n0
j − n0

j−1)
r

(n0
j − n0

j−1)
2 (6(k + 1))2 = nr−2(λ0

j − λ0
j−1)

r−2
(6(k + 1))2,

where
a = max

θj∈Θ,α∈Υ
|b(α, θj , α0, θ0

j )|.

Equation (8.3) can then be applied to show that I1j → 0 as n, η →∞. Next, we consider the probability formula I2j for any
j = 2, . . . , k + 1. In this case, we can see that

λj−1 < λ0
j−1.
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We infer readily

I2j ≤P

 max
λ∈Λη,n,φ∈Φ

 1

n

∑
t∈ñj,j−1

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))

+
1

6k
W1

 > 0


+ P

 max
λ∈Λη,n,φ∈Φ

− 1

n

∑
t∈ñj,j−1

gj−1(α, θj−1, Yt)δt

SG
n0
j−1

(Y −t )
− E(gj−1(α, θj−1, Xt))

+
1

6k
W1

 > 0


≡I(1)

2j + I
(2)
2j .

Notice that I(1)
2j and I(2)

2j can be handled in the same way, so we just show how to handle I(1)
2j . Only two cases have to be

considered.
If n0

j−1 − nj−1 ≤ η, then

I
(1)
2j ≤P

 max
nj−1≤s<t≤n0

j−1,θj∈Θj ,α∈Υ

∣∣∣∣∣∣
t∑

i=s+1

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))

∣∣∣∣∣∣ > C1η

6k


≤

(n0
j−1 − nj−1)r

(C1η)2
(6k)2

≤ ηr−2

(
6k

C1

)2

.

Equation (8.2) of Lemma 8.2 gives that I1
2j → 0, as n, η →∞. If n0

j−1 − nj−1 > η, for the other case, then we have

W1 ≤ −C1

(n0
j−1 − nj−1)

n
.

Therefore, we infer that

I
(1)
2j ≤P

 max
nj−1≤s<t≤n0

j−1,θj∈Θj ,α∈Υ

∣∣∣∣∣∣
t∑

i=s+1

gj(α, θj , Yt)δt
SG

n0
j

(Y −t )
− E(gj(α, θj , Xt))

∣∣∣∣∣∣ > C1(n0
j−1 − nj−1)

6k


≤ (n0

j−1 − nj−1)r−2

(
6k

C1

)2

,

which converges to zero as n, η →∞, by equation (8.2) of Lemma (8.2). I3j can be handled in a similar way as I2j . Therefore
the proof of Theorem 3.3 is complete. �
The following lemma establishes that the difference between the Kaplan Meier based on estimated proportion of the sample
and the true one is asymptotically negligible.

Lemma 8.3 Assume that, for i = 1, 2, . . . , k,
λ̂i − λ0

i = oP(1).

We have for each i = 1, 2, . . . , k (
1− F̂n̂i(x)

)
=
(

1− Fn0
i
(x)
)

+ oP(1).
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Proof of Lemma 8.3
For every ε > 0 there exist η

′
> 0 and η

′′
> 0 such that

P

 sup
x≤τF

n0
j

|F̂n̂j (x)− F̂n0
j
(x)| > ε


= P

 sup
x≤τF

n0
j

|F̂n̂j (x)− F̂n0
j
(x)| > ε, n̂j−1 = n0

j−1, n̂j = n0
j


+P

 sup
x≤τF

n0
j

|F̂n̂j (x)− F̂n0
j
(x)| > ε, n̂j−1 6= n0

j−1, n̂j 6= n0
j


+P

 sup
x≤τF

n0
j

|F̂n̂j (x)− F̂n0
j
(x)| > ε, n̂j−1 6= n0

j−1, n̂j = n0
j


+P

 sup
x≤τF

n0
j

|F̂n̂j (x)− F̂n0
j
(x)| > ε, n̂j−1 = n0

j−1, n̂j 6= n0
j


≤ 2P(n̂j−1 6= n0

j−1) + 2P(n̂j 6= n0
j )

≤ 2P(|λ̂j−1 − λ0
j−1| > η

′
) + 2P(|λ̂j − λ0

j | > η
′′
)

P−−−−→
n→∞

0.

Hence the proof is complete. �
The following lemma gives the approximation of the Kaplan Meier integral based on the estimated proportion of the sample.

Lemma 8.4 For any j = 1, . . . , k + 1, under the conditions of Theorem 3.3 and the result of Lemma 8.3 we have∫
R
ψj(α, θj , x)dF̂n̂j (x)−

∫
R
ψj(α, θj , x)dF̂n0

j
(x) = OP

(
1

n

)
.

As a consequence of this lemma, for every φ ∈ Φ, we have that

ρn(α, θ1, . . . , θk+1) =

k+1∑
j=1

(λ̂j − λ̂j−1)

∫
R
ψj(α, θj , x)dF̂n̂j (x)

=
k+1∑
j=1

(
λ0
j − λ0

j−1 +OP
(
n−1

))(∫
R
ψj(α, θj , x)dF̂n0

j
(x) +OP(n−1)

)
= ρ0

n(α, θ1, . . . , θk+1) +OP
(
n−1

)
. (8.4)
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Proof of Lemma 8.4
We have ∫

R
ψj(α, θj , x)dF̂n̂j (x)−

∫
R
ψj(α, θj , x)dF̂n0

j
(x)

=

n̂j∑
i=n̂j−1+1

(n0
j − n0

j−1)
ψj(α,θj ,Yi)∆i

S
n̂j
C (Y −i )

−
n0
j∑

i=n0
j−1+1

(n̂j − n̂j−1)
ψj(α,θj ,Yi)∆i

S
n0
j

C (Y −i )

(n0
j − n0

j−1)(n̂j − n̂j−1)

= 1I{n̂j≤n0
j ,n

0
j−1≤n̂j−1}

 n̂j−1∑
i=n0

j−1+1

−ψj(α, θj , Yi)∆i

(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n̂j∑
i=n̂j−1+1

(
(n0
j − n0

j−1)− (n̂j − n̂j−1)
)
ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n0
j∑

i=n̂j+1

−ψj(α, θj , Yi)∆i

(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)


+1I{n̂j≤n0
j ,n̂j−1<n0

j−1}

 n0
j−1∑

i=n̂j−1+1

ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n̂j∑
i=n0

j−1+1

(
(n0
j − n0

j−1)− (n̂j − n̂j−1)
)
ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n0
j∑

i=n̂j+1

−ψj(α, θj , Yi)∆i

(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)


+1I{n0
j<n̂j ,n

0
j−1≤n̂j−1}

 n̂j−1∑
i=n0

j−1+1

−ψj(α, θj , Yi)∆i

(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n0
j∑

i=n̂j−1+1

(
(n0
j − n0

j−1)− (n̂j − n̂j−1)
)
ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n̂j∑
i=n0

j+1

ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)
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+1I{n0
j<n̂j ,n̂j−1<n0

j−1}

 n0
j−1∑

i=n̂j−1+1

ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n0
j∑

i=n0
j−1+1

(
(n0
j − n0

j−1)− (n̂j − n̂j−1)
)
ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)(n0
j − n0

j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)

+

n̂j∑
i=n0

j+1

ψj(α, θj , Yi)∆i

(n̂j − n̂j−1)

(
SG

n0
j

(Y −i ) + oP(1)

)
 .

An application of Theorem 3.3 gives the desired result. �

Proof of Theorem 4.1
For every ε > 0 there exists η > 0, such that we have

P
(
‖φ̂− φ0‖ > ε

)
≤ P

(
‖ρ(φ̂)− ρ(φ0)‖ > η

)
≤ P

(
‖ρ(φ̂)− ρ0

n(φ̂
)

+ ρn(φ̂)− ρ0
n(φ̂) + ρn(φ̂)− ρ(φ0)‖ > η)

≤ P

(
sup
φ∈Φ
‖ρ0
n(φ)− ρ(φ)‖ > η

3

)
+ P

(
‖ρn(φ̂)− ρ0

n(φ̂)‖ > η

3

)
+P
(
‖ρn(φ̂)− ρ(φ0)‖ > η

3

)
,

the assumptions of Theorem 4.1 combined with the relation (8.4) show that the last term converges in probability to zero as n
converges to infinity. �

Proof of Theorem 4.2
Let us first take ε > 0 and η > 0 fixed constants. Condition (ii) implies that there exists a finite M, such that for large value
of n, we have

P

(
sup

‖φ−φ0‖>η
‖ρn(φ)‖−1 >M

)
< ε.

Notice that the parameter φ̂ satisfies
ρn(φ̂) = OP(1),

so we readily obtain
P
(
‖ρn(φ̂)‖−1 >M

)
−→ 1.

It follows that, with probability of at least 1− ε for all n large enough,

‖ρn(φ̂)‖−1 >M ≥ sup
‖φ−φ0‖>η

‖ρn(φ)‖−1.

These inequalities force φ̂ to lie within a distance η of φ0, that is,

P
(
‖φ̂− φ0‖ > η

)
≤ ε.

Since ε and η can be chosen arbitrarily close to zero, the asserted convergence in probability is established. �
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Proof of Theorem 4.3
We will follow the proof of Pakes and Pollard (1989). First we prove

√
n-consistency. The assumed consistency allows us to

choose a sequence ηn that converge to zero slowly enough to ensure that

P
(
‖φ̂− φ0‖ > ηn

)
−→ 0.

With probability tending to one for this sequence, the supremum in the condition (iii) runs over a range that includes the
random value φ̂. Thus we have

‖ρ0
n(φ̂)− ρ(φ̂)− ρ0

n(φ0)‖ ≤ oP(n−1/2) + oP(‖ρ0
n(φ̂)‖) + oP(‖ρ(φ̂)‖).

By the triangle inequality, the left-hand side is larger than

‖ρ(φ̂)‖ − ‖ρ0
n(φ̂)‖ − ‖ρ0

n(φ0)‖.

Thus we obtain
‖ρ(φ̂)‖[1− oP(1)] ≤ oP(n−1/2) + ‖ρ0

n(φ̂)‖[1 + oP(1)] + ‖ρ0
n(φ0)‖.

From conditions (i) and the asymptotic normality of
√
nρ0

n(φ0) it follows that

‖ρ(φ̂)‖ = OP(n−1/2).

The differentiability condition (ii) implies the existence of a positive constant C for which, near φ0, (recall that ρ(φ0) = 0),
we have

‖ρ(φ)‖ ≥ C‖φ− φ0‖.

In particular, we infer that ∥∥∥φ̂− φ0
∥∥∥ = OP

(
‖ρ(φ̂)‖

)
= OP

(
n−1/2

)
.

Next, we establish asymptotic normality of
√
n(φ̂ − φ0), by arguing that ρ0

n(φ) is very well approximated by the linear
function

Ln(φ) = Ω
(
φ− φ0

)
+ ρ0

n

(
φ0
)

within a OP
(
n−1/2

)
neighborhood of φ0. More precisely, we need the approximation error to be of order oP

(
n−1/2

)
at φ̂

and at the φ∗n that maximizes ‖Ln(·)‖ globally. This follows directly from (ii) and (iii) together with the
√
n-consistency

results already established ∥∥∥ρ0
n

(
φ̂
)
− Ln

(
φ̂
)∥∥∥ ≤

∥∥∥ρ0
n

(
φ̂)− ρ(φ̂

)
− ρ0

n

(
φ0
)∥∥∥

+‖ρ(φ)− Ω(φ̂− φ0)‖
≤ oP(n−1/2) + oP(‖ρ0

n(φ̂)‖) + oP(‖ρ(φ̂)‖)
+oP(‖φ̂− φ0‖)

= oP(n−1/2).

To correspond to a minimum of ‖Ln(·)‖, the vector Ω(φ∗n−φ
0) must be equal to the projection of−ρ0

n(φ0) onto the column
space of Ω. Hence, we obtain √

n(φ∗n − φ
0) = −

√
n(Ω>Ω)−1Ω>ρ0

n(φ0).

The right-hand side has the asymptotic normal distribution specified in the statement of the theorem. Consequently

φ∗n = φ0 +OP(n−1/2).

Becauseφ0 is in the interior point of Φ this implies thatφ∗n lies in Φ with probability tending to one. From the differentiability
condition (ii) and condition (iii), we readily obtain that

‖ρ0
n(φ∗n)‖ = OP(n−1/2).

Then we can argue as for φ̂ to deduce that

‖ρ0
n(φ∗n)− Ln(φ∗n)‖ = oP(n−1/2).
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We now know that ρ0
n and Ln are close at both φ̂, which almost minimizes ‖ρ0

n‖, and φ∗n, which minimizes ‖Ln‖. This forces
φ̂ to come close to minimizing ‖Ln‖. That is,

‖Ln(φ∗n)‖ = ‖Ln(φ̂)‖+ oP(n−1/2).

So we have
‖Ln(φ∗n)‖2 = ‖Ln(φ̂)‖2 + oP(n−1),

the across product term being absorbed into oP(n−1) because ‖Ln(φ∗n)‖ is of order OP(n−1/2). The quadratic form of
‖Ln(φ)‖2 has the simple expansion

‖Ln(φ)‖2 = ‖Ln(φ∗n)‖2 + ‖Ω(φ− φ∗n)‖2,

about its global minimum. Put φ equal to φ̂, then equate the two expressions for ‖Ln(φ̂)‖2 to deduce that

‖Ω(φ̂− φ∗n)‖2 = oP

(
n−1/2

)
.

Since the matrix Ω has full rank, this is equivalent to

√
n(φ̂− φ0) =

√
n(φ∗n − φ

0) + oP(1),

from which the asserted central limit theorem follows. �
If we replace conditions (i) by (i)

′
and (iii) by (iii)

′
in Theorem 4.3 we will obtain the same result of Theorem (3.3) in Pakes

and Pollard (1989) under each true sub sample, we get Ln(φ) is sum of k + 1 linear function given by

Ln0
j
(φ) = ΓF

n0
j

(φ0)(φ− φ0) + ρ0
n0
j
(φ0), j = 1, 2, . . . , k + 1.

For notation ease, we put φ in function for each subsample because there is no influence for other parameters to the ones we
are working on.

The following lemma gives the convergence of the Kaplan Meier integrals.

Lemma 8.5 Let s(φ, x) be any real function with, for any j = 1, 2, . . . , k + 1,∫
R
|s(φ0, x)|dFn0

j
(x) <∞.

Assume that the condition (R1) (in the appendix) with replacement of the functions H(·), F (·) and G(·) by the functions
Hn0

j
(·), Fn0

j
(·) and Gn0

j
(·) respectively for each j = 1, 2, . . . , k + 1, holds for

ϕ(x) = s(φ0, x).

For any sequence φ̂ P−→ φ0, it follows that, for any j = 1, 2, . . . , k + 1,∫
R
s(φ̂, x)dF̂n̂j (x)

P−→
∫
R
s(φ0, x)dFn0

j
(x),

provided that any one of the following conditions holds, for any j = 1, 2, . . . , k + 1,

(i) s(φ, x) is continuous at φ0 uniformly in x.

(ii) ∫
R

sup
{φ:|φ−φ0|≤β}

|s(φ, x)− s(φ0, x)|dFn0
j
(x) = hβ → 0 as β → 0.

(iii) s(·, ·) is continuous in x for φ in a neighborhood of φ0, and

lim
φ→φ0

‖s(φ, ·)− s(φ0, ·)‖V = 0.
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(iv)
∫
R s(φ, x)dFn0

j
(x) is continuous at φ = φ0, and s is continuous in x for φ in a neighborhood of φ0, and

lim
φ→φ0

‖s(φ, ·)− s(φ0, ·)‖V <∞.

(v)
∫
R s(φ, x)dFn0

j
(x) is continuous at φ = φ0, and∫

R
s(φ, x)dF̂n0

j
(x)

P−→
∫
R
s(φ, x)dFn0

j
(x) <∞,

uniformly for φ in a neighborhood of φ0.

Proof of Lemma 8.5
The proof of this lemma is based on the Lemma 8.4 and Lemma 1 in Wang (1999). �

Proof of Theorem 4.4
Note that ρn(φ) is differentiable in φ by the conditions imposed on ψj(·). The multivariate mean value theorem thus implies
that

ρn(φ̂) = ρn(φ0) +

k+1∑
j=1

(λ̂j − λ̂j−1)ΓF̂n̂j
(ξn)

 (φ̂− φ0),

where
‖ξn − φ0‖ ≤ ‖φ̂− φ0‖

and recall that ‖ · ‖ is the Euclidean norm. By using the fact that

ρn(φ̂) = 0, ρn0
j
(α0, θ0

j ) = 0

in combination with Lemma 8.4, we infer that

√
n(φ̂− φ0) = −

k+1∑
j=1

(λ̂j − λ̂j−1)ΓF̂n̂j
(ξn)

−1 k+1∑
j=1

(λ̂j − λ̂j−1)

(√
n

{∫
ψj(α

0, θ0
j , x)dF̂n0

j
(x)

−
∫
ψj(α

0, θ0
j , x)dFn0

j
(x)

}
+OP(n−1/2)

)]
.

Once more, Lemma 8.4 implies that we have

ρn(φ0) =

k+1∑
j=1

(λ̂j − λ̂j−1)

∫
ψj(α

0, θ0
j , x)dF̂n̂j (x)

=

k+1∑
j=1

(λ̂j − λ̂j−1)

[∫
ψj(α

0, θ0
j , x)dF̂n0

j
(x) +OP(n−1)

]
.

By Theorem 3.3, we have entries of
k+1∑
j=1

(λ̂j − λ̂j−1)ΓF̂n̂j
(ξn)

converges in probability to the entries of Γ(φ0). The theorem now follows from combining Proposition 9.2, Theorem 3.3 and
Slutsky’s theorem. �

9 Appendix
In the sequel of this section, we use a notation similar to that used in Wang (1999) including some changes absolutely necessary
for our setting. We present, for the convenience of the reader, the random censorship model in Section 1 without change points.
Let F (·) denote the lifetime distribution of X and G(·) the censoring distribution of C. Assume the independence of X and
C, which implies that the distribution H(·) of the observation Y = min(X,C) satisfies

1−H(·) = (1− F (·))(1−G(·)).
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9.1 SLLN and CLT for Kaplan Meier integrals
Let us begin by introducing some results on the Kaplan Meier integrals playing a central role in this study. For any specified
real function ϕ(·), we state in this section the strong law of large numbers (SLLN) and the central limit theorem (CLT) for the
Kaplan Meier integral ∫

R
ϕ(x)dF̂n(x).

Such results constitute the main tools to study the limiting behavior of M -(Z)-estimates in the next sections. For any distri-
bution function L(·), let

τL = sup{x : L(x) < 1}

denote the upper bound of the support of L(·). Let

4L(x) = L(x)− L(x−)

denote the probability mass of L(·) at x. Since one can only observe data in the range of [0, τH ], it is possible to estimate∫
R ϕ(x)dF (x) consistency only if τF = τH or if ϕ(x) is zero for x ≥ τH . The specific requirement for strong consistency is

formulated in the following condition :

(R1) at least one of (i) or (ii) below holds:

(i) For some u < τH , ϕ(x) = 0 for u < x ≤ τH .
(ii) τF ≤ τG, where equality may hold except when G(·) is continuous at τF and

4F (τF ) > 0.

Note that (R1) (ii) implies τF = τH , and is the necessary and sufficient condition so that F (·) can be estimated consistently
on its entire support. Such a requirement can be dispensed with only the fact that the function ϕ(·) satisfies the requirement
(R1) (i) which then results in a truncated Kaplan-Meier integral. Note that only one of the two, but not both, conditions in (i)
and (ii) need to hold for (R1). We state in the next proposition the strong consistency of∫

R
ϕ(x)dF̂n(x),

which follows from the condition (R1), Theorem 1.1 and Corollary 1.2 of Stute and Wang (1993). Note that the original strong
law in Stute and Wang (1993) requires further that F (·) and G(·) have no common point of discontinuity. Such a restriction
was later discovered to be dispensable, see Stute (1995) for details.

Proposition 9.1 (Strong law of Large Numbers) Under the condition (R1) and for any function ϕ(·) fulfilling∫
R
|ϕ(x)|dF (x) <∞,

it follows, with probability one, that ∫
R
ϕ(x)dF̂n(x)→

∫
R
ϕ(x)dF (x).

Moreover, under (R1) (ii), it follows, with probability one, that

sup
−∞<x≤τH

|F̂n(x)− F (x)| → 0.

Proposition 9.1 essentially implies that the law of large numbers for censored data hold under the same condition, namely the
integrability of ϕ(·), as for the uncensored case. The CLT however requires a little more than the uncensored case. Denote
m(y) = P(δ = 1|Y = y) and denote the subdistribution functions for the censored and uncensored observations, respectively,
by

H0(y) = P(Y ≤ y, δ = 0) =

y∫
−∞

(1−m(t))dH(t) =

y∫
−∞

(1− F (t))dG(t),

H1(y) = P(Y ≤ y, δ = 1) =

y∫
−∞

m(t)dH(t) =

y∫
−∞

(1−G(t−))dF (t),

(9.1)
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and let the corresponding empirical estimates be denoted by

Hpn(y) =
1

n

n∑
i=1

1I{Yi≤y,δi=p}, for p = 0, 1. (9.2)

Note that
H0(·) +H1(·) = H(·).

The asymptotic representation of
∫
R ϕ(x)dF̂n(x) as a sum of i.i.d. variables defined in (9.5) and (9.7), is based upon the

following expressions

γ0(x) = exp

{∫
R

1I{y<x}dH0(y)

1−H(y)

}
,

γ1(x) = [1−H(x)]−1

∫
R

1I{y<x}ϕ(x)γ0(y)dH1(y), (9.3)

γ2(x) =

∫
R
ϕ(z)γ0(z)C(x ∧ z)dH1(z),

where

C(x) =

∫
R

1I{y<x}dH0(y)

[1−H(y)]2
=

∫
R

1I{y<x}dG(y)

[1− F (y)][1−G(y)]2
, (9.4)

refer to Stute (1995) for more details. Let U denote the random variable defined by

U = ϕ(Y )γ0(Y )δ + γ1(Y )(1− δ)− γ2(Y )−
∫
R
ϕ(x)dF (x). (9.5)

It turns out that E(U) = 0. The variance of U depends on ϕ(·), F (·) and G(·) and is given by

σ2(ϕ, F,G) = Var(U)

=

∫
R
ϕ2(y)γ2

0(y)dH1(y)−
∫
R
γ2

1(y)dH0(y)

−
(∫

R
ϕ(x)dF (x)

)2

+

∫
R

γ2
1(y)[1−m(y)]2

1−H(y)
4H(y)dH(y). (9.6)

Clearly, the last integral vanishes for a continuous H(·). The additional requirements for the asymptotic normality of∫
R ϕ(x)d(F̂n(x)− F (x)) are

(R2)

E[ϕ(Y )γ0(Y )δ]2 =

∫
R
ϕ2(y)γ2

0(y)dH1(y) <∞,

(R3) ∫
R
|ϕ(x)|C1/2(x)dF (x) <∞.

For more discussion of these conditions see Wang (1999). We now present the asymptotic normality results of∫
ϕ(x)d(F̂n(x)− F (x)),

which follow from Theorem 1 of Stute (1995) and (R1).

Proposition 9.2 (Central limit theorem) Assume that the conditions (R1)-(R3) are satisfied. Then we have the following
representation ∫

R
ϕ(x)d(F̂n − F )(x) = n−1

n∑
i=1

Ui + oP

(
n−1/2

)
, (9.7)

where the Uis are i.i.d. copies of the variable U by replacing the Y and δ in (9.5) by Yi and δi, respectively. Thus, for
σ2(ϕ, F,G) defined in (9.6), we have the following convergence in distribution, as n→∞,

n1/2

∫
R
ϕ(x)d(F̂n − F )(x)→ N(0, σ2(ϕ, F,G)). (9.8)
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For continuous distribution function H(·), the asymptotic variance in (9.8) becomes

σ2(ϕ, F,G) =

∞∫
−∞

 ∞∫
x

ϕ
′
(t)[1− F (t)]dt

2

[1−H(x)]2
dH1(x). (9.9)

The last equality in (9.9) follows from (9.1). A variance estimate can be obtained by replacing F (·), H1(·) and H(·) respec-
tively by their empirical estimates, for more details we refer the reader to Wang (1999).
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