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Abstract. Studies on massive open online courses (MOOCs) users dis-
cuss the existence of typical profiles and their impact on the learning
process of the students. However defining the typical behaviors as well
as classifying the users accordingly is a difficult task. In this paper we
suggest two methods to model MOOC users behaviour given their log
data. We mold their behavior into a Markov Decision Process framework.
We associate the user’s intentions with the MDP reward and argue that
this allows us to classify them.

Keywords: User Behaviour Studies · Learning Analytics · Markov De-
cision Process · Inverse Reinforcement Learning.

1 Introduction

Finding an efficient way to identify behavioural patterns of MOOC users com-
munity is a recurring issue in e-learning. However, as detailed in the review
of Romero and Ventura [1] on educational data science research, the way this
problem was studied was either testing correlations given conjectures or trying
to identify communities of look-a-likes.

The main approaches study aggregates of data generated by users in order
to identify their respective behaviors with respect to some typology of the stu-
dents. For instance, Ramesh A. et al. [2] distinguish learner behavior according
to their engagement into active, passive and disengaged learners. They predict
their behavior based on a probabilistic soft logic model taking into account users
features relating to their engagement on the Mooc. Corin L. et al. [3] describes
the behaviour of users through flow diagrams of the state transitions through
comparing different sets of behaviours with graphical models. Cheng Y. and
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Gautam B. [4] predicted users drop-out through temporal granularities in fea-
tures suspected to influence the drop-out of the users. Finally, Christopher B.
et al. [5] cover the prediction of the users achievement through their levels of
activity in the course. Unfortunately, given a different typology of users profile,
we can not easily transpose these approaches because the features used to char-
acterize the learner are selected with respect to the definition of the classes. For
example, performance related typology can be matched to users’ quizzes success
rate, the drop-out rate oriented classes can be tracked through the times series of
connection history. However the task becomes more difficult when the definition
of classes can not be reduced to a simple quantifiable measurement, for example
the user intentions, goals and motivations. Chase G. and Cheng Z. [6] aimed
for a generalized method by modelling the user behaviour as a two layer hidden
Markov model. They used log data to construct their characterization of the
users. They cluster the transition probabilities to define the hidden states, and
they compare the transitions between these hidden states for the high and low
performing students. However, if we only observe the transitions probabilities,
identifying an interpretation of the associated behavior is a complex task.

We aim to define general models to study any kind of user behavior without
loosing the interpretability of results. We consider two different main models.
In the first one, we assume that each user can adopt his own different policy.
Each user has a reward function over the MOOC and tries to optimize it. We can
cluster theses rewards into a finite number of classes that represent the behaviors
explaining the observations. In the second one, we assume that there are a limited
number of rewards the users can optimize. Each reward translates into a typical
behavior and the users are switching between them along the MOOC.

2 Mathematical Preliminary

2.1 Markov Decision Process

Consider a Markov Decision Process (MDP)M = {S,A,P,R, ν,X} where S =
{1, 2, ..., Ns} is a finite state space, A = {1, 2, ..., Na} is a finite action space,
P : S × A × S → [0, 1] is the probability distribution of state transition such
as P(s, a, s′) = P(st+1 = s′|st = s, at = a) is a probability of going to state
s′ under action a from state s , R : S × A → [0, 1] is the reward function,
ν ∈]0, 1[ is a discount factor and X is an initial distribution over the states i.e.
P(s0 = s) = X (s). Any transition matrix compatible with the MDP on S × A
is referred to as a policy, and we denote π : S × A → [0, 1] such policy. An
agent following the policy π would take at time t the action at = a at state
st = s with probability P (at = a|st = s) = π(s, a). The value of the policy π is
V π =

∑
s X (s)V π(s) where V π(s) = Eπ[

∑
t ν

tR(st, at)|s0 = s] is the state value
function. Similarly we denote the state-action value function by Qπ(s, a) defined
by Qπ(s, a) = Eπ[

∑
t ν

tR(st, at)|s0 = s, a0 = a]. We denote by π∗ the optimal
policy maximizing the expected discounted reward given any starting state, and
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by V ∗ and Q∗ the corresponding values defined as [7]:

π∗ = argmaxπV
π(s) = argmaxπQ

π(s, a) ∀s ∈ S ∀a ∈ A
V ∗(s) = V π

∗
(s) ∀s ∈ S

Q∗(s, a) = Qπ
∗
(s, a) ∀s ∈ S ∀a ∈ A.

Given an MDPM, the optimal policy π∗ can be computed using well-known
methods such as Value iteration or Policy iteration [7]. We use a Value iteration
approach and we refer to this procedure as Q∗ = MDP(M)

Reward parametrized MDP: In this paper we consider the case of MDPs
with linearly parametrized rewards Mθ = {S,A,P,Rθ, φ, ν,X} i.e. such that:

∀s ∈ S ∀a ∈ A Rθ(s, a) = θ.φ(s, a)T ,

where φ : S × A → RN is a feature map from the state-action space to a real
valued N dimensional space and θ ∈ RN is an N dimensional real weights.

For a given θ, we will denote the optimal policy by π∗θ , and the corresponding
optimal value functions by V ∗θ and Q∗θ .

2.2 Inverse Reinforcement Learning

Let be Mθ a reward paramatrized MDP whose parameter θ is unknown. We
denote by W = {S,A,P, φ, ν,X}, and DM = {(yi0:Ti)

M
i=1} the behavioral data

where yi0:Ti = {yit = (sit, a
i
t)
Ti
i=1} are the ith individual following an unknown

policy π∗θ . The goal of the Inverse Reinforcement Learning (IRL) problem is to

identify parameters θ̂ such that π∗
θ̂

are as likely as π∗θ to generate the observations

DM . The IRL problem is ill-posed [8] as there exists infinitely many reward
parameters that yield π∗θ as an optimal policy. For example with θ = 0, any
policy is optimal for any IRL problem.

To circumvent this issue, many approaches have been proposed to define
preferences over the reward space. These approaches can be broadly divided
in two settings: Optimization IRL and Bayesian IRL. Optimization oriented ap-
proaches define objective function that encode such preferences [8,9,10]. Bayesian
approaches formulate the reward preferences in the form of a prior distribu-
tion over the rewards and define behavior compatibility as a likelihood function
[11,12,13]. We will follow the latter setting [13]. The model we consider assumes
that that agents are not following an optimal policy π∗θ but rather an aproximal
one. more precisely, we assume that:

π̃ηθ (s, a) =
exp(ηQ∗θ(s,a))∑
ai

exp(ηQ∗θ(s,ai)
∀s ∈ S ∀a ∈ A

P (at = a|st = s,Mθ) = π̃ηθ (s, a) ∀s ∈ S ∀a ∈ A
P (st+1 = s′|st = a, at = a,Mθ) = P(s, a, s′) ∀s, s′ ∈ S ∀a ∈ A

Therefore, under this model, the likelihood is given by:

P (DM |Mθ) =
∏M
i=1

∏Ti
t=1 π̃

η
θ (s, a)×

∏M
i=1

∏Ti
t=1 P (st+1|st, at,Mθ)
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We have assumed that (at, st)t≥0 is still Markovian, with transition probabilities

given by P which does not depends on θ. Thus,
∏M
i=1

∏Ti
t=1 P (st+1|st, at,Mθ)

can be treated as a multiplicative constant with respect to θ. We define:

L(θ; (DM ,W)) =

M∏
i=1

Ti∏
t=1

exp(ηQ∗θ(s
i
t, a

i
t))∑

a exp(ηQ∗θ(s
i
t, a)

,

where η can be interpreted as a confidence parameter. The bigger it gets,
the closer are the policies π̃ηθ and π∗θ , as limη→∞π̃

η
θ (s, a) = π∗θ . The posterior

distribution is given by Bayes Theorem, where we choose θ → P(θ) to be a
uniform distribution over a subset of the parameter space.

P(θ|DM ) α L(θ; (DM ,W))P(θ)

We use approximate samples from the distribution P(θ|DM ) to compute the
a posteriori mean or median which are optimal under the square or linear loss
function respectively [13,15]. Iterating Algorithm 1 generates the samples.

Algorithm 1 SampleTheta

1: procedure θ = SampleTheta(θ0,W, P, σ, η,DM )
2: sampleε ∼ N (0, 1) and set θ̃ = θ0 + σε
3: Q̃∗

θ̃
= MDP(Mθ̃)

4: Set θ = θ̃ with probability:

5: min(1,
L(DM ,M

θ̃
P (θ̃)

L(DM ,MθP (θ)
)

6: else set θ = θ0

7: Return θ

2.3 Switched Markov Decision Process sMDP

Inspired from switched Linear Dynamical Systems [14], switched Markov Deci-
sion Process allow us to simplify complex phenomena into transitions among a
set of simpler models. For example, non-linear behaviors such as an individual’s
movement in a crowd, can be viewed as an array of linear behavior among which
the person is temporally switching [11].

Let (Mθi)
L
i=1 be a set of MDP models with corresponding parameters (θi)

L
i=1

and policies (π̃ηθi)
L
i=1. Switching between these models is governed by a discrete

Markov process with transitions ζ. We denote zt as the latent mode of the system
at time t, thus, it is sampled according to ζzt−1,.. We also denote by yt = (st, at)
the observations which obey to a Markov decision process model.

zt|{ζi}Li=1, zt−1 ∼ ζzt−1,.

yt|yt−1, zt, {θi}Li=1 ∼ π
η
θzt

(yt)P(st−1, at−1, st)

The hidden modes and the MDP associated with each one of them provide a
Hidden Markov Model (HMM) structure leading to repeating simple behaviors.
A common approach to solve HMM model is the forward backward method
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developed by Andrew Viterbi[17]. We call Viterbi the procedure that evaluates
the latent modes ẑ1:T and the transition probabilities Fij = P(zt = i, zt+1 = j)
and we denote it by [z1:T ,F ] = Viterbi(y1:T , ζkk′ , π

η
θi

). We denote by MS =

(W, L, (θi)
L
i=1, ζ,Xm) the sMDP model where Xm is the initial mode distribution.

As an application we will tackle the case where the parameters ((θi)
L
i=1, ζ) are

unknown and will be learned from the data.

2.4 Label Propagation

Let (xi, yi)
l
i=1 be a set of labeled data, and (xi, yi)

l+u
i=l+1 be a set of unlabeled

data, i.e. (yi)
l+u
i=l+1 are unobserved. Where xi ∈ RD and yi ∈ C for i = 1, .., l+ u

and where C is a finite set. We define X = {x1, x2, ...xl+u}, YL = {y1, ..., yl} and
YU = {yl+1, ..., yl+u}. The problem is to estimate YU given X and YL. we also
denote by Y the matrix of label probability where Yic = P (yi = c). We want to
find a matrix Y that satisfies the following:{

Yi. = (TY )i.
||(TY )i.||2 ∀i > l + 1

Yi. = δ(yi) ∀i ≤ l

Where T is the matrix of label transition probabilities through the set X. Tij ,
the probability that xi will inherit the label of xj , is proportional to the distances
between the two points. Algorithm 2 [16] solves for Y .

Tij = P (yj → yi) =
wij∑l+u
k=1 wkj

and wij = exp(−d
2
ij

σ2 ) = exp(− |xi−xj |
2
2

σ2 )

Algorithm 2 Label Propagation

1: procedure Y = LabelProp(X,YL, σ)
2: initialize Y with: Yic = δ(c = yi) if i ≤ l and Yic = 1

C
if i > l

3: repeat until convergence of Y :
4: Y = TY
5: row-normalize Y
6: Yic = δ(c = yi) for i ≤ l
7: return Y

3 Behavior inference with IRL

We now suggest two ways to develop a classification for MOOC user behaviors.
In the first one, Static Behavior Clustering (SBC), we consider that each
user follows a policy that optimizes his own reward function and that generates
their log data. We use the reward parameter associated to each user as features
and we propagate labels that experts define on a restricted set of users. In the
second one, Dynamic Behavior Clustering (DBC), we consider that there
is a small number of behaviors a user can adopt. We model their behaviors
with a sMDP, the log data is then simplified into a set of typical behavior
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successions. We denote in the sequel by W the MDP associated to the MOOC
and by DM = {(yi0:Ti)

M
i=1} the collected observation from M users where yit =

(sit, a
i
t) indicate user i being at state sit at time t and taking action ait. We denote

by DM (i) = {yi0:Ti} the data associated to the ith user.

3.1 Construction of the MOOC MDP

Given a MOOC, we first define some associated MDP parameters W. The con-
struction is straightforward: we define S as the different pages a user can access
along with a resting state (associated to logging out of the website), A is as-
sociated to the different actions available to the user such as playing a video,
clicking on a given link or answering a quiz. X and P are computed empirically
given the data DM . The feature function φ however gives some flexibility to our
approach. If we do not have much knowledge about the behaviors we are trying
to track, we can define φ(s, a) = 1S×A(s, a) as the indicator function of each
state-action combination. Unfortunately, this will become unhandy for higher
dimensions as θ ∈ R|S|×|A|. An expert can however define a set of features to
which the set of state-actions can be mapped. The discount parameter ν reflects
the ability of the agents of long term planning. It should be learned along with
other parameters as it might not be the same for each user. However, we will
consider a shared parameter that we fix at 0.9 for the sake of simplicity.

3.2 Static Behavior Clustering

We assume the existence of a set of behavior classes C = {1, .., N}. Let (ci)
M
i=1

be the classes associated to each user in the data. With the help of a human
expert, using highly restrictive conditions, we identify l users classes. Without
loss of generality, we assume that CL = {c1, ..., cl} is the set of known classes.
Let Pc be the class probability matrix where Pc

ij = P (ci = j) We consider also
that each user behaves according to the MDP Mθi = {W,Rθi} such that:

∀t ≤ Ti ait ∼ π
η
θi

(sit, .) and sit+1 ∼ P(sit, a
i
t, .)

For user i, we propose to infer such parameters given DM (i), which will allow
us to infer (θi)

M
i=1. The objective is then to identify Pc given Θ and CL. In

Algorithm 3 we suggest a method to solve this problem.

Algorithm 3 Static Behavior Clustering

1: procedure Pc = SBC(DM ,W, CL, Pθ, η, σMDP , σLP )
2: initialize Θ = {θi} to void values
3: for i=1,..M:
4: θi = BIRL(W, Pθ, σ, η,Nmax,DM (i))
5: Pc = LabelProp(Θ,CL, σLP )
6: return Pc
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3.3 Dynamic Behavior Clustering

We suggest here a simpler version of the model of the sticky Hierarchical Dirichlet
Process for sMDP [11]. To simplify the problem we assume that the number of
clusters L is given. We suppose that the transition distribution from the ith

mode are generated according to a Dirichlet distribution Dir(αL + δi) where
αL = α.1L, δi is the ith vector of the canonical base of RL, and α ∈ R. This
avoids jumping between modes as the probability of remaining in the same mode
is higher than switching to a new one. The reward parameter associated to
each mode is sampled from U the uniform distribution over some subset of
the parameter space. The observations obey to an sMDP model defined with
MS = (W, L, {θi, ζi}Li=1,Xm). The full generative model is given bellow:

ζ(i, .)|α ∼ Dir(αL + δi) ∀i = 1, .., L
θi ∼ U ∀i = 1, .., L

zit|{ζ(i, .)}Lj=1 ∼ ζ(zt−1, .) ∀i = 1, ..,Mandt = 1, ..Ti
yit|yit−1, zit, {θj}Lj=1 ∼ π

η
θ
zit

(sit, a
i
t)P(sit−1, a

i
t−1, s

i
t) ∀i = 1, ..,Mandt = 1, ..Ti

The intuition behind this model is that each user can adopt at each time step
one of the behavior modes (i.e. he behaves accordingly to one of the MDPs).
To alleviate notations we denote in the following Π = {πηθi}

L
i=1, and Dk =

{yit ∀i ≤ L ∀t ≤ Ti|zit = k} the observations associated to the kth behavior
mode. We suggest a MCMC approach to solve this inference problem where
each step looks as developed in Algorithm 4. We start by inferring the latent
modes according to the previous parameters values. We define the new sample
of the HMM parameters using the normalization of the frequencies probabilities
F in step 6. In step 7, we split the data set according to the zit into Di and use
Algorithm 1 to sample the new MDP parameters θi and their policies.

Algorithm 4 Dynamic Behavior Clustering

1: procedure Θn, ζn, Πn = DBC(DM ,W, Pθ, η, σ,Θ
n−1, ζn−1, Πn−1, α)

2: Set F = [fij ]i∈[1,L] j∈[1,L] to zeros
3: for i=1,..,M:
4: [zi1:Ti ,F

i] = Viterbi(yi1:Ti , ζ
n−1, Πn−1)

5: F = F + F i
6: [ζn] = SampleHMMParam(DM ,F , ζn−1, α, σ)
7: [Θn, Πn] = SampleMDPParam(DM , Θn−1, zi1:Ti , η, σ)
8: return [Θn, ζn, Πn]

4 Experiment

The experiments were conducted on MOOCs published in the framework of
the research project #MOOCLive under the leadership of the Centre Virchow-
Villermé for Public Health. The project aimed to substantially improve the ef-
ficiency of the MOOCs through a deeper understanding of the participants and
their behaviors. In the modelization of the MOOC’s MDP, we used an indicator
feature function over the state-action space S ×A.
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4.1 Static Behavior Clustering

As mentioned before, our objective is to introduce a procedure that can be ap-
plied irrespectively of the experts classification. We experimented with multiple
behavior classes C. Each time, we first defined C and then identified the sub-
set CL. For instance defining the collaborative behavior as users who finish all
quizzes and courses, get highest scores, and participate on the forum, the tar-
geting behavior which corresponds to a super student on only one chapter of
the MOOC. Such perfect representation are rare, and only few users satisfy the
required criterion. Afterward, we randomly select a testing set and ask experts
either they agree or disagree with the classification. The experiment can have
one of two possible outcomes, either we add the test set to the labeled set CL
and run the algorithm again for better accuracy, or, we find that the expert
becomes aware of some limitations and improves his behavior classes C defini-
tions [18]. This iterative process can be repeated as much as needed until the
expert is satisfied with the outcome. In our case we converged to the following
classification:

– Participant (P) Does all the chapters, and answer all the quizzes;
– Collaborative (C) Does at least 70% of all the chapters and quizzes but

highly active on the forum;
– Targeting (T) Targets a chapter, solves the relevant quizzes;
– Auditor (A) Reads 70% the chapters but answers 30% of the quizzes;
– Clicker (Cl) Does not stay on the same page longer than 5 seconds;
– Big Starter (BS) Has a participant behavior up to the first 3 chapters;
– Late Quitter (LQ) Has a participant behavior up to the last 3 chapters.

4.2 Dynamic Behavior Clustering

The results of SBC motivated the development of DBC. We observed that the
classes that were satisfactory for the analysis requirement, are actually tempo-
rally characterized by a smaller number of simple behavior.

– Exploration where the user is randomly skipping through the MOOC;
– Learning where the user pays attention to the content of pages;
– Certification where the user is interested in the certification and tries to

fulfill the courses requirements.

We considered a three dimensional feature space where the weight in each
dimension reflects the probability of following the associated behavior. As ex-
pected, the users behaviors could be explained by the succession of simple be-
havior, we converged to 3 modes each of them optimizes one of the behaviors
θ1, θ2, θ3 ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.

In Figure 1 we observe the expected temporal evolution of modes (zit=0:Ti
) for

three users. Some behaviors such as the clicker behavior, can be observed as an
agent with the unique goal of exploration as shown in the case of user #1. Other
behaviors correspond to other patterns such as the late quitter, whose behavior is
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quite similar to the participant/collaborative behavior. The user start exploring
a little bit, oscillates between exploring and learning before adopting mostly
the certifying behavior. We end up sometimes with an exploration phase before
leaving the courses entirely. The difference between the LQ and (C/P) behaviors
is the length of the sequences. For instance we observe the fact that LQ tend to
explore more by the end.

Fig. 1. Three #MOOCLive users’ latent behavior modes

5 Discussion

From a practical point of view, both SBC and DBC were satisfactory as the
results satisfied the experts who lead the experimentation process with us. We
were able to improve our understanding of the users learning behaviors without
requiring additional informations when treating different sets C of user classes.
The results of the SBC are easily interpretable as the outputted behaviors are
defined with the help of an expert. However, in the case of DBC, the task is
more difficult. It mainly depends of the considered feature map and our ability
to identify behaviors when observing the outputted parameters. In our cases, we
did not struggle as we were anticipating such results.

A big drawback of the SBC is the assumption that users behave according
to a unique policy throughout the course. To circle around this, the behavior
classes had to be specified enough to capture the nuances between the users.
Even though DBC resolves partially this issue by allowing the users to jump
among typical behaviors, a temporal explanation of the mode switching is far
from being comprehensively satisfactory. In fact, the users are more likely to
switch from an exploration behavior to a learning one because they visited a set
of different pages (or states) rather than because they spent a certain amount
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of time exploring the state space. The reward is likely to be non-Markovian as
it depends of the trajectory a user follows and not just the last state he visits.
Indeed, for a user trying to learn the content of a MOOC, a chapter is more
rewarding when visited for the first time. An interesting direction for future
work would be to tackle such challenging problem.
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