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Markov chains can accurately model the state-to-state dynamics of a wide range of complex systems, but the
underlying transition matrix is ill-conditioned when the dynamics feature a separation of timescales. Graph
transformation (GT) provides a numerically stable method to compute exact mean first passage times (MF-
PTs) between states, which are the usual dynamical observables, in continuous-time Markov chains (CTMCs).
Here, we generalize the GT algorithm to discrete-time Markov chains (DTMCs), which are commonly esti-
mated from simulation data, for example in the Markov State Model approach. We then consider the dimen-
sionality reduction of CTMCs and DTMCs, which aids model interpretation and facilitates more expensive
computations, including sampling of pathways. We perform a detailed numerical analysis of existing methods
to compute the optimal reduced CTMC, given a partitioning of the network into metastable communities
(macrostates) of nodes (microstates). We show that approaches based on linear algebra encounter numerical
problems that arise from the requisite metastability. We propose an alternative approach, using GT to com-
pute the matrix of intermicrostate MFPTs in the original Markov chain, from which a matrix of weighted
intermacrostate MFPTs can be obtained. We also propose an approximation to the weighted-MFPT matrix
in the strongly metastable limit. Inversion of the weighted-MFPT matrix, which is better conditioned than
the matrices that must be inverted in alternative dimensionality reduction schemes, then yields the optimal
reduced Markov chain. The superior numerical stability of the GT approach therefore enables us to realize
optimal Markovian coarse-graining of systems with rare event dynamics.

Keywords: graph transformation, Markov chain, Markov process, Markov State Model, dimensionality reduc-
tion, lumping, stochastic dynamics, master equation, rare events, metastability, kinetic Monte Carlo

I. INTRODUCTION

Many stochastic processes can be represented by
discrete- or continuous-time Markov chains, which gener-
ate memoryless dynamics for transitions between nodes
of a network.1–9 The usual dynamical observable in such
models is the mean first passage time (MFPT) from a
set of initial nodes B to a set of absorbing nodes A.10–22

Standard linear algebra methods to compute MFPTs en-
counter numerical issues for metastable Markov chains
because the separation of slow and fast timescales in
the system dynamics leads to severe ill-conditioning.23–28

Since rare events are ubiquitous in realistic models of
stochastic dynamical processes,29–43 more numerically
stable algorithms are often required for the analysis
of Markov chain dynamics. Graph transformation44–49

(GT) provides an exact method to compute the A ← B
MFPT that retains numerical precision even for strongly
metastable Markov chains.48 The method does not as-
sume that the Markov chain satisfies the detailed balance
condition,4 nor are there any constraints on the initial
occupation probability distribution within B.
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Graph transformation was originally introduced to
compute MFPTs in continuous-time Markov Chains
(CTMCs),45,47 which are parameterized by transition
rates.3 Here we show that the GT algorithm can be
adapted to treat discrete-time Markov chains (DTMCs),
which are parameterized by transition probabilities for a
fixed time step.2 This generalization is important because
many methods have been developed to construct DTMCs
from sparse simulation data.50,51 For example, master
equation approaches based on explicit dynamics52–56 are
designed to construct a DTMC from first passage time
data in a continuous state space. Estimation of a CTMC
from trajectory data is also possible,57 but is significantly
more difficult.58–60 Since the analysis of DTMCs featur-
ing rare events encounters numerical issues due to fi-
nite precision,24–28 as for continuous-time counterparts,
a discrete-time formulation of the GT algorithm offers an
attractive method for computing A ← B MFPTs in the
metastable regime.

The remainder of this contribution is concerned with
the dimensionality reduction, or coarse-graining, of
Markov chains using exact MFPTs. Reducing the dimen-
sionality of a Markov chain, while accurately preserving
global dynamical properties of the original model, is an
active area of research.1,61–74 Coarse-graining facilitates
computational analyses that are prohibitively expensive
for the original model, such as sampling of the A ← B
transition path ensemble by kinetic Monte Carlo (kMC)
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methods.75–81 Moreover, the reduced Markov chain only
preserves the slowest dynamical processes and so is less
ill-conditioned than the original representation. The
coarse-grained model may therefore be amenable to anal-
yses based on linear algebra, such as computation of the
fundamental matrix,10,82–86 from which many insightful
dynamical properties can be derived.5 The reduced model
is also easier to interpret, since it only describes dynamics
between key metastable macrostates (i.e. communities of
nodes).87,88

It may seem intuitive that the MFPTs between com-
munities of nodes could be used to directly estimate a
coarse-grained DTMC or CTMC, by expressions similar
to those employed in milestoning.89–91 However, Ref. 92
showed that, for the reduced Markov chain to preserve
the stationary distribution of the original Markov chain,
the intercommunity MFPTs must satisfy a constraint
defined by the Kemeny constant,1,92–99 which we show
arises as a direct consequence of the detailed balance
condition. As a result, evaluation of the matrix of appro-
priately weighted intercommunity MFPTs, introduced in
Ref. 92, requires computation of the intermicrostate MF-
PTs for transitions between all pairs of nodes in the orig-
inal Markov chain. Inversion of this “weighted-MFPT”
matrix then yields the “optimal” reduced CTMC for a
given partitioning of the original Markov chain,100 as de-
fined in Sec. III A.92

We demonstrate that the GT algorithm provides a nu-
merically stable route to obtain the matrix of weighted-
MFPTs, and hence the optimal intercommunity tran-
sition rates for a given community structure. A care-
ful numerical comparison between our approach and al-
ternative formulations92, including the Hummer-Szabo
relation,100 shows that GT greatly extends the regime in
which optimal Markovian coarse-graining of metastable
systems is feasible. Moreover, our analysis confirms that
the optimal reduced CTMC represents the dynamics of
the original system more accurately than the coarse-
grained Markov chain obtained from the simpler local
equilibrium approximation.100,101 We also suggest more
scalable approaches to dimensionality reduction based
on the GT algorithm, including an approximation to
the optimal reduced CTMC that is valid in the strongly
metastable limit.

II. MEAN FIRST PASSAGE TIMES AND THE GRAPH
TRANSFORMATION ALGORITHM

We consider the A ← B mean first passage time
(MFPT) TAB for the transition to the absorbing
macrostate (community of nodes) A from the initial
macrostate B, associated with a specified initial prob-
ability distribution pb(0), b ∈ B. The A ← B MFPT
is defined as the average first hitting time4,102 for tra-
jectories initialised in B to reach the boundary nodes of
the target set A. The discrete state space, comprising
V microstates (nodes), is partitioned into the endpoint

macrostates, A and B, and the set of intervening nodes,
denoted I = (A ∪ B)c.

A. Graph transformation for continuous-time Markov
chains

A CTMC is parameterized by a transition rate matrix
K, where the elements Kij are the i← j intermicrostate
transition rates, and the diagonal terms ensure that the
sum of elements in any column of the matrix is zero,
Kjj = −∑γ 6=j Kγj . Each node j has a mean waiting

time τj = 1/
∑
γ 6=j Kγj , from which the branching prob-

ability matrix103 P emerges as Pij = Kijτj .
104 The graph

transformation (GT) algorithm is a method to iteratively
remove nodes from a CTMC while preserving the MFPT
for the transition to the absorbing macrostate A.44–49 In
the elimination of node x by the GT algorithm, the wait-
ing times and branching probabilities of the remaining
nodes are updated according to47

τj → τ ′j = τj +
Pxjτx

1− Pxx
, (1)

Pij → P ′ij = Pij +
PixPxj
1− Pxx

, (2)

respectively. The renormalized i ← j transition prob-
abilities account for pathways consisting of a transition
to node x from j, followed by an arbitrary number of
self-loop (i.e. x ← x) transitions in x, before a final
transition to node i. The transformation also introduces
self-loop transitions such that the probability flow is con-
served,

∑
γ P
′
γj = 1, for all remaining nodes j. Similarly,

the waiting times (Eq. 1) are renormalized to account
for the expected time spent in the eliminated node x,
weighted by the probability of transitioning to x from
j. The GT algorithm can also be extended to eliminate
multiple nodes simultaneously.49,105

To compute the MFPT between two sets of endpoint
nodes A and B, the GT algorithm is first used to itera-
tively eliminate all nodes of the set I. The renormalized
network comprising only the nodes of the set A∪B is then
stored. For each node b ∈ B, the nodes of the set B \ b
are eliminated from this stored network, leaving only the
nodes in A ∪ b. The A ← b MFPT is then the expected
escape time from b, which reads

TAb =
τ ′b

1− P ′bb
. (3)

The overall A ← B MFPT is given by a weighted average
of MFPTs for transitions to the absorbing macrostate
from nodes of the initial macrostate,

TAB =
1∑

b∈B pb(0)

∑
b∈B
TAbpb(0). (4)

The GT procedure to compute the A ← B MFPT is illus-
trated in Fig. 1. The B ← A MFPT is computed using



3

expressions analogous to Eqs. 3 and 4 for the reverse di-
rection. Since the renormalized network with state space
A ∪ B is stored for the computation of TAB, TBA can be
obtained with little additional computational effort.

The efficiency and numerical stability of GT is es-
sentially unaffected by the metastability of the Markov
chain.48 The GT algorithm retains numerical precision
because the (1 − Pxx) factors that appear in the renor-
malization equations (Eqs. 1 and 2) can be computed in-
directly via

∑
γ 6=x Pγx = 1 − Pxx when Pxx → 1.47 This

improvement in numerical stability corresponds to the
“GTH advantage”106 in the Grassmann-Taksar-Heyman
(GTH) algorithm for computation of the stationary prob-
ability distribution.11,107

B. Graph transformation for discrete-time Markov chains

The GT procedure described in Sec. II A can be ap-
plied to a discrete-time Markov chain (DTMC) by replac-
ing the CTMC branching probabilities Pij = Kijτj and
mean waiting times τj with the discrete-time transition
probabilities Tij(∆) and uniform lag times ∆j ≡ ∆ ∀ j.
The discrete- and continuous-time formulations are re-
lated via8

T(∆) = exp(K∆) and K = lim
∆→0

(T(∆)− I)/∆, (5)

where I is the identity matrix. Since the columns of K
sum to zero, the columns of T(∆) sum to unity.4 In a
CTMC, the time for the i← j transition is exponentially
distributed with mean τj , because outgoing transitions
from node j are competing Poisson processes.104 In a
DTMC, the time between transitions is fixed by the lag
time ∆. Hence, the transition matrix T(∆) propagates
the occupation probability distribution pn ≡ p(tn) via
the Chapman-Kolmogorov equation pn+1 = T(∆)pn at
discrete time intervals tn = n∆.4 We show below that the
elimination of nodes in a DTMC using renormalization
(i.e. discrete-time analogs of Eqs. 1 and 2) preserves
MFPTs to an absorbing macrostate.

For a CTMC, the MFPT between two endpoint
macrostates can be written as a sum of contributions
from individual paths weighted by the corresponding
path probabilities.45 Consider a particular discrete path
ξ from the initial to the absorbing macrostate, written as
a sequence of n nodes, ξ = {in ← in−1 ← . . .← i1}, with
starting node i1 ≡ b ∈ B and target node in ≡ a ∈ A.
The path probability Wξ is simply a product of branch-
ing probabilities for all transitions (i ← j) along the
path ξ, weighted by the initial occupation probability for
the starting node b, Wξ = pb(0)

∏
(i,j)∈ξ Pij .

45,105 The

MFPT associated with the path ξ is a sum of mean wait-
ing times for microstates visited along the path prior to
hitting the absorbing node,47 Tξ =

∑n−1
i=1 τi. Therefore,

the overall A ← b MFPT is

TAb =
∑
a∈A

∑
ξ∈a←b

WξTξ. (6)

It can be shown that renormalization of the waiting times
and transition probabilities by GT (Eqs. 1 and 2) pre-
serves the pathwise sum over product nodes (Eq. 6).45,47

To apply the GT algorithm to a DTMC, we consider an
analogous formulation of the MFPT as a weighted sum
of contributions from individual discrete-time A ← B
paths.

The probability of a discrete-time path is a product
of discrete-time transition probabilities Tij(∆) weighted
by the occupation probability of the initial node, directly
analogous to the continuous-time case. Hence, the renor-
malization of the discrete-time transition probabilities by
an equation of the same form as Eq. 2 will correctly pre-
serve the individual path probabilities for each member
of the ensemble of A ← B paths, following the proof for
the continuous-time case in Ref. 47. Alternative proofs
that renormalization of transition probabilities via Eq. 2
is valid in both continuous and discrete time appear in
other contexts, for example, in the theory of stochastic
complementation (see e.g. Ref. 108).

The renormalization of the waiting times associated
with nodes in a DTMC requires more careful considera-
tion. In a CTMC, the renormalized mean waiting time
τ ′j (Eq. 1) accounts for the average time to leave node j
(possibly returning to j) via an arbitrary number of self-
loop transitions in the eliminated node x. In a DTMC,
the probability Tij(∆) of the i ← j transition is associ-
ated with a fixed waiting time ∆. For the weighted sum of
contributions to the A ← B MFPT from individual path-
ways (Eq. 6) to be conserved, the renormalized lag times
in a DTMC must also account for the average number of
steps 〈Nj〉 required to leave a node j (possibly returning
to j) via an arbitrary number of self-loop transitions in
the eliminated node x. This effect will increment the lag
time on average by ∆′j = 〈Nj〉∆, meaning the initially
uniform lag time ∆j = ∆ ∀j becomes node-dependent
as nodes are eliminated via GT. We therefore introduce
the V -dimensional vector of waiting times, ∆, associated
with the generalized transition probability matrix T′(∆)
for the renormalized DTMC.

Following this reasoning, the renormalized DTMC is
formally equivalent to an artificial CTMC where the
mean waiting time for the j-th node is ∆j and the i← j
transition probabilities are given by T′ij(∆). The renor-
malization equations in the GT algorithm applied to a
DTMC are therefore (by analogy with Eqs. 1 and 2)

∆j → ∆′j = ∆j +
Txj(∆)∆x

1− Txx(∆)
, (7)

Tij(∆)→ T′ij(∆) = Tij(∆) +
Tix(∆)Txj(∆)

1− Txx(∆)
. (8)

Because the lag time is node-dependent, the elapsed time
for a trajectory of n steps,

∑n−1
i=1 ∆i, is path-dependent,

unlike a standard DTMC, where the elapsed time is al-
ways n∆. That is, the discrete time interval at which
the occupation probability distribution for a renormal-
ized DTMC is propagated represents an average over
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FIG. 1. The graph transformation (GT) method to compute mean first passage times (MFPTs) from a set of initial nodes B to
a set of absorbing nodes A, illustrated for a model 32-node network. Here, τ ′b and P ′bb are the renormalized waiting times and
self-loop transition probabilities (Eqs. 1 and 2, respectively) from node b in the graph-transformed network comprising nodes
of the set (A∪ b). The overall A ← B MFPT is obtained as a weighted average of A ← b ∈ B MFPTs (Eq. 4). The MFPT for
the reverse (B ← A) direction can be obtained by repeating steps 2-4, removing nodes a ∈ A.

multiple possible pathways. Hence, the probability distri-
bution evolves through a modified Chapman-Kolmogorov
equation pn+1 = T(∆)pn, where the time evolution is

defined in expectation, 〈tn+1〉 = (∆>pn) + 〈tn〉, as op-
posed to tn+1 = ∆ + tn for a uniform lag time ∆. There-
fore A ← B trajectories can still be sampled on a renor-
malized DTMC by incrementing the simulation clock us-
ing the renormalized, node-dependent lag time ∆′j for a
i ← j transition (Eq. 7), and noting that the trajectory
time is an expectation over visits to eliminated nodes.

A formal proof that Eqs. 7 and 8 preserve the A ← B
MFPT for a DTMC is presented in Appendix C. Algo-
rithms for the computation of MFPTs that are very sim-
ilar to the GT algorithm have previously been described
in the context of DTMCs.12,27,82,83 For instance, Hunter
proposed an extension of the GTH algorithm11,107 for the
computation of the stationary distribution vector, which
is valid for both discrete- and continuous-time stochastic
matrices,106 to compute the matrix of all pairwise in-
termicrostate MFPTs.13,15 However, to the best of our
knowledge, the GT algorithm of Ref. 47 has not been ap-
plied to DTMCs, and the interpretation of the renormal-
ized waiting times in discrete-time (Eq. 7), based on the
proof presented in Appendix C, has not been discussed.

The continuous-time branching probability matrix P
is, in general, more sparse than a corresponding discrete-
time transition probability matrix T(∆) (Eq. 5), since P
is derived from the transition probabilities per unit time
for an infinitesimally small time step.4,104 In addition,
the discrete-time transition probability matrix may con-
tain self-loop transitions even before the application of
the GT algorithm. For these reasons, a GT computation
will be less efficient for a DTMC than for a corresponding
CTMC. Therefore, if the stochastic model to be analyzed
is a CTMC, then there is no advantage to transforming
the system to an equivalent DTMC via Eq. 5. How-

ever, the reverse transformation to obtain a CTMC from
a given DTMC is often not feasible.59,60 Thus the ap-
plication of the GT algorithm to DTMCs is a valuable
approach to circumvent numerical issues when analyzing
a discrete-time model featuring rare events.

In a standard DTMC with uniform lag time ∆, the
A ← B MFPT is simply the average number of steps
along A ← B paths, LAB, multiplied by ∆, i.e. TAB =
∆LAB. LAB can thus be obtained for DTMCs or CTMCs
using the GT algorithm (Eqs. 1-3) by setting the initial
waiting times for all nodes to unity. Although LAB is
not a dynamical observable, it is nonetheless of theoret-
ical interest.5 For instance, the number of steps along
stochastic paths has been extensively used to characterize
metastable macrostates in the theory of dynamical phase
transitions,43 where LAB is referred to as the A ← B
mean dynamical activity.109 LAB can be compared to
the numbers of steps along A ← B paths determined
by k shortest paths algorithms with appropriate edge
weights,110 highlighting the paths that exhibit numer-
ous revisits (‘flickering’) within metastable macrostates.
Knowledge of LAB is helpful in choosing a kinetic Monte
Carlo (kMC) method for the simulation of A ← B trajec-
tories, since standard kMC methods75 become unfeasible
when trajectories become too long. In contrast, more
advanced kMC algorithms are agnostic to the number of
steps along paths.76–81

C. Linear algebra methods for computing MFPTs in
Markov chains

A straightforward linear algebra approach to compute
A ← B MFPTs for a DTMC or CTMC is based on
the theory of absorbing Markov chains. Consider the
V ′ × V ′ transition rate matrix K′ comprising only the
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V ′ microstates of the nonabsorbing set S ≡ Ac. Transi-
tions to absorbing nodes in this modified CTMC remain
accounted for in the waiting times of nodes in S with
direct connections to A; thus, the sums of elements in
the corresponding columns of K′ will be less than zero.
Hence, this absorbing Markov chain “leaks” probability,
and MFPTs for transitions to A are related to the prob-
ability flux out of the nonabsorbing region. Unlike K, K′

does not have a zero eigenvalue and is therefore invert-
ible, giving29,105

TAB = −1>V ′ [K
′]
−1

p′(0), (9)

where 1V ′ is a V ′-dimensional column vector with all
elements equal to unity, and p′(0) is the normalized ini-
tial occupation probability distribution constrained to B,
i.e. p′b(0) = pb(0)/

[∑
b′∈B pb′(0)

]
. The above expres-

sion can also be evaluated by solving the linear problem
K′x = p′(0) from which TAB = −1>V ′x, or through eigen-
decomposition of K′ to give57,92

TAB = −
∑
k

1

γ′k
1>V ′(ψ

′
k ⊗ φ′k)p′(0), (10)

where ψ′k and φ′k are the k-th right and left (orthonor-
mal) eigenvectors of K′, respectively, and γ′k < 0 is the
associated eigenvalue. A DTMC shares the same set of
right and left eigenvectors as an equivalent CTMC,57 and
the k-th eigenvalue is related to the corresponding eigen-
value of an equivalent CTMC via λk = exp(γk∆), cf.
Eq. 5.52 Hence, Eq. 10 also provides a means to com-
pute A ← B MFPTs for DTMCs via construction of an
absorbing transition probability matrix T′ij(∆). In ad-
dition to the matrix inversion (Eq. 9) and eigendecom-
position solutions (Eq. 10), the formulation of the ab-
sorbing transition rate matrix K′ allows MFPTs to be
computed from the elements of the absorbing fundamen-
tal matrix,1,5 which is discussed in Appendix B.

An additional linear algebra method to compute the
MFPT between two microstates i← j is provided by the
expression (Appendix E)

Tij =
1

πi
(ZCT

ij − ZCT
ii ), (11)

where

ZCT = (π1>V + K)
−1 − π1>V , (12)

is the ergodic fundamental matrix 10,82–86 of an irre-
ducible CTMC, which exists when the Markov chain has
a defined stationary distribution π. In Appendix D,
we show that there is some freedom in the choice of
ZCT.10,15,111,112 In Ref. 92, Eqs. 11 and 12 were related
to a difference of correlation functions100 of the Markov
chain. Eqs. 11 and 12 can be used to compute a partic-
ular A ← B MFPT by constructing a modified Markov
chain in which the nodes of the set A are represented by
a single supernode,113 so that the elements of the funda-
mental matrix yield the MFPTs TAj ∀ j /∈ A, and TAB
can then be obtained via Eq. 4.

In the discrete-time case, the most common definition
for the fundamental matrix is given by1,84

ZDT = (π1>V + I−T(∆))−1, (13)

in which case it can be shown that the i← j MFPT is1

Tij = ∆(δij + ZDT
ii − ZDT

ij )/πi. (14)

The factor of the lag time ∆ in Eq. 14 is required for con-
sistency with the continuous-time result in Eq. 11. The
discrete-time formulation (Eq. 14) yields Tii = ∆/πi, in
accordance with Kac’s Lemma,114 whereas the diagonal
elements of the MFPT matrix are strictly zero in contin-
uous time (Eq. 11).92

Computation of MFPTs via the elements of the fun-
damental matrix (Eq. 11) yields the V × V matrix T of
MFPTs for transitions between all pairs of microstates
of the Markov chain in a single matrix inversion oper-
ation. This matrix can be used to estimate the opti-
mal coarse-grained CTMC for a given partitioning of the
nodes (Sec. III). The matrix T also provides a means to
convert from a discrete- to a continuous-time formulation
via92

K = T −1(−1V 1>V + diag(π)
−1

), (15)

where diag(π) is the diagonal matrix with elements cor-
responding to the stationary (equilibrium occupation)
probabilities of the V microstates, [diag(π)]ij = πiδij ,
and the diagonal elements Tii of the MFPT matrix are
taken to be zero. In general, the conditions required for
a DTMC to be “embeddable”, i.e. have an underlying
CTMC, are unknown, and are not always satisfied.59,60

In practice, a CTMC can be estimated from a DTMC
by solving a constrained optimization problem for the
“closest” valid rate matrix satisfying Eq. 5, but the op-
timization is non-convex and scales poorly.58 Evaluation
of Eq. 15 provides an alternative approach to perform
the conversion, but requires inversion of a V -dimensional
square matrix, which is not scalable and is numerically
unstable for metastable Markov chains (Sec. II E).23,48

Hence, it is often not possible to convert a DTMC to a
corresponding CTMC.

D. Derivation of the Kemeny constant from the detailed
balance condition

In addition to the MFPT, another important dynam-
ical observable is the Kemeny constant,1,92–99 ζ, defined
as

ζ =
∑
i

πiTij ∀ j. (16)

The Kemeny constant is interpreted as the average mix-
ing time of an irreducible Markov chain.115,116 Eq. 16
implies that the weighted sum of MFPTs to all possible
target microstates i is the same for all initial microstates
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j.5 The Kemeny constant can be expressed in terms of
the trace of the fundamental matrix10,82–86 (Eqs. 12 and
13) as98

ζ = −Tr(ZCT) = ∆Tr(ZDT), (17)

for continuous and discrete time, respectively. In Ap-
pendix E, we derive the Kemeny constant, ζ, and the
MFPT matrix, T , from the fundamental matrix in con-
tinuous time, ZCT, and show that ζ represents an average
mixing time.

It is insightful to show that the Kemeny constant arises
straightforwardly from the detailed balance condition
Kdiag(π) = diag(π)K>. Multiplying both sides of this
expression by 1>V T

−1T and substituting for T Kdiag(π)
using Eq. 15 gives

1>V T
−1(I− 1V π

>) = 1>V diag(π)K> = π>K> = 0,
(18)

which follows from the fact that π is the unique right
eigenvector of K associated with the zero eigenvalue.
Hence, 1>V T

−1 = 1>V T
−11V π

>. Postmultiplying both
sides of this constraint by T and rearranging yields

π>T = 1>V /
(
1>V T

−11V
)
≡ ζ1>V . (19)

Eq. 19 further implies that π>T p(0) = ζ, meaning that
the mixing time is independent of the initial occupation
probability distribution p(0). Although this remarkable
fact follows from the detailed balance condition, the al-
ternative derivation of the Kemeny constant given in Ap-
pendix E demonstrates that Eq. 19 holds even in the ab-
sence of detailed balance, provided that the global bal-
ance equation, Kπ = 0, is satisfied.

In Sec. III B, we will use the fact that there exists a
constraint of the same form as Eq. 19 on the Kemeny con-
stant of the optimal reduced Markov chain for a given
partitioning of the network, which was first noted in
Ref. 92.

E. Computational complexity and numerical stability of
graph transformation and linear algebra methods

In general, linear algebra methods to compute MFPTs
have superior time complexity compared to the graph
transformation (GT) algorithm. However, GT retains
numerical precision even in strongly metastable Markov
chains owing to the GTH advantage,106 whereas linear
algebra methods suffer severe conditioning issues.

Computation of the matrix T of all pairwise intermi-
crostate MFPTs via evaluation of the fundamental ma-
trix (Eqs. 11 and 12) requires only a single matrix inver-
sion operation, and hence has time complexity O(V 3).23

The methods to compute a particular A ← B MFPT
based on inversion, linear solution, and eigendecompo-
sition operations of an absorbing Markov chain (Eqs. 9
and 10) also have a formal complexity of O(V 3), but
sparse linear algebra methods119 can provide a significant
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FIG. 2. (a) One-dimensional potential energy landscape for
the 11-microstate unbranched chain. (b) Mean first passage
time for the transition between microstates 2 ← 10 com-
puted using graph transformation (GT), inversion to obtain
the fundamental matrix, eigendecomposition, and linear solu-
tion, compared to the exact analytical result from the recur-
sive formula due to Weiss.117,118

speedup when solving the linear problem K′x = p′(0)
in certain cases. These methods can be used to com-
pute the matrix of all pairwise intermicrostate MFPTs
T by considering V separate absorbing Markov chains,
with each target node i specified as the absorbing node
in turn. A single iteration of this procedure therefore
yields the individual MFPTs Tij from all source nodes
j 6= i. Computation of T using the absorbing Markov
chain formulation therefore has a formal time complexity
of O(V 4).

Despite the O(V 3) scaling, eigendecomposition can in
principle be achieved efficiently even for high-dimensional
systems120,121 using Krylov subspace methods,122

such as the Lanczos algorithm,123 applied to the
symmetrized29,57 transition probability (or rate) ma-
trix. However, this approach does not mitigate the se-
vere ill-conditioning issues for systems exhibiting rare
event dynamics.23,48 In such systems, the second dom-
inant eigenvalues of DTMCs and CTMCs tend to
unity and zero,124 respectively, with increasing separa-
tion of timescales in the dynamics.24–28 Moreover, for
metastable systems, there may be several eigenvalues
associated with slow dynamical eigenmodes that are
very similar in magnitude,41,125 which also causes dif-
ficulty for the Lanczos algorithm.126,127 For metastable
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Markov chains, small perturbations in the transition
probabilities (or rates) can lead to profound changes
in global dynamical quantities, such as the stationary
distribution26,128–131 and, by extension, MFPTs.132–134

This effect complicates the use of Krylov subspace meth-
ods for eigendecomposition of sparse matrices, since
the iterative updates of the solution vector may fail to
converge,25 and the choice of initial approximation to
the solution vector is crucial to achieving convergence.135

The sensitivity of global dynamical properties to per-
turbations in the transition matrix elements also affects
the numerical stability of matrix inversion methods and
dense methods for eigendecomposition,136 owing to the
propagation of roundoff error in the floating point oper-
ations.

To illustrate the superior numerical stability of GT,
we consider a simple 11-microstate unbranched CTMC,
where the nodes and edges correspond to the local min-
ima and transition states of a one-dimensional poten-
tial energy landscape (Fig. 2).101 The unbranched chain
provides a useful benchmark for testing the numeri-
cal stability of methods to compute MFPTs because
the exact intermicrotate MFPTs can be obtained from
the recursive formula due to Weiss (see Supplementary
Material Sec. II).117,118 Since the harmonic transition
state theory137 rate constants have an Arrhenius form,
the effective temperature T governs the metastability
of the Markov chain. The GT algorithm yields pre-
cise agreement with the exact recursive formula across
the entire temperature range considered, whereas com-
putations based on inversion to obtain the fundamen-
tal matrix92 (Eqs. 11 and 12), linear solution (Eq. 9),
and eigendecomposition23,29 (Eq. 10) break down in the
metastable regime. The failure of linear algebra methods
can be attributed solely to the fact that the rate ma-
trix is ill-conditioned, because the dimensionality of the
model system is not prohibitive for any of the methods
employed. DTMCs exhibiting rare event dynamics are
affected by the same ill-conditioning and numerical prob-
lems as their continuous-time counterparts.24–28 Hence,
we anticipate that the GT algorithm will be equally use-
ful for computing MFPTs in DTMCs (Sec. II B).

The numerical results presented in Fig. 2 were obtained
using machine double precision.15 Employing higher-
precision floating point data types only marginally im-
proves the stability of linear algebra methods, while sig-
nificantly increasing the required computational time and
memory. Thus, it is preferable to employ the GT method,
which benefits from the stability conferred by the GTH
advantage,106 in the metastable regime.

The time complexity of a single GT computation is
roughly O(V 4) for sparse random networks,45 and each
calculation yields both the forward and reverse MFPTs
for the chosen endpoint sets of nodes. Matrix general-
isations of GT49,105,108 enable simultaneous elimination
of blocks of B nodes, with a reduced time complexity
of O(V B2). The computation of T using GT therefore
requires V (V − 1)/2 separate calculations, resulting in

an overall time complexity of approximately O(V 6) when
eliminating nodes individually, or O(V 3B3) when remov-
ing nodes in blocks of B nodes. The efficiency of a GT-
based approach to computing T can be improved using
the formulation of GT employed in kinetic path sampling
(kPS),79,80 in which transitions from eliminated to none-
liminated nodes are preserved. This algorithm is anal-
ogous to a LU decomposition of a matrix.79 It is then
not necessary to redo the complete GT computation for
each pair of nodes, and instead individual GT iterations
can be undone, resulting in approximately O(V 5) overall
time complexity with careful bookkeeping of transition
probabilities and waiting times. Although the compu-
tation of T using GT scales less favourably, it remains
feasible for sparse networks comprising a few thousand
microstates. We also note that the time complexity of a
GT computation is strongly dependent on the sparsity of
the network and on the heterogeneity of the node degree
distribution,45 and time complexity better than O(V 4)
may be observed for some networks.79

III. DIMENSIONALITY REDUCTION OF MARKOV
CHAINS USING MEAN FIRST PASSAGE TIMES

We now consider the problem of constructing a coarse-
grained CTMC that accurately preserves the global dy-
namical properties of the original model, given a parti-
tioning of a discrete- or continuous-time Markov chain
into N < V communities C ≡ {I, J, . . .}.1,61–74 To ensure
that a reduced Markovian model is a valid approximation
to the original system, the community structure C must
appropriately characterize the metastable macrostates.
Determination of C is particularly challenging in the
metastable regime, where spectral methods71–73,138 are
numerically unstable (Sec. II E), and is beyond the scope
of the present work. We have previously shown that
multi-level regularized Markov clustering81 and recursive
regrouping based on a transition rate threshold29 provide
viable approaches to community structure detection139 in
metastable Markov chains.

The reduced CTMC should satisfy the detailed bal-
ance condition and preserve the stationary distribu-
tion of the original Markov chain, so that the equilib-
rium occupation probability of the J-th community is
ΠJ =

∑
j∈J πj . We employ capital letter indices to de-

note microstates of the reduced Markov chain, which
correspond to macrostates (groups of microstates) of
the original Markov chain. The stationary distribution
π of the original model is required to compute a re-
duced CTMC. To avoid the propagation of numerical
error, π should be computed via a numerically robust
method, such as the GTH algorithm,11,107 uncoupling-
coupling via stochastic complementation,108 or iterative
aggregation-disaggregation140,141 (IAD) methods, all of
which are related to the GT algorithm (Sec. II A).
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A. Definition of the optimal reduced CTMC

Dimensionality reduction simplifies the dynamics of
the original system, and therefore will induce error.
A “perfect” coarse-grained trajectory can in principle
be generated from a trajectory on the original model,
by replacing the instantaneous node occupation (or
indicator100) function nj(t) ∈ [0, 1] at time t, for nodes
j ∈ J , with the corresponding coarse-grained node occu-
pation function nJ(t) ∈ [0, 1].142 The error incurred in a
dimensionality reduction procedure can then be gauged
by comparing the time-dependent macrostate occupa-
tion correlation functions143 produced from the ensemble
of these “perfect” coarse-grained trajectories with those
produced by the reduced system.

Hummer and Szabo100 proposed a dimensionality re-
duction strategy that minimizes the error in the occupa-
tion correlation functions under the constraint that the
dynamics of the coarse-grained model are also Marko-
vian. This constraint requires that the time integrals of
the macrostate correlation functions agree in the coarse-
grained and original models. The resulting expression,
which we rederive in the Supplementary Materials, is the
Hummer-Szabo (HS) relation100,144

KC =Π1>N

− diag(Π)(A>(π1>V −K)−1diag(π)A)−1. (20)

Here, the elements [KC]IJ are the optimal I ← J in-
tercommunity transition rates, diag(Π) is the diagonal
matrix with elements [diag(Π)]IJ = ΠJδIJ , and A is
the V × N aggregation matrix with non-zero elements
AiJ = 1 if i ∈ J . Kells et al.92 derived an alternative
expression for KC based on the matrix of all pairwise
intermicrostate MFPTs T (Sec. II C), which is there-
fore applicable to the dimensionality reduction of both
DTMCs and CTMCs, given by

KC = Π1>N (21)

− diag(Π)[ΠΠ> + A>diag(π)T (πΠ> − diag(π)A)]−1.

We refer to Eq. 21 as the KKRA relation, and to the
matrix KC as the optimal reduced CTMC.

B. Optimal reduced CTMC from graph transformation

A third expression for the optimal reduced CTMC has
recently been derived, which takes an analogous form to
the relation between intermicrostate transition rates and
MFPTs (Eq. 15),92

KC = T̃
−1

C (−1N1>N + diag(Π)−1), (22)

where T̃ C is a N×N matrix of appropriately weighted in-
tercommunity MFPTs. In Ref. 92, it was shown that for

Eq. 22 to hold, T̃ C must satisfy a constraint analogous
to Eq. 19,

Π>T̃ C = ζC1>N , (23)

where ζC is the Kemeny constant of the coarse-grained
Markov chain,

ζC = (1>N T̃
−1

C 1N )−1 =
∑
I

ΠI [T̃ C]IJ ∀ J, (24)

analogous to Eq. 16. Eq. 24 therefore enforces that the
sum of weighted-MFPTs to all possible target communi-
ties is the same for all initial communities J .

Ref. 92 showed there exist an infinite number of ma-
trices T̃ C that satisfy the Kemeny constant constraint
(Eq. 23) and therefore preserve detailed balance, with
the form

T̃ C = θ −w1>N , (25)

where

θIJ =
1

ΠIΠJ

∑
i∈I

∑
j∈J

πiTijπj , (26)

and w is an arbitrary column vector. All choices of T̃ C

consistent with Eqs. 25 and 26 yield the same rate ma-
trix in Eq. 22, which coincides with the optimal reduced
CTMC given by the HS (Eq. 20) and KKRA (Eq. 21)
expressions.92 Note that, since there are an infinite num-

ber of valid weighted-MFPT matrices T̃ C, the Kemeny
constants of the original and reduced Markov chains are
not necessarily equal, although this condition can be en-
forced through a specific choice for w in Eq. 25.92

The “weighted-MFPT”, [T̃ C]IJ , takes into account dy-
namics within the target community I, and is therefore
distinct from the true MFPT [T C]IJ=Π−1

J

∑
j∈J TIjπj ,

which measures the mean time at which I ← J trajecto-
ries first hit a boundary node of community I. Therefore,

T̃ C, but not T C, yields a coarse-grained Markov chain
that correctly preserves the stationary distribution of the
original Markov chain and satisfies the detailed balance
condition.92

Since the GT algorithm (Eqs. 1 and 2) only preserves
the MFPT to a set of absorbing nodes, and not the
individual MFPTs to particular absorbing nodes,47 the
weighted-MFPT cannot be computed via a single GT
calculation. That is, the sum over product nodes is pre-
served in Eq. 6, but the contributions to the sum from
sets of paths terminating at particular absorbing nodes
are not individually preserved. However, GT can be used
to indirectly evaluate the weighted-MFPTs by comput-
ing the matrix of all pairwise intermicrostate MFPTs T
appearing in Eq. 26, via V (V −1)/2 separate GT calcula-
tions, as discussed in Sec. II E. Computation of the opti-
mal reduced CTMC via inversion of the weighted-MFPT
matrix (Eq. 22), exploiting the GT algorithm, therefore
has approximate time complexity O(V 6), or O(V 5) using
the LU decomposition formulation of GT,79 since obtain-
ing T via GT is the computational bottleneck.
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FIG. 3. (a) Model 32-microstate network with four macrostates (communities of microstates), visualized using Gephi.145 Nodes
are colored according to the communities to which they belong. Darker, larger nodes are associated with larger stationary
probabilities, and thicker edges indicate slower transition rates. All edges are bidirectional and the network is asymmetric. The
lower-case letters label the “attractor” nodes87 of each community, defined as the nodes with the largest stationary probability

in each community. (b) Ratio of intermicrostate MFPT (Ti∗j∗) to intercommunity weighted-MFPT ([T̃ C]IJ), where i∗ ∈ I
and j∗ ∈ J are the attractor nodes of communities I and J . In the strongly metastable regime (1/T > 20), Ti∗j∗ accurately

approximates [T̃ C]IJ . Since [T̃ C]II = 0 ∀ I, only N(N − 1)/2 GT calculations, one per pair of communities, are required

to compute the approximation to the matrix weighted-MFPT T̃ C, as opposed to the V (V − 1)/2 separate GT calculations

required to compute T̃ C exactly.

C. Approximations to the optimal reduced CTMC

An approximation to the weighted-MFPT expression
for the optimal reduced CTMC (Eqs. 22, 25, and 26)
can be derived by noting that, in the limit of strongly
metastable communities, a single node of a commu-
nity can be arbitrarily chosen to represent the entire
macrostate. To obtain the approximation, we begin by
choosing the weighted-MFPT matrix such that the diag-
onal elements are equal to zero,

[T̃ C]IJ =
1

ΠIΠJ

∑
i∈I

∑
j∈J

πiTijπj

− 1

ΠIΠI

∑
i∈I

∑
i′∈I

πi′Ti′iπi, (27)

as for the matrix of true pairwise intermacrostate MF-

PTs, T C. This choice of T̃ C leads to the valid weighted-
MFPT matrix that is most readily interpretable, and the
choice of w in Eq. 25 does not affect the computational
performance. Hence, we use the definition in Eq. 27 for

T̃ C throughout the present work.
For a Markov chain that is ideally metastable with re-

spect to the community structure C, the intermicrostate
MFPTs between nodes within a community are vanish-
ingly small compared to the timescale to cross a bound-
ary between communities. That is, Ti′i � Tij and
Tj′j � Tij for i, i′ ∈ I and j, j′ ∈ J 6= I. It follows

that the i ← j MFPT will be approximately indepen-
dent of the particular initial microstate i ∈ I or target
microstate j ∈ J . We can thus approximate each off-

diagonal element [T̃ C]IJ , I 6= J , using a single intermi-
crostate MFPT between an arbitrary pair of nodes i∗ ∈ I
and j∗ ∈ J , so that

[T̃ C]IJ ' Ti∗j∗ . (28)

Using this strategy, only one intermicrostate MFPT
needs to be computed for each pair of communities, and
therefore the total number of GT computations required
to obtain the approximate weighted-MFPT matrix is
N(N − 1)/2. Hence, the overall time complexity to ob-
tain the approximation to the optimal reduced CTMC
using GT is roughly O(V 4N2).

The approximation in Eq. 28 is similar in spirit to the
local equilibrium approximation (LEA),100 which also in-
vokes the assumption that the dynamics within a com-
munity are equilibrated prior to escape.101 In the LEA,
the I ← J intercommunity transition rate is a sum of in-
termicrostate transition rates across the I-J community
boundary, weighted by the relative equilibrium occupa-
tion probabilities of the boundary nodes in the source
community,

[KLEA]IJ = ΠJ
−1
∑
i∈I

∑
j∈J

kijπj . (29)

The discrete-time analog of Eq. 29, [TLEA(∆)]IJ , is in-
stead a weighted sum of intermicrostate transition proba-
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bilities Ti∈I,j∈J(∆) across the I-J community boundary.
The LEA in discrete time is more accurate for longer
lag times, since there is then more time for the dynam-
ics to relax to a local equilibrium distribution within the
source macrostate. However, the choice of a longer lag
time sacrifices the time resolution at which the dynam-
ics are modeled. The continuous time formulation of the
LEA corresponds to the limit ∆→ 0,100 and is therefore
expected to perform poorly if the communities are not
strongly metastable. The accuracy of the LEA is sensi-
tive to the precise definition of the community structure
C, because [KLEA]IJ depends explicitly on the choice
of boundary nodes for communities I and J .146 In the
Supplementary Materials, we describe how the optimal
reduced CTMC and the LEA arise from alternative con-
straints on the correlation functions of the coarse-grained
model.

We analyze the accuracy of Eq. 28 for a model 32-
microstate network shown in Fig. 3a, for which we com-
pute the optimal reduced CTMC via various routes in
Sec. III D. As for the unbranched chain shown in Fig. 2a,
the temperature T determines the metastability of this
system. We choose the “attractor” nodes87 to represent
the communities. Although the approximation (Eq. 28)
assumes that all i ∈ I ← j ∈ J 6= I MFPTs are ap-
proximately equal, it is sensible to choose the represen-
tative nodes of the communities to be those that have
the largest stationary probabilities and which therefore
have a dominant effect on the intercommunity dynamics.
While Eq. 28 is a poor approximation at higher effective

temperatures, the ratio Ti∗j∗/[T̃ C]IJ approaches unity
at low temperatures (Fig. 3b). Thus, the approxima-
tion leads to weighted-MFPTs that are essentially iden-
tical to the values for the optimal reduced CTMC in the
strongly metastable regime, and is significantly more ac-
curate than the LEA (see Fig. 4).

D. Numerical comparison of coarse-graining approaches

Although the HS (Eq. 20), KKRA (Eq. 21), and
weighted-MFPT (Eq. 22) expressions lead to precisely
the same (optimal) coarse-grained rate matrix KC, in
practice, there are important considerations that may
lead to one formulation being preferred. Since the MFPT
matrix T is defined for both DTMCs and CTMCs, the
KKRA and weighted-MFPT expressions can be applied
to discrete-time models, without requiring conversion to
a CTMC via Eq. 15.23,48 Since T can be computed via
GT, these expressions also invite the possibility of ob-
taining the optimal reduced CTMC by a method that is
more numerically stable than approaches based on linear
algebra (Sec. II C).

We analyze the numerical stability of these alterna-
tive formulations to obtain the optimal reduced CTMC
for the 32-microstate Markov chain illustrated in Fig. 3a.
The network is partitioned into four communities, each
comprising eight nodes. The communities have inter-

ln(TAB)

FIG. 4. MFPTs TAB for the transition from community B
to A in the 32-microstate model Markov chain illustrated in
Fig. 3a, as a function of inverse temperature. The MFPTs
for the optimal reduced 4-node CTMC estimated by the HS
(Eq. 20), KKRA (Eq. 21), and weighted-MFPT (i.e. via in-

version of T̃ C, cf. Eq. 22) methods are compared to the exact
values for the original network, obtained using GT. Evalua-
tion of the optimal intercommunity transition rates via com-

putation of the weighted-MFPT matrix T̃ C, using GT to
compute the matrix of all pairwise intermicrostate MFPTs
T , is more numerically stable than alternative methods to
obtain the optimal reduced CTMC. Indeed, this method is
numerically stable even in the strongly metastable regime,
whereas evaluation of the HS and KKRA expressions fails at
the intermediate inverse temperature of 1/T ≈ 6. The A ← B
MFPTs for the optimal reduced CTMC are significantly more
accurate than for the CTMC given by the local equilibrium
approximation (LEA) (Eq. 29).

nal structure; there is a well-defined “attractor” node87

for each community, which is connected to neighbouring
nodes of the same community by fast transition rates.
There is a net flow of probability to the attractor node
from all other nodes of the same community when the
network is not at equilibrium. Hence, the attractor node
has the largest relative stationary probability within a
community and acts as a dynamical hub.88 Only three
nodes are at the boundary of each community, and these
nodes are connected to neighboring nodes of the same
community via slower transitions, so that the bound-
aries between communities are not clearly defined. These
nonideal properties are designed to mimic the topology
of typical Markovian networks representing realistic dy-
namical processes.88,110,147,148

In Fig. 4, we use the GT algorithm to compute the
exact A ← B MFPT as a function of temperature T for
the original Markov chain, and compare these values to
the corresponding MFPTs obtained from coarse-grained
CTMCs corresponding to the optimal and LEA rate ma-
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trices. Evaluation of the intermacrostate transition rates
given by the LEA (Eq. 29) is trivial, but the approxi-
mation systematically underestimates the true A ← B
MFPT. Since the LEA only takes into account transi-
tions between boundary nodes, the contribution to the
MFPT from the slower intracommunity transitions is ne-
glected. The A ← B MFPT associated with the optimal
reduced CTMC is very close to the value for the original
Markov chain. Hence, for this system, which lacks a clear
separation of timescales between intracommunity and in-
tercommunity transitions, it is necessary to employ more
advanced methods for Markovian coarse-graining than
the LEA.

Preservation of the intermacrostate MFPTs does not
guarantee that the detailed dynamics are accurately rep-
resented in a coarse-grained model.149 To show that the
time-dependent macrostate occupation probability dis-
tribution vectors pI(t) ∀I ∈ C associated with the origi-
nal and optimal reduced CTMCs are consistent, we com-
pare trajectories simulated on the original network with
propagation of an initial distribution using the optimal
reduced rate matrix, pI(t) =

∑
J∈C [e

KCt]IJpJ(0). The

results of this Chapman-Kolmogorov test52,150 are illus-
trated in Fig. 5. The test was performed at an effective
temperature of T = 0.15, where evaluation of KC by the
HS and KKRA relations becomes numerically unstable
(Fig. 4). Trajectories on the original Markov chain were
obtained using kinetic path sampling79,80 to avoid the
problem of flickering within metastable communities.81

We find that the optimal reduced CTMC provides a close
approximation to the simulated distributions pI(t) for all
communities I ∈ C of the original network.

Computation of the optimal reduced rate matrix KC

by inversion of the matrix of weighted-MFPTs T̃ C, where
the required matrix of intermicrostate MFPTs T is ob-
tained using GT, retains numerical precision even in the
strongly metastable regime. In contrast, the matrix in-
version operations in the evaluation of the HS and KKRA
expressions fail at the intermediate effective temperature
of 1/T ≈ 5. We investigate the origin of these numerical
issues in Fig. 6, which shows the condition number151 of
the matrices that are inverted in the various expressions
for the optimal reduced CTMC. From this figure, it is
clear that the weighted-MFPT matrix is much less ill-
conditioned than the matrices inverted in the evaluation
of the HS (Eq. 20) and KKRA (Eq. 21) expressions. Note
that the condition number of a matrix is essentially in-
dependent of its dimensionality.136,151 Hence, use of the
KKRA expression, which requires inversion of a N × N
matrix, is not necessarily preferable to evaluation of the
HS relation, which requires inversion of a V × V matrix.
However, N is often orders of magnitude smaller than
V ,87 so it may be feasible to invert the weighted-MFPT
matrix, or evaluate the KKRA expression (Eq. 21), us-
ing higher precision calculations than for the evaluation
of the HS relation (Eq. 22).

It is unsurprising that the weighted-MFPT matrix T̃ C

is not severely ill-conditioned, since the intercommunity
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FIG. 5. Time-dependent macrostate occupation probability
distributions for each of the communities of the 32-microstate
network shown in Fig. 3a, with the initial distribution lo-
calized within community B, at an effective temperature of
T = 0.15. The distributions derived from simulated trajecto-
ries, obtained using kinetic path sampling,79–81 on the original
Markov chain are compared with the result of propagating the
initial distribution according to the optimal coarse-grained
rate matrix KC, i.e. pI(t) = eKCtpI(0).

MFPTs should be relatively consistent with one another,
corresponding to the observation timescale at which the
chosen communities appear metastable. By design, ap-
propriate community detection139 algorithms ought to
yield macrostates that satisfy this criterion.87,101 That
is, ideal metastable systems, by definition, belong to the
regime in which eigendecomposition or inversion of the
original (V -dimensional) Markov chain is numerically un-
stable, but there exists a community structure C yielding

a N -dimensional matrix T̃ C that does not encompass
the great disparity of timescales present in the original
Markov chain. The condition number of the weighted-
MFPT matrix is system-dependent, and will be strongly
influenced by the asymmetry of the network and the ex-
tent to which the chosen partitioning C appropriately
characterizes the metastable macrostates.

In Fig. 4, the matrix of all pairwise intermicrostate
MFPTs T used in the KKRA and weighted-MFPT ex-
pressions was obtained using GT. Fig. S1 of the Supple-
mentary Material shows an analogous figure in which T is
obtained via linear algebra methods (Sec. II C). Owing
to the numerical instability in computing T by matrix
inversion or eigendecomposition operations, the evalua-
tion of the optimal reduced CTMC via Eq. 22 breaks
down at 1/T ≈ 15. In contrast, using the GT algorithm
to compute T enables us to access the optimal reduced
CTMC in the strongly metastable regime (in this case,
15 < 1/T < 215).
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FIG. 6. Condition numbers of the matrices that are inverted
in the evaluation of the optimal reduced CTMC KC via var-
ious expressions, as a function of inverse temperature. Con-
dition numbers are estimated by the GESDD singular value
decomposition routine in LAPACK.152 The weighted-MFPT

matrix (T̃ C, cf. Eqs. 22, 25 and 26) is significantly better-
conditioned than the matrix inverted in the KKRA expression
(Eq. 21), namely (ΠΠ>+ A>diag(π)T (πΠ>− diag(π)A)),
even though both matrices have the same dimension (N×N).
The V ×V matrix inverted in the HS relation (Eq. 20), namely
(π1>V − K), is similarly ill-conditioned. Thus, the HS and
KKRA expressions to yield KC are expected to lose numeri-
cal precision at relatively high temperatures compared to the
expression based on the weighted-MFPT matrix (Eq. 22).

IV. CONCLUSIONS

We have demonstrated that the graph
transformation44–49 (GT) algorithm (Eqs. 1 and 2)
for computation of the A ← B MFPT in continuous-
time Markov chains (CTMCs) can be readily extended
to discrete-time Markov chains (DTMCs) (Eqs. 7 and
8). This extension expands the utility of the GT
algorithm, since it is typically not possible to convert
a DTMC to a corresponding CTMC (Eq. 15).59,60

Furthermore, DTMCs are popular models for stochastic
processes2,7,53–56 because they can often be constructed
more easily from trajectory data than an equivalent
CTMC representation.50,51 Hence, methods for con-
structing Markovian network models from continuous-
state simulation data, such as the Markov State Model
(MSM) framework,52–56 typically yield a DTMC.
DTMCs and CTMCs are similarly ill-conditioned in the
metastable regime,24–28 where linear algebra methods
(Sec. II C) encounter numerical problems arising from
finite precision,23,48 but the GT algorithm remains
numerically stable (Sec. II E). GT therefore provides an
attractive approach for computing MFPTs in DTMCs

featuring a separation of characteristic timescales.

Obtaining a reduced representation of a Markov chain
aids model interpretation and facilitates more expen-
sive numerical analyses.1,61–74 We have shown how the
GT algorithm can be utilized to compute the matrix
of all pairwise intermicrostate MFPTs, from which the
matrix of appropriately weighted intercommunity MF-
PTs is derived (Eq. 25),92 and hence the optimal re-
duced CTMC via a matrix inversion operation (Eq. 22).
We find that this route to computing the optimal re-
duced CTMC for a given partitioning of the original
Markov chain has superior numerical stability to alterna-
tive approaches based on linear algebra (Sec. III D). Our
approach greatly increases the practicality of optimal
Markovian coarse-graining,92,100,144 where the existence
of metastable macrostates is a necessary condition to
yield a reduced Markov chain that accurately represents
the dynamics of the original network. We have also sug-
gested an approximation to the optimal reduced CTMC
that is valid in the strongly metastable regime (Eq. 28),
which can be computed more efficiently than the exact
optimal reduced CTMC using the GT algorithm. This
approximation is more accurate than the simple local
equilibrium approximation (LEA) (Eq. 29).100,101 More-
over, our approximation is much less sensitive to the
precise definition of the community structure than the
LEA,146 since it is based on a particular choice of inter-
nal microstates representing the communities, and does
not involve the boundary nodes.

In future work, we will pursue alternative, more scal-
able, approaches to estimating coarse-grained Markov
chains based on the GT algorithm. Possible strategies
include using trajectory data obtained from kinetic path
sampling (kPS),79,80 which extends the GT algorithm
with an iterative reverse randomisation procedure to
sample the full first passage time distribution.81 A coarse-
grained DTMC or CTMC could then be estimated146

from maximum-likelihood50,57,58 or Gibbs sampling,50,51

or from the MFPTs and fluxes between milestones.89–91

Alternatively, the GT algorithm could be repurposed
to iteratively eliminate microstates that do not con-
tribute significantly to intercommunity dynamics, yield-
ing a renormalized Markov chain that closely approxi-
mates the original.153 Since GT does not preserve the
MFPTs to individual absorbing nodes,47 this approach
would require a careful analysis of the error incurred in
the dynamical properties of the resulting renormalized
network.

The numerical stability of the GT algorithm48,106 con-
fers a significant advantage to these dimensionality reduc-
tion strategies, and to the method based on exact MFPTs
that we have described. Exploiting the GT method in
approaches to Markovian coarse-graining therefore pro-
vides valuable tools to aid the interpretation and analysis
of Markov chains exhibiting rare event dynamics.
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V. SUPPLEMENTARY MATERIAL

Further mathematical detail pertaining to the results
of the present work can be found in the Supplementary
Materials; namely, a formal definition of occupancy num-
ber correlation functions, a derivation of the LEA and
of the Hummer-Szabo relation for the optimal reduced
CTMC (following Refs. 92 and 100), and a statement
of the exact recursive formula for the MFPTs in an un-
branched CTMC. A figure analogous to Fig. 4, in which
linear algebra methods (rather than GT) are used to ob-
tain the matrix of all pairwise intermicrostate MFPTs, is
also included in the Supplementary Materials.

We provide various software to perform GT com-
putations for arbitrary discrete- and continuous-time
Markov chains, including the dimensionality reduction
methodology described in Sec. III, all available on-
line under the GNU General Public License. PyGT, a
Python package for graph transformation (GT) compu-
tations, including the removal of blocks of nodes, is avail-
able at https://pygt.readthedocs.io/en/latest/. A
Fortran implementation of the iterative GT algorithm
is part of the PATHSAMPLE program, available at http:
//www-wales.ch.cam.ac.uk/PATHSAMPLE/. A C++ im-
plementation of the LU decomposition formulation of
the GT algorithm is included in the DISCOTRESS
(DIscrete State COntinuous Time Rare Event Simula-
tion Suite) software, available at https://github.com/
danieljsharpe/DISCOTRESS.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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Appendix A: Glossary of symbols and abbreviations

γk k-th dominant eigenvalue of CTMC
∆ lag time of DTMC
ζ Kemeny constant
ζC Kemeny constant of reduced Markov chain

θ N ×N matrix related to T̃ C (Eq. 25)
λk k-th dominant eigenvalue of DTMC
ξ discrete path
Π stationary distribution of reduced Markov chain
π stationary distribution of original Markov chain
τj mean waiting time for the j-th node

φk k-th dominant left eigenvector of Markov chain
ψk k-th dominant right eigevector of Markov chain
A V ×N aggregation matrix
A set of absorbing nodes
B set of initial nodes
CTMC continuous-time Markov chain
C set of communities {I, J, . . .}
DTMC discrete-time Markov chain
GS absorbing fundamental matrix in continuous time
GT graph transformation algorithm
GTH Grassmann-Taksar-Heyman algorithm
HS Hummer-Szabo relation (Eq. 20)
I identity matrix
I set of intervening nodes I ≡ (A ∪ B)c

i, j node (microstate) indices
i∗, j∗ attractor node indices
I, J community (macrostate) indices
K transition rate matrix of CTMC
K′ absorbing transition rate matrix of CTMC
K# group inverse of rate matrix
KC rate matrix for optimal reduced CTMC for

given C
KLEA rate matrix for reduced CTMC from

the LEA (Eq. 29) for given C
KKRA Kells-Koskin-Rosta-Annibale relation (Eq. 21)
LEA local equilibrium approximation
MFPT mean first passage time
N number of communities (macrostates)
NS absorbing fundamental matrix in discrete time

for nodes S ≡ Ac

P branching probability matrix of CTMC
p(0) initial occupation probability distribution
pn probability distribution of DTMC after n steps
S set of source nodes S ≡ Ac

T effective temperature
TC optimal reduced DTMC for given C
T(∆) transition probability matrix of DTMC
T V × V matrix of pairwise intermicrostate MFPTs
TAB A ← B MFPT

T̃ C N ×N matrix of intercommunity
weighted-MFPTs (Eqs. 25 and 26)

Wξ probability of discrete path ξ
V number of nodes in the original Markov chain
ZCT ergodic fundamental matrix in continuous time
ZDT ergodic fundamental matrix in discrete time
1V V -dimensional column vector with elements

equal to unity

Appendix B: Derivation of MFPTs from the absorbing
fundamental matrix

In Sec. II C, it was stated that the absorbing rate
matrix K′ is associated with an absorbing fundamen-
tal matrix,1,5 which provides another linear algebra ap-
proach to compute MFPTs. In this appendix, we prove
this statement in both discrete- and continuous-time.

Consider the MFPT to a target set of nodes A from the
set of source nodes S ≡ Ac. Using the first-step relation6

for a DTMC with uniform lag time ∆ and s′ ← s transi-
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tion probabilities Ts′s, the A ← s ∈ S MFPT is

TAs = ∆ +
∑
s′∈S
TAs′Ts′s. (B1)

Rearranging, we obtain

∆ =
∑
s′∈S
TAs′(δs′s − Ts′s), (B2)

and so the MFPT from a source node s to the absorbing
macrostate A is

[
∆>S (IS −TSS)−1

]
s
, where IS is the

identity matrix of dimension |S|, the elements of TSS are
Ts′s ∀ s, s′ ∈ S, ∆S = ∆1S , and 1S is a |S|-dimensional
column vector with elements equal to unity. To average
over an initial probability distribution within the source
macrostate, pS(0), we simply write

TAS = ∆>S (IS −TSS)−1pS(0) ≡∆>SNSpS(0), (B3)

where NS is the fundamental matrix of the absorbing
DTMC.1,5 The elements [NS ]s′s are interpreted as the
mean number of visits to node s′ along escape trajectories
initialized in node s and terminating at the absorbing
boundary of A. Setting ∆ = 1 in Eq. B3, we see that
the mean number of steps to the A region starting from
node s is

[
1>SNS

]
s
.

The A ← S MFPT for a CTMC parameterized by
the vector of node-dependent mean waiting times τS and
branching probability matrix PSS for source nodes is

TAS = τ>S (IS −PSS)−1pS(0), (B4)

analogous to Eq. B3, where GS ≡ (IS − PSS)−1 is the
fundamental matrix of the absorbing CTMC.105

The formula derived above for TAS holds for any distri-
bution of waiting times within S. If all the waiting times
are zero except for τs′ , then the MFPT toA starting from
s is given by τs′ [GS ]s′s, and we can therefore associate
this quantity with the time spent in node s′ for pathways
starting in node s prior to absorption.103,154 Hence, the
formula derived in Eq. B4 for TAS can be interpreted as
a weighted average of the residence times1,5 of all nodes
in S prior to absorption. That is, the MFPT to reach
A starting from node s ∈ S is

∑
s′∈S τs′ [GS ]s′s, which

defines the residence time in node s.103,154

It is also insightful to derive the time to absorption
from the master equation for the occupation probabilities
of the nodes in S,

ṗS(t) = KSSpS(0), (B5)

where the elements of KSS can be written as

Ks′s = ks′s − δs′s
∑
m

kms

= (Ps′s − δs′s) /τs = −
[
G−1
S
]
s′s
/τs, (B6)

which is equivalent to K−1
SS = −diag(τS)GS . The

formal solution to the master equation is pS(t) =

exp (KSSt) pS(0). Hence, the expected time spent in
node s′ before absorption for trajectories intialized from
node s is the integral

∫ ∞
0

exp(Ks′st)dt = −
[
K−1

]
s′s

= τs′ [GS ]s′s , (B7)

as we obtained by considering TAS = (τS)
>

GSpS(0)
above.

Appendix C: Conservation of MFPTs in the discrete-time
formulation of the GT algorithm

The mapping in Sec. II B defines a DTMC with node-
dependent lag times, which has the same pathwise av-
erages as a CTMC with corresponding waiting times
and branching probabilities. Hence, in analogy to the
argument for the continuous-time case, the GT proce-
dure applied to a DTMC conserves the MFPT averaged
over a set of target nodes.45,47 This result can be shown
by treating A as an absorbing boundary and analyzing
the master equation of the absorbing Markov chain,105

or by breaking down the sum over A ← S pathways
into segments that travel through different regions of the
network.45,47,105 In this appendix, we follow the latter
approach to analyze pathwise sums in discrete time.

We first note that the elements of the fundamental ma-
trix NS = (IS−TSS)−1 for the source region S, [NS ]s′s,
correspond to the sum of probabilities for all paths within
S that start at node s and end at node s′. This result
can be proved by writing the s′ ← s path probability as
a product of transition probabilities, and summing over
paths of arbitrary length by exponentiating the transi-
tion matrix: NS =

∑∞
n=0 Tn

SS = (IS − TSS)−1.105 To
obtain the probability for paths that start in S and end
with absorption in A, we need to combine the NS ma-
trix with the branching probability from S to A. Hence,
the overall probability for all paths that begin at node
s ∈ S and end at a particular absorbing node a ∈ A is
[TASNS ]as. The sum over target nodes, [1>ATASNS ]s,
is unity for all s ∈ S, since all probability flow ends in A;
the corresponding result for a CTMC is

[
1>APASGS

]
s

=
1 ∀ s ∈ S.

The A ← S MFPT, TAS , is the accumulated sum
of lag times for each node visited along A ← S paths,
where each path is weighted by the pathway probability.
We can calculate this sum by defining a modified tran-

sition matrix T̃SS with elements T̃s′s exp (ζ∆s), where
∆s is the lag time for node s, and the lag times for
nodes are not necessarily uniform. Differentiating the

product 1>AT̃ASÑS with respect to ζ and then setting
ζ = 0 produces the corresponding sum of waiting times
for each path, multiplied by the path probability.45,47
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The required derivatives are105

∂

∂ζ
T̃AS

∣∣∣
ζ=0

= TAS diag(∆S), (C1)

∂

∂ζ
ÑS
∣∣∣
ζ=0

= NSTSS diag(∆S)NS , (C2)

so that

∂

∂ζ
1>AT̃ASÑS

∣∣∣
ζ=0

=1>ATAS diag(∆S)NS

+ 1>ATASNSTSS diag(∆S)NS

=(1>ATAS + 1>STSS)diag(∆S)NS

=1>S diag(∆S)NS = ∆>SNS , (C3)

where we have used 1>ATASNS = 1>S . Therefore TAS =

∆>SNSpS(0), as in Eq. B3. The equivalent result for a
CTMC is TAS = τ>S GSpS(0).

Now we divide the source region S ≡ I∪B into the ini-
tial macrostate B and the set of nodes to be eliminated I,
and derive the A ← b pathway probabilities for all nodes
b ∈ B. Pathways initialized in the macrostate B either
proceed directly to A or via a detour of arbitrary length
through the region I; the total transition probability to
A can thus be written as TAB + TAINITIB ≡ TIAB,
where the factor NI is the sum of pathway probabil-
ities for all paths in I starting and finishing in nodes
i, i′ ∈ I. The complete sum of A ← B path probabili-
ties must also take into account non-reactive paths that
start and finish in B without leaving B ∪ I, i.e. without
reaching A. This factor is NIB = (IB − TIBB)−1, where
TIBB ≡ TBB + TBINITIB. Hence, [1>ATIABN

I
B]b is the

sum of pathway probabilities over all possible a ∈ A ← b
paths, i.e. [1>ATIABN

I
B]b =

∑
a∈A

∑
ξ∈a←bWξ, which is

unity for all b ∈ B.105

The MFPT TAB can again be calculated by differenti-

ating the product 1>AT̃IABÑ
I
B with respect to ζ and then

setting ζ = 0. The result is105

TAB =
(
∆>B + ∆>INITIB

)
[IB − (TBB + TBINITIB)]

−1
pB(0)

=(∆IB)>(IB −TIBB)−1pB(0)

≡(∆IB)>NIBpB(0), (C4)

with ∆IB the renormalized lag time vector in the graph-
transformed absorbing DTMC where all nodes in I have
been eliminated (Eq. 7), and TIBB is the corresponding
GT-renormalized transition probability matrix (Eq. 8).
Hence, we can apply the GT procedure to remove all the
nodes in the I region and recover the same MFPT TAB
if the initial occupation probability distribution pS(0) is
localized in B.

Appendix D: Fundamental matrices in continuous-time

The choice of ergodic fundamental matrix ZCT in
continuous-time111,112 used in Eq. 12 is such that the Ke-

meny constant is obtained directly as the negative trace,
ζ = −Tr(ZCT) (Eq. 17). In fact, there is some freedom in
the choice of fundamental matrix, from which all key dy-
namical properties of the Markov chain can be computed,
including the matrix of pairwise intermicrostate MFPTs,
T (Eq. 11), and the Kemeny constant.93 Eq. 12 is a par-
ticular case of the group inverse10 K# of the transition
rate matrix K, which in general has the form

K# = −
∑
k>1

1

|γk|
ψk ⊗ φk

= (απ1>V + K)−1 − 1

α
π1>V , (D1)

for any real α 6= 0. Eq. D1 follows from eigendecomposi-
tion of the rate matrix,57 subsequent addition of a term
α(ψ(1)⊗φ(1)), shifting the zero eigenvalue of K (namely
γ1, with corresponding left eigenvector φ(1) = 1>V and

right eigenvector ψ(1) = π) to α, and inversion of the
resulting matrix. As for the rate matrix K, all other
eigenvalues of the group inverse K# are negative, and
the eigenvectors satisfy φlψk = δlk.

The group inverse of the rate matrix (Eq. D1) satisfies
several relations:

KK#K =

(
V∑
k=1

γkψk ⊗ φk
)(

V∑
l=2

ψl ⊗ φl
)

=

V∑
k=1

γkψk ⊗ φk = K, (D2a)

K#KK# =

(
V∑
k=2

ψk ⊗ φk
)(

V∑
l=2

1

γl
ψl ⊗ φl

)

=

V∑
l=2

1

γl
ψl ⊗ φl = K#, (D2b)

K#K =

(
V∑
l=2

1

γl
ψl ⊗ φl

)(
V∑
k=1

γkψk ⊗ φk
)

=

V∑
l=2

ψl ⊗ φl = KK#. (D2c)

To appreciate the utility of the group inverse K#, con-
sider the action of K#K or KK# on an arbitrary vector
x expanded in the eigenvector basis as x =

∑
k ψk (φkx):

K#Kx =

(
V∑
l=2

ψl ⊗ φl
)(∑

k

ψk (φkx)

)

=

V∑
l=2

ψl (φlx) = x−ψ(1)
(
φ(1)x

)
= x− π

(
1>V x

)
. (D3)

Hence, K#Kx =
(
IV − π1>V

)
x or x = K#Kx + π1>V x,

which we use in Appendix E to derive expressions for MF-
PTs and the Kemeny constant in terms of the elements
of the group inverse.
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Any generalized inverse of K, defined as satisfying
the condition Eq. D2a, is a fundamental matrix of the
Markov chain in the sense that key dynamical quantities,
including T , can be written straightforwardly in terms
of the matrix (and the stationary distribution),155 as we
show is true for the group inverse K# (Eq. D1) in Ap-
pendix E. In discrete-time, the same logic applies to gen-
eralized inverses of the Markovian kernel I−T(∆).156–159

Appendix E: MFPTs and the Kemeny constant from
fundamental matrices

To derive the Kemeny constant from the group inverse,
we begin by constructing an absorbing Markov chain for
a single target state p, such that all transitions out of p
are set to zero, i.e. Kip = 0 ∀i. The dynamics in the set
p̄ = {j, j 6= p} comprising the V − 1 states aside from p
are preserved prior to the absorption event. We consider
an initial distribution where the probability density is
localized at a single node, q, such that pp̄(0) = êq where
[êq]k = δqk. Then the p ← q MFPT is given by Tpq =
1>p̄ xp̄, where xp̄ is the solution vector of dimension |V −1|
to the linear system Kp̄p̄xp̄ = −êq and Kp̄p̄ ≡ K∗ is the
absorbing rate matrix describing transitions in p̄ prior to
absorption (Sec. II C).

We can also write Tpq = 1>V x, where x is now a V -
dimensional column vector that solves the modified linear
system involving the original rate matrix K,

Kx =

[
Kp̄p̄ Kp̄p

Kpp̄ Kpp

] [
xp̄
xp

]
= −êq + µêp, (E1)

where µ is to be determined and êq and êp are of di-
mension V . Here, we have partitioned the rate matrix
K into the non-absorbing region p̄ and the absorbing re-
gion {p}. The top row of this matrix equation reads
Kp̄p̄xp̄ + Kp̄pxp = −êq. Since Kp̄p̄xp̄ = −êq, this result
implies that xp = 0 and µ = Kpp̄xp̄, a scalar. Fur-
thermore, the columns of K sum to zero, and hence we
can also use the fact that Kpp̄ = −1>V−1Kp̄p̄ to obtain

µ = −1>V−1Kp̄p̄xp̄ = 1>V−1Kp̄p̄K
−1
p̄p̄ êq = 1. Thus, we

have

Kx = êp − êq, with êp · x = 0, Tpq = 1>V x. (E2)

Now we can use the identity x = K#Kx+π1>V x derived
above and substitute for Kx and 1>V x to obtain

x = K#[êp − êq] + Tpqπ. (E3)

Since the p component of x vanishes, we have [K#]pp −
[K#]pq + Tpqπp = 0, or

Tpq =
[K#]pq − [K#]pp

πp
, (E4)

which is Eq. 11. Hence, we have proved that the matrix of
pairwise intermicrostate MFPTs can be computed from
any group inverse (Eq. D1).10,15

To derive the Kemeny constant, we observe that sum-
ming over p and converting to a matrix formulation gives

π>T = 1>V K# − Tr(K#)1>V = −Tr(K#)1>V , (E5)

where we have noted from the definition of the group
inverse (Eq. D1) that 1>V K# vanishes by orthogonal-

ity, since 1>V is the left eigenvector φ(1). This formu-
lation highlights a key property of the row vector π>T ,
namely that its average value over any normalised prob-
ability distribution is simply −Tr(K#), independent of
the components. Hence, for arbitrary p(0), we have
π>T p(0) = −Tr(K#) ≡ ζ, which defines the Kemeny
constant, ζ. That is, any initial occupation probability
distribution p(0) will decay to the stationary distribution
on an average timescale that is the Kemeny constant, ζ,
which therefore represents an average mixing time.115,160
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102P. Metzner, C. Schütte, and E. Vanden-Eijnden, Multiscale

Model. Simul. 7, 1192–1219 (2009).
103J. G. Kemeny and J. L. Snell, Theory Prob. Its Appl. 6, 101–105



18

(1961).
104S. A. Serebrinsky, Phys. Rev. E 83, 037701 (2011).
105T. D. Swinburne and D. J. Wales, J. Chem. Theory Comput.

16, 2661–2679 (2020).
106W. Grassmann and D. A. Stanford, “Matrix analytic meth-

ods,” in Computational Probability, edited by W. Grassmann
(Springer, New York, 2000) pp. 153–203.

107T. J. Sheskin, Oper. Res. 33, 228–235 (1985).
108C. D. Meyer Jr., SIAM Rev. 31, 240–272 (1989).
109R. L. Jack and P. Sollich, Prog. Theor. Phys. Supp. 184, 304–

317 (2010).
110D. J. Sharpe and D. J. Wales, J. Chem. Phys. 151, 124101

(2019).
111D. D. Yao, J. Appl. Probab. 22, 939–945 (1985).
112P. Coolen-Schrijner and E. A. van Doorn, Probab. Eng. Inf. Sci.

16, 351–366 (2002).
113J.-H. Prinz, M. Held, J. C. Smith, and F. Noé, Multiscale
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