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Abstract

This paper proposes novel Bayesian procedures for partially identified models when

the identified set is convex with a smooth boundary, whose support function is locally

smooth with respect to the data distribution. Using the posterior of the identified

set, we construct Bayesian credible sets for the identified set, the partially identified

parameter and their scalar transformations. These constructions, based on the support

function, benefit from several computationally attractive algorithms when the identified

set is convex, and are proved to have valid large sample frequentist coverages. These

results are based on a local linear expansion of the support function of the identified

set. We provide primitive conditions to verify such an expansion.

JEL Classification: C10, C11, C13
Key words: partial identification, Bayesian credible sets, Bernstein-von Mises theorem, sup-
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1 Introduction

Bayesian partial identification has emerged as an important area of econometrics. In this

paper, we propose a new Bayesian framework for set inferences with a focus on the asymptotic

properties of Bayesian credible sets (BCS) for partially identified models. Generally speaking,

the BCS is a set in the support of the posterior distribution such that the object of interest

lies inside it with a high posterior probability. Usual methods for constructing BCS, such as

the highest-posterior-density, would fail, due to the lack of a clear definition of the “posterior
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density of a set”. The problem is even more challenging when the set of interest belongs to

a multi-dimensional space.

We focus on convex identified sets with a smooth boundary, which means the identified

sets should be characterized by support functions that are smooth with respect to the data

generating process. Suppose the identified set of θ can be parameterized by a point-identified

nuisance parameter φ, so it can be denoted by Θ(φ). Its support function is defined as

Sφ(ν) := sup
θ∈Θ(φ)

θTν, ‖ν‖ = 1.

In addition to the convexity of the identified set, our main requirement is that the support

function is locally smooth with respect to the data distribution. More specifically, we require

the following “local linear approximation” (LLA) should be satisfied: there is a shrinking

neighborhood B of the true value φ0, and a continuous vector function A(ν) such that

uniformly in φ1, φ2 ∈ B,

sup
ν∈Sd

∣∣(Sφ1(ν)− Sφ2(ν))− A(ν)T (φ1 − φ2)
∣∣ = o(‖φ1 − φ2‖), as ‖φ1 − φ2‖ → 0 (1.1)

where Sd denotes the unit sphere in Rd. To understand the intuition from the frequentist

point of view, consider for example models characterized by moment inequalities:

EFm(X, θ) ≤ 0

where F denotes the underlying distribution of the data X, and EF denotes the expectation

operator with respect to F . Then (1.1) is essentially requiring that the support function of the

corresponding identified set should be smooth in F . Models satisfying (1.1) lead to interesting

implications. In such models, Kaido and Santos (2014) showed that semiparametric efficient

estimations can be achieved for the identified set.

We put a prior on Sφ(·) (and on Θ(φ)) via the prior on φ, obtain its posterior distribution,

and propose new algorithms to make inference about the identified set and partially identified

parameters, as well as inference for low-dimensional functionals. Large sample properties of

the proposed BCSs are also studied. We show that the Bayesian credible set for the identified

set has a correct frequentist coverage asymptotically. In particular, to construct a confidence

set for the partially identified parameter θ we use the posterior of the identified set instead

of the posterior of θ.

Our approach is built on the LLA condition (1.1). We give primitive conditions for the

LLA assumption in three cases:
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Case 1: the support function admits a closed-form and is first-order differentiable with

respect to φ. In this case, LLA can be directly verified by the first-order mean value theorem.

Case 2: θ is one-dimensional, or is a component of a multi-dimensional parameter. In

this case the identified set is a closed interval, but the identified set for the multi-dimensional

parameter may not be convex. Then the LLA can be verified directly on the parameter of

interest θ itself if the end-points of the identified set are differentiable functions of φ.

Case 3: the more general multi-dimensional case where the identified set is characterized

by (in)equalities:

Θ(φ) = {θ ∈ Θ : Ψi(θ, φ) ≤ 0 for i = 1, . . . , k1,

Ψi(θ, φ) = 0 for i = k1 + 1, . . . , k1 + k2}, (1.2)

where Θ denotes a vector space that contains the unknown set of interest and Ψi is a known

function of (θ, φ). This case is the most challenging. The LLA assumption can be verified

using either (i) the implicit function theorem, or (ii) the Lagrangian multiplier method. For

the implicit function theorem approach, we rely on the fact that the optimization defining the

support function is achieved on the “boundary”, that is, the support function is computed

based on only equality constraints and binding inequality constraints. This is the case

for most applications. For the Lagrange multiplier method, we require that the moment

equalities be linear and convex in θ. This approach is similar to Kaido and Santos (2014),

and we shall present it in the appendix.

We discuss in detail several specific examples where our assumptions and results apply.

These include: two-player entry games, one-dimensional partially identified models (as e.g.,

Imbens and Manski (2004)), estimating the Hansen-Jagannathan bound in asset pricing

(Hansen and Jagannathan, 1991, Chernozhukov, Kocatulum, and Menzel, 2015), missing

data due to nonresponses, and regression with interval outcomes. In particular, in the two-

player entry games example, we show that while the identified set for the entire parameter

may be non-convex, if we are interested in one of the structural parameters, its marginal

identified set can be convex whose support function satisfies the LLA condition. In addition,

we refer to Kaido and Santos (2014) for many other examples where they showed that (1.1)

is satisfied using a slightly different parametrization in the frequentist context.

1.1 Overview of our results.

Computations

We propose several fast algorithms to compute the critical values for inferences on the

identified set, partially identified parameters, and their low-dimensional functionals. We
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develop new algorithms to compute critical values if the linearization of the support function

holds. In fact, when we simulate from the posterior of the support function, the LLA (1.1)

avoids solving a numerical maximization problem in each step of the MCMC, and instead

approximates it using a linear function. The latter is a more tractable problem.

Coverage properties.

Our theoretical findings concerning the coverage properties are as follows.

(i) For the identified set: we show that the constructed BCS not only has a correct

Bayesian coverage but also covers the true identified set with correct frequentist probability

(asymptotically). The asymptotic frequentist coverage is exact.

(ii) For the partially identified parameter: we find that a confidence set constructed based

on the posterior distribution for the partially identified parameter θ has valid frequentist

coverages asymptotically as long as we use the posterior of the identified set, instead of

the posterior of θ. The asymptotic frequentist coverage, however, can be conservative. To

construct the confidence set we study a Bayesian hypothesis test that tests whether a fixed

θ belongs to the random set Θ(φ) (with respect to the posterior distribution of the latter).

By inverting the Bayesian test statistic, we construct the confidence set as the collection of

all the “accepted” θ’s.

(iii) For marginal inferences: we show that it is straightforward to make inference on a

scalar function of θ using our procedure. The frequentist coverage of the constructed BCS is

asymptotically exact for the identified set, but can be conservative for the partially identified

functions.

The intuition behind the difference on BCS’s coverage properties between our results

and those of Moon and Schorfheide (2012) is that priors are imposed on different objects.

We directly impose the prior on the identified set. Because the identified set is “identified”,

its posterior will asymptotically concentrate on a “neighborhood” of the true identified set,

resulting in a correct frequentist coverage of the BCS. Though this property is not specific

to identified sets that are convex, in this paper we show it for such sets. In sharp contrast, as

shown by Moon and Schorfheide (2012), imposing the prior directly on the partially identified

parameter would result in a posterior supported only within the identified set, leading to

under-coverages.

Study of the posterior of the support function.

In multi-dimensional models, the support function may not have a closed form or may

depend on φ in a complicated way. In these cases, the LLA (1.1) is a useful tool to characterize

φ 7→ Sφ(ν), which in addition shows the sensitivity of the support function with respect to

perturbations of φ. By denoting with φ0 the true value of φ that generates the data, we show

that, for every ν ∈ Rd: (i) the posterior distribution of Sφ(ν) contracts in a neighborhood of
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Sφ0(ν) at the same rate of contraction of the posterior of φ; (ii) the posterior distribution of

Sφ(ν) converges in total variation towards a normal distribution (strong Bernstein-von Mises

theorem); (iii) the posterior distribution of the stochastic process Sφ(·) weakly converges

towards a Gaussian process (weak Bernstein-von Mises theorem).

1.2 Related literature.

We are aware of at least three closely related works in the literature that also address

the question of frequentist coverages of Bayesian procedures for partially identified models.

Moon and Schorfheide (2012) was one of the first papers that constructed the BCS for

the partially identified parameter θ. They impose a prior on θ and show that when such a

prior has support equal to the identified set, the BCS for θ can be strictly smaller than the

frequentist confidence set, so the BCS does not have a correct frequentist coverage for the

partially identified parameter even asymptotically. In addition, in the working paper ver-

sion of their paper, Moon and Schorfheide (2009) also studied the Bayesian and frequentist

coverage of BCS for the identified set.

Kline and Tamer (2016) also provide BCS for the identified set that have the correct fre-

quentist coverage asymptotically without requiring the convexity of the identified set. The

correct frequentist coverage relies on the fact that, similar to ours, priors are imposed only on

the identified parameter φ. They do not develop fast algorithms to compute critical values

which might be obtained for convex identified sets. In addition, in our simulation study for

missing data we show that our constructed BCS still has the correct coverage even when the

identified set shrinks to a singleton. In contrast, their construction is conservative in this

case (see (Kline and Tamer, 2016, Remark 8)).

More recently, Chen, Christensen, and Tamer (2018) have proposed credible sets for par-

tially identified models that are relatively simple to compute, based on a quasi-Bayesian

Monte Carlo approach. They show that their credible sets have asymptotically exact fre-

quentist coverages for the identified set of the full parameter of interest or its subvectors,

and provide fast algorithms for computations. They do not require the convexity of the

identified set and so do not rely on the support function. They also develop uniformly valid

confidence sets for subvector inference on both the partially identified subvector parameter

and its identified set.

The (quasi-) Bayesian literature on partial identification also includes the following contri-

butions whose research questions are substantially different from ours, e.g., Poirier (1998),

Liao and Jiang (2010), Florens and Simoni (2011), Gustafson (2012), Kitagawa (2012),

Norets and Tang (2014), Wan (2013), etc. There is an extensive literature on partially
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identified models using frequentist approaches. A partial list includes Manski and Tamer

(2002), Chernozhukov, Hong, and Tamer (2007), Beresteanu and Molinari (2008), Andrews

and Guggenberger (2009), Romano and Shaikh (2010), Andrews and Soares (2010), Canay

(2010), Stoye (2009), Rosen (2008), Bugni (2010), among many others. The literature on

the support function approach has also grown in recent years. See, e.g., Mammen, Mar-

ron, Turlach, and Wand (2001), Beresteanu, Molchanov, and Molinari (2011), Bontemps,

Magnac, and Maurin (2011), Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2012),

Guntuboyina (2012), Kaido and Santos (2014), Bontemps and Magnac (2017), among others.

Our results complement the literature on the Bernstein-von Mises theorem and the fre-

quentist coverage probabilities of Bayesian credible sets, see e.g. Severini (1991), Leahu

et al. (2011), Sweeting (2001), Chang, Kim, and Mukerjee (2009), Belloni and Chernozhukov

(2009), Rivoirard and Rousseau (2012), Bickel and Kleijn (2012), Castillo and Rousseau

(2015), Kato (2013), Bontemps (2011), and Norets (2015). In the framework of partially

identified models, Chen et al. (2018) established a version of the Bernstein-von Mises theo-

rem using the likelihood approach.

The paper is organized as follows. Section 2 presents the model, examples, and the prior

on φ. Section 3 constructs Bayesian credible sets and provides the computational algorithms.

Moreover, it provides inference for linear scalar functions of θ. Section 4 shows the asymptotic

frequentist validity of our Bayesian procedure. Frequentist asymptotic properties of the

posterior of the support function are established in Section 5. Numerical simulations are in

Section 6 and Section 7 concludes. All the proofs are in a Supplementary Appendix.

Throughout the paper, the frequentist distribution of the data Dn (based on the true data

distribution) will be denoted by PDn . The prior distribution and its Lebesgue density will

be denoted by π while the posterior distribution and its Lebesgue density will be denoted by

P (·|Dn). When illustrating asymptotic properties of our Bayesian procedure, we denote by

φ0 the true value of φ that generates the data. Hence, the true set and its support function

will be denoted by Θ(φ0) and Sφ0(·), respectively. Moreover, ‘→P ’ denotes convergence in

probability with respect to PDn .

2 General Setup

2.1 The model

Let φ ∈ Φ ⊂ Rdφ be an identifiable parameter, Θ ⊂ Rd, and Θ(φ) ⊂ Θ be the identified

set on which we are interested in making inference. The set Θ(φ) is assumed to be closed

and convex and contains the parameter of interest θ. In many examples the set Θ(φ) is
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characterized through inequalities as follows. Let Ψ : Θ×Φ→ Rk be a known and continuous

vector-function of (θ, φ) that is convex in θ for every φ ∈ Φ, then Θ(φ) is characterized as

Θ(φ) := {θ ∈ Θ : Ψ(θ, φ) ≤ 0} .

Because Θ(φ) is closed and convex, it is completely characterized by its support function

Sφ(·) : Sd → R, defined as, for every φ ∈ Φ such that Θ(φ) is non-empty (see, e.g. Rockafellar

(1970)):

∀ν ∈ Sd, Sφ(ν) := sup
θ∈Θ

{
νT θ; θ ∈ Θ(φ)

}
where Sd denotes the unit sphere in Rd. The domain of the support function is restricted to

the unit sphere Sd in Rd since Sφ(ν) is positively homogeneous in ν.

When a particular φ̃ corresponds to an empty Θ(φ̃), its support function is defined using

the following argument: for a generic φ so that Θ(φ) is not empty, define S(φ, ν) := Sφ(ν),

which is well defined. Then let Sφ̃(ν) := S(φ̃, ν). For instance, suppose the identified set for

θ is given by a simple closed interval [φ1, φ2], with φj = EYj for some observable variable Yj,

j = 1, 2. Let φ = (φ1, φ2) be a generic φ so that φ1 < φ2, then

Sφ(1) = φ2, Sφ(−1) = −φ1.

We simply define a function of (φ, ν) to be S(φ, ν) := Sφ(ν) as above where ν ∈ {−1, 1}.
Suppose in fact θ is point identified so that φ1 = φ2 at the true value. Then there is

φ̃ = (φ̃1, φ̃2) in a neighborhood of the true value of φ, so that φ̃1 > φ̃2. Then we let Sφ̃(ν) :=

S(φ̃, ν), that is,

Sφ̃(1) = φ̃2, Sφ̃(−1) = −φ̃1.

This completes the definition of Sφ(ν) for all φ on its parameter space. As such, we view

Sφ(ν) as a well-defined function as long as Θ(φ) is non-empty at the true value of φ.

Below we list two examples of partial identification to illustrate our notation.

Example 2.1 (Interval IV regression). Let (Y, Y1, Y2) be a 3-dimensional random vector

such that Y ∈ [Y1, Y2] with probability one. The random variables Y1 and Y2 are observed

while Y is unobservable. For instance, the Bureau of Labor Statistics collects salary data

from employers as intervals. Assume that

Y = xT θ + ε

where x is a vector of observable regressors. Denote by Z a vector of nonnegative instrumental
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variables such that E(Zε) = 0. Then

E(ZY1) ≤ E(ZY ) = E(ZxT )θ ≤ E(ZY2). (2.1)

This model has been previously considered in Chernozhukov et al. (2007). We denote φ :=

(φ1, φ2, vec(φ3)) where (φT1 , φ
T
2 ) := (E(ZY1)T , E(ZY2)T ) and φ3 := E(ZxT ). It then follows

from (2.1) that θ belongs to the following set

Θ(φ) = {θ ∈ Θ : Ψ(θ, φ) ≤ 0}, where Ψ(θ, φ) = (φ1 − φ3θ, φ3θ − φ2)T .

�

Example 2.2 (Frontier estimation in finance). Consider the equilibrium price P i
t of a finan-

cial asset i at time t which satisfies the following restriction:

P i
t = Et[Mt+1P

i
t+1], (2.2)

where Mt+1 is the stochastic discount factor (SDF), which is unobservable, and Et is the

conditional expectation given information at time t. Determining the SDF Mt+1 is a crucial

research problem in finance. In many cases, equation (2.2) admits several solutions Mt+1.

Let the mean and variance of Mt+1 be µ and σ2 respectively, assumed to be time-invariant.

Hansen and Jagannathan (1991) show that for every SDF Mt+1 that satisfies (2.2) it should

hold σ2 ≥ φ1µ
2 − 2φ2µ + φ3, where φ1 := mTΣm, φ2 := mTΣι, φ3 := ιTΣι, ι is a vector of

ones and m and Σ denote, respectively, the mean vector and covariance matrix of (gross)

returns of assets 1, . . . , N (which are estimable from the data on returns). Therefore, we say

“an SDF Mt prices an asset correctly” if its mean and variance, θ := (µ, σ2), belong to the

set:

Θ(φ) = {θ ∈ R× R+; Ψ(θ, φ) ≤ 0} where Ψ(θ, φ) = φ1µ
2 − 2φ2µ+ φ3 − σ2

and φ := (φ1, φ2, φ3)T . Hence, Θ(φ) becomes the object of interest, whose boundary curve

{θ : Ψ(θ, φ) = 0} is often known as the “frontier”. Statistical inference on Θ(φ) can be

very helpful if one wants to check whether an SDF prices an asset correctly (see e.g. Cher-

nozhukov et al. (2015), Gospodinov, Kan, and Robotti (2010) among others).

�

We denote by X the observable random variable for which we have n independent and

identically distributed (i.i.d.) observations Dn = {Xi}ni=1. Our model allows an infinite
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dimensional nuisance parameter F , which is the distribution of X (DGP, hereafter). We

specify the prior distribution for Θ(φ) and Sφ(·) via the prior specification for φ. The

posteriors of the identified set Θ(φ) and of the support function Sφ(·) are deduced from the

posterior P (φ|Dn). We illustrate below three different scenarios concerning the degree of

knowledge of F , the prior on it and the relation between φ and F .

Nonparametric prior. The likelihood is completely unrestricted and a nonparametric

prior is placed directly on the cumulative distribution function (CDF) F of the data. Since

φ is identifiable, it can be written as an explicit function of F : φ = φ(F ). The prior

distribution for φ is then deduced from the one of F via φ(F ). The Bayesian experiment is

X|F ∼ F, F ∼ π(F ),

where π(F ) denotes a nonparametric prior for F . The likelihood and the posterior of F are

respectively:

ln(F ) :=
n∏
i=1

F (Xi), P (F |Dn) ∝ π(F )ln(F ),

from which we deduce the posterior of φ through φ = φ(F ). For instance, in Example 2.1,

suppose the data X = (ZY T
1 , ZY

T
2 , vec(ZxT )T )T has a multivariate CDF F , then

φ(F ) := E(X) =

∫
xF (x)dx.

Examples of π(F ) include Dirichlet process priors and Polya tree. The case where π(F ) is a

Dirichlet process prior in partially identified models is treated by Florens and Simoni (2011).

Semi-parametric prior. Let η be an infinite dimensional nuisance parameter that is

unknown and that, together with φ, completely characterizes F . Hence, F ∈ {Fφ,η;φ ∈
Φ, η ∈ P}, where P is an infinite dimensional set. Let π(φ, η) denote the joint prior on

(φ, η). The Bayesian experiment is

X|φ, η ∼ Fφ,η, (φ, η) ∼ π(φ, η).

Write the likelihood ln(φ, η) :=
∏n

i=1 Fφ,η(Xi). The marginal posterior of φ becomes:

P (φ|Dn) ∝
∫
P
π(φ, η)ln(φ, η)dη.
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For instance, in Example 2.1, suppose the data X = (ZTY1, Z
TY2, vec(ZxT )T )T has a con-

tinuous multivariate density function, we can then consider a “location model” as in Ghosal,

Ghosh, and van der Vaart (1999):

X = φ+ u, u ∼ η,

where u is a zero-mean random vector with an unknown Lebesgue density function η. Then,

the likelihood is given by ln(φ, η) =
∏n

i=1 η(Xi − φ). Examples of priors on the infinite

dimensional density parameter η include, e.g., Dirichlet mixture of normals (Ghosal, Ghosh,

and Ramamoorthi (1999)) and random Bernstein polynomials (Walker, Lijoi, and Prünster

(2007)).

Parametric prior. The sampling distribution F is known up to a finite dimensional pa-

rameter (φ, η), where η is a nuisance parameter. We may write F = Fφ,η. This is a simple

parametric framework. Let π(φ, η) be a prior on (φ, η) and ln(φ, η) be the likelihood associ-

ated with Fφ,η. Then

P (φ|Dn) ∝
∫
π(φ, η)ln(φ, η)dη.

For instance, in Example 2.1, suppose the data X = (ZTY1, Z
TY2, vec(ZxT )T )T is normally

distributed. Then we can parameterize it as:

X = φ+ u, u ∼ N(0, η),

for some covariance matrix η. Then ln(φ, η) :=
∏n

i=1 f(Xi;φ, η), where f(·;φ, η) denotes the

multivariate normal density function with mean vector φ and covariance η.

Regardless of the prior specification, since φ is point identified from a frequentist per-

spective, it is well known that under very mild conditions its posterior asymptotically con-

centrates around a
√
n-neighborhood of the true value φ0, and is asymptotically normally

distributed. We present this well known result in the following assumption without pursuing

its proofs.

We denote by ‖ ·‖TV the total variation (TV) norm, that is, for two probability measures

P and Q,

‖P −Q‖TV := sup
B
|P (B)−Q(B)|

where B is an element of the Borel σ-algebra on which P and Q are defined.

Assumption 2.1. (i) The marginal posterior of φ is such that, for any ε, δ > 0, there is
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C > 0 such that with PDn-probability at least 1− ε,

P (‖φ− φ0‖ > Cn−1/2|Dn) < δ.

(ii) Let P√n(φ−φ0)|Dn denote the posterior distribution of
√
n(φ− φ0). We assume

‖P√n(φ−φ0)|Dn −N (∆n,φ0 , I
−1
0 )‖TV →P 0

where N denotes the dφ-dimensional normal distribution, ∆n,φ0 := n−1/2
∑n

i=1 I
−1
0 `φ0(Xi),

`φ0 is the semiparametric efficient score function of the model and I0 is the semiparametric

efficient Fisher information matrix.

(iii) There exists a regular estimator φ̂ of φ that satisfies

√
n(φ̂− φ0)→d N (0, I−1

0 ).

More precise definition of `φ0 and I0 for parametric and semiparametric models can be

found in (van der Vaart, 2002, Definition 2.15) and (Bickel and Kleijn, 2012, Section 4),

respectively. Assumption 2.1 (i), (ii) are standard results known as the posterior concentra-

tion and Bernstein-von-Mises theorem in (semi-)parametric Bayesian literature and are in

general satisfied, under mild restrictions, for both nonparametric and semiparametric prior

on (φ, F ). Primitive conditions for this assumption are given in (Shen, 2002, e.g.). Other

references that provide primitive conditions include Belloni and Chernozhukov (2009), Bickel

and Kleijn (2012), and Rivoirard and Rousseau (2012). Assumption 2.1 (iii) requires the

existence of a best regular estimator. Primitive conditions for semi-parametric models are

given in (e.g. Van der Vaart, 2000, Lemma 25.23) and more specifically for semi-parametric

maximum likelihood estimators are given in (e.g. Shen, 2002, Theorems 1 and 2).

3 Algorithms to Compute Bayesian Credible Sets

For a generic set C, and any ε > 0, define the “ε-expansion” of C to be Cε := {θ : d(θ, C) ≤
ε}, where d(θ, C) := infc∈C ‖θ − c‖ and ‖ · ‖ denotes the Euclidean norm.

3.1 Algorithms for computing critical values for the identified set

We start with constructing the Bayesian Credible Set (BCS) for the identified set Θ(φ).

Its support function plays a central role in our construction. For a credible level 1 − τ ,
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τ ∈ (0, 1), we shall find appropriate critical values ετ and ε̃τ , and construct the BCS as

Θ(φ̂)ετ for the identified set, and the Uniform Bayesian Credible Band (UBCB) {Sφ(·) :

Sφ(ν) ∈ [Sφ̂(ν)± ε̃τ ],∀ν ∈ Sd} for the support function.

To obtain the critical values, note that for convex sets, the support function has the

following nice property: for any ε > 0,

P
(

Θ(φ) ⊂ Θ(φ̂)ε
∣∣∣Dn

)
= P

(
sup
‖ν‖=1

(
Sφ(ν)− Sφ̂(ν)

)
≤ ε

∣∣∣∣∣Dn

)
.

In fact, we shall show below that tractable algorithms can be developed based on simulating

the posterior quantiles of the support function. For τ ∈ (0, 1), let qτ and q̃τ be the 1 − τ
quantiles of the posterior of

J(φ) :=
√
n sup
‖ν‖=1

(
Sφ(ν)− Sφ̂(ν)

)
and J̃(φ) :=

√
n sup
‖ν‖=1

∣∣∣Sφ(ν)− Sφ̂(ν)
∣∣∣ ,

respectively, so that

P (J(φ) ≤ qτ |Dn) = 1− τ, and P
(
J̃(φ) ≤ q̃τ

∣∣∣Dn

)
= 1− τ.

Theorem 4.1 below shows that

P
(

Θ(φ) ⊂ Θ(φ̂)qτ/
√
n
∣∣∣Dn

)
= 1− τ, and P

(
sup
‖ν‖=1

∣∣∣Sφ(ν)− Sφ̂(ν)
∣∣∣ ≤ q̃τ√

n

∣∣∣∣∣Dn

)
= 1− τ.

Thus we shall use Θ(φ̂)qτ/
√
n as the BCS for the identified set, and {Sφ(·) : Sφ(ν) ∈

[Sφ̂(ν)± q̃τ/
√
n],∀ν ∈ Sd} as the UBCB for the support function.

In general, calculating the critical values based on Monte Carlo methods relies on evalu-

ating the support function. In complex models where Sφ(·) does not have a closed form, this

would in principle require a Monte Carlo procedure as follows. Uniformly generate {νj}j≤G
such that ‖νj‖ = 1. In addition, sample {φi}i≤M from the posterior distribution P (φ|Dn) of

φ. For each νj, and for a given estimator φ̂ of φ,

• (outer-loop) Solve an optimization problem to calculate Sφ̂(νj).

• (inner-loop) Solve M optimization problems to calculate Sφi(νj), for every i = 1, ...,M .

Then qτ and q̃τ are respectively calculated as the 1− τ quantiles of{√
nmax

j≤G
(Sφi(νj)− Sφ̂(νj)) : i ≤M

}
, and

{√
nmax

j≤G

∣∣∣Sφi(νj)− Sφ̂(νj)
∣∣∣ : i ≤M

}
.
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Generating several {νj} allows to approximately solve the “outside” optimization problem

“sup‖ν‖=1” using the outer-loop. But for each νj, the above procedure requires solving M

optimization problems in the inner-loop, which makes the overall computational task very

intensive.

Instead, below we propose several algorithms to carry out the inner-loop, which are

based on the following local linear approximation (LLA) assumption: uniformly over φ in a

neighborhood of φ̂, there is a vector A(ν) that depends on ν but is independent of φ, so that

(the formal statement is given by Assumption 4.1 in Section 4)

Sφ(ν)− Sφ̂(ν) ≈ A(ν)T (φ− φ̂). (3.1)

The approximation error in (3.1) is smaller than the first-order statistical error n−1/2. As a

result, Sφi(νj) can be approximated by:

Sφi(νj) ≈ Sφ̂(νj) + A(νj)
T (φi − φ̂),

which avoids solving M optimization problems in the inner-loop.

We shall verify the LLA under various primitive conditions. From a computational point

of view, A(ν) can be derived using either the implicit function theorem (as described in

Section 4.2 below) or the Lagrange multiplier approach (as described in Appendix E in the

supplement). With the Lagrange multiplier approach, A(ν) is computed as:

A(ν)T = λ(ν, φ̂)T∇φΨ(θ∗(ν), φ̂),

where θ∗(ν) is the optimizer that is obtained when calculating Sφ̂(ν), λ(ν, φ̂) is the Kuhn-

Tucker (KT) vector arising from the calculation of Sφ̂(ν) as described in Theorem E.1, and

∇φΨ(θ∗(ν), φ̂) is the partial gradient of Ψ with respect to φ. We now state our algorithm

for calculating the critical values qτ and q̃τ as follows:

Algorithm 1 (identified set)

1. Fix a prior π(φ), and construct the posterior of φ. Let {φi}i≤M be the MCMC draws

from the posterior of φ. Let φ̂ = 1
M

∑M
i=1 φi. In addition, uniformly generate {νj}j≤G

such that ‖νj‖ = 1 for each j.

2. (outer-loop): For each j ≤ G, solve the following constrained convex problem for

Sφ̂(νj):

max
θ
νTj θ subject to Ψ(θ, φ̂) ≤ 0

and obtain θ∗j = arg maxθ{νTj θ : Ψ(θ, φ̂) ≤ 0} and the corresponding KT-vector
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λ(νj, φ̂). If the set of maximizers of this problem is not a singleton, then arbitrar-

ily pick one of the elements of the set.

Calculate A(νj) either by

A(νj)
T = λ(νj, φ̂)T∇φΨ(θ∗j , φ̂)

or from Algorithm 4 below.

3. (inner-loop): For each i ≤M , let

Ji =
√
nmax

j≤G

{
A(νj)

T [φi − φ̂]
}
, J̃i =

√
nmax

j≤G

{
|A(νj)

T [φi − φ̂]|
}
.

4. Let qτ and q̃τ be the (1 − τ) th quantile of {Ji}i≤M and {J̃i}i≤M , respectively. Use

Θ(φ̂)qτ/
√
n as the BCS for the identified set, and {Sφ(·) : Sφ(ν) ∈ [Sφ̂(ν)± q̃τ/

√
n],∀ν ∈

Sd} as the UBCB for the support function.

For each generated νj, we only need to solve the constraint optimization once in the outer-

loop for Sφ̂(νj), and both the minimizer θ∗ and the KT-vector λ(νj, φ̂) are automatically

obtained in the outer-loop. This step takes advantage of convex optimizations, and both θ∗j

and λ(νj, φ̂) can be computed fast using the Matlab function fmincon. The maximizations in

the inner-loop are also quite easy as they involve optimizations on a finite set j ∈ {1, . . . , G}.
The computational time for implementing Algorithm 1 depends on the difficulty in computing

the support function in the outer loop, which is also related to the dimension of θ. When

the dimension of θ is large, the computational burden can be partially avoided in at least

two situations: when we are interested only in some components of θ and when the support

function has a closed form.

3.2 Algorithm for covering the partially identified parameter us-

ing the posterior distribution

In this subsection we show that we can construct a confidence set for the partially identi-

fied parameter θ ∈ Θ(φ) using the posterior distribution of Θ(φ) that has a desired frequentist

coverage.

Consider a Bayesian testing problem for the null hypothesis

H0(θ) : θ ∈ Θ(φ), (3.2)
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for a fixed and known θ ∈ Θ, where Θ(φ) is drawn from the posterior distribution of φ. We

shall derive an “acceptance” criterion from the posterior distribution of Θ(φ) so that

inf
θ∈Θ(φ0)

PDn(θ : H0(θ) is “accepted”) ≥ 1− τ. (3.3)

Inverting test statistics has been one of the most popular methods for constructing confidence

intervals for partially identified parameters in the frequentist literature, e.g., Beresteanu and

Molinari (2008), Andrews and Soares (2010), Canay (2010), Rosen (2008), etc. Here we

apply a similar idea to construct a confidence set for θ. The main novelty of our method, to

be presented below, is that here we investigate the testing problem H0(θ) from a Bayesian

point of view. Here {H0(θ) is “accepted”} is an event in which a given θ is accepted if the

event H0(θ) holds with a large posterior probability. This standard Bayesian procedure has

some optimality properties under certain circumstances from the perspective of Bayesian

decision theory (Casella and Berger, 2002). From the practical point of view, as we shall

illustrate in Algorithm 2 below, the Bayesian testing procedure takes advantage of the merit

of the MCMC algorithm, leading to a very convenient algorithm to simulate the confidence

set.

Recall that for a fixed θ, H0(θ) is true if and only if θTν ≤ Sφ(ν) for all ‖ν‖ = 1.

Therefore, for a to-be-determined critical value δτ , we can define

Ωτ (φ) :=

{
θ : θTν ≤ Sφ(ν) +

δτ√
n
,∀ ‖ν‖ = 1

}
. (3.4)

Intuitively, θ ∈ Ωτ (φ) means θ is “close” to Θ(φ). In fact, it can be shown that Ωτ (φ) =

Θ(φ)δτ/
√
n. Therefore, we construct a Bayesian test for (3.2) by investigating whether θ is

“posteriorly covered” with a high probability:

accept H0(θ)⇔ P (θ ∈ Θ(φ)δτ/
√
n|Dn) ≥ 1− τ, (3.5)

for the confidence level 1 − τ . Here P (θ ∈ Θ(φ)δτ/
√
n|Dn) is the posterior probability with

respect to the posterior distribution of φ, treating θ as fixed. Combining (3.3)-(3.5), we

construct the frequentist confidence set for θ as:

Ω̂ := {θ ∈ Θ : P (θ ∈ Θ(φ)δτ/
√
n|Dn) ≥ 1− τ},

which depends on the critical value δτ . We will choose δτ = 2qτ , where qτ is the critical value

of J(φ) defined in Section 3.1.

Using the results of the Bayesian credible band for the support function, we shall show
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in Section 4 that

inf
θ∈Θ(φ0)

PDn

P(θ ∈ Θ(φ)2qτ/
√
n
∣∣Dn

)
≥ 1− τ︸ ︷︷ ︸

θ∈Ω̂

 ≥ 1− τ − op(1).

To explain this in words: if we define Ω̂ as the set of all the “accepted” θ’s (covered by

Θ(φ)2qτ/
√
n with posterior probability at least 1 − τ), then Ω̂ covers the partially identified

parameter with a sampling (frequentist) probability of at least 1− τ .

The set Ω̂ can be computed using the following MCMC-based algorithm.

Algorithm 2 (partially identified parameter)

1. Let {φi}i≤M be the MCMC draws from the posterior of φ. Compute φ̂ = 1
M

∑
i φi.

In addition, uniformly generate {θ̃b}b≤B from the parameter space Θ, and uniformly

generate {νj}j≤G such that ‖νj‖ = 1 for each j.

2. Solve for Sφ̂(νj) and A(νj) as in Algorithm 1 for j = 1, ..., G.

3. For each b = 1, . . . , B and for a τ ∈ (0, 1), if θ̃b satisfies:

1

M

M∑
i=1

1

{
max
j≤G

[θ̃Tb νj − Sφ̂(νj)− A(νj)
T (φi − φ̂)] ≤ 2qτ√

n

}
≥ 1− τ (3.6)

then accept θ̃b; otherwise discard θ̃b. The critical value qτ is obtained in Algorithm 1.

4. Collect all the accepted θ̃b’s as a set Ω̂∗, which is an approximation of Ω̂.

To explain that Ω̂∗ is an approximation of Ω̂, we now explain that (3.6) is an MCMC

approximation of the event θ̃b ∈ Ω̂. First note that for any ε > 0, we have d(θ̃b,Θ(φi)) ≤ ε

if and only if θ̃Tb ν ≤ Sφi(ν) + ε for all ‖ν‖ = 1. In addition, the LLA entails Sφi(νj) ≈
Sφ̂(νj) + A(νj)

T (φi − φ̂). Therefore, for large G,

1

{
max
j≤G

[θ̃Tb νj − Sφ̂(νj)− A(νj)
T (φi − φ̂)] ≤ 2qτ√

n

}
≈ 1

{
max
j≤G

[θ̃Tb νj − Sφi(νj)] ≤
2qτ√
n

}
≈ 1

{
d(θ̃b,Θ(φi)) ≤

2qτ√
n

}
.

Thus, since {φi}i≤M are the MCMC draws from the posterior of φ, the left hand side of (3.6)
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is approximately equal to,

1

M

M∑
i=1

1

{
d(θ̃b,Θ(φi)) ≤

2qτ√
n

}
=

1

M

M∑
i=1

1
{
θ̃b ∈ Θ(φi)

2qτ/
√
n
}
≈ P

(
θ̃b ∈ Θ(φ)2qτ/

√
n
∣∣Dn

)
.

Therefore, (3.6) is approximately the same as requiring P
(
θ̃b ∈ Θ(φ)2qτ/

√
n
∣∣Dn

)
≥ 1 − τ ,

which means, by definition, θ̃b ∈ Ω̂. Therefore, Ω̂∗ is an approximation of Ω̂.

Remark 3.1. To explain the factor “2” in the choice of the critical value, we briefly explain

the key step of the technical proof here. Note that for any θ ∈ Θ(φ0), we decompose the

event {θTν ≤ Sφ(ν) + 2qτ√
n
} into the intersection of the following two events:

{Sφ0(ν) ≤ Sφ̂(ν) +
qτ√
n
}︸ ︷︷ ︸

frequentist event

, {Sφ̂(ν) ≤ Sφ(ν) +
qτ√
n
}︸ ︷︷ ︸

Bayesian event

so that the following lower bound holds for the posterior P (θ ∈ Θ(φ)2qτ/
√
n|Dn):

P (θ ∈ Θ(φ)2qτ/
√
n|Dn) = P (θTν ≤ Sφ(ν) +

2qτ√
n
,∀‖ν‖ = 1|Dn)

≥ P (Sφ̂(ν) ≤ Sφ(ν) +
qτ√
n
, ∀‖ν‖ = 1|Dn)1{θTν ≤ Sφ0(ν)}1{Sφ0(ν) ≤ Sφ̂(ν) +

qτ√
n
}.

Hence, we see that the factor “2” appears from the above application of a “triangular-type”

inequality. This allows us to link the event {θ ∈ Θ(φ)2qτ/
√
n} with two more concrete events,

whose large sample probabilities are easier to characterize. By the definition of qτ , both sub

events hold with high probabilities.

3.3 Algorithms for set inference for scalar functions

Suppose we are interested in a one-dimensional continuous transformation of the partially

identified parameter g(θ). Our method provides a simple procedure to construct a BCS for

g(θ) and for its identified set

G(φ) := {g(θ) : θ ∈ Θ(φ)}.

We refer to Kaido, Molinari, and Stoye (2019), Bugni, Canay, and Shi (2017) for many

interesting examples. When g(·) is a linear transformation, G(φ) can be simply derived.

Suppose g(θ) = gT θ for some vector g. We consider the normalized case ‖g‖ = 1. Then its
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support function is

S̃φ(ν) = sup{θTgν : θ ∈ Θ(φ)} = Sφ(gν) : ν ∈ {−1, 1}

and the identified set is given by G(φ) = [−Sφ(−g), Sφ(g)]. This case is interesting, for

instance, when g(θ) denotes the k th component of θ. Then we take g = ek as the vector in

Rd with one in the k-th coordinate and zeros elsewhere. In the main text we focus on the

linear transformation, and discuss the more general nonlinear case in Appendix A.

Identified set of scalar functions: linear case. Let cτ be the 1 − τ quantile of the

posterior of

L(φ) :=
√
nmax
ν=±1

(
S̃φ(ν)− S̃φ̂(ν)

)
,

that is, P (L(φ) ≤ cτ |Dn) = 1− τ. Then, Theorem 4.1 below immediately implies:

P

(
G(φ) ⊂

[
−Sφ̂(−g)− cτ√

n
, Sφ̂(g) +

cτ√
n

]∣∣∣∣Dn

)
= 1− τ.

Therefore, the interval [−Sφ̂(−g)− cτ√
n
, Sφ̂(g)+ cτ√

n
] is a 1− τ BCS for the marginal identified

set of g(θ) = gT θ.

Partially identified scalar functions: linear case. Similarly to the construction in

Section 3.2, the critical value for the marginal confidence interval of g(θ) is also simple to

compute. Define

Ω̂g :=

{
g(θ) : P

(
g(θ) ∈

[
−Sφ(−g)− 2cτ√

n
, Sφ(g) +

2cτ√
n

] ∣∣∣∣Dn

)
≥ 1− τ

}
.

We shall show in Section 4 that Ω̂g is an asymptotically valid confidence set for g(θ).

Importantly, we directly construct confidence sets for the scalar functions instead of

projecting from the set for the full vector of the partially identified parameter as in the

projection method which often leads to very conservative coverages (see Kaido et al. (2019)

for discussions). This is an appealing feature even computationally. Indeed, L(φ) can be

approximated using the local linear approximation based on either the implicit function

approach as described in Section 4.2 below or on the Lagrange multipliers approach. In the

latter case:

L(φ) ≈
√
nmax
ν=±1

{
λ(νg, φ̂)T∇φΨ(θ∗(ν), φ̂)[φ− φ̂]

}
.

As already stressed in Algorithm 1, thanks to this approximation we do not need to solve an

18



optimization problem for each value of φ drawn from the posterior of φ. The algorithm below

shows that computing these critical values cτ is straightforward using the MCMC sampler.

Algorithm 3 (Inference for G(φ) (the identified set for g(θ)): linear case)

1. Let {φi}i≤M be the MCMC draws from the posterior of φ.

2. For ν = ±1, solve the following constrained convex problem

max
θ
νgT θ subject to Ψ(θ, φ̂) ≤ 0

and obtain θ∗(ν) = arg maxθ{νgT θ : Ψ(θ, φ̂) ≤ 0} and the corresponding Kuhn-Tucker

vector λ(νg, φ̂) (respectively for ν = ±1). If the set of maximizers of this problem is

not a singleton, then arbitrarily pick one element of the set.

3. For each i ≤ M , let either Ag(ν)T = λ(νg, φ̂)T∇φΨ(θ∗(ν), φ̂) or Ag(ν) be as described

in Algorithm 4 below, then

Li := L(φi) =
√
nmax
ν=±1

{
Ag(ν)T (φi − φ̂)

}
.

4. Let cτ be the (1− τ)-th quantile of {Li}i≤M . Then the BCS for G(φ) is[
−Sφ̂(−g)− cτ√

n
, Sφ̂(g) +

cτ√
n

]
.

Algorithm 3’ (Inference for g(θ) = gT θ: linear case)

1. Obtain Ag(1), Ag(−1) and cτ from the above algorithm.

2. Uniformly generate {θ̃b}b≤B from the parameter space Θ.

3. For each b = 1, . . . , B, if

1

M

M∑
i=1

1

{
g(θ̃b) ∈ [−Sφi −

2cτ√
n
, S̄φi +

2cτ√
n

]

}
≥ 1− τ, (3.7)

then set θ∗b := θ̃b (“accepted draws”); otherwise discard θ̃b. Here

S̄φi = Sφ̂(g) + Ag(1)T (φi − φ̂), Sφi = Sφ̂(−g) + Ag(−1)T (φi − φ̂).
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4. Approximate Ω̂g by the following interval:

[min{g(θ∗b )},max{g(θ∗b )}],

where the end points are respectively the minimum and maximum of the “accepted

draws”.

Remark 3.2. In step 3 of Algorithm 3’, we respectively use S̄φi and Sφi to approximate

Sφi(g) and Sφi(−g) based on the LLA, avoiding in this way to solve M optimization problems

(one for each φi, i ∈ {1, . . . ,M}) to calculate the support function for each φi. In addition,

since we only need to find the minimum and the maximum g(θ̃b) such that (3.7) holds, step

3 of Algorithm 3’ can be simplified and replaced by the following step. Thus, we do not need

to evaluate (3.7) for all the b ≤ B.

Step 3’: Re-arrange g(θ̃(1)) ≤ . . . ≤ g(θ̃(B)), where the notation g(θ̃(j)) means that g(·) is

evaluated at the θ̃b that gives the j-th smallest value of g. Starting from g(θ̃(1)) to gradually

increase, find the smallest g(θ̃(b)) such that (3.7) holds, and set it to be min{g(θ∗b )}. Starting

from g(θ̃(B)) to gradually decrease, find the largest g(θ̃(b)) such that (3.7) holds, and set it

to be max{g(θ∗b )}.

3.4 Connections in computations with frequentist confidence sets

The support function has been used in the frequentist literature as well to construct FCS

for the set. For instance, Beresteanu and Molinari (2008) constructed FCS for the set by:

P (Θ(φ0) ⊂ Θ̂c̄τ ) ≥ 1− τ,

where Θ̂ is the sample analogue of the true identified set. They proposed a Bootstrap

procedure to simulate the critical value c̄τ : Let {Θ̂i}i≤M be the sample analogues of the

identified set based on the M bootstrap samples. Then, c̄τ is determined as the (1 − τ)-th

quantile of: (by letting SC(·) denote the support function for a generic set C){
√
n sup
‖ν‖=1

|SΘ̂i
(ν)− SΘ̂(ν)| : i ≤M

}
. (3.8)

Computing (3.8) may be difficult without a linear approximation. Kaido and Santos (2014)

derived a linear approximation of SΘ̂i
(ν)−SΘ̂(ν) for moment inequality models, which allows

to avoid solving the optimization in SΘ̂i
for each of the bootstrap sample. The Lagrange

multiplier approach that we propose for linearize the support function is similar to theirs
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when Θ̂i can be parameterized by φ.

The major computational difference between our proposed BCS and Kaido and Santos

(2014)’s FCS for the identified set is that in our procedure, our “sampled” identified sets

{Θ(φi)}i≤M are the MCMC draws from the posterior distribution of φ, while the FCS’s

“sampled” sets {Θ̂i}i≤M are the bootstrap samples from the empirical distribution. The

differences and connections are therefore essentially those between the Bayesian’s MCMC

and the frequentist’s Bootstrap. While both algorithms share many similarities in the current

context, the Bayesian approach makes good use of the prior information of φ, which may be

informative in practice. In particular, if the prior is informative it is likely to have areas of the

support where the posterior concentrates a lot of mass. Therefore, we need a smaller number

of MCMC draws (after the burn-in period) to have a good description of the posterior of φ.

This reduces the computational costs in particular if φ is multidimensional.

On the other hand, the proposed confidence set Ω̂ for the partially identified parameter is

computationally different from all the existing frequentist confidence sets to the best of our

knowledge. While it is also computationally simple, we do not claim that it is advantegous

over existing methods in the literature. Instead, we use it to clearly show that with the help

of our Bayesian analysis based on the support function, a FCS for the partially identified

parameter can be also constructed using the posterior distribution of Θ(φ). This property is

both computationally and theoretically attractive, and complements the Bayesian literature

for partially identified models.

4 Large Sample Coverages

In this section we study the coverage properties of the constructed BCS’s. First of all, we

note that the constructed BCS for the identified set has a correct Bayesian coverage, which

is stated in the following theorem.

Theorem 4.1 (Bayesian coverage). Suppose Θ(φ) is convex and closed for every φ in its

parameter space. For every sampling sequence Dn, and any τ ∈ (0, 1),

P
(

Θ(φ) ⊂ Θ(φ̂)qτ/
√
n
∣∣∣Dn

)
= 1− τ, and P

(
sup
‖ν‖=1

∣∣∣Sφ(ν)− Sφ̂(ν)
∣∣∣ ≤ q̃τ√

n

∣∣∣∣∣Dn

)
= 1− τ.

Below we shall focus on the large sample frequentist coverage properties. We aim to

show:

PDn

(
Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n
)

= 1− τ + oP (1), (4.1)
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and

PDn

(
sup
‖ν‖=1

|Sφ0(ν)− Sφ̂(ν)| ≤ q̃τ√
n

)
= 1− τ + oP (1). (4.2)

Hence, both Θ(φ̂)qτ/
√
n and the set {Sφ(·) : Sφ(ν) ∈ [Sφ̂(ν) ± q̃τ/

√
n],∀ν ∈ Sd} also

have (asymptotically) correct frequentist coverage probabilities. Consequently, our BCS and

UBCB are useful for both Bayesian and frequentist inference. Note that in the Bayesian

coverage of Theorem 4.1, Θ(φ) is the random set (with respect to the posterior of φ), while

Θ(φ̂)qτ/
√
n is treated as fixed. On the contrary, in the frequentist coverage (4.1), Θ(φ̂)qτ/

√
n

is the random set (with respect to the sampling distribution of φ̂), while Θ(φ0) is the true

and fixed set object.

The general Bayesian-frequentist duality relies on the asymptotic equivalence between

the posterior distribution of Sφ(·) − Sφ0(·) and the sampling (frequentist) distribution of

Sφ̂(·)−Sφ0(·). To establish this equivalence, we rely on a local linear expansion of the support

function, which we first present as a high-level condition and then we provide primitive

conditions for it. We denote by B(φ0, δ) the closed ball centered on φ0 with radius δ >

0. Recall that Θ(φ0) denotes the true identified set and that PDn denotes the probability

measure in the frequentist sense.

Assumption 4.1 (Local Linear Approximation (LLA)). There is a continuous vector func-

tion A(ν) such that for

f(φ1, φ2) := sup
ν∈Sd

∣∣(Sφ1(ν)− Sφ2(ν))− A(ν)T (φ1 − φ2)
∣∣ ,

we have, for rn = n−1/2, and any C > 0, as n→∞,

sup
φ1,φ2∈B(φ0,Crn)

f(φ1, φ2)

‖φ1 − φ2‖
→ 0.

Theorem 4.2 (Frequentist coverage). Suppose Θ(φ) is convex and closed for every φ in its

parameter space such that Θ(φ) is nonempty. Suppose Assumptions 2.1 and 4.1 hold. Then,

the frequentist coverage probabilities of the BCS and UBCB constructed in Section 3 satisfy:

for any τ ∈ (0, 1) and for qτ and q̃τ as defined in Section 3.1, as n→∞,

(i) PDn

(
Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n
)

= 1− τ + oP (1);1

1The result presented here is understood as: There is a random sequence ∆(Dn) that depends on Dn such

that ∆(Dn) = oP (1), and for any sampling sequence Dn, we have PDn(Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n) = 1−τ+∆(Dn).
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(ii) infθ∈Θ(φ0) PDn

(
θ ∈ Ω̂

)
≥ 1− τ − oP (1), where

Ω̂ := {θ ∈ Θ : P (θ ∈ Θ(φ)2qτ/
√
n|Dn) ≥ 1− τ};

(iii) PDn

(
sup‖ν‖=1 |Sφ0(ν)− Sφ̂(ν)| ≤ q̃τ√

n

)
= 1− τ + oP (1).

Concerning the inference about the transformed parameter g(θ), let G(φ) be the identified

set for g(θ). The following theorem presents the case of linear transformations. We shall

present the more general case of nonlinear transformations in the appendix.

Theorem 4.3 (Scalar functions). Let g(θ) = gT θ for some ‖g‖ = 1. Suppose Θ(φ) is closed

and convex for every φ ∈ Φ such that Θ(φ) is nonempty and that the assumptions of Theorem

4.2 hold. Then, for any τ ∈ (0, 1) and for cτ as defined in Section 3.3,

(i) Bayesian coverage of the identified set for scalar functions: for almost all data Dn,

P

(
G(φ) ⊂

[
−Sφ̂(−g)− cτ√

n
, Sφ̂(g) +

cτ√
n

] ∣∣∣∣Dn

)
= 1− τ ;

(ii) Frequentist coverage of the identified set for scalar functions: as n→∞

PDn

(
G(φ0) ⊂

[
−Sφ̂(−g)− cτ√

n
, Sφ̂(g) +

cτ√
n

])
= 1− τ + oP (1);

(iii) Frequentist coverage of scalar functions: as n→∞

inf
g(θ)∈G(φ0)

PDn

(
g(θ) ∈ Ω̂g

)
≥ 1− τ − oP (1),

where Ω̂g :=

{
g(θ) : P

(
g(θ) ∈

[
−Sφ(−g)− 2cτ√

n
, Sφ(g) + 2cτ√

n

] ∣∣∣∣Dn

)
≥ 1− τ

}
.

Assumption 4.1 essentially requires that the support function has to be smooth respect

to the DGP of observed data. Models of this type lead to interesting implications. In such

models, Kaido and Santos (2014) showed that semiparametric efficient estimations can be

achieved for the identified set. We refer to Kaido and Santos (2014) for more practical

examples where Assumption 4.1 is satisfied. In the current context, it remains to verify this

high-level Assumption. We shall verify it in two setups: (1) in Section 4.1 below, we verify

it in the one-dimensional case where the identified set is a closed interval; (2) in Section

4.2 below, we verify it in the multi-dimensional case, where the support function does not

necessarily have an analytical form.
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4.1 Verifying the LLA in the one-dimensional case

Consider the case

Θ(φ) = [h1(φ), h2(φ)] ⊂ Θ ⊂ R,

where h1, h2 are known functions taking values in R. In particular, we allow supφ |h1(φ) −
h2(φ)| = o(1) as a drifting parameter sequence that converges to zero. This drifting sequence

depends on n and h1, h2 can be indexed by n, with h1(·) = h2(·) as a special case. Hence, the

identified set can shrink to a singleton. For notational simplicity, we suppress the subscript

n.

It is easy to verify that the support function is given by: Sφ(1) = h2(φ), and Sφ(−1) =

−h1(φ). Hence, the critical values qτ and q̃τ are obtained from the posteriors of

J(φ) :=
√
n sup
‖ν‖=1

(
Sφ(ν)− Sφ̂(ν)

)
=
√
nmax{h2(φ)− h2(φ̂), h1(φ̂)− h1(φ)}

and

J̃(φ) :=
√
n sup
‖ν‖=1

|Sφ(ν)− Sφ̂(ν)| =
√
nmax{|h2(φ)− h2(φ̂)|, |h1(φ̂)− h1(φ)|}.

We now provide a primitive condition to verify Assumption 4.1 in this case.

Assumption 4.2. h1(φ) and h2(φ) are continuously differentiable on a closed neighborhood

of φ0.

We have the following proposition.

Proposition 4.1. In the one-dimensional setup, Assumption 4.2 implies Assumption 4.1.

Remark 4.1. Sometimes the functions h1 and h2 may be only partially known, up to

an additional infinite-dimensional parameter η, representing the unknown (but identifiable)

DGP. Then we can write them as h1(φ, η), h2(φ, η), or h1(F ), h2(F ), where F denotes the data

distribution. Our method can be adapted to cover this case as well by defining φ̃ = (φ, η),

and impose a semi-(non) parametric prior on it. When φ̃ is infinite-dimensional, an LLA

similar to that of Assumption 4.1 can still be verified.

4.1.1 A Two-Player Entry Game

We consider the entry game in Tamer (2003), Ciliberto and Tamer (2009). In this exam-

ple, we show that while the identified set for the entire parameter may be non-convex, if we

are interested in one of the components, its marginal identified set is a closed interval that
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satisfies Assumption 4.2, and thus its support function satisfies the high-level Assumption

4.1 due to Proposition 4.1.

Suppose there are two players: firm 1 and firm 2. Firm j (= 1, 2) makes an entry decision

and either does not enter market i, operates as a monopolist, or operates as a duopolist,

depending on the entry decision of the competing firm. We use the notation of Moon and

Schorfheide (2012) to model the potential monopoly (M) and duopoly (D) profits as:

πMij = βj + εij, πDij = βj − γj + εij, j = 1, 2, i = 1, . . . , n,

where we assume the parameter space to be: for some known (γ̄, β, β̄) ∈ R3,

0 ≤ γj ≤ γ̄; β ≤ βj ≤ β̄, j = 1, 2,

and both players play a pure strategy Nash equilibrium.

We assume that (εi1, εi2) are independent identically distributed, sampled from a joint

distribution

F (x, y; %) := P (εi1 ≤ x; εi2 ≤ y)

where the joint distribution function F (x, y; %) is known up to a finite dimensional parameter

% ∈ Θ%; here Θ% denotes a compact parameter space for %. For instance, in Moon and

Schorfheide (2012), Chen et al. (2018), who also studied the two-player entry game model,

it is assumed that (εi1, εi2) are jointly normally distributed with variance 1 and correlation

% ∈ [−1 + ε, 1 − ε] for some ε > 0. This example generalizes their studies by allowing for

dependent and possibly non-Gaussian shocks.

We observe which firm enters each of the n markets, and use n11, n00, n10, and n01 to

denote the frequency across the n markets of: duopoly, no firm enters, monopoly of firm 1 and

monopoly of firm 2, respectively. In addition, we use φ := [φ11, φ00, φ10], with
∑

ij φij = 1, to

denote the probabilities of observing a duopoly, no entry, or the monopoly of firm 1. Then φ

is point identified, whose maximum likelihood estimator is given by φ̂lm = nlm
n
, l = 0, 1,m =

0, 1. Then, for φ̂ = [φ̂10, φ̂11, φ̂00], under suitable conditions we have
√
n(φ̂−φ0)→d N (0, V ),

whose covariance matrix V is easy to obtain. It is well known that in this case the pure

strategy Nash equilibrium implies (e.g., Tamer (2003)):

φ00 = P (εi1 < −β1; εi2 < −β2), φ11 = P (εi1 > −(β1 − γ1); εi2 > −(β2 − γ2))

φ01 ≥ P (εi1 < −(β1 − γ1); εi2 > −(β2 − γ2)) + P (εi1 < −β1;−β2 < εi2 < −(β2 − γ2))

φ01 ≤ P (εi1 < −(β1 − γ1); εi2 > −β2). (4.3)

Given φ, (4.3) defines the joint identified set for the parameters (β1, γ1, β2, γ2, %). Suppose
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we are interested in the marginal identified set Θβ(φ) for β1 and the marginal identified set

Θγ(φ) for γ1. The inference for (β2, γ2) follows from the same argument. The marginal

identified sets can then be characterized as:

Θβ(φ) = {β1 ∈ [β, β̄] : there are γ1, γ2, β2, % such that (4.3) holds}
Θγ(φ) = {γ1 ∈ [0, γ̄] : there are γ2, β1, β2, % such that (4.3) holds} (4.4)

We make the following assumption.

Assumption 4.3. F (x, y, %) is twice differentiable in (x, y, %). In addition, for any given

Borel subset B ⊂ R, P (εi1 ≤ x; εi2 ∈ B) is strictly increasing in x, and P (εi1 ∈ B; εi2 ≤ y) is

strictly increasing in y.

The following lemma shows that the marginal identified sets are closed intervals that

satisfy Assumption 4.2.

Lemma 4.1. Suppose Assumption 4.3 holds. There are continuously differentiable functions

h1(φ), h2(φ), g1(φ), g2(φ), so that the marginal identified sets Θβ(φ) and Θγ(φ) characterized

in (4.4) are equal to

Θβ(φ) = [h1(φ), h2(φ)], Θγ(φ) = [g1(φ), g2(φ)].

Therefore the LLA condition Assumption 4.1 is satisfied. In the special case where εi1 and

εi2 are independent bivariate standard normal,

h1(φ) = Φ−1
N (φ10 + φ11), h2(φ) = −Φ−1

N

(
φ00ΦN(−(β − γ̄))

ΦN(−(β − γ̄))− φ01

)
g1(φ) = β + Φ−1

N

(
φ01ΦN(−β)

ΦN(−β)− φ00

)
,

g2(φ) = β̄ − Φ−1
N

(
−φ11ΦN(β̄)

φ10 − ΦN(β̄)

)
.

Here ΦN denotes the standard normal distribution.

In the presence of general correlated shocks (% 6= 0), these functions do not have analytic

forms. But they are uniquely determined by the implicit function theorem applied to the joint

distribution function F (x, y, %), and thus can still be easily computed. For the definitions

of h1, h2, g1, g2 in the general case we refer to the proof of Lemma 4.1 in the Supplementary

Appendix.
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4.1.2 Marginal inference for the random design interval censored regression

Consider the interval censored regression model. We have

Y = xT θ + ε, Exε = 0

with Y censored in the interval [Y1, Y2] and x and θ d-vectors; x has positive support. Let

φ1 := ExTY1, φ2 := ExTY2 and φ3 := (ExxT )−1. Then the identified set of θ is characterized

by

φ1 ≤ φ−1
3 θ ≤ φ2.

In particular, we let φ3 denote the inverse of the covariance matrix of x (assumed to exist).

Using a similar argument as in Bontemps et al. (2011), it can be shown that the support

function has a closed form:

Sφ(ν) =
1

2
νTφ3(φ1 + φ2) +

1

2

∣∣νTφ3

∣∣ (φ2 − φ1), (4.5)

where the absolute value is taken coordinatewise. Because of the presence of the vector

absolute value, Sφ(ν) is not differentiable with respect to φ3 for certain directions ν. But

the proposed approach allows for marginal inferences, as we show below.

Specifically, suppose we are interested in inference about the k th component of θ, denoted

by θk. Then the LLA condition only depends on the differentiability of a particular direction

ν = ek, where ek is the k-th unit vector (with one on the k-th component). Hence, it is

satisfied as long as Sφ(ek) is differentiable with respect to φ in a neighborhood of the true

value. Let φ3,k denote the k-th column of φ3, and φ3,k,j denote the j-th component of the

vector φ3,k. Let (φ0
3,k, φ

0
3,k,j) denote the true value of (φ3,k, φ3,k,j). In addition, define the

following sets:

S+ = {j : φ0
3,k,j > 0}, S− = {j : φ0

3,k,j < 0},

which are deterministic sets because they are defined using the true values. Let φ1,j and φ2,j

respectively denote the j-th component of φ1 and φ2.

When all the components of the true value φ0
3,k are nonzero, the following lemma shows

that the marginal identified set for θk is a closed interval that satisfies Assumption 4.2.

Lemma 4.2. Suppose all the components of the true value φ0
3,k are nonzero. Then the

marginal identified set for θk is given by the closed interval [h1(φ), h2(φ)], where

h1(φ) = φT3,k

(
φ1 + φ2

2

)
−M(φ),
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h2(φ) = φT3,k

(
φ1 + φ2

2

)
+M(φ),

M(φ) =
1

2

∑
j∈S+

φ3,k,j(φ2,j − φ1,j)−
1

2

∑
j∈S−

φ3,k,j(φ2,j − φ1,j).

Both h1(φ) and h2(φ) are continuously differentiable on a neighborhood of the true value for

φ, so Assumption 4.2 is satisfied.

It is straightforward to extend the above result to the inference for a general linear

functional gT θ where g is a known vector. Then Lemma 4.2 holds with φ3,k replaced by φ3g.

In Lemma 4.2, it is crucial to assume that all the components of φ0
3,k are nonzero. Below

we present a relatively general example that satisfies this condition.

Example 4.1 (Factor models). Suppose xi is generated from the following factor model:

xi = Λfi + ui, dim(xi) = d,

where fi is a single latent factor with Efi = 0; Λ = (λ1, . . . , λd)
′ is a d × 1 vector of factor

loadings, and the components of ui are independent, satisfying E(ui|fi) = 0. This is then

a strict factor model. We now show that all the components of φ0
3 are nonzero as long as

λj 6= 0 for all j ≤ d, which means the common factor fi determines all the components of

xi. The covariance of xi is given by

Exix
′
i = Λvar(fi)Λ

′ + var(ui),

where var(fi) denotes the variance of fi and var(ui) denotes the d × d covariance matrix

of ui which is assumed to be diagonal. Then by the matrix Sherman-Morrison-Woodbury

identity,

φ0
3 = (Exix

′
i)
−1 = var(ui)

−1 − avar(ui)
−1ΛΛ′var(ui)

−1

where a = 1/(var(fi)
−1 + Λ′var(ui)

−1Λ). Then for any k, j ≤ d, it is straightforward to

calculate that

φ0
3,k,j = vjk − avjjvkkλjλk, vjk = (var(ui)

−1)jk.

Because vjk = 0 if and only if j 6= k, it is easy to see that φ0
3,k,j 6= 0 as long as λj 6= 0 for all

j = 1, . . . , d.

If φ0
3,k contains zero components, M(φ) would have an additional non-differentiable term

1
2

∑
φ03,k,j=0 |φ3,k,j|(φ2,j − φ1,j). The good thing is that this is a testable statement as φ3 is

point identified. While this assumption should be generally satisfied, it is possible to go
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around this assumption when fixed design is considered. In this case the data for x is non-

random and we can allow arbitrary ( 1
n

∑n
i=1 xix

T
i )−1, as long as it exists. See Section 6.2.2

for detailed derivations.

4.2 LLA in the Multi-Dimensional Case

In this section we verify the LLA condition of Assumption 4.1 in the more complex multi-

dimensional case when the support function does not necessarily have a closed-form. We

allow the set of interest Θ(φ) to be characterized by both equality and inequality restrictions

as follows:

Θ(φ) = {θ ∈ Θ : Ψi(θ, φ) ≤ 0 for i = 1, . . . , k1,

Ψi(θ, φ) = 0 for i = k1 + 1, . . . , k1 + k2}

with k1 + k2 = k and where {Ψi}i=1,...,k are known functions. Below we present a novel

approach based on the implicit function theorem. Alternatively, a different approach to

verify the LLA condition is the Larange multiplier method, employed by Kaido and Santos

(2014). We present this alternative approach in the appendix.

Define the “equality boundary” as

∂Θ(φ) := {θ ∈ Θ(φ); Ψi(θ, φ) = 0 for some i ≤ k1, and

Ψi(θ, φ) = 0 for i = k1 + 1, . . . , k1 + k2}.

Our analysis relies on the following key fact, which holds in most applications. For every

C > 0, φ ∈ B(φ0, Cn
−1/2) and ν ∈ Sd, if Θ(φ) is non-empty, it holds that

Sφ(ν) := sup{νT θ; θ ∈ Θ(φ)} = sup{νT θ; θ ∈ ∂Θ(φ)}. (4.6)

Equation (4.6) says that the supremum defining the support function is achieved on the

“equality boundary”, that is, the support function is computed based on only equality

constraints and binding inequality constraints. By Theorem 13.1 of Rockafellar (1970),

νT θ < Sφ(ν) if and only if θ belongs to the interior of the convex set Θ(φ). Therefore,

equation (4.6) is guaranteed to hold under the following assumption:

Assumption 4.4. For every C > 0, φ ∈ B(φ0, Cn
−1/2) and ν ∈ Sd, if Θ(φ) is non-empty,

it holds that

∂Θ(φ) ⊂ ∂Θ(φ),
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where ∂Θ(φ) is the regular notation of “boundary” for a connected set. 2

Assumption 4.4 says that the equality boundary should be a subset of the usual boundary,

that is, the inequalities are binding only on the boundary. This condition is not stringent

and is satisfied by many examples of interest, like for instance the interval regression model,

examples where we are interested in a one-dimensional transformation of the partially identi-

fied parameter, the missing data example, the two-player entry game mode, and the financial

asset pricing model of Example 2.2. The latter is discussed in more detail in Appendix B.

Above all, equation (4.6) allows us to use the implicit function theorem (IFT) to derive

the local linear approximation for the support function. Define

Ξ(ν, φ) := arg max
θ∈∂Θ(φ)

νT θ

as the intersection of the equality boundary and the support set of Θ(φ). For every ν ∈ Sd

and every φ ∈ Φ, define the subset Iν,φ of indices of the constraints that are active for this

particular direction ν and this particular φ (this includes both binding inequality constraints

and equality constraints):

Iν,φ := {i ∈ {1, 2, . . . , k}; Ψi(θ, φ) = 0,∀θ ∈ Ξ(ν, φ)}

and by dν,φ := card(Iν,φ) the cardinality of Iν,φ. We notice that if there are equality con-

straints then dν,φ ≥ k2. Hence, by definition of Iν,φ, we have:

∀ν ∈ Sd, ∀φ ∈ Φ, Sφ(ν) = sup{νT θ;
⋂
i∈Iν,φ

{θ; Ψi(θ, φ) = 0}}.

Denote by (θ̃, φ) a solution of the system of equations {Ψi(θ, φ) = 0, ∀i ∈ Iν,φ} such that

θ̃ ∈ Ξ(ν, φ), that is, θ̃ ∈ ∂Θ(φ). The idea is that the feasible set of the support function

Sφ(ν) is now completely characterized by these dν,φ equality constraints. We can then apply

the implicit function theorem. This theorem characterizes dν,φ elements of θ̃ as functions

of φ and the other components of θ̃. Without loss of generality we solve the dν,φ equations

{Ψi(θ, φ) = 0, ∀i ∈ Iν,φ} for the first dν,φ components of θ̃. Therefore, it is useful to introduce

the notation θ̃Iν,φ := (θ̃1, . . . , θ̃dν,φ)T and θ̃−Iν,φ := (θ̃dν,φ+1, . . . , θ̃d)
T . By applying the implicit

function theorem to {Ψi(θ, φ) = 0, ∀i ∈ Iν,φ}, there exist dν,φ unique functions h1, . . . , hdν

2∂Θ(φ) is defined as the set of points in the closure of Θ(φ) not belonging to int(Θ(φ)), the interior of
Θ(φ). To show (4.6) under this assumption, let x ∈ ∂Θ(φ) be such that νTx = sup{νT θ : θ ∈ ∂Θ(φ)}, if
νTx < Sφ(ν) then Theorem 13.1 of Rockafellar (1970) implies x ∈ int(Θ(φ)), contradicting with Assumption
4.4.
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defined in a neighborhood of (θ̃−Iν,φ , φ) such that
θ̃1

...

θ̃dν,φ


︸ ︷︷ ︸

=:θ̃Iν,φ

=


h1(θ̃−Iν,φ , φ)

...

hdν,φ(θ̃−Iν,φ , φ)


︸ ︷︷ ︸

=:h(θ̃−Iν,φ ,φ)

, (4.7)

so that Ψi(θ̃, φ) = 0 for all i ∈ Iν,φ, if and only if θ̃ = (h(θ̃−Iν,φ , φ), θ̃−Iν,φ). By substituting

these functions into the corresponding elements of θ̃ in (4.6) we transform the constrained

optimization problem into an unconstrained optimization problem:

Sφ(ν) = sup{νT θ̃; θ̃ ∈ ∂Θ(φ)}

= sup{νT θ̃; Ψi(θ̃, φ) = 0, ∀i ∈ Iν,φ} (4.8)

= sup{νT θ̃; θ̃ = (h(θ̃−Iν,φ , φ), θ̃−Iν,φ) for some θ̃−Iν,φ}

= sup
m

[νT1:dν,φ
h(m,φ) + νTdν,φ+1:dm],

where h := (h1, . . . , hdν,φ)T , ν1:dν,φ and νdν,φ+1:d respectively denote the first dν,φ and last

d − dν,φ components of ν. This simplifies the local analyses of the corresponding value

function. In the case dν,φ ≥ d then, for a given (ν, φ), θ̃ is uniquely determined as a function

of φ and dν,φ − d restrictions are redundant. Therefore, one can eliminate the dν,φ − d

redundant constraints (when dν,φ > d) and apply the implicit function theorem to solve for

θ̃.

We need the following assumptions for the implicit function theorem. Denote rn := n−1/2

and Ψ(θ, φ) := (Ψ1(θ, φ), . . . ,Ψk(θ, φ))T .

Assumption 4.5. For every C > 0, ν ∈ Sd, and φ ∈ B(φ0, Crn) so that Θ(φ) is non-empty,

let (θ̃, φ) denote a solution to the system of equations {Ψi(θ, φ) = 0, for all i ∈ Iν,φ} such

that θ̃ ∈ Ξ(ν, φ). For all such (θ̃, φ) and ν the following holds:

(i) there exists a closed neighborhood of (θ̃, φ) on which Ψi(·, ·) is continuously twice dif-

ferentiable for all i ∈ Iν,φ;

(ii) the following Jacobian determinant is nonzero:

|J(φ, ν)| :=

∣∣∣∣∣
{
∂Ψi(θ̃, φ)

∂θTIν,φ
, i ∈ Iν,φ

}∣∣∣∣∣ 6= 0. (4.9)

This assumption can be easily checked since the functions Ψi are known. Conditions (i)

31



and (ii) in the assumption are the classical conditions in the statement of the implicit function

theorem. If {Ψi(·, ·)}ki=1 are continuously twice differentiable on Θ×Φ then Assumption 4.5

(i) is automatically verified. Moreover, to check Assumption 4.5 (ii) one can just consider the

values of θ̃ for which the Jacobian determinant is zero and check whether they are solutions

to the system of equations {Ψi(θ, φ) = 0, for all i ∈ Iν,φ}.
Under Assumption 4.5 the implicit function theorem holds, which is used in the proof of

Theorem 4.4 below together with the following assumption.

Assumption 4.6. (i) The true parameter value φ0 is in the interior of Φ.

(ii) The parameter space Θ ⊂ Rd is convex, compact and has nonempty interior (relative

to Rd).

(iii) The sets Θ(φ) and {θ ∈ Θ : Ψi(θ, φ) ≤ 0, for i = 1, ..., k1} are convex;

(iv) The functions (θ, φ) 7→ Ψ(θ, φ) are continuous ∀φ ∈ B(φ0, rn);

(v) Iν,φ = Iν,φ0 for all ν ∈ Sd and ∀φ ∈ B(φ0, rn).

Convexity of the set {θ ∈ Θ : Ψi(θ, φ) ≤ 0, for i = 1, ..., k1} (Assumption 4.6 (iii)) is used

to prove that the correspondence φ 7→ Θ(φ) is lower hemicontinuous at any φ ∈ B(φ0, rn),

which we need to prove an intermediate step in the proof of Theorem 4.4 below. Moreover,

convexity of Θ(φ), together with the continuity Assumption 4.6 (iv), guarantees that Θ(φ) is

completely characterized by the support function of Θ(φ). Finally, condition (v) requires that

the index of binding inequality constraints and equality constraints, Iν,φ, does not depend

on φ in the shrinking neighborhood of φ = φ0, so that this index set is locally “continuous”

with respect to φ. This assumption is needed to ensure that the support function is locally

smooth with respect to φ.

Theorem 4.4. Let Assumptions 4.4, 4.5 and 4.6 be satisfied, and denote ν1:dν,φ0
:= (ν1, . . . , νdν,φ0 )T .

Moreover, for every θ ∈ Ξ(ν, φ0) let M1(θ, ν) be the dν,φ0 × dν,φ0 matrix, whose elements are

given by:
∂Ψi(θ, φ0)

∂θIν,φ0 ,i′

for (i, i′) ∈ Iν,φ0, and let M2(θ, ν) be a dν,φ0 × dφ matrix whose elements are given by

∂Ψi(θ, φ0)

∂φj

for i ∈ Iν,φ0 and j = 1, . . . , dφ. Then, Assumption 4.1 holds with

A(ν) = max
θ∈Ξ(ν,φ0)

−νT1:dν,φ0
M1(θ, ν)−1M2(θ, ν).
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Remark 4.2. To illustrate this theorem and explain in detail the notations introduced,

in Section 6.2.2 below, we study the fixed design interval regression model as a concrete

example.

The following algorithm describes how one can compute A(ν) as defined in the previous

theorem.

Algorithm 4: Computing A(νj) as an alternative to the Lagrange multiplier ap-

proach

1. Fix a prior π(φ), and construct the posterior of φ. Let {φi}i≤M be the MCMC draws

from the posterior of φ. Let φ̂ = 1
M

∑M
i=1 φi. In addition, uniformly generate {νj}j≤G

such that ‖νj‖ = 1 for each j.

2. (outer-loop):

2.1. For each j ≤ G, solve one of the following constrained convex problems (depending

on whether k2 = 0 or k2 6= 0)

� if k2 = 0, max
θ
νTj θ subject to Ψi(θ, φ̂) ≤ 0 for i = 1, . . . , k1

� if k2 6= 0 max
θ∈Θ(φ̂)

νTj θ

and obtain Ξ(νj, φ̂) as the set of the maximizers and the set Iνj ,φ̂ of indices of

binding inequality constraints and equality constraints at this particular value

(νj, φ̂).

2.2. Uniformly generate {θb}b≤B ∈ Ξ(νj, φ̂). For each b ≤ B, calculate

A(θb, νj) := −νT1:dνj,φ̂
M̂1(θb, νj)

−1M̂2(θb, νj)

where M̂1(θb, νj) is the dν,φ̂ × dν,φ̂ matrix, whose elements are given by:

∂Ψi(θ, φ̂)

∂θIν,φ̂,i′

∣∣∣∣∣
θ=θb

, for (i, i′) ∈ Iν,φ̂,

and M̂2(θb, νj) is the dν,φ̂ × dφ matrix whose elements are given by

∂Ψi(θ, φ̂)

∂φj

∣∣∣∣∣
θ=θb

, for i ∈ Iν,φ̂ and j = 1, ..., dφ.
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Take

A(νj) = max
b≤B

A(θb, νj).

If Ξ(νj, φ̂) is a singleton, then this step only requires to be calculated B = 1 times.

3. (inner-loop): For each i ≤M , let

Ji =
√
nmax

j≤G

{
A(νj)

T [φi − φ̂]
}
, J̃i =

√
nmax

j≤G

{
|A(νj)

T [φi − φ̂]|
}
.

4. Let qτ and q̃τ be the (1− τ)-th quantile of {Ji}i≤M and {J̃i}i≤M , respectively.

5 Bernstein-von Mises Theorem of the posterior of Sφ(ν)

In this section we state the Bernstein-von Mises (BvM) theorem for the posterior distri-

bution of the support function. It establishes convergence, in TV norm, of the posterior of

the support function to a normal distribution as n → ∞. This theorem is valid under the

assumption that a BvM theorem holds for the posterior distribution of the identified param-

eter φ (Assumption 2.1 (ii)). We denote by P√n(Sφ(ν)−Sφ0 (ν))|Dn the posterior distribution of
√
n(Sφ(ν)− Sφ0(ν)).

Theorem 5.1 (BvM). Let Assumptions 2.1 (i)-(ii) and 4.1 hold. Then for any ν ∈ Sd,

‖P√n(Sφ(ν)−Sφ0 (ν))|Dn −N (∆̄n,φ0(ν), Ī−1
0 (ν))‖TV →P 0, (5.1)

as n → ∞, where ∆̄n,φ0(ν) := A(ν)T∆n,φ0, Ī−1
0 (ν) := A(ν)T I−1

0 A(ν) and ν 7→ A(ν) is as

defined in Assumption 4.1.

The quantities in Theorem 5.1 can be estimated by replacing φ0 and A(ν) by any con-

sistent estimator φ̂ and Â(ν). If one adopts the Lagrange multipliers approach described

in Appendix E to verify Assumption 4.1, then the semiparametric efficiency bound for esti-

mating the support function is known for this case and has been established by Kaido and

Santos (2014). Thus, in this case it can be seen that our Bayesian estimation of the support

function is asymptotically semiparametric efficient in the sense of Bickel, Klassen, Ritov,

and Wellner (1993), since the posterior asymptotic variance Ī−1
0 achieves the semiparametric

efficiency bound derived in Kaido and Santos (2014).

Let C(Sd) be the space of bounded continuous functions on Sd equipped with the supre-

mum norm ‖f‖∞ := supν∈Sd |f(ν)|. When φ is interpreted as a random variable drawn
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from its posterior distribution, the support function Sφ(·) is a stochastic process with re-

alizations in C(Sd). For this process, a weak BvM theorem holds with respect to the

weak topology. More precisely, let G be a Gaussian measure on C(Sd) with mean func-

tion ∆̄n,φ0(·) = A(·)T∆n,φ0 and covariance operator with kernel: ∀ν1, ν2 ∈ Sd

Ī−1
0 (ν1, ν2) = A(ν1)T I−1

0 A(ν2)

where ν 7→ A(ν) is as defined in Assumption 4.1. We then have the following theorem. For

a set B in C(Sd), denote by ∂B the boundary set of B, namely, the closure of B minus its

interior (with respect to the metric ‖ · ‖∞).

Theorem 5.2 (weak BvM). Let B be the class of Borel measurable sets in C(Sd) such that

G(∂B) = 0. Under the assumptions of Theorem 5.1, for each fixed B ∈ B,

P√n(Sφ(·)−Sφ0 (·))|Dn(B)→P G(B). (5.2)

The difference between the convergence results in the previous Theorem 5.1 and in The-

orem 5.2 is that in the latter the support function is considered as a stochastic process. On

the other hand, Theorem 5.1 is stronger because the convergence is in the TV norm while

the result in Theorem 5.2 only establishes weak convergence.

6 Simulations

6.1 Missing data

This section illustrates the coverage of the BCS’s constructed in Section 3 in the missing

data problem. Let Y be a binary variable, indicating whether a treatment is successful

(Y = 1) or not (Y = 0). The variable Y is observed subject to missing. We write M = 0

if Y is missing, and M = 1 otherwise. Hence, we observe (M,MY ). The parameter of

interest is θ = P (Y = 1). The identified parameters are denoted by φ1 = P (M = 1)

and φ2 = P (Y = 1|M = 1). Let φ0 = (φ10, φ20) be the true value of φ = (φ1, φ2). Then,

without further assumptions on P (Y = 1|M = 0), θ is only partially identified on Θ(φ) =

[φ1φ2, φ1φ2 + 1− φ1]. The support function is

Sφ(1) = φ1φ2 + 1− φ1, Sφ(−1) = −φ1φ2.

Suppose we observe i.i.d. data {(Mi, YiMi)}ni=1, and define
∑n

i=1Mi =: n1 and
∑n

i=1 YiMi =:

n2. The likelihood function is given by ln(φ) ∝ φn1
1 (1− φ1)n−n1φn2

2 (1− φ2)n1−n2 .
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We place independent beta priors, Beta(α1, β1) and Beta(α2, β2), on (φ1, φ2). Then the

posterior of (φ1, φ2) is a product of Beta(α1 +n1, β1 +n−n1) and Beta(α2 +n2, β2 +n1−n2).

6.1.1 Bayesian credible sets

We now construct the BCS for Θ(φ). The estimator φ̂ is taken to be the posterior mode:

φ̂1 = (n1 + α1 − 1)/(n + α1 + β1 − 2), and φ̂2 = (n2 + α2 − 1)/(n1 + α2 + β2 − 2). Then

J(φ) =
√
nmax

{
φ1φ2 − φ1 − φ̂1φ̂2 + φ̂1,−φ1φ2 + φ̂1φ̂2

}
. Let qτ be the 1− τ quantile of the

posterior of J(φ), which can be obtained by simulating from the Beta distributions. The

1− τ level BCS for Θ(φ) is

Θ(φ̂)qτ/
√
n =

[
φ̂1φ̂2 − qτ/

√
n, φ̂1φ̂2 + 1− φ̂1 + qτ/

√
n
]
,

which is also the asymptotic 1− τ frequentist confidence set of the true Θ(φ0).

We can also construct the confidence set for θ based on the posterior of φ, using Algorithm

2. Here we present a simple simulated example, where the true φ is φ0 = (0.7, 0.5). This

implies the true identified interval to be Θ(φ0) = [0.35, 0.65] and about thirty percent of the

simulated data are “missing”. We set α1 = α2 =: α, β1 = β2 =: β in the prior. In addition,

B = 1, 000 posterior draws {φi}Bi=1 are sampled from the posterior Beta distribution. For

each of them, compute J(φi) and set q0.05 as the 95% upper quantile of {J(φi)}Bi=1 to obtain

the critical values. Each simulation is repeated 2,000 times.

Table 1 presents the results for different values of α, β and n. We see that the frequentist

coverage probability for the set is close to the desired 95% when sample size increases.

This confirms the results of our Theorem 4.2. In addition, the frequentist coverage of θ is

significantly higher than the nominal level. This result is expected: the critical value for the

set is exact, making the coverage probability approximately equal to the nominal level. But

the critical value for the partially identified parameter is conservative, leading to conservative

coverages.

6.1.2 When the set parameter “shrinks” to a singleton

We now illustrate the case when the identified set “shrinks” to a singleton. Let the true

φ10 be φ10 = 1 − ∆n with ∆n → 0, that is, the probability of missing is close to zero. We

set φ20 = 0.5. This case is interesting because, given that Θ(φ) = [φ1φ2, φ1φ2 + 1− φ1] and

φ1 represents the probability of “non-missing”, letting the length of the identified set shrink

to zero corresponds to letting φ1, the probability of non-missing, converging to one. Our

results still hold when P (Y = 1) is nearly identifiable.

The frequency of coverage over 2,000 replications are summarized in Table 2. The results
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Table 1: Frequentist coverages over 2,000 replications, 1 − τ = 0.95, prior for φ1, φ2 is
Beta(α, β).

PDn(Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n) infθ∈Θ(φ0) PDn(θ ∈ Ω̂)

α β n = 50 n = 100 n = 500 n = 50 n = 100
1 1 0.929 0.948 0.950 0.988 0.984
1 0.1 0.912 0.950 0.956 0.980 0.984

0.1 1 0.916 0.948 0.950 0.992 0.988
0.1 0.1 0.938 0.944 0.952 0.980 0.980

Table 2: Frequentist coverages under near identifiability, 1 − τ = 0.95, prior for φ1, φ2 is
Beta(α, β).

PDn(Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n) infθ∈Θ(φ0) PDn(θ ∈ Ω̂)

∆n

α β 0.1 0.05 0 0.1 0.05 0
n = 100

1 1 0.945 0.953 0.954 0.990 0.994 0.992
1 0.1 0.934 0.944 0.935 0.986 0.992 0.988

0.1 1 0.952 0.951 0.950 0.990 0.990 0.986
0.1 0.1 0.938 0.936 0.937 0.986 0.982 0.978

n = 500
1 1 0.945 0.949 0.951 0.984 0.990 0.992
1 0.1 0.962 0.941 0.949 0.986 0.986 0.980

0.1 1 0.955 0.945 0.949 0.986 0.990 0.970
0.1 0.1 0.946 0.948 0.956 0.990 0.986 0.974

The length of the true identified set is ∆n. The model achieves identifiability when ∆n = 0. We
see that the coverage of the identified set is nearly “exact”, while the coverage of the partially

identified parameter is conservative.
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continue to be as expected: the BCS with 95% credible level has the coverage probability for

the true set Θ(φ0) close to 0.95 even for ∆n very small. This case has also been considered

in Chen et al. (2018) who also propose a non conservative procedure to construct confidence

sets for Θ(φ). On the other hand, the coverage of the partially identified parameter is as

conservative as in the “nonshrinking” case.

6.2 Marginal inference for fixed design interval regression

We simulate a fixed design interval regression model. The model is given by linear

constraints

XT (EY1) ≤ XTXθ ≤ XT (EY2),

where X is a n × d fixed design matrix and Y1 and Y2 are n × 1 random vectors. Suppose

the full parameter θ is high-dimensional, and we are interested in the first component θ1.

Let φ1 = 1
n
XTEY1 and φ2 = 1

n
XTEY2. Then the identified set for θ is given by {θ : φ1 ≤

1
n
XTXθ ≤ φ2} = {( 1

n
XTX)−1ζ : φ1 ≤ ζ ≤ φ2}, where we assume 1

n
XTX is nonsingular.

Using a similar argument as in Bontemps et al. (2011), it can be shown that the support

function has a closed form (proved in Lemma G.1 in the Supplementary Appendix): write

φ := (φT1 , φ
T
2 )T ,

Sφ(ν) =
1

2
νT
(

1

n
XTX

)−1

(φ1 + φ2) +
1

2

∣∣∣∣∣νT
(

1

n
XTX

)−1
∣∣∣∣∣ (φ2 − φ1), (6.1)

where the absolute value is taken coordinatewise. The support function is linear in φ and

the LLA assumption (Assumption 4.1) is satisfied with

A(ν)T =
1

2

(
νT (

1

n
XTX)−1 − |νT (

1

n
XTX)−1|, νT (

1

n
XTX)−1 + |νT (

1

n
XTX)−1|

)
.

6.2.1 Simulation results

In the simulation below, we are interested in the first component θ01 but dim(θ0) > 1. The

true (unknown) distribution for the DGP is Y1i ∼ N (0, 1), Y2i = 5+Y1i and each component

of Xi is generated uniformly from [0, 1]. Define Zji := XiYji, and Σ := 1
n
XTX. Then,

1
n

∑n
i=1 Zji ∼ N (φj,

1
n
Σ), where j = 1, 2. We impose a Gaussian prior φ1, φ2 ∼ N (0, Iσ2

0)

where the pre-specified prior variance σ2
0 > 0 measures the informativeness of the prior. Then

it is well known that the posterior of φj is also Gaussian with mean σ2
0(σ2

0I+ 1
n
Σ)−1 1

n

∑n
i=1 Zji

and covariance σ2
0(σ2

0I + 1
n
Σ)−1 1

n
Σ.

The BCSs are constructed using Algorithms 3’. The support function has a closed form.
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Then even if dim(θ) is large, for each drawn φi, it is sufficient and very easy to compute the

quantile of

{
√
nmax
ν=±1

(
Sφi(e1ν)− Sφ̂i(e1ν)

)
: i = 1, ..., B}

based on the posterior draws {φi}i≤B, where e1 = (1, 0, . . . , 0)T . The algorithms run very

fast. On average, it took about eight seconds to finish 1,000 replications on our computer

with 2.3 GHz Intel Core i7 CPU.

Our numerical example of the interval regression model takes advantage in terms of

computational burden of both the fact that it is about a marginal inference problem whose

essential dimension is one and the fact that the support function has a closed form solution.

The results are reported in Table 3. We use Ω̂1 to denote the confidence interval for the

first component of θ0. In most cases, the coverage probabilities are close to the nominal

level. We summarize the main numerical findings from this table as follows.

1. The less informative prior (larger σ2
0) in general yields higher frequentist coverage

probabilities. In particular, the identified set is slightly under-covered when the prior

variance is small. This is shown by the calculated PDn(G(φ0) ⊂ G(φ̂)qτ/
√
n) when the

prior variance equals 5. This observation is not surprising, as less informative prior

often results in wider confidence intervals.

2. The coverage of the marginal partially identified parameter, as calculated by

infθ1∈G(φ0) PDn(θ1 ∈ Ω̂1), is slightly higher than the coverage of the identified set.

3. Even when the overall dimension is relatively large, e.g., dim(θ0) = 10, the constructed

confidence intervals do not show a noticeable conservative coverage. This illustrates

an appealing feature of our constructed marginal confidence intervals similar to Kaido

et al. (2019), Bugni et al. (2017), Chen et al. (2018). As explained by Kaido et al.

(2019), the usual projection procedure from a high-dimensional confidence interval

often results in severe over-coverage.

6.2.2 Illustrating the IFT approach (Theorem 4.4) for fixed design interval

regression

In this subsection we provide more detailed derivations of the model described in Section

6.2, and further explain the introduced notations used in the implicit function theorem

approach. Formal derivations are given in Lemmas G.1-G.4 in the Supplementary Appendix.

First, define

m(ν) := Σ−1ν, Σ :=
1

n
XTX.
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Table 3: Frequentist coverages of the first component of θ and of its identified set G(φ) over
1,000 replications, 1− τ = 0.95; the prior variance is σ2

0.

prior variance dim(θ0) n = 50 n = 100 n = 300

PDn(G(φ0) ⊂ G(φ̂)qτ/
√
n) 5 2 0.943 0.939 0.950

5 0.925 0.948 0.939
10 0.905 0.938 0.944

infθ1∈G(φ0) PDn(θ1 ∈ Ω̂1) 2 0.962 0.960 0.955
5 0.947 0.964 0.940
10 0.938 0.952 0.947

PDn(G(φ0) ⊂ G(φ̂)qτ/
√
n) 50 2 0.942 0.940 0.953

5 0.945 0.951 0.948
10 0.947 0.954 0.947

infθ1∈G(φ0) PDn(θ1 ∈ Ω̂1) 2 0.961 0.960 0.959
5 0.955 0.959 0.953
10 0.956 0.965 0.956

Then the support function has an analytical form:

Sφ(ν) = sup
θ∈Ψ(θ,φ)≤0

νT θ =
1

2
m(ν)T (φ1 + φ2) +

1

2

∣∣m(ν)T
∣∣ (φ2 − φ1), (6.2)

and the supremum is achieved by θ̃(ν, φ, α) := Σ−1ξ∗ν,φ,α for any α ∈ Rdim(θ), where

ξ∗ν,φ,α := φ2 ◦ 1{m(ν) > 0}+ φ1 ◦ 1{m(ν) < 0}+ α ◦ 1{m(ν) = 0};

here ◦ is the component-wise product of two vectors. It is straightforward to see that indeed

θ̃(ν, φ, α) belongs to the equality boundary ∂Θ(φ). To see this, note that θ̃(ν, φ, α) ∈ ∂Θ(φ)

if and only if there exists j so that the j-th component of Σθ̃(ν, φ, α) equals either φ1 or

φ2. Indeed, we can find a component j so that mj(ν) 6= 0. Then the j-th component of

Σθ̃(ν, φ, α) is the j-th component of ξ∗ν,φ,α, which is either φ2,j (if mj(ν) > 0) or φ1,j (if

mj(ν) < 0), so that indeed Ψj(θ̃(ν, φ, α), φ) = 0. In addition, this immediately implies that

the binding index Iν,φ is given by:

Iν,φ := {i ∈ {1, 2, . . . , 2d}; Ψi(θ, φ) = 0, ∀θ ∈ Ξ(ν, φ)}
= {i ∈ I : mi(ν) > 0} ∪ {i ∈ II : mi−d(ν) < 0},

40



where I = {1, . . . , d} and II = {d+ 1, . . . , 2d} correspond to the indices of

Ψ(θ, φ) :=

(
ΨI(θ, φ)

ΨII(θ, φ)

)
:=

(
Σθ − φ2

φ1 − Σθ

)
.

There are three main features in this example. First, Sφ(ν) as defined in (6.2), is con-

tinuously differentiable and linear in φ. Thus the LLA Assumption 4.1 is naturally satisfied

with f(φ, φ̃) = 0, ∀φ, φ̃ ∈ Φ. Secondly, the binding index Iν,φ is independent of φ. Third,

A(ν) in the LLA expansion has an analytic form:

A(ν) = ∂Sφ(ν)/∂φ|φ=φ0
=

1

2

(
m(ν)T − |m(ν)T |,m(ν)T + |m(ν)T |

)
.

The implicit function theorem then ensures that components of θ̃(ν, φ, α) corresponding

to Iν,φ, denoted by θ̃Iν,φ , can be determined as a function of other components, which is

(4.7):

θ̃Iν,φ = h(θ̃−Iν,φ , φ).

To give an explicit expression for the function h(·), define the index sets (m(ν) > 0) := {i :

mi(ν) > 0}, and (m(ν) < 0) := {i : mi(ν) < 0}. Let Σ(m 6=0) be a square matrix that is

formed by removing the rows and columns of Σ indexed by {j : mj(ν) = 0}. Similarly, let

ξ∗ν,φ be the subvector of ξ∗ν,φ,α, removing the elements indexed by {j : mj(ν) = 0}. Hence,

ξ∗ν,φ is independent of α. Then by permuting the rows and columns of Σ, and permuting the

elements of θ̃(ν, φ, α), ξ∗ν,φ,α, we can obtain a permutation version of Σθ̃(ν, φ, α) = ξ∗ν,φ,α such

as: (
Σ(m 6=0) G1

GT
1 G2

)
︸ ︷︷ ︸

permutation of Σ

(
θ̃Iν,φ
θ̃−Iν,φ

)
︸ ︷︷ ︸

permutation of θ̃(ν,φ,α)

=

(
ξ∗ν,φ

α(m(ν)=0)

)
︸ ︷︷ ︸

permutation of ξ∗ν,φ,α

,

which leads to Σ(m6=0)θ̃Iν,φ +G1θ̃−Iν,φ = ξ∗ν,φ. Solving for θ̃Iν,φ , we obtain

θ̃Iν,φ = Σ−1
(m6=0)(ξ

∗
ν,φ −G1θ̃−Iν,φ)︸ ︷︷ ︸

h(θ̃−Iν,φ ,φ)

.

Finally, it is important to note that here we are concerned about the joint inference

about θ (the entire vector). In this case assuming the fixed design is essential and ensures

that the covariance Σ := 1
n
XTX is known. In random design regressions, the parameter

φ3 := (E
[

1
n
XTX

]
)−1 has to be treated as an additional parameter, then φ = (φ1, φ2, φ3). In
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this case, the support function also has an analytic form:

Sφ(ν) = νTφ3

(
φ1 + φ2

2

)
+ |νTφ3|

(
φ2 − φ1

2

)
.

However, the LLA no longer holds for Sφ(ν), because |νTφ3| is not locally linearly approx-

imable near the origin. But for models of random designs, we can still conduct marginal

inference as we explained in Section 4.1.2.

7 Discussions

This paper proposes Bayesian inference for partially identified convex models based on

the support function of the identified set. Our results have been described for a closed and

convex identified set characterized by moment inequalities, but under the LLA our results

hold more generally for identified sets characterized in other forms, such as the likelihood

based models, as long as the set is closed, convex and with smooth boundaries.

We propose new algorithms to compute critical values used to construct BCS for infer-

ences about the identified set, partially identified parameters, and scalar functions. While

Moon and Schorfheide (2012) show that a BCS for θ does not have a correct frequentist cov-

erage even asymptotically, we instead show that one can construct a frequentist confidence

set for the partially identified parameter θ with the desired coverage once a prior is imposed

directly on the identified set. Although it is intuitively clear that the Bayesian-frequentist

large sample duality does not necessarily require the convexity of the identified set, we adopt

a support function approach in this paper, which requires convexity. On the other hand, the

convexity assumption has interesting implications for computations.

While in the paper we use relatively simple assumptions about the prior and posterior of

φ, our analysis can be extended to cases where φ is infinite dimensional, though we expect

that this analysis would require a more involved study of the nonparametric prior of φ.
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