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Abstract: With the growth of global fossil-based resource consumption and the environmental
concern, there is an urgent need to develop sustainable and environmentally friendly materials,
which exhibit promising properties and could maintain an acceptable level of performance to
substitute the petroleum-based ones. As elite nanomaterials, cellulose nanocrystals (CNC) derived
from natural renewable resources, exhibit excellent physicochemical properties, biodegradability
and biocompatibility and have attracted tremendous interest nowadays. Their combination with
other nanomaterials such as graphene-based materials (GNM) has been revealed to be useful and
generated new hybrid materials with fascinating physicochemical characteristics and performances.
In this context, the review presented herein describes the quickly growing field of a new emerging
generation of CNC/GNM hybrids, with a focus on strategies for their preparation and most relevant
achievements. These hybrids showed great promise in a wide range of applications such as separation,
energy storage, electronic, optic, biomedical, catalysis and food packaging. Some basic concepts
and general background on the preparation of CNC and GNM as well as their key features are
provided ahead.

Keywords: cellulose nanocrystals; graphene; hybrids; applications

1. Introduction

The excessive consumption of fossil-based resources and resulting environmental problems issues
coupled with the constancy growing global population requests the improvement of living standard
and accelerating technology development. It has stimulated and attracted researchers worldwide to
develop a sustainable bio-based alternative that can compete in performance with petroleum-based
products expected to be employed in a wide range of applications [1–7]. Cellulose, as the most
abundant bio-based material from the biosphere, has attracted more and more attention in different
fields and could serve as a prominent alternative to the exhaustible fossil resources, owing to its
renewability, biodegradability, biocompatibility, non-toxicity and environmental friendliness [8–12].
The advantages of cellulose can be also pushed forward through the exploration of its nonmetric size,
which generates nanocellulose (NC), considered as a promising class for future materials due to its
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outstanding physicochemical properties [13–16]. NC displays low density, specific barrier properties
and low thermal expansion coefficient, high strength, excellent stiffness, elongation morphology,
inertness, large surface area and aspect ratio, abundance and ease of bio-conjugation [11,17–19].
The presence of several reactive chemical groups on its surface allows it to be modified by physical
adsorption, covalent bonding or surface grafting to further extend its performance [20]. Research
activities concerning NC had attracted growing interest over the past decade as reflected by the rapid
increase of scientific publications and patents granted internationally [21]. According to Markets and
Markets, the NC market is forecasted to achieve USD 783 Million by 2025 [13] and thus, NC production
will have a high economic impact [22]. Moreover, an interesting review has been recently published
by Charreau et al. dealing with the analysis of the evolution of patents involving nanocellulose since
2010 [23], demonstrating the increasing industrial interest in the this, which enabled the setting-up of
the first facilities producing commercial quantities of NC.

Numerous nanocellulose types with outstanding features can be produced from different cellulosic
sources employing various approaches [17,24–26]. NC can be divided into two main categories,
that is, nanostructured materials (cellulose microfibrils and microcrystalline cellulose) and nanofibers
(cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose) [13]. Due to their excellent inherent
characteristics, cellulose nanocrystals (CNC), as a subclass of NC, is commonly produced from cellulosic
fibers and fibrils after the elimination of the amorphous regions by acid hydrolysis [23,27,28]. CNC have
aroused wide scientific and technological interest from both academicians and industrials and can
be utilized as an independent functional material, template support, stabilizer, filler or reinforcing
agent [29–31]. CNC-based nanomaterials have been extensively investigated due to their unique
physicochemical, mechanical, thermal, rheological and optical features. CNC could confer excellent
properties to hybrids or nanocomposites (metallic, ceramics and polymeric) even at low concentration for
different applications such as medical, pharmaceutics, catalysis, oil/water separation, decontamination,
flame retardancy, electronic and optical devices, energy storage, sportswear, light weight armor systems,
food packaging, to cite a few [10,11,13,14,20,32–39].

The combination of CNC and nanocarbons, such as fullerenes, nanotubes (single-walled, double-
walled, few-walled or multi-walled), nanodiamonds and graphene-based materials (graphene, graphene
oxide, reduced graphene oxide, graphene quantum dots), has recently emerged as a new class of hybrid
materials for which a synergetic effect has been revealed in a wide range of applications, spanning from
sensing and biosensing to catalysis, photonics and optics, energy and environment, water treatment,
medical and optoelectronics. Other nanocarbons such as carbon black, activated carbon, carbon quantum
dots and carbon nanofibers are less frequently used as CN-based hybrids [12,20,40–43].

Graphene-based nanomaterials (GNM), which have been considered as emerging and high efficient
two-dimensional (2D) nanomaterials, play a crucial role in various research area since the discovery
of graphene in 2004 [44,45]. They find applications in several fields such as thin-film transistors,
ultra-sensitive chemical sensors and transparent conductive films, biomedical, microelectronics,
composites, among others [46–49]. Recent investigations by Yang et al. provided general reviews of
the whole graphene patenting activities and especially focused on the study of sustainable competitive
advantages in the biomedical field [50,51]. A comprehensive review dealing with graphene, its related
materials and properties have also been published [52]. Although the present development of industrial-
scale graphene is still widely at the Research and Development (R&D) stage, the global graphene
market reached ca. USD 78.7 million in 2019, with the request in nanocomposites, energy storage
materials and semiconductor electronics, which are also underpinning future growth rate estimates
of >30% per year and expected to reach >USD 221.4 million by 2025 [53,54]. Nowadays, graphene
oxide (GO) materials account for >30% of the global graphene market share as progresses in GO,
permitting for numerous of possibly scalable approaches to reach mass production of chemically
modified graphene with a wide range of applications [54,55]. However, despite that many technically
feasible approaches are currently being developed to produce efficient GNM, there are still numerous
practical obstacles that need to be overcome. For instance, GNM are more frequently produced from
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aqueous dispersions but can easily aggregate. Such agglomeration behavior can reduce the surface area
and negatively impact the mechanical, electrical and optical properties. Therefore, the incorporation
of CNC not only surpasses such drawback through its excellent dispersive features but also confers
further benefits to the produced GNM/CNC hybrids such as flexibility, stretchability, in addition to the
improvement of the adsorption capacity, photothermal activity, stability, intrinsic luminescence and
fluorescence, optical transparency and thermal conductivity [36,40,42,56].

Owing to the benefits of CNC and GNM materials as well as the numerous research works
published during the last few years worldwide, a timely update on recent advancements in the field
of CNC/GNM hybrid-based materials is an urgent need for both academic and industrial scientists.
In this overview, we thoroughly review the recent progress made in the preparation, modification,
properties and current applications of CNC/GNM hybrids in various fields. This work highlights
a comprehensive overview with a forward-looking approach on CNC/GNM hybrids for numerous
utilizations, which have emerged in the past five years. For the reader’s comfort and to maintain
lucidity, first, some of the basic concepts dealing with CNC and GNM, their preparation and features
to further elucidate their unique attributes, are discussed in brief. We will then focus on state-of-the-art
cellulose nanocrystals-graphene based materials, which have mainly emerged since 2015. Few articles
before 2015 are succinctly summarized in some sections.

2. Cellulose Nanocrystals (CNC)

2.1. Fundamental of Nanocellulose

Cellulose, which was first extracted from wood by Enselme Payen in 1838, is a polysaccharide
consisting of β-1,4-linked anhydroglucopyranoside units, in which every monomer unit is corkscrewed
at 180◦ compared to its neighbors [5,57]. The annual production of this abundant biopolymer is
estimated to be between 1010 and 1011 tons-per-year. It can be isolated from different sources such
as wood, herbaceous plants, grass, crops and their byproducts, bacterial, algae and animal sources,
among others [58–61]. The properties of this biomacromolecule are closely related to the natural
source, its maturity and origin, pretreatment methods, processing approaches and reaction conditions.
Typically, lignocellulosic biomass necessitates the removing of non-cellulosic constituents such as
extractives, lignin and hemicellulose [62]. Trache et al. have recently reviewed the common pretreatment
and processing methodologies, which allow the obtaining of pure cellulose from lignocellulosic [13].
As depicted in Figure 1, cellulose is semi-crystalline in nature, hence it contains both crystalline
and amorphous regions. This latter is susceptible to hydrolysis; it can steadily be eliminated to
generate crystalline parts upon phase segregation and is more prone to react with other molecular
groups [57,63,64]. The intra- and intermolecular chemical groups (Figure 1) confer to this fascinating
polymer its specific features such as infusibility, chirality, hydrophilicity, insolubility in several aqueous
media and ease of chemical functionalization [65]. Cellulose can be classified into various polymorphs,
that is, cellulose I, II, IIII, IIIII, IVI and IVII, which can be converted from one form to another through
chemical or thermal treatments [42].

In their nano-size form, cellulose nanomaterials, also known as nanocellulose (NC), display
outstanding physical, chemical, biological, magnetic, electrical and optical characteristics compared to
the bulk materials [1,11,66]. Conceptually, NC can be produced by a top-down hydrolysis methodology
through different steps, that is, (i) pretreatment processes of lignocellulosic biomass employing
physical approaches concerning crushing, screening, washing and cooking to eliminate coarse particles,
oily content and dust from the material surface, (ii) removing extractive/hemicellulose/lignin via
chemical, physical, physicochemical, biological or the combination of two or more treatments,
(iii) fragmentation and cleavage of cellulosic elementary fibrils or micro-fibrils to generate nanofibers
through various approaches and (iv) post-treatments such as solvent removing, dialysis, sonication,
centrifugation, surface modification, stabilization and drying. The three latter steps have received great
interest from the scientific community for designing products with desired features [12,13,23,27,38,67–73].
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NC possesses excellent useful properties such as renewability, eco-friendliness, biocompatibility,
non-toxicity, hydrogen-bonding capacity, tunable crystallinity, high chemical resistance, tailored
aspect ratios (100–150), low thermal expansion coefficient, reactive surface, low density (1.6 g/cm3),
high specific surface area (100–200 of m2/g), high tensile strength (7.5–7.7 GPa) and elastic modulus
(130–150 GPa) [10,30]. This promising polysaccharide has received tremendous attention during
the last two decades in a wide range of applications such as sensors and biosensors, energy
storage systems, oil and gas drilling and cementing, papermaking, filtration, decontamination,
adsorption, separation, wood adhesives, Pickering emulsifiers, medical and nanocomposites, to cite
a few [13,14,16,20,35,36,42,74–76]. Depending on the isolation method, morphology and size, NC is
principally categorized into: (i) cellulose nanostructured materials such as cellulose microfibrils and
microcrystalline cellulose and (ii) cellulose nano-objects, also known as nanofibers, such as cellulose
nanocrystals (CNC), cellulose nanofibrils (CNF) and bacterial nanocellulose (BC).Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 34 
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Reproduced with permission from Reference [36]. Copyright©2019, Elsevier.

In contrast to nanostructured materials, nanofibers present more uniform particle size distribution,
high specific surface area, amphiphilic nature, barrier properties, high crystallinity and tend to
produce more stable self-assembled structures such as hydrogels and films [1,30,77]. In recent years,
other types of nanofibers appeared such as amorphous nanocellulose, cellulose nanoyarn and cellulose
nanoplatelets [17]. Several in-depth reviews with detailed discussions dealing with NC-based materials
have been reported over the past few years, covering the nanocellulose sources, isolation methods,
structure modification, potential uses, advantages and shortcomings [11,16,20,23,35,36,38,40,41,78–83].
In the following, we concisely go through current extraction methods of CNC and describe their
outstanding features.

2.2. Extraction and Properties of CNC

CNC can be often obtained from different types of lignocellulose through a top-down hydrolysis
approach by combining various procedures [9,17,23,84,85]. To extract pure cellulose (PC) through
the elimination of extractives, lignins and hemicelluloses, some pretreatments (chemical, physical,
physicochemical, biological or their combination) of the natural source are usually required [13,34,86].
Specific treatments can be then applied to PC to produce CNC through the removing of disordered
regions from pristine cellulose. The crystalline domains remain intact because of their higher resistance
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to the hydrolytic action, whereas the amorphous parts dispersed as chain dislocations on segments along
the cellulose fibrils are more susceptible to the hydrolysis process [19,78,82]. Afterwards, the elementary
fibrils are transversely cleaved, producing short CNC with somewhat high crystallinity. Nonetheless,
after this process, extra post-treatments such as solvent removing, sonication, fractionation, dialysis,
centrifugation, filtration, washing, stabilization, surface modification, neutralization and drying are
required to recover CNC product.

The most common hydrolysis method used to produce CNC relies on sulfuric acid, which can
react with the surface hydroxyl groups of pristine cellulose through an esterification process, allowing
the grafting of anionic ester groups [77,87]. This latter generates a negative electrostatic layer that
covers nanocrystals, promoting the dispersion of CNC in water but reducing their thermal stability.
Recently, as an alternative to sulfuric acid hydrolysis, other liquid inorganic acids such as nitric,
hydrobromic, phosphoric and hydrochloric have been extensively reported [11,30]. The preparation of
CNC from wood, for which the hydrolysis process causes preferential digestion of the amorphous part
of cellulose while the ordered regions remain intact, is schematized in Figure 2. Both natural source
and experimental conditions (acid concentration, reaction time, temperature, mass ratio, etc.) may
influence the characteristic of the prepared CNC such as crystallinity, dimensional dispersity, thermal
behavior, mechanical properties, density, aspect ratio and morphology. Although the hydrolysis
process using mineral acids is simple and not time-consuming, certain drawbacks such as lower yield,
high amount of water usage, severe environmental pollution and harsh corrosion of equipment should
be overcome [30]. Therefore, to address the above issues, various recent procedures such as organic acid
(oxalic, formic, etc.) hydrolysis [88], solid acid (phosphotungstic) [89], subcritical water hydrolysis [90],
deep eutectic solvents [91], ionic liquids [92], oxidation [93], sonication [94], enzymatic [95] and
combined approaches [5,17,31] have been applied and others continue to be developed worldwide to
produce CNC with desired properties at lower costs and higher yield based on sustainability principle
and environmentally friendly policy [5,13,17,31]. Nevertheless, scaling-up from laboratory to industrial
scale remains one of the most important issues and considerable efforts should be made to prevail
over the remaining constraints. Otherwise, some companies such as CelluForce and Alberta Innovates,
among others, produce CNC at large scale [13,96].

CNC present unique features compared to the other classes of NC with the spotlight to characteristics
such as physical, chemical, optical, thermal, mechanical, electrical properties [1]. CNC consist of an
elongated, needle or rod-like nanoparticles. They are 4–70 nm in width and 100–6000 nm in length and
aspect ratio of 5–70, as well as large surface area (150–500 m2

·g−1), which allows it to be easily dispersed
in water to generate a chiral nematic organization [13,16,97]. CNC also exhibit high crystallinity
(50%–90%), a tensile strength of up to 7.5 GPa, a Young’s modulus of ~170 GPa and a bending
strength of about 10 GPa [9,13,68]. They also display good thermal stability up to 200 ◦C and can find
applications in processes like thermoplastics [97]. Nevertheless, these features depend closely on the
source of feedstock, extraction methods and experimental conditions, which will ultimately define
their applicability [98].

It is worthy to note that the abundance of –OH or other reactive chemical groups and the
high surface area to volume ratio render CNC highly reactive and easy to be functionalized [100].
Therefore, to improve their compatibility and ensure a good dispersion, CNC surface can be chemically,
physically or enzymatically modified to impart stable negative or positive electrostatic charges on their
surface [13,101]. Such modifications may allow tailoring the properties of the CNC-based materials
depending on the intended application.
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3. Graphene-Based Nanomaterials

3.1. Nomenclature and Fundamental Aspects

Graphene, discovered by Geim and Novoselov in 2004, is relatively a new two dimensional (2D)
sheet-like material in which a honeycomb or hexagonal structure with a flat lattice configuration, completely
composed of sp2 hybridized carbon atoms that are covalently bound, is densely packed [102,103]. Graphene,
an atomic layer of graphite, is the unique carbon’s allotrope, where each atom is tightly linked to its
neighbors by an only electronic cloud in which a C–C bond distance is 0.142 nm [104]. It is considered as a
fundamental basis for all carbon allotropes and as the mother of a graphitic family for all the dimensions.

Graphene-based nanomaterials (GNMs), the first materials reported as examples of 2D nanocarbons,
can be classified based on the number of sheet layers, surface modifications, total oxygen content
or orientation [105]. Graphene is highly hydrophobic and is prone to agglomeration, owing to the
strong van der Waals’ interactions between the 2D graphene sheets, leading to low surface area and
ineffective use of its outstanding features [106]. These latter are also closely dependent on the graphene
availability as a single layer because if the layers are in close vicinity to each other, they are likely to
restack or agglomerate due to π–π interactions. Hence, its functionalization is commonly required
to surpass these issues. Typically, three types of functionalization approaches through covalent
(nucleophilic substitution, electrophilic substitution, condensation and addition), noncovalent (π–π
bonding, electrostatic attraction and hydrogen bonding, etc.) or a combination of both interactions
can be used, where the aromaticity of graphene can be either lost or preserved [107]. As shown in
Figure 3a–e, GNMs can be found in various forms for which the most important ones that will be the
focus of the present review are graphene nanosheets (GNS), graphene nanoplatelets (GNP), graphene
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oxide (GO), reduced graphene oxide (RGO) and graphene and graphene oxide quantum dots (GQD).
In the frame of the present review, the acronym GN will encompass GNS and GNP.
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Graphene oxide (GO), commonly prepared from the oxidation of graphite, consists of a few- or a
single-layer sheet. GO sheets are rich in various oxygen-containing groups such as hydroxyl, epoxy,
carboxyl, carbonyl, phenol, lactone and quinone, which can change the van der Waals interactions.
The two former chemical groups are mostly present on the basal plane, whereas the others with
small quantities are found at the sheet edges. These functional groups in GO can deeply influence
its electrochemical, mechanical and electronic features. Despite the aromaticity of graphene is
lost in GO, owing to exploitation of π electrons in the covalent bonding of these oxy groups on
graphene backbone, the carbonyl, carboxyl and so forth groups at the edge render them more
dispersible in both organic solvents and water [44,107]. The hydrophobic aromatic frameworks and the
hydrophilic oxygen-containing groups make GO amphiphilic, allowing its interaction with inorganic
and organic molecules.

Reduced graphene oxide (RGO), obtained by the reduction of GO [109], contains fewer oxygen
atoms, hence, is less negatively charged [106]. During the reduction, RGO recovers the graphitic
arrangements (partial recuperation of the sp2 from sp3 hybridization of GO) through the elimination
of the oxygen-containing groups, which have been inserted in the oxidation step, thus, restoring the
electronic properties of graphene [110]. This partial reduction and the exposure to some chemicals
allow tailoring the conductivity, band-gap and optical features of the material [111,112].

Graphene quantum dots (GQDs), which can be found as single- or multiple layers, display
interesting features such as good chemical stability, high surface area, tunable physical characteristics,
stable photoluminescence and low toxicity [113,114]. They can be used in optoelectronic, electronic,
biomedical, sensors and energy storage. They usually consist of up to 10 layers of 10–60 nm size RGO [46].

Graphene-based nanomaterials possess exceptional electrical, optical, mechanical, electrochemical
and thermal features that make them versatile for a wide range of applications and have drawn worldwide
attention in both academic and engineering fields [44,105]. They can be employed in industrial applications
such as biomedical, solar cells, biosensors, supercapacitors, electromagnetic absorbers, optical devices,
integrated circuit, protective coatings, organic light-emitting diodes, sound transducers, petroleum industry,
automobile components, aerospace, energy storage, nanocomposites and contamination purification in
wastewater management, to cite a few (Figure 3f) [107,115,116].

3.2. Synthesis Routes and Properties

Graphene can be produced from various sources such as graphitic, non-graphitic and waste
materials using top-down or bottom-up approaches [117–120]. The common routes for its fabrication
are summarized in Figure 4. The top-down synthesis routes encompass mechanical exfoliation, liquid
phase-exfoliation (LPE), oxidative exfoliation-reduction, arc discharge, unzipping of carbon nanotubes,
for which larger precursors such as carbon-based materials or graphite are destroyed to produce a single-,
bi- and few-layer graphene. Broadly, some of these approaches can generate high-quality products
and are likely scalable. Nevertheless, they provide limited yield and have complications in making
nanomaterials with reliable characteristics, which are closely dependent on the carbon precursor. On the
other hand, the bottom-up synthetic routes could produce graphene using atomic-sized precursors.
These approaches comprise epitaxial growth, chemical vapor deposition (CVD), total organic synthesis,
template route and substrate-free gas-phase synthesis. Despite the quality of the produced graphene is
better than that generated using top-down methods, they often require advanced operational setup,
high fabrication costs and are energy-consuming. Further advantages and the shortcomings of the
most important methods have been reported elsewhere [117,118].
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It is worthy to note that most of the studies have not usually utilized graphene in its pristine form,
because of its lower yield from the production point of view. Therefore, its derivatives have received
much attention. GO is commonly prepared using a chemical oxidation process of graphite with
subsequent dispersion and exfoliation in a suitable solvent (e.g., water). Graphene oxide sheets can
also be fabricated using a modified Hummers’ method, which is described in several reports [121,122].
The oxidation processes can lead to fragmentation, crack, winkle, structure disorder, impurities and
defects that may influence the adsorption, optical and electronic characteristics of GO. RGO, however,
is usually produced by reducing graphene oxide employing different ways such as chemical, thermal,
photocatalytic and electrochemical reductions [123]. Nonetheless, the obtained RGO may contain
some impurities with the presence of structural defects. Besides that, the production strategies of
GQDs comprise solvothermal, microwave, CVD and soft template processes, in-situ reduction of
GO, electrochemical fabrication, chemical synthesis and electron beam lithography [113,114,124].
Among them, top-down approaches have been proved to be the most appropriate and cost-effective
methods [46]. GQDs exhibit similar features compared to various types of quantum dots (QDs),
particularly in the case of inorganic QDs [113].

It has been recently revealed that oxidative exfoliation-reduction, liquid-phase exfoliation and CVD
are the most interesting production methods, which possess high potential for industrial implementation
to produce graphene-based nanomaterials [45]. However, to develop effective synthesis processes of
graphene and its derivatives, further research activities have to be conducted to improve the quality,
yield of the products with tailorable properties using cost-effective, environmentally friendly, reliable
and scalable approaches.

The properties of graphene-based materials are closely dependent on the number of layers as well
as the extent of defects. Graphene, as the thinnest carbon material, presents outstanding features such
as higher surface area of ~2630 m2/g compared to GO and other derivatives. It has been reported that
a single layer of graphene absorbs 2.3% of white light with a reflectance of less than 0.1%. At room
temperature, the in-plane thermal conductivity of GN is about 2000–5000 W/m·K. Such dissimilarity is
due to the dissemination of phonons pathway at the surface [46,108]. Some research works reported
that the charge transporters and carriers mobility of 200,000 cm2/V·s can be reached at electron densities
of ~2 × 1011 cm−2 [108]. GN possesses good chemical stability and quantum Hall effect at ordinary
temperature, intrinsic strength of 130 GPa, Young’s modulus of 1.0 TPa, shear strength of 60 GPa
and fracture stress of 97.54 GPa [123]. It is considered as one of the strongest materials ever tested

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Nanomaterials 2020, 10, 1523 10 of 34

(200 times than steel) [125]. More details about the characterization methods and the properties of
graphene and its derivatives have been extensively reviewed in recent years [105,123,124,126,127].

4. Preparation, Properties and Application of CNC/GNM Hybrids

CNC has aroused a tremendous amount of interest of the scientific community in recent years
due to its outstanding features and can be employed as an independent functional material, template
support, stabilizer, filler or reinforcing agent. Recently, it has been combined with numerous GNMs
such as GN [128], GO [129], RGO [130], GQDs [131–133], free-standing graphene (FSG) [134] and
graphene nanoscrolls [135] to produce hybrid materials with excellent thermal, mechanical, optical and
electronic properties. However, several scientific and technical issues can be encountered during the
production of such hybrid materials such as agglomeration, limited dispersion, process scalability and
high costs, among others. Hence, many research works have been carried out and others continue to be
conducted worldwide to overcome these problems and obtaining efficient CNC/GNM for a wide range
of applications. The emphasis of the following subsections will be dedicated to the most important
approaches used to produce CNC/GNM hybrids as well as their properties. Specific attention will be
dedicated to the investigations performed during the last few years.

4.1. CNC/GN

GN possesses large surface area, exceptional electrocatalytic activity, high mechanical strength,
good electronic transport characteristics, excellent optical properties and thermal performance,
which has motivated its broad application prospect in several fields such as functional composites,
electrochemical sensors and catalysis, among others [136]. To expand the number of applications of GN
and enhance its inherent properties, numerous GN composites have been successfully produced and
applied in several fields. Recently, nanocomposites of CNC/GN have attracted widespread attention,
owing to their exceptional features and synergetic effects that develop new ways and opportunities
for the production, characterization and application of new materials in nanotechnology. It has been
recently demonstrated that the preparation of CNC/GN can be carried out with and without chemical
functionalization for which the water-based dispersion is the common starting approach to produce
composites with/without a combination with various types of materials such as metallic and ceramic
nanoparticles or natural and synthetic polymers. Several processes can be further applied such as
filtration, hot pressing, deposition and drying to generate a wide range of advanced materials. Thus,
such CNC/GN-based materials hold a great promise for several applications ranging from packaging to
biomedical fields. Nevertheless, the optimization of the composite compositions and tailoring of their
properties can extend the number of applications and reduce the production cost for eventual scalability.

Carrasco at al. have employed CNC as an effective graphene stabilizer in aqueous dispersion at high
concentration for which the exfoliation of graphite to generate graphene flakes has been carried out using
a tip sonication [137]. Such an approach based on CNC-assisted liquid-phase exfoliation (LPE) produced
graphene flakes decorated with CNC stabilizers with interesting properties. The authors proved that
such hybrids could be employed in different applications such as composites and supercapacitors.
In another study by Cui et al. an interesting efficient one-step mechanical-chemical method to in-situ
produce CNC/GN hybrid, with rigid 2D structure and improved interfacial interactions, from micro
fibrillated cellulose and graphite using ball milling has been developed [138]. A schematic illustration
of the composite preparation is given in Figure 5A. This hybrid was successfully dispersed within
poly(propylene carbonate) (PPC) with strong interfacial interactions which can increase its glass
transition temperature (Tg) and enhance its mechanical and electrical features for practical uses.
The obtained PPC/CNC/GN composite displayed a Tg of 51.3 ◦C, which is higher than that of pure
PPC (34.0 ◦C). The percolation threshold considerably decreased from 15 to 5 wt.%, whereas the tensile
strength and the Young’s modulus reached 52.8 MPa and 731.2 MPa, respectively.
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Figure 5. (A) Schematic illustration of the production of poly(propylene carbonate) (PPC)/cellulose
nanocrystals (CNC)/aminated graphene (GN) composites and the available hydrogen bonding.
Reproduced with permission from Reference [138]. Copyright ©2018, Elsevier; (B) Schematic
presentation of the SPI-based nanocomposite film. Reproduced with permission from Reference [139].
Licensed under a Creative Commons Attribution 3.0 International License (https://creativecommons.
org/licenses/by/3.0/); (C) Transmission electron microscopy (TEM) and optical micrographs of the
CNC/GN solution showing good dispersion. Reproduced with permission from Reference [140].
Copyright ©2015, Elsevier; (D) Schematic synthesis of Au@CNC-GN catalyst. Reproduced with
permission from Reference [141]. Copyright©2018, The Royal Society of Chemistry (RSC) on behalf
of the Centre National de la Recherche Scientifique (CNRS) and the RSC; (E) Preparation procedure
of chitosan/WN/GN hydrogel. Reproduced with permission from Reference [142]. Copyright©2020,
Elsevier; (F) TEM images of GN and CNC/GN sol mixtures containing 2 wt.% of GN. Reproduced with
permission from Reference [143]. Licensed under a Creative Commons Attribution 3.0 International
License (https://creativecommons.org/licenses/by/3.0/).

Montes et al. have recently demonstrated the existence of a synergetic reinforcement of poly(vinyl
alcohol) (PVA) nanocomposites with CNC-stabilized graphene [144]. They produced CNC/GN hybrid
using a CNC-assisted LPE that allows the stabilization of the resulting GN in aqueous dispersion.
Such hybrid was incorporated into a PVA aqueous solution by a direct blending to obtain a nanocomposite
after casting evaporation. It was mentioned that the thermal stability of the composite is improved
through the addition of 1 wt.% of CNC/GN hybrid nanofiller. Moreover, the mechanical features
have been also enhanced compared to the neat PVA (20% improvement in tensile strength and 50% in
Young’s modulus). It was claimed that CNC played a dual role, where it acts as GN stabilizer and
PVA reinforcement. Moreover, the synergetic effect of CNC/GN hybrid is notable, where interesting
thermal, mechanical and electrical features can be attained through the tailoring of the nanofiller
loading. Recently, this research group has studied the effect of CCN/GN hybrid on the properties of
poly(lactic acid) (PLA) based film [145]. The composite was prepared using a melt blending method,
a conventional technique for plastic compounding, at a total loading of 1wt.% and then processed by
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hot pressing to generate the film. Compared to the baseline, the film PLA/CNC/GN exhibited high
thermal stability and better mechanical features with an increase of 11 and 8% in the tensile strength
and Young’s modulus, respectively. The investigation of the gas barrier properties as well as the
antifungal activity of the prepared film revealed significant improvements, which make it a potential
candidate in food packaging trays and agricultural film applications.

A few years ago, an interesting composite based on soy protein isolate (SBI) and CNC/GN has been
developed by Li et al. as food packaging material [139]. A schematic presentation of the nanocomposite
preparation is shown in Figure 5B. The authors exploited the high aspect ratio of 1D CNC with the flexible
and strength 2D GN to manufacturing active interfacial adhesion laminate nanocomposites. To obtain
a stable aqueous graphene dispersion via sonication, the negatively charged sulfate ester groups of
CNC were firstly modified through the incorporation of positively charged surface functionalities
using the cationic polyethyleneimine. Such modification enhanced the strong ionic interactions with
negatively charged GN for efficient dispersion and later-by-layer assembly with SBI. The obtained
composite film displayed interesting mechanical features and improved surface hydrophobicity for
which the tensile strength increased from 3.75 to 7.49 MPa and the water contact angle augmented
from 39◦ to 54◦ compared to the control film. Better thermal stability, water resistance and UV-visible
light barrier ability were also exhibited by such composite film, making it a potential candidate as food
packaging material.

Valentini et al. produced polymer solar cells using optically transparent conductive GN and
CNC film [146]. They reported that the mixture containing 10 mL of CNC suspension (0.5 wt.%) and
10 mL of GN solution (1 wt.%), which was prepared in an ultrasonic bath at room temperature for
20 min and evaporated under a nitrogen stream, was the best composition. The obtained NG/CNC
layer, which has a low surface roughness, was optically transparent and enabled light to go through.
The measurement of the contact angle of GN/CNC demonstrated a lower contact angle value when
compared to those of the neat glass or CNC film, which was assigned to the flatter surface morphology
of the GN/CNC film. These authors produced a photovoltaic device by spin coating. The thickness
of the spin-cast photosensitive layer was about 100 nm, as determined by atomic force microscopy.
The manufactured polymer solar cell reached a higher short-circuit current density value, revealing
its improved electron blocking action. The enhanced mechanical properties, the optical transparency
as well as the electrical conductivity of the hybrid layer will certainly allow the development of the
next generation of flexible and foldable printed optoelectronic devices. In another work, Wang et al.
combined GN and CNC to produce flexible, electrically and thermally conductive hybrid thin film
using a water-based approach and vacuum filtration [140]. Figure 5C shows the transmission electron
microscopy (TEM) and optical micrographs of the obtained GN of about 15 layers as well as CNC/GN
solution, revealing that GN was uniform without the appearance on any segregation after mixing with
hydrophilic CNC. The better particle alignment with the removing of the internal pores was promoted
by the use of the hot-press process. It was found that the hot-pressed 25 wt.% CNC hybrid paper
exhibited interesting mechanical features for which the modulus was improved by 57% and tensile
strength by 33% with respect to the neat GN paper. The electrical conductivity was negatively affected
by the increase of the amount of CNC and the optimum CNC loading was 15%. Such hybrids can find
application in heat and electrical-conducting fields.

The employment of CNC/GN hybrid as a supporting material to produce supported metal
catalysts, which can be used as dispersing, capping or reducing agents, using a clean, simple and
effective process has been reported. Wang et al. have deposited mono-dispersed gold nanoparticles
(Au NPs) on multifunctional CNCN/GN hybrid sheets to generate catalysts with efficient catalytic
activity, flexibility and stability [141]. The production procedure is briefly illustrated in Figure 5D.
The hybrid structure allowed the reduction, growth and immobilization of Au NPs. The OH-groups of
CNC coordinated with GN permitted creating narrow nanosized Au NPs anchored onto the surface
of the hybrid through the in-situ reduction of Au3+. Such a catalyst has been revealed to be effective
for one-pot reaction of an alkyne, an amine and an aldehyde in water since it can minimize the
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environmental pollutions caused by heavy metallic ions and organic solvents. It can be reused for
several times without significant deactivation. It is also expected to be employed in a wide range of
applications such as energy storage and catalysis.

On the other hand, stimuli-responsive hydrogels, such as 3D polymeric networks, are considered
prominent intelligent drug delivery systems to selectively release the drug at the desired sites.
The emerging of CNC/GN hybrids has pushed the scientific community to develop a new generation
of efficient hydrogels. Omidi et al. have successfully developed a pH-responsive hydrogel containing
aminated CNC (WN), aminated graphene (GN) and chitosan via Schiff base reaction by a synthetic
dialdehyde in a few minutes [142]. The preparation procedure is schematized in Figure 5E. The prepared
hydrogel exhibited better sensitivity to different external stimuli encompassing pH and amino acids.
More specifically, it displayed a pH-responsive release behavior for anticancer drugs. Also, the hydrogel
presented strong antibacterial activity against gram-positive bacteria, revealing the efficiency of such
hydrogel as a potential candidate for the localized drug delivery systems.

To extend the application of CNC/GN hybrids as anti-static or electromagnetic interference
shielding materials, Liu et al. have prepared sandwiched films of epoxy resin and GNC/GN paper.
Firstly, a hybrid paper of GN containing 10 wt.% of CNC was produced using ultrasonication process
in aqueous suspension [147]. This hybrid displayed an electrical conductivity of 16,800 S/m and tensile
strength of 31.3 MPa. To manufacture the sandwiched film of epoxy and CNC/GN, a dip coating
method was applied through the introduction of the paper into epoxy resin solution followed by a
curing process at ambient temperature. The authors revealed that the moduli of the films were about
300 folds and the tensile strength increased by two-folds concerning the pure resin. The glass transition
of the composite increased as well when compared to that of the neat resin. Besides, the coated
CMC/GN hybrid by epoxy resin displayed better dimensionality integrity after sonication in water
for two hours. In another work, a composite containing water-born polyurethane/CNC/GN has been
recently prepared through one-step sol process by Yang et al. as a thermosetting coating material
for wood-based composites, which exhibited better energy-saving characteristics [143]. The better
dispersion of CNC/GN has been optimized as shown in a TEM image in Figure 5F. The properties
of the prepared composites have been improved through the incorporation of CNC/GN, where the
thermal conductivity, abrasion resistance and hardness were enhanced and meanwhile, the coating
adhesion was maintained at an acceptable level. The authors claimed that such findings can promote
the development of wooden heating material with better-energy saving characteristics.

In another study, Nie et al. have introduced a small amount of CNC (also named CNWs) to
GN (CNWs/GN = 1/20 w/w) to improve its uniform dispersion in a waterborne epoxy polymeric
matrix (WEP), which is still challenging at a high GN loading, using a solution-casting approach [148].
A schematic illustration of the preparation of the composite is depicted in Figure 6. The obtained
film at a GN loading of 1.0 wt.% achieved enhanced mechanical properties with a higher Young’s
modulus of 2820 MPa compared to the neat epoxy (2034 MPa). The glass transition of such composite
increased by 4.3 ◦C when compared to the pure resin. The better dispersion of GN on the surface
of epoxy owing to the effect of CNWs led to the increase of the water contact angle, confirming
the improvement of the water-barrier behavior of the composite CNWs/GN/WEP. The authors have
assessed the anticorrosion effectiveness of the prepared coating composite using potentiodynamic
polarization and electrochemical impedance spectroscopy tools. The results demonstrated that CNWs
played a double role through improving the dispersion of GN and the corrosion resistance for mild steel.
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CNWs aqueous dispersions (d); dispersion stability of GN in water and CNWs aqueous dispersions
after the settlement of 30 min (e); dispersion of 1.0% GN/CNWs in waterborne epoxy polymeric matrix
(WEP), (f); schematic of CNWs with negative charges (h); schematic of negatively charged CNWs
adsorbed on graphene sheets (i); schematic of GN sheets stabilized in WEP assisted with CNWs (j);
Field emission scanning electron microscopy (FE-SEM) micrograph of CNWs adsorbed on graphene
sheet (k). Reproduced with permission from Reference [148]. Copyright©2019, Wiley.

4.2. CNC/GO

GO, as one of the most important derivatives of graphene, contains a high density of oxygen-
functional groups, which can allow covalent, ionic or hydrogen interactions with numerous polymeric
matrices, paving the way to several technological applications. It displays interesting features such as
high specific surface area, high binding potential, high hydrophilicity, high dispersibility, superior
mechanical properties and surface functional groups that can be employed as attachment sites [149].
However, to fully exploit the potential of GO, the production of GO-based composites is significant.
Various GO-based nanocomposites have become increasingly mature in several fields. Recently, studies
on CNC/GO hybrids have been actively conducted. CNC with outstanding features such as high
Young’s modulus, high crystallinity, high surface chemical activity and tailorable surface characteristics
can offer strong, non-toxic and flexible advanced GO-based hybrids, which further inherit the features of
both CNC and GO for which desired properties can be obtained. CNC/GO-related material composites
have been investigated both on their own and after incorporation of other components such as
metals, ceramics or polymers to modulate their final properties for specific uses. These hybrids found
applications in nano paper, food packaging, biomedical, energy storage, sensors, decontamination,
catalysis, adsorption, shape memory devices, foams, fire retardants and insulating materials, to cite
a few.
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The aqueous GO solution with CNC is considered the common approach used to prepare CNC/GO
composites. Kafy et al. have produced CNC/GO film as humidity sensor using this blending method,
followed by the drying process [150]. They synthesized CNC using the conventional H2SO4 hydrolysis
method, whereas they produced GO by way of the modified Hummer’s method. Then, they mixed the
two suspensions at a desired ratio followed by homogenization. After that, the solution was poured in
a petri dish and dried. The obtained hybrid exhibited a good dispersion of GO in CNC matrix for which
high dielectric constant and low dielectric loss have been revealed, owing to the special polarization
dipoles in CNC. These authors prepared a renewable, flexible and cheap sensor using this hybrid
and an interdigital transducer patterned electrode deposited on a polyethylene terephthalate (PET)
substrate. This sensor displayed a good sensitivity to humidity even under different temperatures.
Similarly, Chen et al. produced CNC/GO using an aqueous suspension of CNC with either GO
suspension or GO powder (Figure 7) [151]. The mixing process generated a stable solution for the
first, whereas a metastable solution was obtained when GO powder was used. The drying process
carried out via vacuum-assisted self-assembly technique (VASA), engendered non-iridescence and
iridescence films, respectively, for the hybrids containing GO suspension and GO powder. It is worthy
to note that CNC-based iridescent films found applications in optical functional materials. It was
demonstrated that self-organized film was obtained from stable solution, while the separated structure
was generated from the metastable solution. Interestingly, the later film, which displayed iridescent
optical properties, consisted of self-assembled liquid crystals phase of CNC with embedded GO sheets.
The authors claimed that such iridescent hybrid can be applied in security materials, reflective filters,
sensors and other photonic materials.
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Although the water-based dispersion is the widely adopted method to produce CNC/GO,
it represents an unavoidable issue of the higher resistance. Valentini et al. have developed a method
to produce CNC/GO with reduced electrical resistivity [129]. They employed the same approach of
the mixing of the CNC suspension with the GO solution but assisted by an external electric field.
This latter induced de-oxygenation of GO and hence its conductivity can be recovered to some extent.
Such electrical conductivity was rather moderate, because of the presence of CNC as an insulating
matrix. In a separate work of the same authors, the above approach, which is based on the drop-casting
of an aqueous solution of CNC/GO between two metal electrodes, was found to be efficient to produce
a resistive memory device based on CNC/GO thin hybrid [152]. Such thin film-based device exhibited
a transition between low and high conductivity states upon changing the polarity of the applied
external electric field. The authors claimed that such an achievement could promote the development
of post-silicon electronic devices based on the integration of CNC/GN thin hybrids. Recently, Pan et al.
developed a new method to produce chiral smectic structures through self-assembling 2D GO and 1D
CNC nanorods [153]. Such a structure is closely dependent on the ratio of nanorods and nanosheets as
well as the concentration of the composite colloid. The authors initially mixed CNC and GO suspensions
at low concentration (<1%) and incorporated cross-linked polyacrylate hydrogel to concentrate the
blend suspension. The CNC/GO was recovered by spin-coating of the colloid on PES substrate and
dried at 60 ◦C. This method was considered timesaving compared to traditional approaches. It was
demonstrated that such advancement can pave the way to develop optical metamaterials for optical
modulation and mechanochromic sensors.

It was reported that poor dispersion of reinforcements at the nanoscale in addition to the weak
interfacial interactions can negatively affect the material strength, toughness and other properties.
Thus, several physical or chemical modifications can be employed to overcome such issues. In the
case of CNC/GO composites, several approaches have been proposed to improve their efficiency for
numerous applications. The common ones used to enhance the interfacial of such hybrids were based
on the modification of CNC surface features, whereas few modifications have been simultaneously
applied to CNC and GO.

One of the interesting production methods was that developed by Xiong et al. to manufacture
ultra-robust transparent CNC/GO membrane with high electrical conductivity [154]. These authors
improved the interfacial interactions of anionic CNC, prepared by H2SO4 hydrolysis and anionic GO
sheets obtained through the modification of CNC with 10 wt.% cationic polyethyleneimine to introduce
positive surface charge functionalities. This modification enhanced the ionic interactions between the
strongly positively charged polymer and negatively charged flexible GO, which consequently improved
the layer-by-layer assembly, carried out on a sacrificial layer of cellulose acetate on a silicon wafer,
to design laminated nanohybrids with high flexibility, outstanding mechanical strength, high optical
transparency along with excellent toughness. The authors claimed that such CNC/GO hybrids could be
used for a wide range of technological applications, encompassing wearable electronic devices, biofluid
separation, electromagnetic interference shielding and ballistic protection. The authors also employed
the same approach to produce CNC/RGO hybrids after the electrochemical reduction of the former
membrane [155]. In another work, Kabiri et al. produced acetylated CNC (CNCA), which was further
used to prepare well dispersed CNCA/GO hybrid by a solvent casting method (Figure 8A) [156]. It was
stipulated that the modification of CNC will promote its interfacial adhesion and miscibility with GO
via hydrogen bonding. It was proved that composite supplemented with 0.8M of GO offered better
thermal stability, interesting mechanical properties with an increase in the tensile strength of 61.92%
with respect to CNCA. Moreover, the barrier characteristics against water were improved. The authors
claimed that such a composite could find potential application in electrical and electrochemical fields.
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Recently, Daniyal et al. have prepared hexadecyltrimethylammonium bromide (CTA) modified
CNC/GO thin film and assessed its potential in sensing copper and nickel ions based on surface
plasmon resonance (SPR) technique [157,158]. The authors initially prepared CTA-CNC solution and
then 0.1 wt.% of GO was dispersed within the solution and sonicated at 70 ◦C for 1 h (Figure 8B).
The obtained solution of CTA-CNC/GO was spin-coated and deposited as a thin layer on the glass
substrate modified with a thin gold film. The authors demonstrated that the presence of CTA improved
the sensitivity of the SPR. They revealed that the combination of SPR and CTA-CNC/GO has the
potential to be employed as effective sensors, which can detect copper and nickel ions. In another
research work, Beyranvand et al. produced hydrogel based on CNC/GO hybrid as a new adsorbent
for methylene blue. During the preparation, azide-functionalized CNC was synthesized after CNC
tosylation [159]. Then CNC-N3/GO was obtained via nitrene chemistry [160]. The production process of
CNC-N3/GO, as well as its mechanism of action, is illustrated in Figure 9. It was demonstrated that the
prepared hybrid was an excellent adsorbent of methylene blue owing to the higher adsorption capacity,
reasonable contact time and recyclability. More recently, Zheng et al. have synthesized a modified
CNC/GO hybrid as an efficient adsorbent of Dy (III). The authors used the evaporation-induced
self-assembly (EISA) method to spontaneously form an imprinted film. Beforehand, they carried out
an in situ selective oxidation of CNC using 2,2,3,3-tetramethylpiperidine-1-oxyl (TEMPO) for which
C6 hydroxyl group was primarily oxidized to the carboxyl group (-COOH) [161]. It was found that
such modification improved the stability of the TEMPO-modified CNC through strong electrostatic
repulsion on one hand and on the other hand, it offered more surface active sites for the adsorption of
Dy (III). The latter was further improved by the introduction of GO, which created extra bonding sites
to Dy (III) and enhanced the adsorption capacity of TEMPO-CNC/GO hybrid. These authors reported
that the developed green hybrid was efficient and had a strong regeneration performance.

The preparation and design of molecularly imprinted polymers (MIPs) is a multidisciplinary
field, which encompasses various aspects of molecular recognition, biomimetic biology and polymer
chemistry. MIPs preparation involves arranging functional monomers around a template, followed by
polymerization with the presence of cross-linkers and a suitable initiator through covalent, semi-covalent
or non-covalent intermolecular interactions and finally template removal. Such an approach has been
recently explored to produce CNC/GO-based composites as molecular imprinted electrochemical sensors,
which exhibited outstanding features. For instance, Anirudhan et al. have prepared MIP of silylated GO
and chemically modified CNC using a drop cast method for the selective sensing of cholesterol [162].
The authors incorporated ZnO to CNC to enhance their conductivity. The electrochemical studies
were carried out using cyclic voltammetry and differential pulse voltammetry. This sensor achieved
good stability and reproducibility, low detection limit and wide linear range. The optimum pH,
equivalent to the blood pH, was 7.4 and the optimum response time was only 10 min. In another work,
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Wang et al. manufactured a CNC/GO-based MIP for the selective extraction and fat adsorption of
synthetic antibiotics (fluoroquinolones, FQs), which can accumulate as residues in river water, causing
a hazard for living organisms [163]. The preparation process of the magnetic@GO-grafted-CNC@MIP
is depicted in Figure 10. It was found that the utilization of CNC and GO as substrates can improve
the properties such as the stability, selectivity and affinity of MIPs compared to the conventional ones.
The authors demonstrated that the prepared hybrid displayed an ultra-fast adsorption profile for FQs
with high recognition and large detection limit range. They claimed that this method is accurate,
effective, sensitive and simple, thereby appropriate for the detection of residual FQs in water sample.Nanomaterials 2020, 10, x FOR PEER REVIEW 18 of 34 
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The simultaneous incorporation of CNC and GO to numerous polymers such poly(3-
hydroxybutyrate-co-3-hydroxy valerate) [164], poly-N-isopropyl acrylamide [165], poly(3,4-
ethylenedioxythiophene) [166], poly(vinylidene fluoride) [167], polyacrylamide [168], poly(ε-
caprolactone) [169], polylactic acid [170], poly(vinyl alcohol) (PVA) [171] and chitosan [172] was
adopted as an efficient method to produce composites with excellent features since these nanofillers
offer outstanding synergetic effects. Some surface modifications can be applied to CNC or GO to
improve their dispersion and compatibility within the polymeric matrices. This type of nanocomposite
found a wide range of applications in biosensing [165], plastic masks [172], tissue engineering [168,169],
wastewater treatment [167], food packaging [173], supercapacitors [166], to cite a few. For instance,
El Miri et al. evaluated the synergetic effect of CNC/GO as a functional hybrid to enhance the properties
of PVA nanocomposites (Figure 11I). The nanocomposites were prepared via solvent casting method.
The authors demonstrated that the tensile strength, toughness and Young’s modulus were respectively
enhanced by 124%, 159% and 320% compared to the neat PVA. The strong interfacial interactions and
the synergetic effect of 1D elongated CNC and 2D exfoliated GO, which improved the dispersion and
avoided the agglomeration of the nanofillers, were also highlighted compared to the incorporation
of pure CNC or GO. Such nanocomposite may find application in food packaging materials.
In another recent study, Kumar et al. produced hybrid hydrogels containing polyacrylamide-sodium
carboxymethylcellulose (PMC), GO and CNC via in situ free-radical polymerization (Figure 11II) [168].
The obtained composite displayed outstanding mechanical performance, self-healing behavior and
shape-recovery feature. The authors claimed that such highly hydrated hybrid hydrogel with tailorable
properties might provide a 3D microenvironment for tissue engineering applications.Nanomaterials 2020, 10, x FOR PEER REVIEW 20 of 34 
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Reference [171]. Copyright©2016, Elsevier; (II) Schematic of the formation of the hydrogel: (A) Before
and after heat treatment of PMC-GO1/CNC10.0 hybrid solution and (B) A suggested mechanism of
physical and chemical interactions in the hybrid hydrogel system. Reproduced with permission from
Reference [168]. Copyright©2018, Elsevier.



Nanomaterials 2020, 10, 1523 20 of 34

4.3. CNC/RGO

The production of RGO, which is commonly performed by the exfoliation of pristine graphene
followed by oxidation and reduction, may generate numerous defects such as grain boundaries,
vacancies, Stone-Wales defects and macroscopic defects. These defects not only restrict its production
at the industrial scale but also limit the full exploitation of its outstanding properties. Another obstacle
in the practical use of RGO is the formation of irreversible agglomeration caused by the strong van
der Waals interactions between graphene planes. Therefore, various attempts were made to reduce
these drawbacks through RGO functionalization or incorporation of other additives such as vitamin
C, green tea, protein bovine serum albumin and CNC, among others, to improve the properties
and performance of the final derived nanocomposites and increase the number of its applications in
several fields [28,173].

Nowadays, various unmodified CNC/RGO hybrids were actively explored for different
applications such as sensors, flexible electronics, supercapacitors and photonic devices [174]. Several
approaches used to produce some unmodified CNC/RGO hybrids have been reported for which
the common method used to produce CNC/GO can be applied. Wan Khalid prepared COC/RGO
nanocomposite by dispersion/ultrasonication of 1 mg RGO in ethanol and 1 mg of CNC in deionized
water [175]. The supernatant was eliminated by centrifugation to recover the final hybrid. This latter,
re-dispersed in ethanol, was drop-coated onto an electrode surface, which was intended to be used for
electrochemical sensing of methyl paraben. The authors revealed that the obtained sensor exhibited good
stability, reproducibility, selectivity toward methyl paraben and reusability compared to RGO-based
sensor. Similarly, Nan et al. produced iridescent RGO/CNC film with advanced optical properties [176].
They prepared a suspension containing 1 wt.% of CNC and RGO floccules, which underwent an
ultrasound treatment and dried using vacuum-assisted self-assembly (VASA) technique. The obtained
films displayed regularly metallic iridescence owing to the homogeneous dispersion of RGO within
the chiral nematic liquid crystals of CNC. The key factors to tune such behavior were the duration
of ultrasonic treatment and the drying process. This iridescent hybrid exhibited better electrical
properties in addition to the reversible change in color during the adsorption/desorption of water.
The authors claimed that such a hybrid might find applications in photonic devices and biosensors.
Recently, Wang et al. adopted a facile one-pot technique to prepare CNC/GO nanocomposite that was
followed by a reduction using L-ascorbic acid to form CNC/RGO conductive paper [177]. The process,
compared to the well-known ones, is schematically represented in Figure 12. Briefly, the exfoliation of
graphite and the hydrolysis of cellulose occurred simultaneously in the reaction system, followed by
subsequent reduction using green L-ascorbic acid. A conductive paper (CP) with high conductivity,
excellent mechanical properties and thermal stability was then formed using ultrafiltration. It was
stated that such CP can be used in implantable biosensors, smart textiles and portable micropower
devices. In another research activity, Chen et al. proposed a new method to produce CNC/RGO hybrid,
which was based on non-liquid-crystal spinning followed by a reduction using hydrogen iodide
(HI), as schematized in Figure 13 [130]. The authors revealed that the incorporation of an alkaline
media during the dispersion of CNC/RGO caused the electrostatic repulsion between CNC and GO
sheets, leading to weaker hydrogen-bonding interaction and rendering the flowing process during
spinning more homogeneous and easier. The authors demonstrated that the strength of RGO/CNC
hybrid (230.6 MPa) was improved compared to pure RGO (157.5 Mpa). The hydrophilicity of the
hybrid was also improved in addition to the high capacitive performance and conductivity. After that,
such a hybrid was immersed in a polyvinyl alcohol acidic solution to fabricate flexible all-solid-state
supercapacitor. The assembled supercapacitor achieved excellent bending stability, better flexibility,
high energy density (5.1 mW h cm−3) and power density (496.4 mW cm−3). The authors claimed that
the prepared hybrid easily meets the requirements of flexible or even wearable supercapacitor.
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To further extend the number of applications, improve the different properties of CNC/RGO
hybrids as well as their efficiency, numerous modifications of either CNC, RGO or both of them have
been recently assessed. For instance, Zhao et al. produced electro-conductive nanocomposite based
on CNC and TiO2-RGO. Firstly, GO prepared by the modified Hummers method was subjected to
the photocatalytic reduction via TiO2. The obtained TiO2-RGO suspension was mixed with CNC
suspension under ultrasonication. CNC/TiO2-RGO was then vacuum-filtered and dried. The obtained
flexible transparent hybrid displayed improved electro-conductivity (9.3 S/m) with enhanced elastic
modulus (3998 MPa) and tensile strength (18.1 MPa), stipulating that it can be used as a transparent
flexible substrate for future electronic devices. In another work, Zhang et al. demonstrated the feasibility
of the spinning of conductive filaments from oppositely charged nano-species, that is, cationic CNC and
anionic RGO using interfacial nanoparticle complexation [178]. Initially, 2,3 dialdehyde cellulose was
prepared by periodate oxidation, subjected to cationization with Girard’s reagent or aminoguanidine
hydrochloride and passed through the double-chamber system of a microfluidizer to form cationic
CNC. Droplets of aqueous suspensions (cationic CNC and anionic GN), placed adjacent to each other,
generated continuous CNC/GO filaments, as shown in Figure 14. These latter were immersed into
hydrogen iodide solution, washed and dried, to afford CNC/RGO hybrid filaments. These hybrids
displayed an electrical conductivity of 3298 ± 167 S/m and tensile strength of 190.3 ± 8 MPa.
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Figure 14. (a) suspensions of cationic CNC and GO and a dual precipitated complex after simple
mixing; (b–e) CNC/GO hybrid filament drawing process; (f) a single dried CNC/GO hybrid filament
with a diameter of ~33 µm and a length of 53 cm; (g) a scheme illustrating the CNC/GO hybrid filament
drawing process. Reproduced with permission from Reference [178]. Licensed under a Creative
Commons Attribution 3.0 International License (https://creativecommons.org/licenses/by/3.0/).

Kabiri and Namari described another interesting process for the preparation of CNC/RGO hybrid.
They functionalized RGO with CNC via “click” coupling between terminated propargyl-functionalized
CNC (PG-CNC) and azide-functionalized GO (GO-N3) [179]. After the surface azidation of GO,
the “click” reaction between GO-N3 and PG-CNC, already synthesized by the Peng method [180],
was performed using copper-catalyzed azide-alkyne cycloaddition. The reduction of the final
nanocomposite dispersed in deionized water under sonication was carried out using hydrazine at
70 ◦C. The obtained free-dried CNC/RGO hybrid exhibited interesting physicochemical properties and
thermal stability. In another study done by Sadasivyni et al., a transparent and eco-friendly CNC/RGO
film for proximity sensing was developed [181]. The authors employed layer-by-layer spraying of
modified CNC/GO nanocomposite, which was obtained as detailed in Figure 15, on lithographic
patterns of interdigitated electrodes on polymer substrates. The modified nanocomposite was reduced
using anhydrous hydrazine at 80 ◦C to generate a hydrophobic CNC/RGO hybrid. The obtained
sensitive sensor allowed detecting a human finger interface within a distance of 6 mm with interesting
response and recovery time interval. This sensor has potential to be used in various applications such
as robotics, punching machines, smart phones, electronics and optoelectronics.

On the other hand, several CNC/RGO-based polymer composites have been produced and assessed
in several applications such as sensors, scaffolds in tissue engineering, food and drug packaging.
The polymeric matrices tested include polyvinylidene chloride (PVDC) [173], natural rubber (NR) [182],
polyethylene oxide [183], poly-lactic acid (PLA) [184,185] and polyamide 6 [186]. It was demonstrated that
the incorporation of CNC/RGO conferred to the polymeric nanocomposites outstanding mechanical and
thermal properties, interesting barrier features, low toxicity, high conductivity and so forth [183,184,186].
For instance, Cao et al. prepared a 3D interconnected CNC/RGO/NR network using a latex assembly
method for which NR latex was incorporated into a CNC/RGO suspension [182]. The solid formed
through the co-coagulation induced by an acidic solution was vacuum filtered. A schematic illustration
of the process is provided in Figure 16. The obtained conductive structure displayed higher electric
conductivity and better mechanical features with superior resistivity responses for organic liquids.
Such nanocomposite can find application in sensing to discriminate various solvents leakage in
chemical industries and environmental monitoring.

https://creativecommons.org/licenses/by/3.0/
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In other research, Pal et al. assessed the combined effect of CNC and RGO in PLA nanocomposite
as a scaffold in tissue engineering [185]. They initially prepared CNC and RGO via acid hydrolysis and
modified Hummer’s method, respectively and then employed a solution casting approach to produce
CNC/RGO/PLA hybrid. The detailed preparation procedure is schematized in Figure 17. Compared to
pristine PLA, the developed hydrophilic hybrid film revealed higher thermal stability, significantly
increased tensile strength up to 23% with and enhancement in elongation at break, showing its ductile
behavior. Moreover, the antibacterial activity against both Gram-negative Escherichia coli (E. coli) and
Gram-positive Staphylococcus aureus (S. aureus) bacterial strains was highlighted. The in-vitro cytotoxicity
assay indicated the non-toxicity of the nanocomposite film toward fibroblast cell line (NIH-3T3) as
well. More recently, interesting research has been conducted by You et al. [173], who introduced the
hybrid CNC/RGO to the solution of PVDC (Figure 18). The precipitated sample was vacuum dried to
produce the CNCN/RGO/PVDC nanocomposite. The transparency of the CNC/RGO/PVDC coated on
PET substrate was determined as 84% at 550 nm wavelength by UV–visible spectrometer in the regular
transmission mode (Figure 18). It was proved that the utilization of stable dispersion of CNC/RGO
enabled the fabrication of optically clear and thermostable nanohybrid film with improved barrier
characteristics against water and oxygen. The authors claimed that the developed approach to produce
CNCN/RGO/PVDC nanocomposite was effective and the obtained hybrid film is considered a potential
candidate for food and drug packaging.Nanomaterials 2020, 10, x FOR PEER REVIEW 25 of 34 
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(a) THF:DMF co-solvent and (b) PVDC nanocomposite solutions of 0.1 wt.% fillers loading to
PVDC. (c) Transmittance results of 0.1 wt.% PVDC/CNC, RGO and 1C:2R nanocomposite films.
The 10 mm thick nanocomposite films were deposited on 125 mm thick PET substrates. (d) Large area
(17 cm × 21 cm) PVDC/1C:2R–0.1 wt% nanocomposite film was obtained. Reproduced with permission
from Reference [173]. Copyright©2020, Elsevier.

5. Summary and Outlook

During the last decade, significant advances have been made in the preparation, characterization
and application of CNC/GNM hybrids. This article is a brief review of this fast-growing research area
and intended to highlight the up-to-date studies and utilization of CNC/GNM hybrids. Firstly, we have
introduced some basic concepts of nanocellulose and GNM, then summarized their preparation methods
and properties, with a particular focus on their outstanding features to elucidate their unique attributes.
The different preparation processes of CNC/GNM have been discussed as well as their properties.
Furthermore, to well understand the characteristics of theses hybrids, their different applications have
been provided.

CNC/GNM hybrid-based materials displayed interesting innovative features due to synergetic
effects, which are unachievable by taking CNC and GNM materials separately. It is shown that the
combination of the diversity and specificity of both CNC and GNM not only expands the number of
applications but also has indisputable advantages to benefit their unique attributes. These hybrids
hold a cornucopia of favorable properties that warrant their employment in the fields of sensing,
catalysis, separation, electronics, optics, biomedical, energy storage, to name a few. Nonetheless,
the development of CNC/GNM hybrid-based materials is relatively a new concept, which is mostly
limited to academic discipline but is expected that CNC/GNM hybrids will certainly be commercially
available in the future, which will attract more research attention not only in various applications but
also to achieve multifunctional multi-systems and open new perspectives. Moreover, the practical
application of such hybrids as next-generation materials requires further improvements in functionality
and performance in addition to the reduction of the production costs and the environmental impacts.
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