
6. Appendices
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Appendix A. Appendix

Appendix A.1. Proof of consistency theorem
Proof of the theorem in 2.3:

Theorem 2 (B2B consistency - general case). Consider the B2B model from equation 1

Y = (XS +N)F

with N centered and full rank noise.
If F and X are full-rank on Img(S), then, the solution of B2B, Ĥ minimizes

min
H
‖X −XH‖2 + ‖NH‖2

and satisfies

SĤ = Ĥ

Proof. Let Ĝ and Ĥ be the solutions of the first and second regressions of B2B.
Since Ĝ is the least square estimator of X from Y

Ĝ = arg min
G

S[‖Y G−X‖2]

Replacing Y by its model definition Y = (XS +N)F , we have

Ĝ = arg min
G

S[‖X − (XS +N)FG‖2] = arg min
G

S[‖X −XSFG+NFG‖2]

Since N is centered and independent of X , we have

Ĝ = arg min
G
‖X −XSFG‖2 + ‖NFG‖2 (A.1)

In the same way, for Ĥ , we have

Ĥ = arg min
H

S[‖XH − Y Ĝ‖2] = arg min
H

S[‖XH − (XS +N)FĜ‖2]

= arg min
H

S[‖X(H − SFĜ)‖2] + S[‖NFĜ‖2]

= arg min
H

S[‖X(H − SFĜ)‖2]

a positive quantity which reaches a minimum (zero) for

Ĥ = SFĜ (A.2)

Let us now prove that SFĜ = FĜ.
Let F † be the pseudo inverse of F , and Z = F †SFĜ, we have FZ = FF †SFĜ
Since F is full rank on Img(S), we have FF †S = S, and FZ = SFĜ
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As S is a binary diagonal matrix, it is an orthogonal projection and therefore a contraction, thus

‖NSFĜ‖2 ≤ ‖NFĜ‖2

and

‖X −XSFZ‖2 + ‖NFZ‖2 = ‖X −XSFĜ‖2 + ‖NSFĜ‖2 ≤ ‖X −XSFĜ‖2 + ‖NFĜ‖2

But since Ĝ = arg minG ‖X −XSFG‖2 + ‖NFG‖2, we also have∥∥∥X −XSFĜ∥∥∥2 +
∥∥∥NFĜ∥∥∥2 ≤ ‖X −XSFZ‖2 + ‖NFZ‖2

Summarizing the above,∥∥∥X −XSFĜ∥∥∥2 +
∥∥∥NFĜ∥∥∥2 ≤ ‖X −XSFĜ‖2 + ‖NSFĜ‖2 ≤ ‖X −XSFĜ‖2 + ‖NFĜ‖2

∥∥∥X −XSFĜ∥∥∥2 +
∥∥∥NFĜ∥∥∥2 = ‖X −XSFĜ‖2 + ‖NSFĜ‖2∥∥∥NFĜ∥∥∥2 = ‖NSFĜ‖2

N being full rank, this yields SFĜ = FĜ.
Replacing into (A.1), and setting H = SFG, we have

Ĝ = arg min
G
‖X −XSFG‖2 + ‖NFG‖2

= arg min
G
‖X −XSFG‖2 + ‖NSFG‖2

Ĥ = arg min
H
‖X −XH‖2 + ‖NH‖2

Finally, SĤ = SSFĜ = SFĜ = Ĥ , since S, a binary diagonal matrix, is involutive. This
completes the proof.
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Appendix A.2. Modeling measurement noise
Equation 1 does not explicitly contain a measurement noise term. Yet, in most experimental

cases, the problem is best described as:

Y = (XS +N)F +M (A.3)

with M ∈ Rm×dy .
This equation is actually equivalent to Equation 1 given our hypotheses. Indeed, we can rewrite

M = MF−1F over Img(F ), which leads to:

Y = (XS +N)F +M = (XS +N +MF−1)F = (XS +N ′)F

Consequently, assuming that F is full rank on Img(XS), B2B yields the same solutions to
equations 1 and A.3.

Appendix A.3. Feature importance
For B2B, feature importance is assessed as follows:

Algorithm 2: B2B feature importance.
Input: Xtrain ∈ Rm×dx , Xtest ∈ Rm′×dx , Ytrain ∈ Rm×dy , Ytest ∈ Rm′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx .

1 H,G = B2B(Xtrain, Ytrain);
2 Rfull = corr(XtestH, YtestG);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Rk = corr(XtestKH,YtestGi);
7 ∆Ri = Rfull −Rk;
8 end
9 return ∆R

For the Forward Model, the feature importance is assessed as follows:
Algorithm 3: Forward feature importance.

Input: Xtrain ∈ Rm×dx , Xtest ∈ Rm′×dx , Ytrain ∈ Rm×dy , Ytest ∈ Rm′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx,dy .

1 H = LinearRegression(Xtrain, Ytrain) Rfull = corr(XtestK,Ytest);
2 for i = 1, . . . , dx do
3 K = Id;
4 K[i]← 0;
5 Rk = corr(XtestKH,Ytest);
6 ∆Ri = Rfull −Rk;
7 end
8 return ∆R
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For the CCA and PLS models, the feature importance is assessed as follows:
Algorithm 4: CCA and PLS feature importance.

Input: Xtrain ∈ Rm×dx , Xtest ∈ Rm′×dx , Ytrain ∈ Rm×dy , Ytest ∈ Rm′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx,dz .

1 H,G = CCA(Xtrain, Ytrain);
2 Rfull = corr(XtestH, YtestG);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Rk = corr(XtestKH,YtestG);
7 ∆Ri = Rfull −Rk;
8 end
9 return ∆R

For the Backward Model, feature importance cannot be assessed because there is no prediction
combining multiple factors.

Appendix A.4. Recovering S
In case of noise, B2B yields non binary Ŝ. Three thresholding rules can be used to binarize its

values thus explicitly recover ”causal” features.
First, given known signal-to-noise ratio, the threshold above which a feature should considered

to be ”causal” can be derived analytically. Indeed, Equation 9 implies that the k first diagonal
elements of Ĥ are bounded:

0 ≤ σXk

σXk
+ σN1

≤ diagk(Ĥ) ≤ σX1

σX1 + σNk

where σX1 , σXk
, σN1 and σNk

denote the largest and smallest eigenvalues of ΣX1X1 and ΣN1N1 .
The average value µ of non-zero coefficients of diag(Ĥ) is the trace of Ĥ divided by k, and can

be computed as

µ =
V ar(X)

V ar(X) + V ar(N)
(A.4)

The decision threshold between ”causal” and ”non-causal” elements is thus a fraction µ, whose
proportion arbitrarily depends on the necessity to favor type I and type II errors. In practice, we
cannot use this procedure for our fMRI and MEG experiments, because signal-to-noise ratio is
unknown.

Second, diag(Ĥ) can be binarized with the Sonquist-Morgan criterion [33], a non-parametric
clustering procedure separating small and large values in a given set. This procedure maximizes the
ratio of inter-group variance while minimizing the intra-group variance, over all possible splits of
the diagonal into p largest values and dx − p smallest values. Let m0 and m1 be the average values
of the two clusters, p and dx − p their size, and v the total variance of the sample, Sonquist-Morgan
criterion maximizes [26]:

p(dx − p)
dx

(m1 −m0)
2

v
(A.5)
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Figure B.6: Synthetic experiments. Distribution (over conditions) of AUC (top) and Feature Importance ∆R (bottom)
metrics between our method (y-axis) and the baselines (x-axis). Each dot is a distinct synthetic experiment. Dots below
the diagonal indicates that B2B outperform the tested model.

This procedure assumes that there exists at least one causal and at least one non-causal feature.
Third, second-order statistics across multiple datasets can be used to identify the elements of
diag(Ĥ) that are significantly different from 0. This procedure is detailed in the method section of
our MEG experiment.

Overall, these three procedures thus vary in their additional assumptions: i.e. (1) a known
signal-to-noise ratio, (2) the existence of both causal and non-causal factors or (3) independent
repetitions of the experiment.

Appendix B. Additional Figures

Appendix B.1. Supplementary comparison of models’ coefficients
Following the recommendations of one of our reviewers, we implemented a multivariate variant

of the forward model, i.e. a MANOVA, using the statsmodels implementation [43]. MANOVA
is primarily used as a inferential statistics, and does not trivially convert to a predicting method.
Consequently, we did not find a way to compare MANOVA against B2B with the ∆R evaluation.
However, the effects of MANOVA are generally summarized with the Wilk’s Lambda stastistics or
its transformation into an F -value. For each searchlight, we thus use the F -values of the Wilk’s
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Figure B.7: Wall-clock run-time for our method B2B and for the baselines. Each dot is a distinct synthetic experiment.
B2B runs much faster than cross-decomposition baselines.

26



Lambda statistics as proxy for Ŝ and feeds it to a second-level Wilcoxon signed-rank tests across
subjects, like we did for the other models.

The results show that all factors, including the Dummy variable, are systematically above
chance level in all recorded brain regions (Fig. Appendix B.1). This result can be explained by the
large dimensionality of Y . Indeed, limiting the searchlight to a 1mm radius did not lead to these
spurious effects but provided results similar to the Forward model.

Nonetheless, MANOVA does appear to capture some plausible effects. Indeed, the F -values
obtained for both Word Length and Word Frequency were weakly but significantly higher than
those obtained with the Dummy variable in the occipital and temporal brain areas (Fig. Appendix
B.1). This results suggests that the effect size of the MANOVA can be biased and, thus, is not valid
for second-level statistics.

Overall, this suggests that MANOVA (1) can lead to positively biased estimates of Ŝ (2) appears
weaker than B2B in terms of second-level analysis across subjects (3) misses the effect of Word
Function detected with the Forward model, and (4) does not trivially translate into a prediction tool.
Together these elements thus suggest that MANOVA is less suitable to the present objective than
B2B.

Appendix B.2. Robustness to increasing number of factors
To test whether each of the methods robustly scales to an increasingly large number of potential

causes X , we enhanced the four ad-hoc features (word length, word frequency, word function,
dummy variable) with another ten features. These additional features corresponds to the first
dimensions of word embedding as provided by Spacy [22]. The MEG results shown in Fig. B.9,
show that the feature importance of ad-hoc features as derived by B2B remain unchanged and are
actually improved.
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Figure B.8: Top two rows. Pearson R correlation obtained for the Backward decoding model. This model cannot take
into account the factor covariance, and thus lead to spurious effects (e.g. visual cortex effect for the dummy variable).
Bottom four rows. Second- level p-values across subjects for the coefficients of the Forward, a B2B and a Manova
trained with all factors. B2B achieves better p-values, without leading to spurious effects for the Dummy variable. The
Manova leads to biased estimates due to its inability to deal with overfitting. The last row shows where the Manova’s
F -values of each factor differs significantly from the F -values estimated for the Dummy variable.
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Figure B.9: Comparison of ∆R when the models are tested on four variables (top) and when the models are tested on
an these four variables as well as another 10 word-embedding features (bottom). These results illustrate that, unlike
Regularized CCA, B2B remains robust even when the number of tested factors increases.
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