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Identifying causes solely from observations can be particularly challenging when i) the factors under investigation are difficult to manipulate independently from one-another and ii) observations are high-dimensional. To address this issue, we introduce "Back-to-Back" regression (B2B), a linear method designed to efficiently estimate, from a set of correlated factors, those that most plausibly account for multidimensional observations. First, we prove the consistency of B2B, its links to other linear approaches, and show how it can provide a robust, unbiased and interpretable scalar estimate for each factor. Second, we use a variety of simulated data to show that B2B can outperform forward modeling ("encoding"), backward modeling ("decoding") as well as crossdecomposition modeling (i.e.. canonical correlation analysis and partial least squares) on causal identification when the factors and the observations are not orthogonal. Finally, we apply B2B to a hundred magneto-encephalography recordings and to a hundred functional Magnetic Resonance Imaging recordings acquired while subjects performed a one hour reading task. B2B successfully disentangles the respective contribution of collinear factors such as word length, word frequency in the early visual and late associative cortical responses respectively. B2B compared favorably to other standard techniques on this disentanglement. We discuss how the speed and the generality of B2B sets promising foundations to help identify the causal contributions of covarying factors from high-dimensional observations.

Introduction

Natural sciences are tasked to find, from a set of hypothetical factors, the minimal subset that suffices to reliably predict novel observations. This endeavor is impeded by two major challenges. First, causal and non-causal factors may be numerous and partially correlated. In neuroscience, for example, it can be challenging to identify whether word frequency modulates brain activity during reading. Indeed, the frequency of words in natural language covaries with other factors such as their length (short words are more frequent than long words) and their categories (determinants are more frequent than adverbs) [START_REF] Kutas | Thirty years and counting: finding meaning in the n400 component of the event-related brain potential (erp)[END_REF][START_REF] Pegado | Timing the impact of literacy on visual processing[END_REF]. Instead of selecting a set of words that controls for all of these factors simultaneously, it is thus common to use a forward "encoding model", e.g. to fit a linear regression to predict observations (e.g. brain activity) from a minimal combination of competing factors (e.g. word length, word frequency) and inspect the model's coefficients to estimate the contribution of each factor [START_REF] Karl J Friston | Statistical parametric maps in functional imaging: a general linear approach[END_REF][START_REF] Naselaris | Encoding and decoding in fmri[END_REF][START_REF] Weichwald | Causal interpretation rules for encoding and decoding models in neuroimaging[END_REF][START_REF] King | Encoding and decoding neuronal dynamics: Methodological framework to uncover the algorithms of cognition[END_REF][START_REF] Alexander G Huth | Natural speech reveals the semantic maps that tile human cerebral cortex[END_REF].

The second challenge for measuring causal influence is that observations can be high-dimensional. For example, brain activity is often recorded with hundreds or thousands of simultaneous measurements via functional Magnetic Resonance Imaging (fMRI), magneto-encephalography (MEG) or multiple electro-physiological probes [START_REF] Karl J Friston | Statistical parametric maps in functional imaging: a general linear approach[END_REF][START_REF] Nicholas A Steinmetz | Challenges and opportunities for large-scale electrophysiology with neuropixels probes[END_REF]. The relationship between putative causes and observations is thus often done by training models in a backward fashion: i.e. from observations to putative causal factors. For example, it is common to fit a support vector machine across multiple brain voxels or multiple electrodes to detect the category of a stimulus [START_REF] Kenneth A Norman | Beyond mind-reading: multi-voxel pattern analysis of fmri data[END_REF][START_REF] Martin Cichy | Resolving human object recognition in space and time[END_REF][START_REF] Kriegeskorte | Representational similarity analysis-connecting the branches of systems neuroscience[END_REF][START_REF] King | Encoding and decoding neuronal dynamics: Methodological framework to uncover the algorithms of cognition[END_REF]. Decoding has become particularly popular in neuroscience, because brain recordings are typically corrupted by major physiological noise, such as muscle movements, eye blinks, displacements etc. As these noises sources are often distributed along specific components of the multidimensional recordings, the informative neural signals can be robustly picked up by multivariate decoders [START_REF] King | Encoding and decoding neuronal dynamics: Methodological framework to uncover the algorithms of cognition[END_REF].

Both forward and backward modeling have competing benefits and drawbacks. Specifically, forward modeling disentangles the independent contribution of correlated factors but does not efficiently combine high-dimensional observations. By contrast, backward modeling combines multiple observations but does not disentangle factors that are linearly correlated [START_REF] Weichwald | Causal interpretation rules for encoding and decoding models in neuroimaging[END_REF][START_REF] Martin | Deconstructing multivariate decoding for the study of brain function[END_REF][START_REF] King | Encoding and decoding neuronal dynamics: Methodological framework to uncover the algorithms of cognition[END_REF]. To combine some of the benefits of forward and backward modeling, several authors have proposed to use cross-decomposition techniques such as Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA) [START_REF] De Cheveigne | Multiway canonical correlation analysis of brain data[END_REF][START_REF] Natalia | Pyrcca: regularized kernel canonical correlation analysis in python and its applications to neuroimaging[END_REF]. CCA and PLS aim to find, from two sets of data X and Y , the matrices H and G such that XH and Y G are maximally correlated or maximally covarying respectively [START_REF] Sun | On the equivalence between canonical correlation analysis and orthonormalized partial least squares[END_REF].

While CCA and PLS can make use of multidimensional features and observations, they are not explicitly designed for feature discovery. First, these methods are not not directional: observations and factors can be assigned to either X or Y . Second, these methods project X and Y onto a reduced but nonetheless multidimensional space. Third, because CCA and PLS are based on a generalized eigen decomposition, their resulting coefficients mix the features of X and Y in a way that makes them notoriously difficult to interpret [START_REF] Lebart | Statistique exploratoire multidimensionnelle[END_REF].

Here, we introduce the 'back-to-back regression' (B2B), which not only combines the benefits of forward and backward modeling (Section 2) but can also provide robust, interpretable, unidimensional and unbiased coefficients for each factor.

After detailing B2B and proving its convergence (Section 2.3), we show with synthetic data that it can outperform state-of-the-art forward, backward and cross-decomposition techniques in disentangling causal factors (Section 3.1). Finally, we apply B2B to large MEG and fMRI datasets acquired during a simple reading task and show that B2B can efficiently distinguish the respective effects of covarying word features (Section 3.3).

Back-to-Back regression

Problem setup

We consider the measurement of multivariate signal Y ∈ R m×dy (the dependent variables, e.g. the neural responses), generated from a set of putative causes X ∈ R m×dx (the independent
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Figure 1: Back-to-back regression identifies the subset of factors S ii = 1 in X that influence m multidimensional observations Y by 1) regressing from Y to X to obtain X, and 2) returning the diagonal of the regression coefficients from X to X.

variables, e.g. the features of a stimulus), via some unknown linear apparatus F ∈ R dx×dy (e.g. the projection of neural activity onto MEG channels or fMRI voxels). Not all the variables in X exert a causal influence on Y . By considering a square binary diagonal matrix of causal influences S ∈ D dx×dx , we denote by XS the causal factors of Y . In summary, the problem can be formalized as:

y i = (x i S + n i )F ( 1 
)
where i is a given sample, and n i is a sample-specific additive noise drawn from a centered distribution. While X and N are independent, we allow each of them to have any form of covariance. In practice, we observe m samples (X, Y ) from the model. This problem space, along with the sizes of all variables involved, is illustrated in Fig. 1. Given the model in Equation eq. ( 1), the goal of Back-to-Back Regression (B2B) is to estimate the matrix S, i.e. to identify the factors that reliably account for the multivariate observations.

Algorithm

Back-to-Back Regression (B2B) consists of two steps. First, we estimate the linear regression coefficients Ĝ from Y to X, and construct the predictions X = Y Ĝ. This backward regression recovers the correlations between Y and each factor of X. Second, we estimate the linear regression coefficients Ĥ from X to X. The diagonal of the regression coefficients Ĥ, denoted by Ŝ = diag( Ĥ), is the desired estimate of the causal influence matrix S, as detailed in the Appendix A.1.

If using l2-regularized least-squares [START_REF] Hoerl | Optimum solution of many variables equations[END_REF][START_REF] Ryan | Notes on regularized least squares[END_REF], B2B has a closed form solution:

Ĝ = (Y Y + Λ Y ) -1 Y X, (2) 
Ĥ = (X X + Λ X ) -1 X Y Ĝ, (3) 
where Λ X and Λ Y are two diagonal matrices of regularization parameters, useful to invert the covariance matrices of X and Y if these are ill-conditioned.

Performing two regressions over the same data sample can result in overfitting, as spurious correlations in the data absorbed by the first regression will be leveraged by the second one. To avoid this issue, we split our sample (X, Y ) into two disjoint sets (X 1 , Y 1 ) and (X 2 , Y 2 ). The first regression is performed using (X 1 , Y 1 ), and the second regression is performed using (X 2 , Y 2 ). To compensate for the reduction in sample size caused by the split, the two successive regressions are repeated over many random splits, and the final estimate Ŝ of the causal influence matrix is the average over the estimates associated with each split [START_REF] Breiman | Bagging predictors[END_REF]. To accelerate this ensembling procedure, we use an efficient leave-one-out (LOO) cross-validation scheme as detailed in [START_REF] Ryan | Notes on regularized least squares[END_REF] as follows:

ŶLOO = (Σ X GY -diag(Σ X G)Y ) / diag(I -Σ X G) (element-wise division) (4)
where Σ X is the X kernel matrix and where G is computed with an eigen decomposition of X:

Σ X = QV Q T G = Q(V + λI) -1 Q T (5)
where Q, V and λ are the eigen vectors, eigen values and regularization, respectively. We summarize the B2B procedure in Algorithm 1. The rest of this section provides a theoretical guarantee on the correctness of B2B.

Algorithm 1: Back-to-back regression. Since S Ĥ = Ĥ, we have

Input: input data X ∈ R m×dx , output data Y ∈ R m×dy , number of repetitions m ∈ N. Output: estimate of causal influences Ŝ ∈ D dx×dx . 1 Ŝ ← 0; 2 for i = 1, . . . , m do 3 (X, Y ) ← ShuffleRows((X, Y )); 4 (X 1 , Y 1 ), (X 2 , Y 2 ) ← SplitRowsInHalf((X, Y )); 5 Ĝ = LinearRegression(Y 1 , X 1 ) ; Ĝ = (Y 1 Y 1 + Λ Y ) -1 Y 1 X 1 6 Ĥ = LinearRegression(X 2 , Y 2 Ĝ) ; Ĥ = (X 2 X 2 + Λ X ) -1 X 2 Y 2 Ĝ 7 Ŝ ← Ŝ + diag( Ĥ); 8 end 9 Ŝ ← Ŝ/m; 10 Ŵ ← LinearRegression(X Ŝ, Y ); 11 return Ŝ, Ŵ 2 
Ĥ = arg min H X -XSH 2 + N SH 2 = (SX XS + SN N S) † SXX . (6) 
Assuming, without loss of generality, that the active features in S are the k ∈ Z : k ∈ [0, d x ] first features, and rewriting X = (X 1 , X 2 ) and N = (N 1 , N 2 ) (X 1 and N 1 containing the k first features), we have:

X X = Σ X 1 X 1 Σ X 1 X 2 Σ X 1 X 2 Σ X 2 X 2 , N N = Σ N 1 N 1 Σ N 1 N 2 Σ N 1 N 2 Σ N 2 N 2 , (7) 
where Σ AB is the covariance of A and B, and:

Ĥ = (Σ X 1 X 1 + Σ N 1 N 1 ) -1 Σ X 1 X 1 (Σ X 1 X 1 + Σ N 1 N 1 ) -1 Σ X 1 X 2 0 0 (8) diag k ( Ĥ) = diag((Σ X 1 X 1 + Σ N 1 N 1 ) -1 Σ X 1 X 1 ) = diag((I + Σ -1 X 1 X 1 Σ N 1 N 1 ) -1 ) (9) 
In the absence of noise, we have Σ N 1 N 1 = 0, and so diag k ( Ĥ) = I, and

diag( Ĥ) = diag(S)
Therefore, we recover S from Ĥ.

In the presence of additive noise, the causal factors of S correspond to the positive elements of diag( Ĥ). The methods to recover them are presented in the Appendix (Appendix A.4).

Note that Ŝ is unbiased, in the sense that it is centered around zero when there is no effect, only if the second regression H is not regularized. Second-level statistics testing whether Ŝ is superior to 0 are thus only valid if H is not regularized.

Experiments

We perform three sets of experiments to evaluate B2B: one on controlled synthetic data, a second one on a real, large-scale functional Magnetic Resonance Imaging (fMRI) dataset and a third one on a real, large-scale magneto-encephalography (MEG) dataset. We use scikit-learn's PLS and RidgeCV [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] as well as Pyrcca's regularized canonical component analysis (RegCCA, [START_REF] Natalia | Pyrcca: regularized kernel canonical correlation analysis in python and its applications to neuroimaging[END_REF]) objects to compare B2B against the standard baselines, with common hyper-parameter optimizations.

Synthetic Experiment

We evaluate the performance of B2B throughout a series of experiments on controlled synthetic data. The purpose of these experiments is to evaluate the ability of B2B on its ability to 1) recover causal factors when the ground truth is known and 2) accurately predict independent and identically distributed data otherwise.

The data generating process for each experiment constructs m = 1000 training examples according to the model Y = (hXS + N )F , where h is a scalar that modulates the signal-to-noise ratio. Here, F ∈ R dx×dy contains entries drawn from N (0, σ2 ) where σ 2 is inversely proportional to d x , X ∈ R m×dx contains rows drawn from N (0, Σ X ), N ∈ R m×dx contains rows drawn from N (0, Σ N ), S ∈ R dx×dx is a binary diagonal matrix containing n c ones, Σ X = AA where A ∈ R dx×dx contains entries drawn from N (0, σ 2 ), Σ N = BB where B ∈ R dx×dx contains entries drawn from N (0, σ 2 ), and the factor h ∈ R + .

To simulate a wide range of experimental conditions, we sample 10 values in log-space for d x , d y ∈ [START_REF] Esteban | fMRIPrep: a robust preprocessing pipeline for functional MRI[END_REF]100], n c ∈ [START_REF] Natalia | Pyrcca: regularized kernel canonical correlation analysis in python and its applications to neuroimaging[END_REF]63], h ∈ [0.001, 10]. We discard the cases where n c > d x , limit d x , d y to 100 to keep the running time under 2 hours for each condition, and average over 5 random seeds.

We compare the performance of B2B against four baseline methods.

Baseline models

All baseline methods were based on the implementations of scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] and Pyrcca [START_REF] Natalia | Pyrcca: regularized kernel canonical correlation analysis in python and its applications to neuroimaging[END_REF]. For pedagogical purposes, we briefly summarize them below.

Forward regression consists of an l2-regularized "ridge" regression from the putative causes X to the observations Y :

H f wd = (X T X + λI) -1 X T Y (10) 
Backward regression consists of an l2-regularized "ridge" regression from Y to X:

G bwd = (Y T Y + λI) -1 Y T X (11) 
CCA finds G cca ∈ R dz,dy and H cca ∈ R dz,dx s.t. X and Y are maximally correlated in a latent Z space:

G cca , H cca = argmax G,H corr(XH T , Y G T ) (12) 
PLS finds G pls ∈ R dz,dy and H pls ∈ R dz,dx s.t. X and Y are maximally covarying in a latent Z space:

G pls , H pls = argmax G,H cov(XH T , Y G T ) (13) 
We employ five-fold nested cross-validation to select the optimal number of components for CCA and PLS. Regressions were 2-regularized with a λ regularization parameters fitted with the efficient leave-one-out procedure implemented in scikit-learn RidgeCV [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF].

Evaluating Causal Discovery from models' coefficients

B2B leads to scalar coefficients for non-causal features. The diagonal of this matrix, Ŝ ∈ R dx , can thus be directly used as a causal contribution estimate. Note that this estimate is unbiased (i.e. zeros-centered) only if the second regression H is not regularized.

In contrast, the loading coefficients of the Forward (H i ∈ R dy ), Backward (G i ∈ R dy ), CCA and PLS models (H i ∈ R dz ) lead to a loading vector for each feature i. To estimate causal contribution, we must thus transform such vectors into scalars, by e.g. taking the sum of square coefficients: Ŝi = j H j i 10 show the results of this AUC evaluation. Note that the figure does not display each feature separately, as they are randomly generated. The results show that B2B compares favorably to other methods on these synthetic data.

Evaluating Causal Discovery through the reliability of held-out prediction

In most real-world cases, S is not known. Consequently, the above AUC evaluation cannot be estimated. To address this issue, we assess the ability of each model to reliably predict independent and identically distributed data from Y , given all of the X features versus all-but-one feature X -i (i.e. 'knock-out X'). This procedure results in two correlation metrics R f ull and R knockout(i) for each feature i (for the B2B), for each dimension of Y (for the Forward model) or each canonical dimension of Y (for CCA and PLS). The difference ∆R i = R f ull -R knockout(i) indicates how much each X i improves the prediction of a) the target dimension (i.e. G i Y ∈ R for B2B, b) the average across all of the dimensions j of Y ( 1 dy dy j ∆R j i ) for the Forward model or c) the average across the canonical dimensions j of Y ( 1 dz dz j ∆R j i ) for CCA and PLS. We show in Appendix Appendix A.3 pseudo-code to assess feature importance for each model. For the Backward Model, feature importance cannot be assessed as the X collinearity is never taken into account.

Figures 2 (bottom) and B.6 (right, in Appendix) show the results of this evaluation on held-out data. Overall both the AUC and the held-out prediction reliability evaluations show that B2B compares favorably to the baseline models.

functional Magnetic Resonance Imaging Experiment

Next, we apply our method to brain imaging data from the anonymized multimodal neuroimaging "Mother Of all Unification Studies" (MOUS) study [START_REF] Schoffelen | A 204-subject multimodal neuroimaging dataset to study language processing[END_REF]. The dataset contains functional Magnetic Resonance Imaging (fMRI) and magneto-encephalography (MEG) recordings of 102 healthy Dutch adults who performed a reading task in the scanner. Ten subjects were excluded from the analysis (9/102 MEG and 1/102 fMRI) because of technical difficulties reading the files. Subjects were exposed to a rapid serial visual presentation of Dutch words. The word lists consisted of 120 sentences, and scrambled lists of the same words. Each word was presented on the computer screen for 351ms on average (min: 300ms, max: 1400ms). Successive words were separated by a blank screen for 300ms, and successive sentences were separated by an empty screen for a few (3-4) seconds.

fMRI preprocessing

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.0.7 ([10]; [START_REF] Esteban | fmriprep. Software[END_REF]; RRID:SCR 016216), which is based on Nipype 1.4.2 ([14]; [START_REF] Krzysztof | Nipype. Software[END_REF]; RRID:SCR 002502). Functional data preprocessing For each of the 2 BOLD runs found per subject, the following preprocessing was performed. First, a reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. Susceptibility distortion correction (SDC) was omitted. The BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based registration [START_REF] Douglas | Accurate and robust brain image alignment using boundary-based registration[END_REF]. Coregistration was configured with six degrees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt [FSL 5.0.9, 25]. BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 [6, RRID:SCR 005927]. The BOLD time-series were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsnative, fsaverage5. The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying the transforms to correct for head-motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. Automatic removal of motion artifacts using independent component analysis [ICA-AROMA, 39] was performed on the preprocessed BOLD on MNI space time-series after removal of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding "non-aggresively" denoised runs were produced after such smoothing.

Anatomical data preprocessing

Many internal operations of fMRIPrep use Nilearn 0.6.2 [1, RRID:SCR 001362], mostly within the functional processing workflow. For more details of the pipeline, see the section corresponding to workflows in fMRIPrep's documentation.

The preprocessed volumetric fMRI data was linearly projected to its closest surface using Nilearn vol to surf function with a 8mm radius and the Freesurfer 'fsaverage5' surface. A surface searchlight analysis was then implemented by concatenating the surface fMRI data within a 8mm radius of each vertex. For each subject and vertex, we thus build an observation matrix Y ∈ R m×dy of m ≈ 1400 words by d y ≈ 40 vertices per searchlight sphere. Each of the columns of Y is normalized to have zero mean and unit variance.

These multidimensional brain observations were to be accounted for (or decoded by) four features.

Feature definition

We aim to identify the word features that cause a variation in brain responses. We consider four distinct but collinear features. First, 'Word Length' refers to the total number of letters. Word Length is expected to primarily cause a variation in the early evoked MEG responses (i.e. from 100 ms after stimulus onset) primarily elicited by the retinotopically-tuned visual cortices (e.g. [START_REF] Pegado | Timing the impact of literacy on visual processing[END_REF].) but expected across the full visual hierarchy (e.g. [START_REF] Jr | Spatial maps in frontal and prefrontal cortex[END_REF]). Second, 'Word Frequency' indexes how frequently each word appears in Dutch and here derives from the Zipf logarithmic scale of [START_REF] Walter | Subtlex-uk: A new and improved word frequency database for british english[END_REF] provided by the WordFreq package [START_REF] Speer | Luminosoinsight/wordfreq: v2.2[END_REF]. Word Frequency is expected to primarily cause a variation in the late evoked MEG responses (i.e. from 400 ms) in the left frontal, temporal and parietal cortices [START_REF] Kutas | Thirty years and counting: finding meaning in the n400 component of the event-related brain potential (erp)[END_REF][START_REF] Bruce D Mccandliss | The visual word form area: expertise for reading in the fusiform gyrus[END_REF]. Third, 'Word Function' indicates whether each word is a content word (i.e. a noun, a verb, an adjective or an adverb) or a function word (i.e. a preposition, a conjunction, a determinant, a pronoun or a numeral), and here derives from Spacy's part of speech tagger [START_REF] Honnibal | spacy 2: Natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing[END_REF]. To our knowledge, this feature has not been thoroughly investigated with fMRI and MEG. While its causal contribution to reading processes in the brain thus remains unclear, this lexical feature can nonetheless be expected to present similar brain patterns to word frequency. Finally, to verify that B2B and other methods would not inadequately identify non-causal features, we added a dummy feature, constructed from a noisy combination of Word Length and Word Frequency: dummy = z(length) + z(f requency) + N , where z normalizes features and N is a random vector sampling Gaussian distribution (all terms thus have a zero-mean and a unit-variance).

To account for the delay of blood oxygenation level dependent responses, these four features were convolved using the Glover hemodynamic response function of Nilearn's compute regressor function an oversampling of 16 and default parameters [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF].

This procedure yields an X ∈ R m×dx matrix of m ≈ 840 TR (Repetition Time: 2 sec.) by d x = 4 factors for each subject. Each of the columns of X is normalized to have a zero-mean and a unit variance.

Models and statistics

We compare B2B to four standard methods: Forward regression, Backward regression, Regularized CCA and PLS, as implemented in scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] and Pyrcca [START_REF] Natalia | Pyrcca: regularized kernel canonical correlation analysis in python and its applications to neuroimaging[END_REF], and optimized with nested cross-validation over twenty l2 regularization parameters logarithmically spaced between 10 -4 and 10 4 (for regression methods) or 1 to 4 canonical components (for cross-decomposition methods).

In addition, to illustrate the versatility of B2B, we also implemented B2B SV M , a B2B model where G is fitted via a support vector regressor (C = 1, kernel='linear') built on top of a 4component CCA, using scikit-learn default parameters, and a 20-shuffle split ensembling.

We used the feature importance described in Algorithm 2 to assess the extent to which each feature X i specifically improves the prediction of held-out Y data, using a 5-fold cross-validation (with shuffled trials to homogenize the distributions between the training and testing splits).

Each model was implemented for each subject and each time sample independently. Pairwise comparison between models were performed using a two-sided Wilcoxon signed-rank test across subjects using the average ∆R across time. Corresponding effect sizes are shown in Fig. 5, and p-values are reported below.

fMRI Results

We compared the ability of Forward regression, Backward regression, CCA, PLS and B2B to estimate the causal contribution of four distinct but collinear features on brain responses to words. Supplementary Fig. Appendix B.1 shows that the Backward model decodes the dummy variable well above chance. In addition, it decodes both Word Length and Word Frequency across similarly distributed cortical regions, even though these features are known to primarily influence early visual cortex and associative cortices respectively. As expected, and in spite of the high sensitivity of Backward, it is not valid to estimate the specific contribution of each collinear feature.

On the contrary, the H coefficients of the Forward model reveals the expected spatial specificity of Word Length and Word Frequency, peaking in the visual and temporal cortices respectively. However, such Forward coefficients may be variable across subjects, and could thus underestimate the significance of each factor at each vertex, as evaluated with a signed-rank tests across subjects. In principle, such inter-subject variability could be less impactful with multivariate observations methods such as CCA and PLS [START_REF] Natalia | Pyrcca: regularized kernel canonical correlation analysis in python and its applications to neuroimaging[END_REF][START_REF] King | Encoding and decoding neuronal dynamics: Methodological framework to uncover the algorithms of cognition[END_REF], but these cross-decomposition techniques do not provide a single and clearly interpretable coefficient for each feature. In contrast, the Ŝ of an unbiased B2B (i.e. a B2B where H is not regularized) reaches higher levels of significance at each vertex than the Forward H (Supplementary Fig. Appendix B.1). (Note that a direct comparison between the Forward coefficients H and those of B2B ( Ŝ) is challenging, because these two metrics do not have the same units.)

To fairly compare the Forward, CCA, PLS and B2B methods on a common evaluation metrics robust to coefficient biases, we thus compare them the deterioration of Y predictions with regard to out-of-sample data, when one factor is removed from ("knocked-out") the model. This analysis leads to a ∆R for each feature as described in the synthetic experiment. The average ∆R across subjects is displayed for each model and each feature in 3.2.3.

As expected, the Forward, CCA, PLS and B2B method predicted that the Dummy Variable does not improve the Y prediction. This confirms that these methods accurately rule out the known non-causal factor.

To quantify this assessment, we compare, for each subject and each feature separately, the average ∆R across vertices obtained between B2B and each baseline model. To limit the inclusion of uninformative brain regions in this summary, we restrict the analysis to vertices which can be reliably accounted for by the Forward model (p < .001, not corrected across vertices)

Overall, B2B favorably compares to baseline models, on all features but Word Function (Fig. 3.2.3. Bottom). For this feature, B2B outperforms the Forward model (p=0.0138), but was not significantly different from PLS (p=0.0690) and RegCCA (p=0.1073). However, B2B SV M outperforms all baseline models (all p < 0.0004).

Magneto-encephalograph Experiment 3.3.1. MEG preprocessing

One hundred and two subjects performed a similar reading task to the one described above in the MEG scanner. The raw MEG data was bandpass-filtered between 0.1 and 40Hz using MNE-Python default parameters [START_REF] Gramfort | Meg and eeg data analysis with mne-python[END_REF][START_REF] Gramfort | Mne software for processing meg and eeg data[END_REF]. Specifically, we used a zero-phase finite impulse response filter (FIR) with a Hamming window and with transition bands of 0.1Hz and 10Hz for the low and high cut-off frequencies. The raw data was then segmented 100ms before word onset and 1s after word onset (t = 0ms corresponds to word onset). Finally, each resulting segment was baseline-corrected between -100ms and 0ms, and decimated by 5 and thus led a sampling frequency of 240Hz. The average responses across words is displayed in Fig. 4. For each subject and each time sample relative to word onset, we build an observation matrix Y ∈ R m×dy of m ≈ 2,700 words by d y = 301 MEG channels (273 magnetometers and 28 compensation channels). Each of the columns of Y is normalized to have zero mean and unit variance.

We use the same features as for the fMRI experiments, except that the features were not convolved by an hemodynamic response function. This yields an X ∈ R m×dx matrix of m ≈ 2,700 words by d x = 4 features for each subject. Each of the columns of X is normalized to have a mean and a standard deviation of 0 and 1 respectively.

We compare B2B against other methods following the same procedure as for the fMRI experiments, except that the searchlight swipes across time samples (as opposed to vertices), and is trained across all MEG channels. Figure 4: A hundred subjects read approximately 2,700 words while their brain activity was recorded with MEG. Top. Average brain response to words (word onset at t=0 ms), as viewed from above the head (red= higher gradient of magnetic flux). Bottom. Each line represents a magnetometer, color-coded by its spatial position. Posterior responses, typical of primary visual cortex activity, peak around 100 ms after word onset and are followed by an anterior propagation of activity typical of semantic processing in the associative cortices.

Results

We compared the ability of Forward regression, Backward regression, CCA, PLS and B2B as well as B2B SV M to estimate the causal contribution of four distinct but linearly-correlated features on brain evoked responses to words.

As expected, the Backward model reveals a similar decoding time course for Word Length and Word Frequency, even though these features are known to specifically influence early and late MEG responses respectively [START_REF] Kutas | Thirty years and counting: finding meaning in the n400 component of the event-related brain potential (erp)[END_REF]. In addition, the same decoding time course was observed for the dummy variable. Once again, these results illustrate that Backward modeling cannot be used to estimate the causal contribution of correlated features.

We thus focus on the remaining methods (i.e. Forward Regression, PLS, CCA, and B2B) and estimate their ∆R (i.e. the improvement of Y prediction induced by the introduction of a given feature into the model,as described in Algorithm 2). Contrary to the Backward Model, none of the models predicted the Dummy Variable to improve the Y prediction: all ∆R < 0 (all p > .089).

Figure 5 shows, for each model, the effects obtained across time (left) and subjects (right). Word Length and Word Frequency improved the prediction performance of all methods: ∆R > 0 for all models (all p < 0.0001). As expected, the time course associated with Word Length and Word Frequency rose from ≈ 100 ms and from ≈ 400 ms respectively. Furthermore, Word Function improved the prediction performance of all models (all p < 0.0002) except for PLS (p = 0.7989). Overall, these results confirm that Word Length, Word Frequency and Word Function specifically improve the prediction of specific periods of brain responses to words, and thus form plausible independent causal contributors.

We compare B2B to other models across subjects (Fig. 5 right). For both Word Length and Word Frequency, B2B outperforms all models (all p < 0.0001). For "Word Function", B2B outperforms all models (all p < 0.0001) but CCA (p < 0.0001). Overall, these results show that B2B compares favorably against baseline models at the exception of CCA for one of the feature (Word Function). 

Discussion

Here, we introduce B2B, a method to disentangle the causal contribution of collinear factors from multidimensional observations. After proving the validity of B2B, we show that it generally compares favorably against baseline models both on a wide spectrum of synthetic data and on two large neuroimaging datasets.

In addition, B2B can be very fast to compute as long as both H and G are based on l2 optimization with l2 regularization (Supplementary Fig. B.7), as is done in the above experiments. However, B2B does not need not be limited to l2 optimization and regularization: the H and G operators can in principle be found with other methods. To illustrate this approach, we also report the results of B2B SV M , a B2B method were G is trained with a support vector regressor built on top of a CCA.

Like forward and cross-decomposition models, B2B is limited by the correlations between factors. At the extreme, if two factors are identical, and thus fully correlated, no statistical method can disentangle their relative causal contribution, and intervention is thus mandatory. In practice, this implies that, like general linear models, B2B will best work with high signal-to-noise ratio and/or orthogonal factors, and will see its sensitivity diminish when the signal-to-noise ratio of collinear factors drops.

In the present neuroimaging context, B2B follows a long series of statistical methods designed to characterize brain representations -i.e. to identify what sensory feature causes specific brain responses [START_REF] Naselaris | Encoding and decoding in fmri[END_REF]. In this regard, CCA and PLS have been used in electrophysiology and neuroimaging to track representations (e.g. [START_REF] Müsch | Transformation of speech sequences in human sensorimotor circuits[END_REF]) as well as to denoise recordings as well as to align subjects [START_REF] Hotelling | Relations between two sets of variables[END_REF][START_REF] De Cheveigne | Multiway canonical correlation analysis of brain data[END_REF]. While CCA and PLS relates to B2B, these methods diverge in several ways. First, they have different objectives: CCA aims to a fix number of components where X and Y are maximally correlated, whereas B2B aims to recover the causal factors from X to Y. Second, B2B is not symmetric between X and Y : it aims to identify specific causal features by first optimizing over the decoders G and then over H. By contrast, CCA and PLS are symmetric between X and Y , and aims to find G and H jointly such that they project X and Y on maximally correlated dimensions. Third, CCA is based an eigen decomposition of XH and Y G -the corresponding canonical components are thus mixing the X features in way that limit interpretability and potentially dilute the impact of each feature onto multiple components. In contrast B2B assesses each feature X i on a single Y component specifically selected to maximize signal-to-noise ratio of that feature i. Fourth CCA does not separately optimize two distinct regularization parameters for G and H, whereas B2B does. Finally, CCA does not use different data splits to estimate G and H. Together, these differences may explain why B2B can outperform CCA on estimating causal influences (Figs. 2 and B.6).

One popular method to investigate multidimensional patterns of brain activity is Representational Similarity Analysis (RSA) [START_REF] Kriegeskorte | Representational similarity analysis-connecting the branches of systems neuroscience[END_REF]. RSA quantifies the similarity of brain responses associated with specific categorical conditions (e.g. distinct images), by (1) fitting one-against-all classifiers on each category and (2) testing whether these classifiers discriminates all other categories. The resulting categories × categories confusion matrix is then analyzed, generally in an unsupervised manner, to reveal the categories that present similar brain activity patterns. B2B subsumes RSA in that (1) it can use regressions instead of one-hot classifications and (2) it is fully supervised. Consequently, and unlike RSA, B2B (1) provides interpretable coefficients and (2) can generalize to new items and new contexts. In practice, these elements allow B2B to apply to event-related paradigms and latent variable analyses, whereas RSA can only be applied when the same one-hot-encoded condition is repeated multiple times.

More generally, the present empirical results, together with their theoretical foundations, suggest that B2B may serve as a useful analytical method to disentangle features when the latter are difficult to fully orthogonalize.

  A total of two T1-weighted (T1w) images per subject were found within the input BIDS dataset. All of them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection[START_REF] Tustison | N4itk: Improved n3 bias correction[END_REF], distributed with ANTs 2.2.0 [2, RRID:SCR 004757]. The T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast [FSL 5.0.9, RRID:SCR 002823, 50]. A T1wreference map was computed after registration of 2 T1w images (after INU-correction) using mri robust template [FreeSurfer 6.0.1, 40]. Brain surfaces were reconstructed using recon-all [FreeSurfer 6.0.1, RRID:SCR 001847, 7], and the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTsderived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle [RRID:SCR 002438, 28]. Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template. The following templates were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [[START_REF] Vs Fonov | Unbiased nonlinear average age-appropriate brain templates from birth to adulthood[END_REF], RRID:SCR 008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model [[START_REF] Evans | Brain templates and atlases[END_REF], RRID:SCR 002823; TemplateFlow ID: MNI152NLin6Asym],

Figure 3 :

 3 Figure 3: Top. Multiple models (rows) are compared on their ability to reliably predict out-of-sample fMRI signals evoked by words by quantifying the improvement of correlation coefficient ∆R for each of the four features (columns). Each cell displays the left hemisphere view laterally (top) or ventrally (bottom). Bottom left. Region of Interest (ROI), defined by the cortex vertices that were reliably predicted for by the gold standard Forward Model using all features and thresholded with a Wilcoxon signed-rank test at p < 0.001 (uncorrected) across subjects. Bottom Right. Average ∆R within the ROI for each subject (dot).The top horizontal lines indicate whether B2B significantly differ from other methods across subjects -red indicate significantly better score, other colors indicate significantly worse performance.

Figure 5 :

 5 Figure 5: Multiple models (color-coded) are compared on their ability to reliably predict single-trial MEG signals evoked by words. Left. Average improvement of correlation coefficient ∆R for each of the four features (rows). Error bars indicate standard error of the mean (SEM) across subjects. Right. Average ∆R across time for each subject (dots). Top horizontal lines indicate when B2B significantly outperforms other methods (red) and vice versa (other color).

Note that in such B2B cases, the estimates are thus positive and would thus bias a second-level statistical analysis against 0.Finally, to estimate whether each model accurately identifies causal factors independently of their potential biases, we compute the area-under-the-curve (AUC) across factors AU C(S, Ŝ). By

model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1):45-57, 2001. 
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