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VECTOR POTENTIALS WITH MIXED BOUNDARY CONDITIONS.
APPLICATION TO THE STOKES PROBLEM WITH PRESSURE
AND NAVIER-TYPE BOUNDARY CONDITIONS*

CHERIF AMROUCHE! AND IMANE BOUSSETOUAN?

Abstract. In a three-dimensional bounded possibly multiply connected domain, we prove the
existence, uniqueness and regularity of some vector potentials, associated with a divergence-free
function and satisfying mixed boundary conditions. For such a construction, the fundamental tool
is the characterization of the kernel which is related to the topology of the domain. We also give
several estimates of vector fields via the operators div and curl when mixing tangential and normal
components on the boundary. Furthermore, we establish some Inf-Sup conditions that are crucial
in the LP-theory proofs. Finally, we apply the obtained results to solve the Stokes problem with
a pressure condition on some part of the boundary and Navier-type boundary condition on the
remaining part, where weak and strong solutions are considered.

Key words. Vector potentials, mixed boundary conditions, LP theory, Stokes equations, Navier-
type boundary condition.

AMS subject classifications. 35J05, 35J20, 35J25, 76D03, 76D07

1. Introduction. A relevant problem in fluid mechanics is the appropriate choi-
ce of the boundary conditions type. Various physical phenomena, like lubrication or
air and blood flows, require suitable mixed boundary conditions to be prescribed on
the boundary [16, 20]. Problems involving such conditions have been widely discussed
in the literature, from theoretical and numerical point of views : let us mention here
only few selected references [10, 11, 13, 17, 18, 22]. Nevertheless, at our knowledge
the theory of elliptic problems with mixed boundary conditions has not been fully
investigated in complex 3D geometries.

Unless stated otherwise, we assume that € is a C!»! domain in R3, possibly multi-
ply connected. The boundary of the flow domain is decomposed of an inner and outer
wall as I' = I'p UT'y. Furthermore, we suppose that I'p and I'y are not empty and
for the sake of simplification, [p N T = 0.

We do not assume that I'p and I'y are connected and we denote by F%, 0<
¢ < Lp, the connected components of I'p and similarly by Ff\,, 0 < /¢ < Ly the
connected components of I'y. Also, 93 stands for the union of the boundaries ¥; of
an admissible set of cuts 1 < j < J such that each surface XJ; is an open subset of a
smooth manifold M. The boundary of each ¥; is contained in I" and the intersection
3, NY; is empty for i # j. The open set Q° = Q\ U}J:l ¥; is a simply-connected
domain. More details will be given in Section 2.

It is known that a divergence-free vector field is the curl of another vector field
called vector potential when adequate boundary conditions are imposed at any given
part of the boundary. Furthermore, an amount that reflects the topological structure
of the domain needs to be added as it plays an important role in the uniqueness
results and in the well-posedness of the corresponding problems. The theory of vector
potentials is very useful in the Maxwell’s theory, in other words in electromagnetism.

Vector potentials on arbitrary Lipschitz domains have been treated by Mitrea et
al [29]. Then, in the seminal work of Amrouche et al [2], the authors gave a fairly
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2 CHERIF AMROUCHE, IMANE BOUSSETOUAN

complete picture of the theory of vector potentials in non-smooth domains, in the
Hilbert settings. These results were extended to the LP-theory in [5]. In [33], an
important estimate has been established via div and curl when 1 < p < oo if and
only if the first Betti number I vanishes, i.e ) is simply connected in the case of
u X n =0 on I or if and only if the second Betti number J vanishes, i.e {2 has only
one connected component of the boundary in the case of w-n =0 on I' ;| given by

(1.1) IVullis o) < C(lldivul oo + leurl uls) ).

In [5], the authors generalized the inequality (1.1) to the case where § has arbitrary
Betti numbers and for vector fields with vanishing tangential components or vanishing
normal components on the boundary.

The main objective of this paper consists on a contribution to this topic that
is focused on extending the previous results when mixing boundary conditions on
the normal and tangential components of the vector potential where (2 has arbitrary
Betti numbers, in the Hilbert and non-Hilbert cases. The methods of proofs are
mainly based on the characterization of the kernel which is related to the geometrical
properties of the domain. Since the boundary of the domain is decomposed into two
parts, the dimension of the kernel depends on where the union of the boundaries of
the admissible set of cuts 0¥ lies. Throughout this paper, we will deal separately with
the case where 0¥ is included in I'y and the case where it is included in I'p because
their treatments are entirely different in character. Our goal is also to improve the
regularity of the obtained vector potentials to the LP-theory for any 1 < p < 4o00. For
the general case p # 2, the standard arguments will not allow us to get the existence
of the vector potentials. To overcome this obstacle, by use of the classical Helmholtz
decomposition, we prove some important Inf-Sup conditions of the type :

1¢ - curl
(1.2) inf  sup [Jo curl€ - curl ¢ > 8,

tpE\~’g/(Q) 56{/6}(9) ||£HW1’I'(Q) ||LP||W1,P/(Q) -
##0 £#£0

where 8 > 0 and the space \73(9) will be defined later. It turns out that these
conditions are the key point when solving various elliptic problems as the following
one: find & € WHP(Q) such that

—Af =curlv and divé=0 in £,
(1.3) En=0, (curlé—v)xn=0 on I'p and £€xn=0 on Ty,
<£'n71>1"§\]:0) 1S€§LN7

where 0¥ C T'y and v € L”(Q).
As an application, we consider stationary motions of viscous incompressible fluid
in  governed by the Stokes system

—Au+Vr=f in Q,
(1.4) { divu =0 in €,

where u is the velocity field, 7 the pressure and f denotes the external force. Here
and in what follows, the unit outer normal to the boundary is denoted by mn and
the unit tangent vector by 7. We respectively define the normal and the tangential
velocities by u, = u-n and u, = u — u,n.

Stokes and Navier-Stokes systems are often studied with the no-slip Dirichlet
condition. However, this idea, although successful for some kind of flows from a
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VECTOR POTENTIALS WITH MIXED BOUNDARY CONDITIONS 3

mathematical point of view, is not well justified from a physical point of view. In
fact, it has previously been shown that the conventional no-slip boundary condition
predicts a singularity at a moving contact line and that forces us to take into account
some form of slip [19]. In the last decades, several mathematical papers have been
conducted in relation to the non standard boundary conditions involving some friction
(see [15, 21, 31]). The LP-theory for the Stokes problem with various types of boundary
conditions can be found for instance in [28].

The Navier boundary conditions were proposed by Navier [30], these conditions
assume that the tangential component of the strain tensor is proportional to the
tangential component of the fluid velocity on the boundary, referred to as “stress-
free” or “slip” boundary conditions

(1.5) u-n=0 and 2uD(u)n]; +au, =0,

where 4 is the fluid viscosity, D(u) = 1/2(Vu + VuT) is the strain rate tensor associ-
ated to the velocity field and « is a friction coefficient, which measures the tendency
of the fluid to slip on the boundary. These conditions appear in the study of climate
modeling and oceanic dynamics [27]. They are particularly used in the large eddy sim-
ulation for turbulent flows. Since the first work [32] treating the Stokes problem with
Dirichlet boundary condition on some part of the boundary and (1.5) with (o = 0)
on the other part, where the authors proved an existence result of strong (local) solu-
tions, the interest in this kind of conditions has been increasing over the years (see for
instance [25, 26]). In [7], the author has established the existence and uniqueness of
solutions to the Stokes problem involving Navier conditions in the L2-settings. This
work was completed by Amrouche et al in [3] where the LP-theory of such problems
was developed. Recently in [1], the authors discussed the behavior of the weak and
strong solutions with respect to the friction coefficient o assumed to be a function.

Let us consider any point P on I' and choose any neighborhood W of P in I, small
enough to allow the existence of C? curves on W. The lengths s, s5 along each family
of curves are a possible set of coordinates in W. The unit tangent vectors to each
family of curves are denoted by 71, T2, with this notation we have v = v, + (v-n)n
and v, = Zizl v T, where vy = v - T;. Then we can prove that

2u[D(u)n), = —curlu X n — 2A u,

where A is the operator Au = Z?zl (f%; . u,.) T;.

One can observe that in the case of flat boundary and when o = 0, the Navier
boundary condition (1.5) with a right hand side equal to h which is a given tangential
vector field, may be replaced by the condition

(1.6) u-n=0 and curluxn=hxn,

which is called Navier-type boundary condition. In [4], the authors have shown the
existence and uniqueness of weak, strong and very weak solutions to the Stokes prob-
lem subjected to Navier-type boundary conditions. We assume that (1.6) is imposed
on I'p. Unfortunately, one cannot prescribe only the value of the pressure on the
boundary, since such a problem is known to be ill-posed. We consider that the pres-
sure values are prescribed, together with the condition of non-tangential flow on the
remaining part of the boundary I' i

(1.7) uxn=0 and w=m on In.

This manuscript is for review purposes only.
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4 CHERIF AMROUCHE, IMANE BOUSSETOUAN

These conditions are used in Poiseuille flows, blood vessels or pipelines [6]. Re-
cently in [14], the authors have considered the Stokes problem with (1.7) on a part of
the boundary with a numerical approach applied in hemodynamics modeling of the
cerebral venous network. Numerical analysis of the discrete corresponding problem
has been performed in [13]. Stokes and Navier-Stokes systems including both condi-
tions (1.6) and (1.7) were firstly treated in [18] where the authors assume that the
boundary is divided into three parts and Dirichlet boundary condition is imposed on
the third part. They proved the existence and uniqueness of a variational solution
and they showed that it is a solution of the original problem in the Hilbert setting.
Better regularity properties have been successfully demonstrated by Bernard. Indeed,
if the given pressure on a part of the boundary is more regular then the variational
solution satisfies Au € L2(2) and the corresponding boundary conditions [11], then
a W™ () regularity is obtained for any m € N, m > 2, r > 2 [12].

In this paper, we follow another strategy based on the fact that the pressure can
independently be obtained of the velocity field and is solution of an elliptic problem
with Dirichlet boundary condition on a part of the boundary and Neumann boundary
condition on the remaining part. Indeed, by setting F = f — Vx in the Stokes
problem, we get a system of equations which only includes the velocity field.

—Au=F and divu=0 in €,

with the boundary condition (1.6) on I'p and wxn = 0 on I'y. Note that variational
formulations have solutions that can be given by vector potentials of the velocity field
of the Stokes problem [9]. We use the obtained Inf-Sup condition (1.2) to prove the
existence of the velocity field in W1P(Q).

Let us outline the structure of this paper. In Section 2, we introduce the math-
ematical framework, we illustrate the geometry of the domain and we review some
preliminary results.

In Section 3, we establish some estimates for vector fields dealing with mixed
normal and tangential boundary conditions for any 1 < p < co. Then, we characterize
the kernels when 0X is included in I'p and then in I'p. Furthermore, we obtain in
both cases some Fridriech’s inequalities for any function u € W1P(Q) with u xn = 0
on I'p and w-n =0 on I'y by virtue of Peetre-Tartar Theorem.

Section 4 is devoted to the existence and uniqueness of vector potentials with
divergence-free and satisfying vanishing tangential components on a part of the bound-
ary and vanishing normal components on the other part, in the L2-theory. We also
point out the case of less standard but useful vector potentials that have non van-
ishing divergence and where Dirichlet boundary condition is imposed on a part of
the boundary. In order to extend these results to the LP-theory, we prove two Inf-
Sup conditions when 0¥ is included either in 'y or in I'p that are necessary in the
solvability of some elliptic problems as the system (1.3) and also in the last section.

Finally in Section 5, we focus the attention on the existence and uniqueness of
the solution of Stokes problem with Navier-type boundary condition (1.6) on a part
of the boundary and a pressure condition (1.7) on the other part and we give some
regularity assertions to that solution. We restrict ourselves to the case where 9% lies
in I'p in this section, the other case can be solved in a similar way.

The proofs of the Stokes problem are of great help in the analysis of the Navier-
Stokes equations when mixing different boundary conditions, which is the main pur-
pose of our forthcoming paper.

This manuscript is for review purposes only.
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VECTOR POTENTIALS WITH MIXED BOUNDARY CONDITIONS 5

2. Functional spaces and notations. In this section, we give some basic nota-
tions, we introduce the functional spaces that are used and we describe the geometry
of the domain in which we are working.

We follow the convention that C is a constant that may vary from expression
to expression. We denote by X’ the dual space of the space X and by (-, ~>X’X, the
duality product between X and X’. Vector fields are designated by bold letters and
their corresponding spaces by bold capital characters.

We denote by [-]; the jump of a function over X, i.e the differences of the traces
for any 1 < j < J. For any function ¢ € W1P(Q°), Vq is the gradient of ¢ in the
sense of distributions in D’'(2°) which belongs to L?(£2°) and it can be extended to
L?(Q2). Therefore, to distinguish this extension from the gradient of ¢, we denote it

by gradg.
Let us introduce for any 1 < p < oo the following functional framework

H?(curl,Q) = {v € L?(Q); curlv € L7 ()}
H?(div, Q) = {v € L?(Q); dive € LP(Q)}

and we denote by XP(Q) the space

XP(Q) = HP(curl, ) N HP(div, Q)

provided with the norm

. /p
[olixee) = (101, ) + lleurl o], g, + [divoll}, o)) -
We define also the following subspaces

XP(Q)={veXP(Q), vxn=0 on I'p, v-n=0 on Iy},

XP(Q)={veXP(Q), vxn=0 on 'y, v-n=0on I'p}
and the kernels

K{(Q) = {v e X)), dive =0, curlv =0 in O},
K5 (Q) = {'v € X?(Q), dive =0, curlv = 0 in Q}

Let us shed some light on the geometry of the domain here, we emphasize that
contains simply-connected obstacles denoted by Q%, ..., QLDD and Q%,..., Q%N , the
non simply-connected ones are denoted by QL,... QL. Tt is important to identify
the components of each part of the boundary in the following cases as we will be
confronted with in the whole paper:

This manuscript is for review purposes only.
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6 CHERIF AMROUCHE, IMANE BOUSSETOUAN

Fic. 1. Lipschitz flow domain

Case 1. When 0X C I'n:

Lp Ly J ]
Ip=Jry and FN=<UF§V>U Urs |,
£=0

=0 j=1

where I'}; is the boundary of Qf,, T'4 is the boundary of Q% and Fji is the boundary
of Q.
Case 2. When 0¥ C I'p:

Ly Lp J )
Iy =JTI%, FD<UF4D>U Urs
£=0 £=0 j=1

As shown in figure 1, if 95 C I'y, this means that I'y = ' UTZ UTQ UT) and
I'p =T% UTL. In the other side, if ¥ C I'p, we interchange the notation in figure
1 such that Tp =TL UTZUTH UTL and Iy =T U Ty

Remark 2.1. We underline that in the case where I'p NIy form an edge, we lose
the H? regularity in some singularity points and for this reason, we avoid to work in
this case and we consider only the simplified one T'p N Ty = 0.

It is worth recalling the obtained results in [5] where T';, 1 < i < I represent
the connected components of the boundary I' and ¥£;, 1 < j < J, are the connected
open surfaces called “cuts”. The authors have established the following Friedriech’s
inequality concerning tangential vector fields u € W1P(Q), 1 < p < co withuxn = 0

onI’
T

I
(2.1) ||vu||LT’(Q) <C <||div UHL;U(Q) + ||Cur1u||Lp(Q) + Z
=1

This manuscript is for review purposes only.
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VECTOR POTENTIALS WITH MIXED BOUNDARY CONDITIONS 7

Similarly for normal vector fields, we have for any u € W1P(Q) withu-n=0on T

/ u-n
X

The above estimates are proved by use of some integral representations, Calderén
Zygmund inequalities and the traces properties [5]. Note that as soon as u belongs to
HP (curl, ), the tangential boundary component u x n is defined in W~/7?(T") and
in the case where u belongs to H?(div, ), the normal boundary component u - n is
also defined in W~/ (T'). Moreover, we have the Green’s formulas

J
(2.2) IVeellLr ) < C | lldivee| o) + leurlu|Le@) + D
j=1

(2.3) Vo € WP (Q), < ux n, @ >p= /

u-curlgodx—/curlu~cpdx,
Q

Q

where < -,- >p denotes the duality product between W~/?(I') and W/ (') and

(2.4) Vo € WP (Q), <u-n,o>r= / u-Vodr + / (divu)p de,
Q Q

where < -,- >p denotes the duality product between W=/P2(I') and W1/»#'(T'). In
the case where the boundary conditions u x n =0 or -1 = 0 on I' are replaced by
inhomogeneous ones, the authors have showed in [5] the following estimates

lullwir@) < € (alluo) + Idiv o) + leurlulio) + 1w - nllwsonw)

wllwr) < C(HUHLP(Q) + ||div u s () + [lcurl u|lLy o) + [Ju ¥ nlefl/w(r))

3. Harmonic vector fields and Fridriech’s inequalities. An important tool
to study, in the next section, the existence and the uniqueness of vector potentials, is
the characterization of some kernels of harmonic vector fields. We establish also some
Friedriech’s inequalities which are essential to solve some elliptic problems. We give
finally a new Stokes formula in a general pseudo-Lipschitz domain.

We assume that for any point 2 on the boundary 02 there exists a system of
orthogonal co-ordinates y;, a hypercube U containing z (U = I ] — a;,a;[) and a
function ® of class C*! such that

QNU ={(y,ya) €U| ya <)},
IUNU ={(y,ya) €U| ya=d)}.

The next lemma concerns the estimate of vector fields in the Hilbert case when tan-
gential and normal boundary conditions are both applied ie. u x n =0 on I'p and
u-n =0 on I'y. In what follows, we assume that 2 is also connected.

LEMMA 3.1. Assume that uw € HY(Q) withu xn =0 onTp and u-n =0 on
T, then the following estimate is satisfied

(3.1) Ve ) < C ([leurlullyz o) + [|dival| L2 @) + w2 @) ,

where C' is a constant depending only on €.

This manuscript is for review purposes only.
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8 CHERIF AMROUCHE, IMANE BOUSSETOUAN

Proof. To prove the estimate (3.1), we recall Theorem 3.1.1.2 in [24] which in-
volves the curvature tensor of the boundary denoted by S and defined as

d—1

0*®
)= D 5 —(0)¢k;.
BEm) = 3 5 0im

and Tr 8 denotes the trace of this operator. We have the following relation
IVullZ ) = lleurl ulZs o) + |dive 2. q, — /FD(Tr,B)(u ‘n)2ds

- Blu x n,u X n)ds.
I'n

For the boundary terms, we have

Blu X n,u x n)ds
I'n

1

<C [ fuds < {1 Vulf + Culs
Tn 4
With a similar inequality for the term on I'p, we get

1
< ZHVUH%P(Q) +C" w20

A;ﬂmmwﬁw

We deduce that (3.1) holds. |
THEOREM 3.2. Let u € XP(Q) such thatu xn =0 onTp andu-n =0 on 'y,
then w € WYP(Q) and satisfies

(32) [ullwrr@) < C(Q)|lullxr (),
where C(Q)) is a constant depending on p and Q. The same result holds for the space
XP(Q).

Proof. Let 6 be a function defined in C§°(R%), 0 < 6 < 1 and satisfying § = 1 at
the neighborhood of I'p and # = 0 at the neighborhood of 'y, we set n =1 — 6. As

soonasuxn=0onI'p and u-n =0 on 'y, we deduce that u x n =0 on I and
nu-n =0onI. Then, from Theorem 3.2 of [5] for fu we deduce that

[0ullwrr@) < C1(Q)[0ulxr @) < Ca(Q)]|ullxr @)

where C1(Q2) and C3(€2) depend only on £ and p. By using Theorem 3.4 of [5] for nu,
we get
Inullwrr@) < Cs(Q)|nulxe@) < Ca()|ullxs @)

where C5(2) and C4(f2) depend only on 2 and p. Since u = 6u + nu, then by
combining the obtained estimates, we obtain

[ullwir@) < l0ullwir@) + Inullwir@) < C(Q)]lullxr (),
where C(Q2) = C2(2) + C4(2). O

In order to avoid extra difficulties, we start by checking some results for the
Laplace operator

3}
(3.3) Au=f in Q wu=0 on I'p and a—Z:O on Ty.

This manuscript is for review purposes only.
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VECTOR POTENTIALS WITH MIXED BOUNDARY CONDITIONS 9

We know that for a given f € L%(f2), there exists a unique solution v € H(Q). It
is clear that the solution u belongs to H?(f2) because of the assumptions on I'p and
I'n. We will give in the following corollary a brief proof to get this regularity.

COROLLARY 3.3. For any f € L*(Q), the solution u € H'(Q) of the Problem
(3.3) belongs to H*(Q) and satisfies the estimate

(3.4)

ull 2 (0) < Cllfll2(0)-

Proof. We set z = Vu, then z € L%(Q), divz € L?(Q), curlz € L%(Q) with
zxn=0onTIp,and z-n =0 on ['y. We infer from Theorem 3.2 with p = 2 that
z € HY(Q). Since z = Vu € H'(Q), therefore u € H?(2) and satisfies the estimate

(3.4).

d

In the case where the boundary conditionsu xn =0onI'p and u-n=0o0n 'y
are replaced by inhomogeneous ones, the estimate (3.2) is generalized in the following

corollary.

COROLLARY 3.4. Let u € XP(Q) such that u x n € W'=V/PP(T'p) and u - n €
W=1/PP(Ty). Then u € WHP(Q) and we have the following estimate

(3.5)

lullweriey < C(Isllxr@) + 1w X Rllwi-smaen) + e Bllwi-maey) )

Proof. Arguing similar as in the proof of Theorem 3.2, the first property and the
estimate (3.5) are easily deduced, thanks to Theorem 3.5 and Corollary 5.2 of [5]. O

More generally, we derive the following corollary in the same way.

COROLLARY 3.5. Let m € N*, Q of class C"™' and w € LP(Q) with divu €
Wm™=1P(Q) and curlu € W™~1P(Q) such that u x n € W™~ V/PP(Tp) and u-n €
Wm=1/PP(T ). Then uw € W™P(Q) and we have the following estimate

lullwmr@y < C(”“”LP(Q) + [|div u||pm-1. Q) + |lcurlwl|ywm-1.0 )

+ [l mflyym-1mm ey + X nmefl/p,P(I“D)).

The following lemma will serve as an argument in the forthcoming analysis.

LEMMA 3.6. Assume that ) is Lipschitz. Let 0¥ C T'y, 9 € H%(div,Q) and
Y -n =0 onTyN. Then, there exists a sequence (1) of functions in D(Q), where

Q=QuU (UZL:DOQZD) and v € H2(div, Q) satisfying

Y= in HA(div,Q), by, > in H(div,Q).

Proof. For any 0 < ¢ < Lp, let us consider x, € H'(£2) solution of the problem

where ¢, =

1
12

Axy=c¢; in QZD,
OnXe=1%-n on T%.

(Y- n, 1>FZD. We set ¥ = b in Q and 9 = Vy, in Q. Let ¢ € D(ﬁ),

This manuscript is for review purposes only.
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10 CHERIF AMROUCHE, IMANE BOUSSETOUAN

so we have
<divw,ap>:—/ww~V<pdx:—/1/J-Vg0dx—2/ Vxe-Vpdx
a Q i~/
LD LD

z/(divw)apdm—Z/ (¢~n)<pds+2/ Ay dx
Q =0/Th =07k
LD LD

—1—2/ cp(?nxgds:/(divv,b)godx—i—Zcz/ pdx.
=0/Th Q =0 79

Thus, we obtain

Lp

|{aiva, 0)| < divpllzaoylellzz@) + D 1951 leellelz2an)-
=0
But
c) .
|ce] < Tl ([l [lL2(o) + 1divepll r2)) ,

which implies that t € H3(div, Q). Therefore, there exists t, € D({) such that
¥, > in H2(div,Q) and Yy, — ¢ i H(div,Q),

which is the required result. 0

The next lemma is an extension of the Green’s formula (2.4) in the case where
p = 2 and is the equivalent version of Lemma 3.10 [2] when dealing with mixed

boundary conditions. The proof below is more detailed and the dual space [H 1/2 (= ])] '

/
in [2] is everywhere replaced by the dual space [H&é Z(Ej)] which is more correct.

LEMMA 3.7. Assume that §) is Lipschitz and 0¥ C T'y. If v € H2(div,Q), then
i
the restriction of ¥ - n to any X; belongs to [Héf(Zj)} forany 1 < j < J and for
any x € HY(Q°) with x =0 on T, we have

(3.6 o)y, = [ 4 Vudo+ [ xdiveds,

o

J
Jj=

1
where
vz, = {u e HY2(%)), fie Hl/Q(Mj)}.

Moreover, if ¥-mn =0 on Ty then (5.6) holds for any x € H*(Q°) and x =0 on T'p.

Proof. 1) Let us consider the case where p € HOIéZ(Zl), we extend the cut X; by
33} which allows us to divide € into two parts ; and ) i.e Q@ = Q; UX; UQUX]. We
set now Qf = 0, U, U (U/_,Qx;). In other words, Qf is the open set Q\ (X1 UX}),
to which we add the obstacles Qsx,,...,Qs,.
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Fic. 2. J =2

Now, we know that there exists ¢; € H!() satisfying

A(pl =0in Ql, ®1 =0on 891\217 ¥1 :g on 21,

and
o1l < C||N||H;gz(zl>-

In the same way, there exists ¢} € H'(Q) where Qf = Q] U (U/_,Qx, ) satisfying

Ay =0in Qf, ¢} =00n90/\Z1, ¢} = —g on Xy,

and
4Lz @) < Cllall gz s, -

Finally, we define the function ¢ as

P in O
=4 ¢y in Qf
0 on .

Furthermore, it satisfies

pe H(QUXY), [ph=pn
=0 on TI'pUTwN, [p;=0 j=2,...,J

and the estimate

el @ousy) < C”“”Héf(zl)'
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We take now x = ¢|qe, then

XGHI(QO)7 [X]lzﬂa [X]J:()a .7:2’3J
x=0 on 09

Il o) < Cllil e sy

We proceed similarly when p € Hég 2(Ej) with an adapted extension of the cut X; for
any 2 <j < J. -
ii) Now, let b € D(Q2), then Green’s formula gives for any 1 < j < J

(3.7) <'¢v~n,,u>zj = 1/;-de3:—|—/ x div ) dx.
QO

o

Moreover, we have
| <1nb : n’/~">§]j | < C”’('b”HQ(diV’Q)H#”Héf(zj)‘
As a consequence, ¥ -n € [H(%Q(Ej)]'and
||"JJ ’ n“[Hé({Z(E:j)]’ < C||¢||H2(div,ﬂ)~

Because of the density of D(Q) in H2(div, ), the last inequality holds for any function
v in H?(div, ). Finally, by using an adapted partition of unity and the Green’s
formula (3.7), we establish the relation (3.6).

Finally, we assume that ¢ € H?(div,€) and 4 - m = 0 on I'y, then it is easily
checked that the Green’s formula (3.6) is valid by means of Lemma 3.6. |

In order to ensure the uniqueness of the first vector potential, we are interested
here in the characterization of the kernel KZ(Q) in the case where 9% is included in
FN.

PROPOSITION 3.8. Assume that 2 is Lipschitz and 9% C I'y. Then the dimen-
sion of the space K3(X2) is equal to Lp x J and it is spanned by the functions g/;éaqf,
for1<j<Jandl </{¢< Lp, where each qf is the unique solution in H'(Q°) of the
problem

qufz() in Q°,

aq*
-0 on 'y,

[5)
QﬁFDD =0, qfh‘g =const, 1<m<Lp,

£
[qﬂkzconst and [‘Zﬁi]k, 1<k <,
oL
<g’;1> = 1<k<J,
P

£ 'l
<g‘; 1> — 1 and <§3L1> = S, 1<m< Lp.
ry ry

Proof. Step 1. We define the space ©1(Q°) as

r € H(Q°); [r]; = const, 1 < j < J,
rlro =0 r[pp =const, 1 <m < Lp

0'(0°) = {

This manuscript is for review purposes only.
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VECTOR POTENTIALS WITH MIXED BOUNDARY CONDITIONS 13

We look for ¢f € ©(€2°) such that

(3.9) vr € 01(Q°), i Vg, Vrdz = [r]; +7lpy .

Since ©1(Q°) is a closed subspace of H!(2°), using Lax-Milgram lemma, Problem

(3.9) has a unique solution.

(i) Now let ¢§ € ©'(22°) be solution of (3.9), by taking r € D(Q), we get

o

<div(g/r\a_1;1q§),r>:—/g/r\a_l?lq?Vrdx:f/ qu-VT:O,
Q

which implies that div(g/r\éa qf) =0 in Q and then Aqf =0 in Q°.

(ii) We choose r € H}(Q) and from Green’s formula, we obtain

¢ < 0q;
Vq; - Vrdr = / | r=1r]. =0,
Q7 I; Tk [an]k &

a
which means that {g’ﬁ} = 0 for any 1 < k < J. Furthermore, using (3.9) with

k
r € H'(Q) such that r = 0 on I'p, and by applying again Green’s formula, we deduce
that

0= qu-Vrz(qu'nﬂ">

.
Qo N

aqt
Therefore 8—3{ =0onI'y.

(iii) From Lemma 3.7, we have for any r € H(2°) such that r =0 on I'p

J

S (Ve )y, = [ e vr= ;.

k=1

In particular, if we choose r € ©1(2°) with » = 0 on I'p, we get

J
b (Ve 1)y, =D,

k=1

from which we easily derive the relations <Vq‘f ‘N, 1>Ek = 0jk.

(iv) In the same way, if » € H'(Q) with r|pm = const, 1 < m < Lp and rlro =0,
we have

Lp
> rlrg (Ve n ) = vl

m=1

from which we deduce the relations <Vq§ -n, 1>Fm = ¢ for any 1 < ¢ < Lp and
D
¢ _
then (Vg§ - n, 1>F% =1

This manuscript is for review purposes only.
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Step 2. Conversely, it is easy to check that every solution of Problem (3.8) also solves
(3.9).
Step 3. Since ¢f € H'(Q°) and [¢}]x = const, for any 1 < k < .J, we deduce from

Lemma 3.11 of [2] that curlg/r\a_laqf = 0 in 2 and then g/r\;;iqf € K2(Q). From the

last properties in (3.8), it is readily checked that the functions g/;a_;iqf are linearly
independent for 1 < j < Jand 1 </{< Lp.

It remains to show that they span K2(2). Let w € K3(Q) and consider the
function

Lp
1 1 —
(3.10) u=w— Z (LD <w-n71>2j +J<w.n71>FgD> gradqf.
Since w € K3(f2), then
(3.11) (w-n, ) =(w-n,1)p= / divwdz = 0.
Q

Therefore using (3.10), we infer that for any 1 <m < Lp

J

1 1
(u-n, 1>Fg =(w - n, 1>F’g - z:l (LD (w - n,1>2j + i (w-n, 1>FT5>
=
1 J
SR T
D=

Clearly from this relation, we get after summing

LD J
0= Z (u-n,1>r75 :—Z(w-n,l)zj,
m=1 7j=1

which implies that (u - n, 1>Fg =0 for any 1 < m < Lp. In the same way for any
1 <j < J, we deduce from (3.11) and (3.10) that

Lp
1 1
(u-n,l)y =(w-nl)y —Z <LD<w-n,l>Ek -I-J(w-n,l)%)
(=1
= (w - n, 1>Zk —{(w - n, 1>Ek =0.

From the above properties, it is obvious that u belongs to K3(2). Furthermore, it
satisfies

(3.12)<u~n,1>r75:0, VO<m<Lp and (u-nl)y =0, VI<k</J

Since §2° is simply connected and curlu = 0 in Q° then u = Vq, where ¢ € H(Q°).
Furthermore, divue = 0 in 2 then Ag = 0 in Q°. Because u-n = 0 on 'y, we get

g—fl:OonI‘N. As u € L?(Q) and divu = 0 in Q then [g—fl]‘:Oforanylgng.
J

As curlwu = 0 also in , Lemma 3.11 of [2] implies that [¢]; = const for any 1 < j < J.
Therefore for any r € ©1(0°), we have by (3.6) and (3.12) that

J aq Lp aq
/0 Vg Vrde = [r]; <an’ 1> =3 rlrp <an’ 1>Fg =0.

j=1 Zj  m=1
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This implies that ¢ is solution of (3.9) with a second hand side equal to zero, which
means that ¢ = 0 and then w is zero and this ends the proof. 0

Let us state an immediate consequence of Proposition 3.8.

COROLLARY 3.9. Assume that Q is Lipschitz (resp. CY') and 0% C T'y. On the
space X8 (Q), the semi-norm

Lp J
(3.13) w > ||divul| o) + |eurl Loy + Y | <w-n, 1> +Y | <u-n, 1>y,
/=1 j=1
is a norm equivalent to the norm || - ||xr(q) (resp. || - [lwir())-

Proof. The proof consists in applying Peetre-Tartar theorem (cf. Ref. [23]), with
the following correspondence: E; = XF(Q) equiped with the graph norm, E; =
LP(Q) x LP(Q2), E3 = L?(Q), Au = (divu, curlu) and B = Id, the identity operator
of E; into E3. Then |u|g, ~ ||Aullg, + ||u|g, since X5(Q) — W1P(Q). Note that
the imbedding of X§(£2) into LP(Q) is compact and the canonical imbedding Id of E;
into Ej3 is also compact. Let M : X5(Q) — KF(€2) be the following continuous linear

mapping
o J 1 o
:;Z( (u-mn,l)y +J<u.n,1)rg)gradq§.
We set
J
Z‘ u-n,l) ‘
Let us check that if u € KerA = K§(§2), then Mu = 0 if and only if (u - n, 1)1% =0

forany 1 < ¢ < Lp and (u - n, 1>2j =0, for any 1 < j < J, which means that w = 0.
So by Peetre-Tartar theorem we deduce that

| Mullges ) = Z‘ w-n, 1),

lullxr@) < € (IlAuls, + | Mull o))

and then estimate (3.13). |

We introduce the following space
0l(N) = {r c H'(Q), rlro =0 and r|pp =const, 1<m< LD}.

In the case where 9% is included in I'p, the characterization of the kernel K2()
is considered in the following proposition.

PrOPOSITION 3.10. Assume that Q is Lipschitz and 0% C I'p. Then the di-
mension of the space K3(Q) is equal to Lp and it is spanned by the functions Vqy,
1 < ¢ < Lp where each q; is the unique solution in H'(Q), of the problem

—Ag,=0 in €
9¢ =0 on Iy,
(3.14) qdp% =0 and qg|pg =const, 1<m<Lp,

<%,1> — 1 and <3‘H,1> — Som, 1< m < Lp.
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16 CHERIF AMROUCHE, IMANE BOUSSETOUAN
Proof. Tt is obvious that the problem: find ¢, € ©*(£2) such that
(3.15) vr € 01(Q), /Qng Vrde =r|pe

has a unique solution and each solution g, of (3.14) also solves (3.15). Conversely,
using (3.15) with r € D(Q), we obtain Ag, = 0 in Q. By using Green’s formula in
(3.15) with r € H(2) and » = 0 on I'p, thus % =0 on I'y. By taking r € ©1(9),
we have

Lp
Z rlrp (Ve -, 1>rg = 7"|F§)

m=1

and then we derive the last equalities in (3.14). The functions Vg, are linearly inde-
pendent and belong to K3(f2). To prove that they span K2(Q), we take a function
w € KZ(Q2) and we consider the function

Lp

u:w—Z(w~n,l>F%ng
=1

which remains in K§(Q) and satisfies < w-n,1 >pn= 0 for any 1 <m < Lp and also
for m = 0 since divu = 0 in Q. Note that w = Vq with ¢ € H'(Q°). But if we take
another admissible set of cuts denoted by Z;, 1 < j < J, we will obtain that w = V¢’
with ¢’ € H'(€2°). But, for any fixed 1 < j < J, the function ¢’ € H'(W;) where W;
is a neighborhood of ¥;. Since Vg = V¢’ in W;\X;, we deduce that there exist two
constants cj and c; such that ¢’ = ¢ + c;' in WJ*\Z]» and ¢' = g +c¢; in W;\Zj,
where W;r (resp W7) is a part of W; located on one side of ¥; (resp on the other
side). This means that [g]; = const. Since Aw = 0 in , we have that w € C>*(Q).
Furthermore, ¢ is constant on any connected component FZD and 0% C I'p, we infer
that cj' =c¢; i.e[ql; =0 and then ¢ € H'(Q). Since divee =01in Q and w-n =0 on
I'ny we have

Lp
/u'udx:/u~qux: Zq|rg <u-n,1>pm=0.
Q Q m=1
thus w is zero and this ends the proof. 0

As previously, Proposition 3.10 has a corollary about equivalent norms.

COROLLARY 3.11. Assume that Q is Lipschitz (resp. CY') and 9% C T'p. On the
space X§(2), the semi-norm

Lp

(3.16) w i ||div ul| L) + [leurlullLo) + > | <uw-n,1>p |
=1

is a norm equivalent to the norm | - ||xr(q) (resp. || - [wir())-

Proof. By applying again the Peetre-Tartar theorem with the same correspon-
dences of Eq, E; and E3 as in Corollary 3.9. Let M : X5(Q) — K§(Q2) be the

following mapping
Lp

Mu:Z<u-n,1>FzD V.
=1
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We set
Lp
[Mullkr o) = Z| <u-m,1>p |
(=1

It is clear that if u € KerA =K{(Q), then Mu = 0 if and only if <u-n,1 >p =0
for any 1 < ¢ < Lp which means that u = 0. So by Peetre-Tartar theorem, we deduce
that

lullxr@) < € (IlAulls, + | Mull o))
and this finishes the proof. ]

Remark 3.12. Assume that ) is Lipschitz (resp. C'!) and 9% C 'y, then on the
space X5(Q), the following semi-norm

Ly
(3.17) u = [|divul| Ly (o) + [lcurlwl|py o) + Z | <u-n,1>p |
=1
is a norm equivalent to the norm || - ||xr(q) (resp. || - ||w1r(q)). Similarly when
0% C I'p, the following semi-norm
Ly J
(3.18) w = ||div || pr(q) + ||curlu|\Lp(Q)—|—Z| <u-n,1>pe +Z| <u-n,1>yg,
=1 j=1
is a norm equivalent to the norm || - [|x»(q) (resp. || - [lw1.r(q)) on XS(Q)

The following propositions concern the characterization of the kernel IN{(Q)(Q) where
I'y and I'p are swapped. The proofs are exactly the same as in Proposition 3.8 and
Proposition 3.10 respectively.

PROPOSITION 3.13. Assume that Q2 is Lipschitz and 0¥ C I'p. Then the dimen-
sion of the space K%(Q) 1s equal to Ly X J and it is spanned by the functions g/r\aﬁ sﬁ,
1<j<Jandl1 < ¢ < Ly where each s§ is the unique solution in H(Q°) of the
problem

—As?:O in Q°,

st
a2 =0 on I'p,

5?\1‘% =0 and s§|pyvz =const, 1<m< Ly,
£
e] _ . st -
[s] = const and {a ] =0, 1<k<J
(3.19) ik n |,

¢
Os;

<8n71> = Ojk, 1§k§<],
PP
st 9st
<8’ri’ 1> =—1 and <87i’1> :ng, 1§m§LN
Y R

PROPOSITION 3.14. Assume that € is Lipschitz and 0¥ C T'y. Then the di-
mension of the space K3(2) is equal to Ly and it is spanned by the functions Vs,
1 < ¢ < Ly where each sy is the unique solution in H'(Q), of the problem

—Asp=0 in £,
@ =
(3.20) on =0 v Lo
Sg‘r(}l\,:() and s@\pv&x:cons‘u, 1<m< Ly,

(G g =—1 and  (FE 1)1, =0m, 1<m<Ly.

on’ on’
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Remark 3.15. Observe that if  is of class C!*!, then for any 1 < p < 0o, we have

K5 (Q) — () W9 (Q).

q>1

We prove this result for any 1 < p < 3. Let u € K§(£2), we know that u € WH1(Q) —
L3/2(Q). Then, u € KJ/*(Q). By using Theorem 3.2, we infer that u € Ko/?(€) <
L3(2). Now, we assume that p > 3 and due to Theorem 3.2 again, we have u €
WL3(Q) < L9(Q) for any ¢ < oco. Thanks to Theorem 3.2, u € WH4(Q) and then
the kernel Kf(€) does not depend on p.

Now, we state in the following lemma another preliminary result (which was
proven in a different form by Mitrea, Lemma 4.1 p.144 [29]), that is necessary in the
next section.

LEMMA 3.16. Let ¢ € H?(curl, Q) with ¢ x n € L%(T). Then
(3.21) divp(p x n) =curlp-n in H YD),
In particular if ¢ x n =0 on I'p, we have curlp-n =0 on I'p.
Proof. For any x € H*(Q) and ¢ € H?(curl, ), we have from Green’s formula
/Q curly - Vxdzx = (curlp - n,X>H_%(F)XH%(F) .
Let us introduce the following Hilbert space:
E(Q) ={x€H (Q); xr € H'(T)}.

For any x € E(Q) and ¢ € H?(curl, Q), we have the following relation

(3.22) / curly - Vydx = 7/(<p xn)-Vex,
Q r

that we prove by using the fact that (see [8])
D(Q) is densein E(Q).
That implies that
(dive (@ X 7). X) ey = QUL 1 X) g 1y

and

| {divr (e x n)7X>H*1(F)><H1(F) | < C(Q)|[curl|lrz@)lIx]lm (o)

Now, let u € H*(T'). We know that there exists x € H'(Q) (in fact x € H>/2(Q))
such that x = p on I' with the estimate ||x||g1 ) < C(Q)||pllgi/2r. As HY(T) is
dense in HY?(T'), we deduce that divr(¢ x n) € H-1/2(T') and
|
divr(¢ x n) = curlp -n  with |[divr(e x n)| g-1/2r) < C(Q)|lcurl p||Lz().

This manuscript is for review purposes only.
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4. Vector potentials. This section presents the first main results of this paper
related to the existence and uniqueness of vector potentials satisfying mixed boundary
conditions in the Hilbert case and then in the LP-theory, when 0% is included in I'y
orin I'p.

We define the following Banach space:

VS(Q):{ v e X}(Q), divo=0inQ, (v-n, 1) =0,1<0< Ly }

4.1. The Hilbert case (p = 2). The following theorem is an extension of
Theorem 3.12 of [2] when I'p # 0.

THEOREM 4.1. Assume that ) is Lipschitz and 0% C I'y. A function u € L?(Q)
satisfies

diveu=0 in Q w-n=0 on Ip,

(4.1) <u'”71>r§\, =0, 0</{¢< Ly,

if and only if there exists a vector potential v € X2(2) such that

u=curly and divyp=0 in £,
Yxn=0 on I'p and ¥ -mn=0 on Iy,

(4.2) (-m, 1) =0, 0<E<Lp,
<'¢"n’1>2j207 1<j<J

The function 1 is unique and satisfies the estimate

(4.3) 1%]x20) < CllullL(q)-

Proof. Step 1. Uniqueness. Clearly, the uniqueness of the function v will
follow from the characterization of the kernel KZ(Q) given in Proposition 3.8. Suppose
that 1 = 1, — b, where 1, and 1), satisfy (4.2), thus 1 belongs to K2(2) and from
the last properties in (4.2), we deduce that ¥ = 0.

Step 2. Necessary conditions. Let us prove that (4.2) implies (4.1). It is obvious
that if w = curl then divu = 0 in . Since ¥» x n = 0 on I'p then due to Lemma
3.16, we have u-n = 0 on I'p. For 0 < ¢ < Lp, let u, be a function of C°°(Q2) which is
equal to 1 in the neighborhood of Ff\, and vanishes in the neighborhood of I'}} where
0 <m < Ly and ¢ # m and in the neighborhood of I'p. Proceeding as in the proof
of Lemma 3.5 [2], we have

(u - n, 1>1‘§"v = (curl (o) - 1, 1) oo (py e pivery = /Qdiv curl(ptp) de = 0.

Step 3. Existence. We know that there exists (see Lemma 3.5 in [2]) ¢, € H'(Q)
such that u = curl, and divep, = 0 in Q. Let x € H'(Q2) such that

0
Ax=0 in Q, x=0 on I'p and a—z:@bo-n on I'y.

Setting now ¥, = ¥, — Vx, then curly; = v and divep; =0 in Q with ¢, - n =0
on I'y. We define the bilinear form af(.,.) as

a(g, ) = / curl€ - curl pdzx.
Q
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20 CHERIF AMROUCHE, IMANE BOUSSETOUAN

From (3.17), the bilinear form « is coercive on \N/'%(Q) and the following problem:

Find &€ \7(2)((2) such that for any ¢ € \7(2)((2),

(4.4) / curl¢ - curl p dr = / P, - curlp dr — / curly, - pdr
Q @ ¢

admits a unique solution. Next, we want to extend (4.4) to any test function in X%(Q)

Find &€ \78 () such that for any ¢ € )Nig(Q),
(4.5) / curl{ - curlpdr = / P, - curlpdr — / curly, - p dx.
Q Q Q

Indeed, it is easy to check that any solution of (4.5) also solves (4.4). On the other
side, let & € VZ(Q) solution of (4.4) and ¢ € X3(2). Then, there exists a unique
0 € H'(Q) satisfying

(4.6) Af=dive in Q 6=0 on I'y and g—szo on I'p.
We set

Ly
(4.7) e=¢—V0—> ((¢—Vb)-n,1)n Vs.

=1

Therefore ¢ € \78 (€2), and we observe then that
/ curl€ - curl pdx = / curlé - curl pdx = / Y, - curlpdx — / curlvy, - pdx
Q Q Q Q

= / P, - curl pdr — / curlvy, - pdz,
Q Q
where we observe that
(4.8) / curly, - Vldr = (u-n,0)p =0
Q

sinceu-n=0onI'p and # =0 on I'y and thanks to (4.1)

Ly
/ curltp, - Vspdr = (u-n,sp)p, = Z se{u-n, 1>F§v =0.
Q =1

From (4.5), we deduce that curlcurl€ = 0 in © and (curlé — ;) x n =0 on I'p.
It follows that the function

(4.9) ¢=J—ZZ(L1D<1Z%,1>Z

+ % <'7""71>Fe ) grad ¢,

D

with ¢ = 1, — curl ¢ satisfies the properties (4.2) of Theorem 4.1. Finally, it is easy
to get the estimate (4.3). O

Remark 4.2. If Qs of class Ct1, the vector potential ¥ belongs to H!(Q). Indeed,
z =curl¢ € L?(Q), divz =0, curlz = 0 in Q and 2 x n = 1, x n on I'p. Since
&€xn =0onTy wehave z-n = 0 on I'y which implies that curl £ belongs to H!(Q).
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We consider the following space
WL(©) = {v e XJ(Q), divo=0in @, (v-n, 1)y =0,1<j<J

and <”'"a1>1“§\,:07 0§£§LN}.

The following theorem, which is an extension of Theorem 3.17 of [2] when I' v # 0,
consists on the existence and the uniqueness of a vector potential when 9% is included
in FD .

THEOREM 4.3. Assume that Q is Lipschitz and 9% C T'p. A function u € L2(£2)
satisfies

divu=0 in Q w-n=0 on Ip,
(4.10) (w-n,l)p, =0, 0<¢< Ly,
(u-n,1>zj:0, 1<j<J,

if and only if there exists a vector potential 1 € X2(2) such that

u=curly, divyy=0 in Q,
(4.11) PYpxn=0 on I'p and ¥-n=0 on Iy,
(-m, 1) =0, 0<E< Lp.

This function v is unique and it satisfies

l¥lx2) < CllullL2o)-

Proof. Step 1. Uniqueness. The uniqueness of the vector potential v is a
consequence of the characterization of the kernel KZ(Q) given in Proposition 3.10.

Step 2. Necessary conditions. As in Step 2 of the proof of Theorem 4.1, if
satisfies (4.11), we check that u = curl satisfies (4.10). Clearly, the fluxes over I'}
are equal to zero and by Lemma 3.16, curlt-n = 0 on I'p. Hence curl v satisfies the
assumptions of Lemma 3.7 where Iy is replaced by I'p and then curl-n € [H% =)
for any 1 < 5 < J. Moreover, we have

Vo € D(Q), YueL*(Z;), (curly-n, u)s = (graduxn, )y .
By choosing p =1, we get
<CllI'l(p "n, 1>§]j =0,1<5< Ju

and by the density of D(X;) in [H2(Z;)]', this last relation holds for ¢ = 1, which
proves the last equality of (4.10).
Step 3. Existence. As in Step 3 of the proof of Theorem 4.1, we set ¥; = ¥, — Vx

and we consider the same bilinear form a which is coercive on W%(Q) thanks to (3.18.
Consequently, the following problem

Find &€ W%(Q) such that for any ¢ € W%(Q),

(4.12) / curl¢ - curl p dz = / P, -curlpdr — / curly - pdz,
Q @ “
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admits a unique solution. We will now extend (4.12) to any test function in i%(ﬂ)

Find &€ VV%(Q) such that for any ¢ € )~((2)(Q),

(4.13) / curl¢ - curl pdz = / Y, - curlpdr — / curle - pdz.
0 Q Q

Indeed, it is easy to check that any solution of (4.13) also solves (4.12). On the other
side, let &€ € WZ(Q) solution of (4.12) and ¢ € X3(£2). Setting @ = ¢ — V6 with 0
defined in (4.6), we verify easily that the following function

X1 1 —
w1 P 1(LN<so~n,1>zj+J<so~n,1>rgv)grads§

=1 j=

belongs to W%(Q) and as in the proof of Theorem 4.1 we have

/curl£~curl<pdx:/'z/)(]-curlcpdx—/curl1,l:0~¢pdx.
Q Q Q

It follows from this equality that the function

Lp
P = —curlé - ) ((4; —curld) -n, 1) Vg
=1

belongs to X?2(£2) and we can verify that 1 satisfies the properties (4.11) of Theorem
4.3. ]

Remark 4.4. As previously, if  is of class C1'! then the obtained vector potential
belongs to H!(Q).

4.2. Other potentials. In this subsection, we turn our attention to another
kind of vector potentials. Indeed, we assume that divu = 0 in €2 and we look for the
conditions to impose on u such that w = curl in 2 and ¥ = 0 on a part of the
boundary. As previously, we consider the case where 0% is included in I'y or in I'p.
In the next, we require the following preliminaries.

We define the space

H?(div, A; Q) = {v € H*(div, Q); A(divw) € L*(Q)},

endowed with the scalar product

((w,v)) 2 (@iv.a:0) = / u-vdr + / (divu)(divv) dx —|—/ A(div w)A(div v) dz,
Q Q Q

which is a Hilbert space.
LEMMA 4.5. Assume that Q is Lipschitz. Then
D(Q) s dense in the space H?(div, A; Q).
Proof. Let { € [H2(diV7A;Q)]/ such that for any v € D(Q), (¢,v) = 0. Since

H?(div, A; Q) is a Hilbert space, we can associate to £ a function f in H?(div, A; Q)
such that for any v € H?(div, A;Q), we have

(L, v) = /Qf~vdx+/g(divf)(divv) d£C+/QA(diV FA(divv) dz.
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We set now F' = div f, and G = AF and we denote by ]N‘, F and g the extensions
of f, F and G respectively to R3. Assume now that £ = 0 in D(Q), then for any
@ € D(Q2), we have

}prr/ ﬁdivgoJr/ GAdiv =0,
R3 R3 R3
which means that

f=V(F+AG) in R

Since f € L2(R3) and VF € H™* '(R%) then V(AG) € H1(R3) and AG € L2(R?).
As G € L2(R?), we deduce that G € H2(R3) and thus G € H?2 (). So there exists
Yr in D(Q) such that 1, — G in H(Q). Furthermore, since AG = AG, we have
F+AGe H'(R3). In other words,

F+ AG € Hj(Q).

Then, for any v in H?(div, A; Q) we have
(E,'v>:/f-vdx+/Fdivvdx+ lim [ ¢pAdivvdx
Q —oo /o
:/f vdx + Fdlvvdx—i— hm (Avy)div v da
) k=0 Jo
:/f-vda:+/(F+AG)divvdx
Q )
:/f-vdm—/V(F—i—AG)-vdac:O.
Q Q

This ends the proof. 0
LEMMA 4.6. Let v € H2(div, A, Q).
!/
1) Then, 0, (dive) € {HgéQ(Ej)} for any 1 < j < J and we have the following

Green’s formula for any r € H?(Q°) such that r = 9,r = 0 on T’ and [O,r]x, = 0 for
any 1 < k< J:

J

(4.15) / rA(div ) dz — /o(div Y)Arde = (On(divep), [Me)y, -

k=1

ii) Moreover the following Green’s formula holds for any r € H?(2°) such that 0,,r = 0
on T and [Opr]r =0 for any 1 <k < J:

/O rA(divp) do — /O(diV'l,b)Ardx = (Op(divep),r)p +
(4.16)

J
+Z W (divap), [T]k)s, -
k=1

Proof. i) Let p € H/?(S,), then there exists ¢ € H(€2°) such that

[Ple = pdjk, [Onple =0 forallk=1,...,J and ¢=0,0=0 on TI.
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24 CHERIF AMROUCHE, IMANE BOUSSETOUAN
Furthermore, it satisfies
||90HH2(Q°) < C||M||Hg({2(2j).
Let ¥ € D(Q2). Then, the Green’s formula gives
(4.17) / eA(divep) de — / (divep)Apdr = (On(divep), p)y;,
Therefore
[ (Ou v ). ), | < Ol o 196 e 2
. . 3/2 !

which proves that d,(div)|s,; € {Hoo (Zj)} and

[[0n (div )| [m3f2s))] < Cllllmz(div,a:0)-
We deduce from the density of D(Q) in H?(div, A;Q), that the last inequality holds

for any 1 in H?(div, A; Q) and we get the formula (4.17). Finally, by an adequate
partition of unity, we obtain the required formula (4.15).

ii) As a consequence, using the density of D() in H?(div, A; Q), we deduce now the
following Green’s formula: for any r» € H%(°) such that d,,r = 0 on I and [0,7], = 0
for any 1 < k < J and for any ¥ € H?(div, A; Q):
/ rA(div) do — / (diveyp)Ardr = (On(divep), r)p +
(4.18)
J
+ Z (divp), [rlk)s, -
k=1
Observe that the regularity C'! of the domain  implies that

O (divep) € H=3/2(T).

This finishes the proof. 0
Let us define the kernel

B(©) - {

and the space ©%(Q°) by

w € WHP(Q); div(Aw) =0, curlw =0 in Q,
w=0onTp, w-n=0and d,(divw)=0on Ty [’

02(0°) — re H*(Q%); rlpg =0, 7[ry =const, 1 <m < Lp
Q%) = [r]j:const, [é)nr]j:()’lng(L 377;:0 on T

Remark 4.7. Suppose that
r e H?(Q°); [r]; = const and [Onr]; =0 foranyl<j<.J.

Since for any 1 < j < J, we have [Vr x n]; = 0 then [Vr]; = 0, which means that
gradr € H' (Q).
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The next proposition states the characterization of the kernel BZ(Q) when 9% is
included in I'p.

PROPOSITION 4.8. If ¥ C T'y, the dimension of the space B3(Q) is equal to
Lp x J and it is spanned by the functions grad Xg’ 1<j<Jandl <¢ < Lp, where
each X? is the unique solution in H?(2°) of the problem

AQX; =0 in Q°
s
%:Z—O on I, 9,(Ax§)=0 on Ty
XJ|F0 =0, Xxj |1“m =const, 1<m<Lp,
[X]} = const, [3,1)(]] [Axﬂk = [5‘n(Axﬁ)}k =0, 1<k<J,
<(9 (AXJ) > kzéjk, 1<k <,
(On (AX]), >FD =—-1 and <3n(AX§)a 1>F$‘ =6, 1<m<Lp.

(4.19)

i) Moreover if Q is of class C*1, then g/r\a_laxﬁ € H2(Q).
Proof. Step 1. Note that ©2(°) is a closed subspace of H2(2°). Then from
Lax Milgram theorem the problem
Find Xﬁ € ©%(Q°) such that

(4.20) Vr € ©2(Q°), / AxSArde = —Tr],
QO

j _T‘F‘fa

admits a unique solution. Moreover, for any r € D(2), we have

<divA(g/r\éa Xf),r> =— A div (g/r\a_la Xf)Ar de = — A AXZAT‘ dx =0,

in other words div A(g/r;i X?) =01in Q and thus AQ)(ﬁ =0in Q°.

Step 2. It remains to show the properties concerning the jumps of Axf and Bn(AXg)
over X; and those concerning the fluxes. Taking r € HZ(12), then

0—/ Axemdx_—z<[a (AxH)]y > +§J:< [Ax], nr>

k=1 k=1 B

Consequently
[0n(AXD)], = [AXS], =0, 1<k<J

Taking now r € H?(Q) with r = 0 on I'p and 9,7 = 0 on I' and Green’s formula
leads to

0= AXEAT dr = — <8nAxf, T>FN ,
QO
i.e 8nAxﬁ =0onI'y.
Choosing now r € H2(Q2) N ©2(Q°), we deduce that

Lp

(4.21) D g (0n NG )y = 7y,

m=1
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and then

“ —

Since div A(g/r\z;i Xf) =0 in 2 then <6nAX§7 1>F0 = —1. Observe now that for any
D

r € ©2(Q°), we have from Lemma 4.6

Lp J
D Ty (O, D + D Ik (nAXG 1)y, = P T[]
m=1 k=1

Then due to (4.22), we have
J
¢

Y [k {On xS 1)y, =[5

k=1
We finally infer that <8nAXg, 1>2k = k-
Step 3. It is obvious that any solution of (4.19) also solves (4.20).
Step 4. It is readily checked that the functions gfrﬁxﬁ are linearly independent

for any 1 < j < Jand 1 < ¢ < Lp. To prove that they span B3(2), we consider
w € B3(Q) and the function

Lp J
1 . 1 . ——
u=w-— Z Z <LD (On(divw), 1)y + 7 (On (divw), 1)1%) grad Xf
=1 j=1

remains in B3(Q2) and satisfies <8n(divu),1>Fg = 0 for any 1 < m < Lp and
(On (divu), 1>27 =0forany 1 <j < J.

As curlu = 0 in Q°, there exists a function ¢ € H?(Q°) such that u = Vq in
Q°, with A%¢ = 0 in Q° since A(divu) = 0 in Q. Since u € H*(Q) with w = 0 on
I'p and w-n = 0 on I'y, we deduce that 0, = 0 on I' and ¢ = const on FZD for
any 0 < £ < Lp. Moreover, we can take the constant equal to zero on I‘%. Now, we
choose the exten/si\cgl/l of Vg denoted g/I';:i q such that g/rza g=uin Q. Ascurlu =0
in © then curlgrad ¢ = 0 and thus the jump of ¢ is zero almost everyw/\hge across
each cut 3, (see Lemma 3.11 [2]), which means that ¢ € H(Q) and u = grad ¢ = Vg
in Q. As u belongs to H(€2), we infer that ¢ € H?(Q) and that A%2q = 0 in Q due
to the fact that A(divu) = 0 in 2. Since dpg = 0 on I', 9,(A¢) = 0 on I'y and
q = const on 'Y, for any 0 < ¢ < Lp, we have by using the Green formula

0= /Q |Aq|? da — (AG, 0nd) gr—1/2(0)x 1721y + (On DG @) gr-s/2(0)x r3r2(r)

Lp
:/ AqPdr+ " glry (9nAq. 1)y -
Q2 m=1
As (O (divu), 1>Fg = (OnAq, 1>Fg' =0 for any 1 < m < Lp, we deduce that Ag =0
in  which means that ¢ is constant because 0,9 = 0 on I' and consequently u is
equal to zero.
To finish the proof, the point ii) is an immediate consequence of Corollary 3.5. O
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THEOREM 4.9. Assume that X C Ty, a function u € L?(Q) satisfies

493 divu=0 in Q w-n=0 on Ip,
(4.23) (u-n,1>F§V:0, 0</¢< Ly,

if and only if there exists a vector potential p € HY(Q) such that

u=curly and div(Ay)=0 in £,

=0 on I'p and ¢ -n=0,(divey)=0 on Iy,
(4.24) (On(divep), 1), =0, 0<¢< Lp,

(Ou(divep) 1)y, =0, 1<j<J.

This function ¥ is unique.

Remark 4.10. Since ¥ € H*(Q) and div (Av) = 0 in Q, then by using Lemma
4.6, the quantities (0, (div 1), 1>F[D and (0, (div ), 1>Zj make sense.

Proof. The uniqueness is deduced from the characterization of the kernel BZ((2)
and the necessary conditions are proved in the same way as in the proof of Theorem
4.1.

Let us consider a function u € L?({2) satisfying (4.23) to which we associate the vector
potential ¥ defined in Theorem 4.1 that we will denote hereinafter by 1. We consider
now the following problem

A2X=0 in Q,
A=0 on T'p and 9,(AX) =0 on Ty,
g—zszﬂn on T.

This problem admits a solution in H2(2) since 9 - n € H2(T) and the following
function

Lp
~ 1 1 —
== A+ 3 (7 @nlAn) s, + 5 (0a(80. Dy ) Erad
6=1 j=1
satisfies the properties (4.24) of Theorem 4.9. 1]

We define the space ©2() by

0% (Q) = {7’ € HZ(Q);r|F% =0, 7|rp = const, 1 <m < Lp, g—;; =0 on F}.

Let us consider in the next proposition the dimension of the kernel BZ(2) in the case
where 0¥ is included in I'p.

PROPOSITION 4.11. If % C T'p, the dimension of the space B3(Q) is equal to
Lp and it is spanned by the function Vxe, 1 < ¢ < Lp where each x, is the unique
solution in H?(QQ), of the problem

AZxy, =0 in £,
495 % =0 on I, On(Axe)=0 on Ty,
(4.25) Xg|F0D =0 and x¢|rp =const, 1<m<Lp,

(On (A x0), 1>F0D =—-1 and (On(Axe), 1>F,5 =0m, 1<m<Lp.
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Proof. We look for x, € ©2(Q) such that
(4.26) Vr € ©%(Q), / AxeArdz = —r|pe .
Q
This problem admits a unique solution because the form

a(xg,r):/Angrdz
Q

is coercive on ©2(Q) according to the fact that ||7|| g2(q) < C||Ar||12(q) when dpr = 0

on I'. Moreover, due to the density of D(2) in the space of functions which belong to
H?(Q) and their bi-laplacian operator belongs to L?(£2), we can prove the following
Green’s formula, for any x, and r in ©2(Q) such that A%y, € L*(Q)

Lp

/(Azxg)rd:c:/A)@Ard:r+2r|rfj (Gn(AXg),DF%.
Q@ @ =1

It is readily checked that if x, € ©%(Q) satisfies (4.26) then y, is solution of (4.25).
By taking 7 € ©2(£2) and by using Green’s formula and the fact that A%y, = 0 in €,
we deduce that

<8nAX@7 T>F = _T‘FZD’

Hence, 0,,Axy =0 on I'y.
Furthermore, the functions Vy, are linearly independent for any 1 < ¢ < Lp.
One has to prove that they span BZ(Q). Let w € B%() and consider the function

Lp
uU=w— Z (On (divw), 1)1% V xe.
=1

which remains in B§(Q2) and satisfies < O (divu),1 >pmn= 0 for any 1 < m < Lp.
We follow the same approach as in the fourth step of the proof of Proposition 4.8 to
show that u = 0 in . Indeed, there exists a function ¢ € H?(2°) such that u = Vgq
in Q° due to the fact that curlu = 0 in Q and thus in °. The remainder of the
proof is exactly the same because A%2¢ = 0 in Q. 0

The following theorem is an extension of Theorem 3.20 of [2] when 'y # 0.
THEOREM 4.12. If ¥ C T'p, a function u € L%(Q) satisfies

divu=0 in Q w-n=0 on Ip,
(427) <’U/"I'L71>F§V :0, OSZSLN7
<u~n71>27207 1<j<J,

if and only if there exists a vector potential p € H(Q) such that
u=curly, div(Ay)=0 in Q,

(4.28) =0 on I'p and ¥ -n=0,(divyy)=0 on Ty,
(0u(div ), 1)y =0, 0L Lp.

This function 1 is unique.
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Proof. The uniqueness of the vector potential is deduced from the characterization
of the kernel BZ(Q) and the necessary conditions are proved in the same way as in the
proof of Theorem 4.3. Note that a function u satisfies (4.27) if and only if there exists
a unique vector potential 1 defined in Theorem 4.3 that we will denote hereinafter
by 1. We consider now the following problem

A2X=0 in Q,
A=0 on T'p and 9,(AN) =0 on Ty,
% =1-n on T.

This problem admits a solution in H?(Q2) and the following function

Lp
Y =1%—-VA+ Z (On(AX), 1>FZD Vxe
=1
satisfies the properties (4.28) of Theorem 4.12. |

The next result is an extension of Theorem 3.20 in [2] when I'p # (. We skip the
proof in this paper.

THEOREM 4.13. If ¥ C 'y, a function u € L2(Q2) satisfies

divu=0 in Q w-n=0 on I'pUTly,

(4.29) (u-n, 1>2j =0, 0<j<J,

if and only if there exists a vector potential p € H(Q) such that

u=curly and div(Ayp)=0 in Q,

PYxn=0 on I'p and ¥ =0 on Ty,
(4.30) (Ou(divep), 1) =0, 0< (< Lp,

<8n(div¢)71>11§v:0, 0< < Ly.

4.3. LP-theory. In this subsection, we investigate the LP-theory of the vector
potentials obtained in Theorems 4.1 and 4.3 for any 1 < p < co. The general case
p # 2 is not as easy as the case p = 2 and requires extra work. The following theorems
are about the case where p > 2 which is a straightforward consequence of Theorems
4.1 and 4.3.

THEOREM 4.14. If 0% is included in T'y and u € LP(Q) with p > 2 satisfies (4.1),
then the vector potential ¥ given in Theorem /4.1 belongs to WP(Q) and satisfies the
following estimate

[llwrr ) < Cllullue o).

Proof. The proof of this theorem is immediately deduced from Theorem 4.1 and
Theorem 3.2. 0

In the same way, we generalize the results of Theorem 4.3 for any p > 2

THEOREM 4.15. If 0% is included in T'p and w € LP(Q) with p > 2 satisfies
(4.10), then the wector potential v given in Theorem /.3 belongs to W1P(Q) and
satisfies the following estimate

[P llwr @) < Cllullne@)-

We will later on see how to extend the previous results to the case p < 2 in
Theorems 4.18 and 4.21. The major task consists on proving two Inf-Sup conditions.
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804 LEMMA 4.16. If 02 C T'y, there exists a constant 5 > 0 depending only on 2
805 and p, such that the following Inf-Sup condition holds

1¢ - curl
806 (4.31) inf  sup | Jo curlé - curl |

oevr @ eevro) [Elwrr@llellwrr @)
©F0 g4

> 8.

Proof. We use here the following Helmholtz decomposition: every g € L?(2) can
be decomposed as g = Vyx + z where z € LP(Q) with divz = 0 and x belongs to
WLP(Q) with x = 0 on I'p and (Vx — g) - n on I'y. Furthermore, it satisfies the
estimate

IVXlr @) + [2llLr @) < Cliglle @)

807 Let ¢ be a function of \N/'g,(Q). From (3.17) of Remark 3.12, we deduce that

curlp-g
808 ||‘P||w1m Q) = CHCUI'I‘P”LP @ =C sup M
geL?(Q) ”gHLP(Q)
g#0
809  We set
Lp J 1 o
810 z-z—ZZ( (z-m,1)5 +J<z.n,1>rg>gradq§.
(=1 j=1

811 Thus z € LP(2), divz = 0 in Q, and satisfies Z-n =0 on 'y, (Z- n,1>F1Dn, =0, for
812 any 1 <m < Lp and (Z - n, 1>z:j =0, for any 1 < j < J. Due to Theorem 4.15 where

813 I'p and I'y are switched (see Theorem 4.3), there exists a vector potential ¥ € VS(Q)
814 with p > 2 such that Z = curly and satisfying (4.11) where I'p and T’y are switched.
815 This implies that

816 /curlga~gd:c:/curl<p~zdx:/curltp~5dx,
Q Q Q

817 because fQ curly - Vydz = fQ curlp - g/;eiri qf dx = 0. Furthermore, we have

Lp J
1
G Bl < el + 30D |7 (2 om g+ G2y | g e
=1 j=1
Lp
819 <zl +C | D I (=z- nlrz\—&-Z\z n, 1)y |
=1 j=1
820 < Clzllwr o) < CllgllLe@)-
821 We can write now
. | [ curle - g §C|fgiurlcp-2’ _ | [, curlep - curly|
lgllLe (@) IZllLr ) [curl /Ly (o)

823 But from (3.17) of Remark 3.12, we have that ||1||w1.r(q) = [[curl9||pr(q). Finally

| [ curle - g| - C’fgcurlgo~cur11,b|

824 <
”g”LP(Q) ||"7Z’HWLP(Q)
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Therefore, we obtain the required Inf-Sup condition for p > 2. By a symmetry
argument, it holds also for p < 2. O

4.4. First elliptic problem with mixed boundary conditions. The role of
the first Inf-Sup condition (4.31) is illustrated in the next proposition as it is used to
solve the first elliptic problem.

PROPOSITION 4.17. Assume that 0% C 'y and v belongs to LP(Q). Then the
following problem

—A€ =curlv and divEé=0 in

(4.32)¢ £ n=0, (curlé-v)xm=0 on I'p and £xm=0 on Ty,
<€'nal>r‘§v:0a 1S£SLN7

has a unique solution in WYP(Q) and satisfies

(4.33) l€llwrr o) < CllvllLe)-

Proof. i) We consider the following problem:

Find &€ VE(Q) such that for any ¢ € \N/'g/(Q),
4.34
( ) curl{ - curlpdr = [ v-curlpdsr.
Q Q
Using the Inf-Sup condition (4.31), Problem (4.34) admits a unique solution & €
VE(Q) — WP(Q). Next, we want to extend (4.34) to any test function in X5 ().
Let ¢ € )~(€ () and x € WHP(Q) be the unique solution of the following mixed
problem

0
Ax=dive in 2, x=0 on I'y and 8%20 on I'p.
We set
Ly
(4.35) e=¢-Vx—) ((¢—-Vx)-n 1) Vs
=1

Note that @ belongs to \Nfg,(Q) and curl@ = curl ¢, so Problem (4.34) is equivalent
to

Find &€ VE(Q) such that for any ¢ € )2’0)/ (Q),

4.36
( ) curl{ -curlpdr = | v-curledz.

Q Q

ii) Now, we will give the interpretation of Problem (4.36). More precisely, we will
prove that Problem (4.36) is equivalent to find & € WP(Q) solution of (4.32). By
choosing ¢ € D(QQ), we deduce that —A& = curlwv in Q. Moreover, because & €
\78(9) then divé = 0 in Q and it satisfies € xn = 0on I'y, € -n = 0 on I'p,
(&-n, 1>F§‘v = 0 forany 1 < ¢ < Ly. The last point to prove is that (curlé—v)xn =0
on I'p. The function z = curl £ —v belongs to )ZP(Q) and curl z = 0 in 2. Therefore,
for any ¢ € )28/(9) we have

/ z-curlpdr — (z x n,go)w,l/p’p(r)xwl/p’p/(r) = / curlz - pdz = 0.
Q Q
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Using (4.36), we deduce that
Yo € X5 (), (zxn, PIW-1/r(Dp)xWi/p! (1) = 0
Let p any element of W1=1/7"#' (I'p). So, there exists ¢ of Wl’p/(Q) such that

¢ =pn.onl'p and ¢ = 0 on I'y. It is obvious that ¢ belongs to 5(8((2) and it
satisfies

(Zxn,p)yp, =(zxnp)p, =(zxne)p, =0.
This implies that z x n = 0 on I'p, which is the required property.
iii) Let B € £(VE(), (\78/ (©))’) be the following operator:

Vih € VE(Q), Ve € VE(Q), (B, ) = / curl®y - curl p dz.
Q
Thanks to (4.31), the operator B is an isomorphism from V() into (\N/'g/(Q))’ and

[¥llxr () = IBYl g0 )

Hence, since £ is solution of Problem (4.32), we have

/v-curlcpdx
Q

B¢,
HBfSH(\?g/(Q)y = sup ||< ||~(P>| = : lell%
PeVE (Q) Plixz ) PeVE (Q) ®lixz o)
®#0 »#0
Therefore
||B£H(Vg’(g))/ < ||'UHLP(Q)
Thus the estimate (4.33) holds. |

We are now in position to extend Theorem 4.14 to the case 1 < p < 2. In fact,
the proof of the following theorem is given for any 1 < p < oo.

THEOREM 4.18. Suppose that 0% is included in T'y and u € LP(Q) satisfies (4.1)
with 1 < p < 0o. Then there exists a unique vector potential 1p € WLP(Q) satisfying
(4.2) with the estimate

(4.37) [¥]lwrr ) < CllullLe )

Proof. Step 1. Uniqueness. Let ¢, and ¥, be two vector potentials and
1 = 1p; — 5. Then ¥ belongs to K§(Q2) and (¢ - n, 1>Fg =0forany 1 <m < Lp
and (¢ - n, 1>Zj =0 for any 1 < j < J. Hence, from the characterization of the kernel
K7 () we deduce that ¢ = 0.

Step 2. Existence. Let ¢, € W?(Q) such that u = curl®, and divep, = 0 in Q
(see Lemma 4.1 of [5]). Let x € W1P(Q) such that

0
Ax=0 in ©, x=0 on I'p and 8%:1/}0'” on Iy,
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with
Ixllwir) < CllYg - nllw-1/0my) < ClltbollLeo)-

Setting now ¥, = ¢, — Vy, then curly; = v and divep; =0 in Q with ¢, -n =0
on I'y. Due to the Inf-Sup condition (4.31), the following problem

Find &€ VE(Q) such that for any ¢ € \Nfg' (Q),

(4.38) / curl¢ - curl pdz = / P, - curlpdr — / curlep - pdr,
o Q Q

admits a unique solution in VZ(Q) and this solution belongs to W?(Q). As previ-
ously in the proof of Theorem 4.1, Problem (4.38) is equivalent to

Find &€ VE(Q) such that for any ¢ € )NCSI(Q),

4.
(4.39) /curl£~curl<pdx:/1,b0~curlcpd:cf/curll/ﬁo-cpdx.
Q Q Q

The rest of the proof is similar to that of Theorem 4.1. The required vector poten-
tial 9 given by (4.9) belongs to W1?(2) since curl§, 1, and grad qf € Whr(Q).
Furthermore, it satisfies the estimate (4.37). 0

In the case where 0¥ C I'p, we also need to establish an Inf-Sup condition in
order to solve the second elliptic problem.

LEMMA 4.19. If 0¥ C T'p, there exists a constant 5 > 0 depending only on
and p, such that the following Inf-Sup condition holds

/ curlg - curlga‘
(4.40) inf sup {

‘Fewg(ﬂ) 56‘7‘?;(9) H€”Wlp(9) ”(p”Wl,p’(Q)
®7#0 €40

=B

Proof. We use here the same Helmholtz decomposition as in the proof of Lemma
4.16. Let ¢ be a function of W%, (Q). From (3.18) of Remark 3.12, we deduce that

/ curl<p~g‘
e 1

Il @ < Clleurl gl q) =C  sup

geLl?(Q) ”gHLP(Q)
g7#0
We set
Lp
E:z—Z(z-n,l)FeDng.
(=1

Thus z € LP(Q)), divz = 0 in Q, and satisfies Z-n =0 on 'y and (Z - n, 1>Fg =0,
for any 1 < m < Lp. Due tE)VTheorem 4.18 when I'p and I'y are switched, there
exists a vector potential 1 € W%,(Q) such that Z = curl. This implies that

/curlc,o~gdx:/curlc,o-zd:r:/curlgofz’dz7
Q Q Q

because [, curly - Vxdz = [, curly - Vgydz = 0. The rest of the proof is similar
to that of Lemma 4.16. 0
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4.5. Second elliptic problem with mixed boundary conditions.

PROPOSITION 4.20. Assume that 0¥ C I'p and v belongs to LP(2). Then the
following problem

—Ag =curlv and divE€=0 in
(441)¢ € n=0, (curlé-v)xn=0 on I'p and £xnm=0 on Iy,
<€'n51>r‘§v:03 1S€§LN and <£'nal>2j:07 ISJS‘]’

has a unique solution in W1P(Q) and satisfies

(4.42) [€lwrr@) < CllvllLe)-

Proof. i) We consider the following problem:

Find €€ Wg(Q) such that for any ¢ € Wg(ﬁ),

4.43
( ) curl¢ - curlpdr = | v-curlpdz.
Q Q

Using the Inf-Sup condition (4.40), Problem (4.43) admits a unique solution & €

Wg () — WLP(Q). As in Theorem 4.3, we show that Problem (4.43) is equivalent
to the following one

Find €€ W’Z’(Q) such that for any ¢ € Xg/(Q),

4.44
( ) curlé -curlpdr = | v-curlpdz.
Q Q

ii) By taking ¢ € D(Q), we deduce that —A& = curl v. It is clear that since
&€ € WE(Q) then divé = 0 in Q and it satisfies € xn =0onT'n, £€-m =0 on I'p,
<€'n,1>l—w,§v =0forany 1 <{¢{< Ly and <£-n,1>2j =0 for any 1 < j < J. To prove

that (curl€ —v) x n =0 on I'p and that the estimate (4.42) holds, we use the same
argument as in Proposition 4.17. O

By using the existence and uniqueness result of the second elliptic problem with
mixed boundary conditions, we prove the existence and uniqueness of the following
vector potential for any 1 < p < oo

THEOREM 4.21. Suppose that 0% is included in T'p and u € LP(Q) satisfies
(4.10). Then there ezists a unique vector potential ¥ € WYP(Q) satisfying (4.11)
and the estimates

(4.45) 1Y llwrr@) < Cllufueg)-

Proof. Step 1. Uniqueness. It is based on the characterization of the kernel
K? () when 90X C T'p.

Step 2. Existence. Setting again ¢, = 1, — Vx with the same 1, and x as in the
proof of Theorem 4.1. Due to the Inf-Sup condition (4.40), the following problem

Find ¢ ¢ Wg(ﬂ) such that for any ¢ € \7\7’; (Q),
4.46
( ) /curl£~curl<pdx:/'z,boocurlcpdxf/curl1,[10~4pdx,
Q Q Q
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admits a unique solution in W’é(Q) and this solution belongs to WP(£). Next, as
previously Problem (4.46) is equivalent to the following one

Find €€ VV’E’(Q) such that for any ¢ € Xg' (Q),

4.47
( ) /curlf-curl(pdsr::/1/:0-curlcpdm—/curlipo-cpdx.
Q Q Q

Finally, the potential we take is given by

Lp
P =1, —curl€ — Z ((¢p; — curl§) - n, 1>FeD V g,
=1

and it satisfies the properties (4.11) together with the estimate (4.45). |

Remark 4.22. As we managed to generalize the first vector potentials for any
1 < p < oo, we can handle the LP theory of the less standard ones mentioned in
Theorems 4.9 and 4.12. We omit the proofs in this paper.

Remark 4.23. In some particular geometries, one part of 93 may be included in
I'p and the other part in I'y, the existence and uniqueness of vector potentials is still
an open question in this case.

5. Stokes problem. We consider the Stokes problem subjected to Navier-type
boundary condition on some part of the boundary and a pressure boundary condition
on the other part. Assume that 90X C I'p

—Au+Vr=f, divu=0 in Q,
uxn=0 w=my on [y,
(5) u-n=0, curluxn=hxn on Ip,
<u-n,1>F§V:0, 1<¢< Ly, <u~n,1>2j:O, 1< <J,

where f, h, my are given functions or distributions. Our aim is to prove the existence
and uniqueness of weak solutions of the system (S). To achieve this result, we solve
the following auxiliary problem where 0% C I'p:

_AE—f, divE=0 in Q
Exn=0 on Iy,
(S1) € n=0 curléxn=hxn on Ip,
(€-n.D)yp, =0, 1<(<Ly, (§-ml)y =0 1<j<J.

We define r(p) by

1 3
1 1/p—|—§. if p3>§
— = 1—¢ if p:§3
r(p) 1 if 1<p<3.

PROPOSITION 5.1. Assume that 0% C T'p. Let f e L"®P)(Q), divf =0, hxn €
W-VP2(Tp) satisfying the following compatibility conditions for any @ € KJ (Q):

(5.1) /Qf ~pdx+ (h xn, ‘P>W—1/p,p(rD)Xw1/p,p’(FD) =0,

(5.2) f -n=divp,(hxn) on TIp,
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where divr,, is the surface divergence onT'p. Then Problem (S1) has a unique solution
& € WHP(Q) satisfying the estimate

(5:3) 1€llwr (@) < C (Ifllurwi@) + 1A X nllw-1/eer,,) -

Furthermore, if Q is of class C>', f € LP(Q) and h x n € WI=V/PP(T'p), then &
belongs to W2P ().

Proof. i) Uniqueness. To prove the uniqueness of £, we take f =0 and h = 0
in (S1). Then the function z = curl € belongs to L?(£2) and

divz=0, curlz=0 in  and zxn=0 on I'p, z-n=0 on Iy.

This implies that z € K5(Q). Thus, we can write z as

Lp

z= Z (z-n, 1)FeD V.

=1
Since K5(2) € Wh4(Q) for any ¢ > 1, in particular z belongs to L*(Q2) and we have

Lp

2 5 _ _
/Q|z| da;—/Qz-curlﬁdx—Z(z-n,l)rlb/chrIE-ngdx—O,

{=1

which means that curl€ = 0. Then £ belongs to Rg(Q) As the fluxes of € on the
connected components of I'y and on the cuts ¥, with 1 < j < J, are equal to zero,
we conclude that & = 0 and this completes the uniqueness proof.

ii) Compatibility conditions. The weak formulation of (S7) is given as follow:
Find &€ WX(Q) such that for any ¢ € W% (Q),
(5.4) /curlﬁ-curlcpdx:/f-godx+(hxn,cp>FD.
Q Q

So the first compatibility condition (5.1) appears directly by taking ¢ € Rg/(ﬂ).
Setting z = curl g, it is clear that

Yo € W2’p'(Q); (curlz - n,p)p = —(zxn, Vo),

where < -,- >p,, denotes the duality product between W'/PP(T'p) and W—1/7¢ (T'p).
So since z = curl &, we have

<f : n7‘P>I‘D = - <h X naV¢>FD = <diVFD(h X n)7‘P>FD :

Hence f -n = divr, (h x n) in the sense of W~1=1/P?(T'p) (and also in the sense of
W " P/(T ).

iii) Existence. Using the Inf-Sup condition (4.40), we know that Problem (5.4)
admits a unique solution u € W(Q2) — W1?(Q). In order to extend (5.4) to any

test function in 5(8/ (€2), we use the same argument as in Proposition 4.20 which enable
us to prove that every solution of (5.4) also solves (S7).
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iv) Estimate. The estimate (5.3) is obtained by using the same tools as in Proposi-
tion 4.17.

v) Regularity. We set z = curl€. Hence z € LP(Q), curlz € L?(Q), divz =0
inQ, zxn=hxnonlpandz-n=0onTlyN. Dueto Corollary 3.4, z belongs
to WHP(Q). Since & € LP(Q), divé = 0 in Q, curl§ € WIP(Q), € xn =0on 'y
and £ -n = 0 on I'p, then according to Corollary 3.5, we deduce that & belongs to
W2P(Q). O

Remark 5.2. Assume that h x n = 0 on I'p and suppose that (5.1)-(5.2) hold.
Then we have f-n = 0 on I'p with <f'n’1>1“§\, = 0 for any 0 < ¢ < Ly and
(f-n, 1>2j =0 for any 1 < j < J (see the proof of Proposition 3.8). Then due to

Theorem 4.21, there exists a unique z € WH7)(Q) < LP(Q) such that f = curl 2,
divz = 0 in Q satisfying 2z xn = 0 on I'p and z-n = 0 on I'y. Moreover,
(z-n, 1>F% = 0 for any 0 < ¢ < Lp. Now, according to Theorem 4.18 where we

interchange I'p and Ty, there exists a unique & € W1P(Q) such that z = curl¢
and div€ = 0 in Q) satisfying € xn = 0 on I'y and £ - n = 0 on I'p. Moreover,
<E~n,1>F§V =0 for any 0 < /¢ < Ly and <£~n,1>2j =0 forany 1 < j < J, thus £ is
the unique solution of Problem (S7).

We state in the following theorem the existence and uniqueness of weak solutions
to Problem (S). Furthermore, we give more regularity properties to that solution,
which is the last main result of this work.

THEOREM 5.3. Assume that f € L"®P)(Q), hxn € W~1/PP(Tp), divp, (hxn) €
W) (T'p) and mo € Wlfﬁ’r(p)(FN) satisfying the compatibility condition for
any ¢ € Kg (Q)

65) [ fredi— [ mpndst hxn@lwosn s = O
N

Then Problem (S) has a unique solution (u, ) € WLP(Q) x WLr®)(Q) satisfying the
estimate

lullwre@) + I7llwire @) < C(”fHLT(P)(Q) +[[h X nllw-1/p0 )

(5.6) Flldiveg (B x w0l oo )

Furthermore, if Q is of class C*', f € LP(Q), h x n € W=VPP(T'p) and my €
W1=1/PP(Ty) then the solution (u, ) belongs to WP (Q)x WhP(Q) and the following
estimate holds

[ullwee @) + I7llwre@) < C(HfHLv(Q) + b x nllwi-1/ma(r,)
(5.7) + 7ollwr-1/s(en) )
Proof. i) To get the compatibility condition, we give the weak formulation of (5)
Find we€ Wg (©) such that for any ¢ € Wg(Q),

/curlu'curlcpdx—/wdivgodxz/f'apdx—l—
Q Q Q

(5.8) + (B X 1, @)1 /001 ) x W /08" (T ) —/F Top - nds.

N
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By taking ¢ € I~{g/ (Q), we deduce that (5.5) holds.
ii) Note that applying the divergence operator to the Stokes equation leads to

Ar=divf in Q.

Setting then 1 = curlu, we have

—Au=-curly in Q
and
—Au-n=curlyy -n=(f—-Vn) n.
So the pressure satisfies the following boundary conditions

(Vi—f)-n=divr,(hxn) on T'p, w=m on Iy.

We infer that the pressure can be found independently of the velocity field. We solve
now the following elliptic problem subjected to Dirichlet and Neumann boundary
conditions

(5.9) { Ar=divf in Q

(Vr—f) -n=divr,(hxn) on T'p, w=mp on Iy.
Let § € WHT(®)(Q) be the unique solution of

A0=0 in €,
f=m on I'y, 6=0 on Ip

and x € W (P)(Q) be the unique solution of
Ax=divf in Q,
(Vx—f)'n:dinD(hxn)—g—fL on I'p, x=0 on In.

Moreover 0 and x satisfy respectively the following estimates

H9||W1=T<P)(Q) < C||7T0||W1—ﬁ,r<p>

(Tn)

and

T (T L

+ ||d1VFD (h’ x n)llwfﬁ’r(p)(FD)).

Setting m = x + 6, we have
Ax=divf in Q,
(Vx—=f) n=divr,(hxn) on TI'p, x=0 on TIy.

This implies the existence and uniqueness of 7 € W17 (?)(Q) solution of (5.9) satisfying
the estimate

).

17l @) < CU Lo @+ 1m0l -t by T ldive, (Rxn)]

T
EORERN W@ TP (1)
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iii) Setting F = f — V, since the conditions (5.1)-(5.2) hold, we know from Proposi-
tion 5.1, that there exists a unique u € W1P(Q) satisfying —Au = F and divu = 0
nQuxn=0inly,u-n=0, curluxn=hxnonlp, <u~n,1>r§eV =0, for
any 0 </ < Ly, (u-n,1)5, =0, for any 1 < j < J. Moreover, we have the following
estimate ’

[ullwrr@) < C(I1F L) + b X nllw-1/000p))-

Hence the problem (S) admits a unique solution (u,7) € WhP(Q) x W1r(®)(Q) sat-
isfying the required estimate (5.6).

According to Proposition 5.1, we know that if € is of class C*!, f € LP(Q), h x n €
W1I=1/P2(Tp) and 1y € W'—1/PP(T'y) then u belongs to W2P?(Q) and 7 € WP ().
The estimate (5.7) is readily deduced. |

Remark 5.4. We also can consider the case where 0% C Iy in the Stokes problem
(S) which can be solved by using the first Inf-Sup condition and the first elliptic
problem.
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