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Abstract

Convolutional neural networks are nowadays witnessing a major success in different
pattern recognition problems. These learning models were basically designed to handle
vectorial data such as images but their extension to non-vectorial and semi-structured
data (namely graphs with variable sizes, topology, etc.) remains a major challenge,
though a few interesting solutions are currently emerging.
In this paper, we introduce MLGCN; a novel spectral Multi-Laplacian Graph Convolu-
tional Network. The main contribution of this method resides in a new design princi-
ple that learns graph-laplacians as convex combinations of other elementary laplacians –
each one dedicated to a particular topology of the input graphs. We also introduce a novel
pooling operator, on graphs, that proceeds in two steps: context-dependent node expan-
sion is achieved, followed by a global average pooling; the strength of this two-step pro-
cess resides in its ability to preserve the discrimination power of nodes while achieving
permutation invariance. Experiments conducted on SBU and UCF-101 datasets, show
the validity of our method for the challenging task of action recognition.

1 Introduction
Video action recognition is a major task in computer vision which consists in classifying
sequences of frames into categories (or classes) of actions. This task is known to be chal-
lenging due to the intrinsic properties (appearance and motion) of moving objects and also
their extrinsic acquisition conditions (occlusions, background clutter, camera motion, illumi-
nation, length/resolution, etc.). Most of the existing action recognition methods are based on
machine learning [19, 20, 21, 22, 23, 54, 57, 80]; their general recipe consists in extracting
(handcrafted or learned) features prior to classifying them using inference techniques such
as kernel methods and deep networks [3, 5, 9, 16, 17, 18, 24, 25, 26, 31, 59, 84].

Among the machine learning techniques – for action recognition – those based on deep
networks are particularly performant; successful methods include two-stream 2D convolu-
tional neural networks (CNNs) [17], two-stream 3D CNNs and simple 3D CNNs [18]. How-
ever, and beside being data-hungry, these models rely on a strong assumption that videos are
described as vectorial data; in other words, these methods assume that videos come only in

c© 2019. The copyright of this document resides with its authors.
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the form of regular (2D or 3D) grids. This assumption may not hold in practice: on the one
hand, one may consider moving objects as constellations of interacting body parts (such as
2D/3D skeletons or joints in human actions) and this requires processing only these joints
without taking into account holistically cluttered background or other parts in the scenes.
On the other hand, moving objects may be occluded with spurious details which are not
necessarily related to the moving object parts. Hence, for these particular settings, graph
convolutional networks (GCNs) [62] are rather more appropriate where nodes, in these mod-
els, capture object parts and links their spatio-temporal interactions.
Early GCNs are targeted to graphs with known/fixed topology1 (fixed number of nodes/edges,
constant degree, etc.) [1, 4]; in existing solutions pixels are considered as nodes and edges
connect neighboring pixels. Despite their relative success for some pattern classification
tasks including optical character recognition (on widely used benchmarks such as MNIST),
these methods do not straightforwardly extend to general graphs with arbitrary topologi-
cal characteristics (variable number of nodes/edges, heterogeneous degrees, etc.) and this
limits their applicability to other challenging tasks such as action recognition. Recent at-
tempts, to extend these methods to action recognition [27, 58, 60], include [27] which
models connectivity of moving joints in videos using graphs where nodes correspond to
joints (described by spatial coordinates and their likelihoods) and edges characterize their
spatio-temporal interactions. One of the drawbacks of these extensions resides in the limited
representational power of joints and also the difficulty in achieving permutation invariance;
in other words, parsing and describing joints while being invariant to arbitrary reordering
of objects especially for highly complex scenes with multiple interacting objects/persons.
From the machine learning point of view, GCN operates either directly in the spatial domain
[8, 10, 11, 28, 32, 33, 34, 35, 37, 38, 56, 70, 74, 77] or require a preliminary step of spectral
decomposition of graphs using Fourier basis [12, 13, 75, 76] prior to achieve convolution
[1, 2, 4, 6, 7, 36, 63, 64, 65]. While graph convolution in the spectral domain is well de-
fined, its success heavily relies on the choice of the laplacian operators [78] that capture the
topology of the manifolds enclosing data. These laplacians, in turn, depend on many hyper-
parameters which are difficult to set using tedious cross-validation especially when training
GCNs on large-scale datasets.

In this paper, we address the aforementioned issues (mainly laplacian design in GCNs
and permutation invariance) for the particular task of action recognition. Our solution achieves
convolution in the spectral domain using a new design principle that considers a convex
combination of several laplacian operators; each laplacian is dedicated to a particular (possi-
ble) topology of our graphs. We also introduce a novel context-dependent pooling operator
that proceeds in two steps: node features are first expanded with their contexts and then
globally averaged; the strength of this two-step pooling process resides in its ability to pre-
serve/enhance the discrimination power of node representations while achieving permutation
invariance. The validity of these contributions is corroborated through extensive experi-
ments, in action recognition, using the challenging SBU-skeleton and UCF-101 datasets.

2 Graph Construction

In this section, we briefly describe the video processing used to build our input graphs.
This step consists in extracting and grouping joints (a.k.a keypoints) into trajectories prior to

1as 2D regular grids (see also [14, 66]).
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modeling their spatio-temporal interactions with graphs.
Given a raw video, skeletons are obtained by detecting human joints in successive frames

using the state of the art human pose extractor [15]2; as these keypoints are labeled (see
Fig. 1), their trajectories are extracted by simply tracking keypoints with the same labels.
Considering a finite collection of trajectories, we build an adjacency graph G = (V,E) where
each node v ∈ V corresponds to a labeled trajectory and an edge (v,v′) ∈ E exists between
two nodes iff the underlying trajectories are spatially neighbors. Each trajectory (i.e., node
in G) is described by aggregating motion and appearance streams as shown subsequently.

Appearance (ResNet)

+ Motion (raw coordinates)

Temporal Chunking

(v)

ψ(v)

Figure 1: This figure shows the whole keypoint extraction, tracking and description process on motion
and appearance streams (see also the detailed protocol in the supplementary material [87]).

Motion stream. Considering a video as a sequence of skeletons, we process the underly-
ing trajectories using temporal chunking: first we split the total duration of a video into C
equally-sized temporal chunks (C = 4 in practice), then we assign the keypoint coordinates
of a given trajectory v to the C chunks (depending on their time stamps) prior to concate-
nate the averages of these chunks and this produces the description of v denoted as ψ(v).
Hence, trajectories, with similar keypoint coordinates but arranged differently in time, will
be considered as very different. Note that beside being compact and discriminant (as shown
later in table 3(c)), this temporal chunking gathers advantages – while discarding drawbacks
– of two widely used families of techniques mainly global averaging techniques (invariant
but less discriminant) and frame resampling techniques (discriminant but less invariant). Put
differently, temporal chunking produces discriminant descriptions that preserve the temporal
structure of trajectories while being frame-rate and duration agnostic.
Appearance stream. Similarly to motion, we also describe each trajectory using appearance
features. First, we apply ResNet [73] frame-wise3 in order to collect convolutional features
associated to different keypoints (see again Fig. 1), then we aggregate those convolutional
features through trajectories using temporal chunking as described above for motion stream.

2This processing is only reserved to raw video datasets (including UCF [89]) while for other databases, such as SBU [88],
skeletons are already available.

3We consider a local neighborhood around each keypoint in order to extract these convolutional features.
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3 Multi-Laplacian Convolutional Networks

Given a collection of videos, we describe each one using a graph Gi = (Vi,Ei) as shown in
section 2. For each node v ∈ Vi, we extract two feature vectors, denoted ψm(v), ψa(v), re-
spectively corresponding to motion and appearance streams of v. We also define a similarity
between nodes in Vi as km(v,v′) = exp(−‖ψm(v)−ψm(v′)‖2

2/σm), here σm is the scale of the
gaussian similarity and ‖.‖2 is the `2 norm. Similarly, we define ka(v,v′) using appearance
features. In the remainder of this paper, unless explicitly mentioned, we denote a given graph
Gi simply as G. We also denote motion and appearance features ψm(v), ψa(v) as ψ(v), scales
σm, σa as σ , and similarities km(v,v′), ka(v,v′) as k(v,v′).

The goal is to design a GCN that returns the representation and the classification of a
given graph. This includes a novel design of laplacian convolution and pooling on graphs as
shown subsequently.

3.1 Spectral graph convolution at a glance

Given a graph G = (V,E) with |V| = n, |E| being respectively the number of its vertices
and edges and L the laplacian of G; for instance, L could be the normalized, unormalized
or random walk laplacians respectively defined as L = In−D−1/2 A D−1/2, L = D−A and
L = D−1A where In is an n× n identity matrix, A is the affinity matrix built as [A]vv′ =
1{(v,v′)∈E} or by using the gaussian similarity k(., .) as [A]vv′ = 1{(v,v′)∈E}.k(ψ(v),ψ(v′)) and
D a diagonal degree matrix with each diagonal entry [D]vv = ∑v′ [A]vv′ . Considering the
eigen-decomposition of L as UΛU′ with U, Λ being respectively the matrix of its eigenvec-
tors (graph Fourier modes) and the diagonal matrix of its non-negative eigenvalues, spectral
graph convolution is a well defined operator (see for instance [1]) which is achieved by first
projecting a given graph signal ψ(.) using the eigen-decomposition of L, and then multi-
plying the resulting projection by a convolutional filter prior to back-project the result in the
original signal space.

Formally, the convolutional operator ?G (rewritten for short as ?) on the graph signal
ψ(V) ∈ Rn×p is (ψ ? gθ )(V) = U gθ (Λ) U′ ψ(V); here gθ denotes a non-parametric con-
volutional filter defined as gθ (Λ) = diag(θ) with θ ∈ Rn. As this filter is not localized, we
consider instead [1]

(ψ ?gθ )(V) :=
K−1

∑
k=0

θk Tk(L) ψ(V), (1)

with K fixed and θ = (θ1 . . .θK)
′ ∈ RK being its learned convolutional filter parameters; in

practice, we consider a rescaled version of the laplacian (i.e., 2L/λmax− In instead of L with
λmax being its largest eigenvalue). In the above equation, Tk is the k-th order Chebyshev
polynomial recursively defined as Tk(L) = 2L Tk−1(L)−Tk−2(L), with Tk(L) ∈ Rn×n and
T0 = I, T1 = L (for more details see again [1]).

3.2 Multi-Laplacian design

The success of the aforementioned convolutional process is highly dependent on the rele-
vance of the used laplacian, which in turn depends on the appropriate choice of the affinity
matrix of the graph and its hyper-parameters. Hence, knowing a priori which parameter to
choose could be challenging and usually relies on the tedious cross-validation.
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MAZARI, SAHBI: MULTI-LAPLACIAN GCN FOR HUMAN ACTION RECOGNITION 5

Our alternative contribution in this paper aims at designing convolutional laplacian op-
erators while learning the topological structure of the input graphs (characterized by their
laplacians). Starting from different elementary laplacians4 associated to multiple settings
(for instance, by varying the scale σ of the gaussian similarity k(., .) and the laplacians), we
train a multiple laplacian as a deep nonlinear combination of multiple elementary laplacians.
Fig. 2 shows our learning framework with d-layers in the multi-laplacian; for each layer `+1
(` ∈ {0, . . . ,d− 1}) and its associated unit p ∈ {1, . . . ,n`+1}, a laplacian (denoted L`+1

p ) is
recursively defined as

L`+1
p = g

( n`

∑
q=1

w`
q,p L`

q

)
, (2)

where g is a nonlinear activation function (see details in section 3.3), n` is the number of units
in layer ` and {w`

q,p}q are the (learned) weights associated to L`+1
p . For any given graph

G, a tensor of multiple elementary laplacians {L1
q}q (associated to different combinations

of {σ} and standard laplacians namely unormalized, normalized, random walk, etc.) on
G is considered as an input to our deep network. These elementary laplacians are then
forwarded to the subsequent intermediate layer resulting into n2 multiple laplacians through
the nonlinear combination of the previous layer, etc. The final laplacian Ld

1 is a highly
nonlinear combination of elementary laplacians. We notice that the deep laplacian network
in essence is a multi-layer perceptron (MLP), with nonlinear activation functions which is fed
(together with the graph signal ψ(V)) as input in order to achieve convolution (see Fig. 2).
Hence, we can use standard backpropagation in order to optimize the parameters of both the
MLP and the GCN networks. Let J denote the loss function associated to our classification
problem (namely cross-entropy); starting from the gradients of this loss J w.r.t the final
softmax output, we use the chain rule in order to backpropagate the gradients w.r.t different
layers and parameters (fully connected and convolutional layers as well as the MLP of the
multi-laplacians), and to update these parameters accordingly using gradient descent.

GP

FC+Softmax

Channel 1

frame N

frame 1

Channel 1

Multi−laplacian 

Chebyshev convolution

Channel K

Channel K

Node expansion

action M

action 1

L1
1

L1
2

L2
1

L2
2

L2
n2

Ld
1

L1
n1

Figure 2: This figure shows the architecture of our multi-laplacian graph convolutional network (ML-
GCN). First, multiple elementary laplacians (associated to G = (V,E)) and graph signal ψ(V) are fed
as input to an MLP in order to learn the best combination of laplacians. Then, Chebyshev decomposi-
tion is achieved using the learned multi-laplacian in order to perform graph convolution, followed by
node expansion and global average pooling prior to softmax classification (better to zoom the pdf).

4also referred to as single or individual laplacians.
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3.3 Activation functions and optimization

We consider two activation functions g in Eq. (2): ReLU and leaky ReLU [81, 82, 83]. Note
that only leaky ReLU provides negative entries in the learned laplacians and both of these
activations allow learning conditionally positive definite (c.p.d) laplacian matrices. In what
follows, we discuss the sufficient conditions about the choices of the elementary input lapla-
cians, the parameters {w`

q,p} and the activation functions that guarantee this c.p.d property.

Definition 1 (conditionally positive definite laplacians) A laplacian matrix L is condition-
ally positive definite, iff ∀c1, . . . ,cn ∈ R (with ∑

n
i=1 ci = 0), ∑i, j cic jLi j ≥ 0.

From the above definition, it is clear that any positive definite laplacian is also c.p.d. The
converse is not true, however c.p.d is a weaker (but sufficient) condition in order to derive
positive definite laplacians (see following propositions).

Proposition 1 (Berg et al.[85]) Consider Li, j as an entry of a matrix L and define L̂ with

L̂i, j = Li, j−Li,n+1−Ln+1, j +Ln+1,n+1 (3)

Then, L̂ is positive definite if and only if L is c.p.d.

Proof 1 See the supplementary material [87]. Now we derive our main result:

Proposition 2 Provided that the input elementary laplacians {L1
q}q are c.p.d, and {w`

q,p}p,q,`

belong to the positive orthant of the parameter space, any combination g(∑q w`
q,p L`

q), with
g equal to ReLU or leaky ReLU, is also c.p.d.

Proof 2 See appendix.

From proposition (2), provided that i) the elementary laplacians are c.p.d, ii) the activa-
tion function g preserves the c.p.d (as ReLU and leaky-ReLU) and iii) weights {w`

q,p} are
positive, all the resulting multiple laplacians in Eq. 2 will also be c.p.d and admit equivalent
positive definite laplacians (following proposition 1), and thereby spectral graph convolu-
tion can be achieved. Note that conditions (i) and (ii) are satisfied by construction while
condition (iii) requires adding equality and inequality constraints to Eq. 2, i.e., w`

q,p ∈ [0,1]
and ∑q w`

q,p = 1. In order to implement these constraints, we consider a reparametrization
in Eq. 2 as w`

q,p = f (ŵ`
q,p)/∑q f (ŵ`

q,p) for some {ŵ`
q,p} with f being strictly monotonic

real-valued (positive) function and this allows free settings of the parameters {ŵ`
q,p} during

optimization while guaranteeing w`
q,p ∈ [0,1] and ∑q w`

q,p = 1. During backpropagation, the
gradient of the loss J (now w.r.t ŵ’s) is updated using the chain rule as

∂J
∂ ŵ`

q,p
= ∂J

∂w`
q,p
.

∂w`
q,p

∂ ŵ`
q,p

with
∂w`

q,p
∂ ŵ`

q,p
=

f ′(ŵ`
q,p) f (∑r 6=q ŵ`

r,p)

( f (ŵ`
q,p)+ f (∑r 6=q ŵ`

r,p))
2 , (4)

in practice f (.) = exp(.) and ∂J
∂w`

q,p
is obtained from layerwise gradient backpropagation

(as already integrated in standard deep learning tools including PyTorch and TensorFlow).

Hence, ∂J
∂ ŵ`

q,p
is obtained by multiplying the original gradient ∂J

∂w`
q,p

by
exp(∑r ŵ`

r,p)

(exp(ŵ`
q,p)+exp(∑r 6=q ŵ`

r,p))
2 .
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3.4 Pooling
If pooling on regular grids (or vectorial data in general) is well defined, it is not the case for
graphs [79]. As a consequence, most of GCN architectures do not include pooling layers in
their architectures [2, 29] excepting a few attempts which try to incorporate pooling in a non
explicit way using multi-level graph coarsening (i.e., by reducing graphs by a factor of two at
each level and describing each node by the average or the max of its descendants [1, 30] or by
using clustering [69, 72] and reordering [67, 68, 70, 71]). For highly irregular graphs (e.g.,
with heterogeneous degrees), this graph coarsening process usually results into imbalanced
hierarchical representations and this substantially affects the accuracy of the learned graph
representations. In practice, existing methods (for instance [1]) add fake nodes in the input
graphs in order to rebalance the coarsening process. However, fake nodes are spurious and
this may lead to contaminated graph representations after coarsening. Besides, this pooling
process is not invariant to node permutations and node reordering (based on automorphisms)
cannot guarantee permutation invariance for general and irregular graphs.

In this work, we consider an alternative solution in order to achieve pooling. Our method
relies on two steps: an expansion-step is first achieved at the node level followed by a global
average pooling in order to achieve permutation invariance. Note that the first step (expan-
sion) is necessary in order to generate high dimensional (and sparse) node representations
and hence preserve the discrimination power of nodes before applying the second step of
global average pooling. Put differently, without expansion, average pooling achieves permu-
tation invariance but dilutes node information and this results into less discriminant graph
representations as shown in experiments (see also [90]).

Considering Nr(v) as the set of r-hop neighbors of a given node v ∈ V and Nr(v) =
∪L

l=1N l
r (v) as the union of L subsets5, the expansion of v is defined as

φ(v)←

(ψ ?gθ )(v),
1

|N 1
r (v)|

∑
v′∈N 1

r (v)

(ψ ?gθ )(v′), . . . ,
1

|N L
r (v)|

∑
v′∈N L

r (v)

(ψ ?gθ )(v′)

 .

(5)
For a large and fine-grained neighborhood systemNr(v)=∪L

l=1N l
r (v) (i.e., r≥ 1 and L� 1),

the expansion φ(v) takes into account not only the immediate neighbors of v but also a large
extent and this results into high dimensional, sparse and discriminating representations. Fi-
nally, a global average pooling is performed (as ∑v∈V φ(v)) to achieve permutation invariance
prior to the softmax fully connected classification layer (see again Fig. 2).

4 Experiments
We evaluate the performance of our multi-laplacian graph convolutional networks (MLGCN)
on the challenging task of action recognition, using two standard datasets: SBU kinect [88]
and UCF-101 [89]. SBU is an interaction dataset acquired (under relatively well controlled
conditions) using the Microsoft Kinect sensor; it includes in total 282 video sequences
belonging to 8 categories: “approaching”, “departing”, “pushing”, “kicking”, “punching”,
“exchanging objects”, “hugging”, and “hand shaking”. In contrast, UCF-101 is larger and
more challenging; it includes 13,320 video shots belonging to 101 categories with variable
duration, poor frame resolution, viewpoint and illumination changes, occlusion, cluttered

5In practice, each subset N l
r (v) includes only nodes with labels equal to l (see again node labels in Fig. 1).
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8 MAZARI, SAHBI: MULTI-LAPLACIAN GCN FOR HUMAN ACTION RECOGNITION

background and eclectic content ranging from multiple and highly interacting individuals to
single and completely passive ones. In all these experiments, we use the same evaluation
protocols as the ones suggested in [88, 89] (i.e., split2 for UCF-101 and train-test split for
SBU) and we report the average accuracy over all the classes of actions.

Binary Binary × Gaussian Multi-lap
10−6σ 10−5σ 10−4σ 10−3σ 10−2σ 10−1σ σ 10σ 102σ 103σ 104σ 105σ 106σ

Unorm
aliz

ed k = 1 93.00 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.32 92.30 92.30 92.30 92.30 92.30 93.41
k = 4 89.25 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.87 88.86 88.86 88.86 88.86 90.07

k = 32 86.00 86.31 86.31 86.31 86.31 84.31 86.31 86.31 86.32 86.32 86.32 86.32 86.32 86.32 86.91

Norm
aliz

ed k = 1 93.00 92.28 92.28 92.28 92.28 92.28 92.28 92.26 92.26 92.26 92.26 92.26 92.28 92.28 93.49
k = 4 90.00 89.36 89.36 89.36 89.36 89.36 89.36 89.36 89.38 89.38 89.39 89.37 89.37 89.37 91.49

k = 32 88.00 88.31 88.31 88.31 88.31 88.31 88.31 88.31 88.32 88.32 88.32 88.32 88.32 88.32 89.21

Random w k = 1 93.00 92.05 92.05 92.06 92.05 92.05 92.05 92.05 92.09 92.09 92.09 92.06 92.06 92.06 93.46
k = 4 96.00 94.06 94.06 94.06 94.00 94.00 94.00 94.01 94.00 94.01 94.00 94.00 94.00 94.00 96.31

k = 32 96.00 94.03 94.03 94.03 94.03 94.03 94.03 94.03 94.03 94.02 94.02 94.02 94.02 94.02 96.29
Multi-lap 97.15 94.61 94.58 94.61 94.63 94.63 94.63 94.62 94.63 94.63 94.63 94.63 94.63 94.63 98.6

Table 1: Performances on SBU for different elementary laplacians (normalized, unormalized and
random walk) and their marginal and total combinations using MLGCN (note that our expansion+GP
is used for pooling). In this table, "binary" means that Ak is used to build the elementary laplacian
while "binary × gaussian" means that “Ak× gaussian similarity” is used instead; for each graph G, the
scale σ of the gaussian similarity is taken as the average distance between node features in G. See also
table 5 in supplementary material including results without expansion.

Binary Binary × Gaussian Multi-lap
10−6σ 10−5σ 10−4σ 10−3σ 10−2σ 10−1σ σ 10σ 102σ 103σ 104σ 105σ 106σ

Unorm
aliz

ed k = 1 55.32 50.67 50.67 50.67 50.68 50.70 50.70 50.70 50.71 50.72 50.72 50.72 50.70 50.70 56.55
k = 4 59.23 55.22 55.22 55.22 55.22 55.20 55.20 55.20 54.95 54.96 54.95 54.98 55.00 54.98 60.05

k = 32 55.10 52.05 52.05 52.05 52.05 52.11 52.11 52.11 52.11 52.11 52.06 52.06 52.06 52.08 56.48

Norm
aliz

ed k = 1 55.6 50.78 50.77 50.27 50.42 50.40 50.42 50.42 50.42 50.42 50.42 50.42 50.42 50.42 56.80
k = 4 59.45 55.32 55.35 55.35 55.00 55.00 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 60.35

k = 32 55.25 51.19 51.19 51.19 49.78 49.79 49.79 49.79 49.79 49.78 49.78 49.77 49.77 49.77 56.52

Random w k = 1 60.09 58.00 58.00 57.98 58.00 58.00 58.00 58.00 58.01 57.95 57.95 57.95 57.92 57.94 60.85
k = 4 61.63 58.05 58.05 58.05 58.05 58.05 58.02 58.02 58.02 57.98 57.98 57.98 57.98 58.02 61.90

k = 32 60.23 58.02 58.02 58.02 58.02 58.01 58.02 58.02 58.01 57.95 57.95 57.95 57.92 57.92 60.9
Multi-lap 62.00 58.24 58.16 58.14 58.14 58.14 58.15 58.15 58.13 58.14 58.16 58.18 58.15 58.17 63.27

Table 2: Performance on UCF; see caption of table 1 for the settings. See also table 6 in supplementary
material including results without expansion.

We trained our MLGCN for 150 epochs on UCF-101 (and 40 on SBU) using the Py-
Torch SGD optimizer and we set the learning rate to 0.0006 (decayed by a factor 0.1 after
100 epochs) for UCF-101 and 0.7 for SBU. We set the batch size to 30 and the Cheby-
shev order K to 4 using grid search and cross validation. All these experiments are run on
GPUs; Tesla P100 (with 16 Go) for UCF-101 and Titan X Pascal (with 12 Go) for SBU.
No data augmentation is achieved. Tables 1 and 2 show a comparison of action recogni-
tion performances, using MLGCN against different baselines involving individual laplacians
(normalized, unormalized, random walk built on top of different affinity matrices and scale
parameters). In these tables, we show the results using expansion and global average pooling
(GP). We also show in table 3(a-c) the results for (i) different pooling strategies (no-pooling,
only GP, feature propagation [37] and feature propagation+GP), (ii) various multi-laplacian
depths and activation functions6 and (iii) different input graph descriptions (for SBU). From
all these results, we observe a clear and a consistent gain of MLGCN w.r.t all the individual
laplacian settings; this gain is further amplified when using “expansion+GP” with a large
spatial extent and a fine-grained neighborhood system Nr(v) = ∪L

l=1N l
r (v) (i.e., r ≥ 1 and

6As shown in table 3(b), performances improve/stabilize very quickly, as the depth increases, since the size of the training set is
limited compared to the large number of training parameters in the MLP of the multi-laplacian. These performances are consistently
better when using leaky ReLU (compared to ReLU) and this is explained by the modeling capacity of the former. Indeed, leaky
ReLU reflects better the (positive and negative) values of our laplacians while ReLU cuts off all the negative values.
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L� 1). This gain results from the complementary aspects of the used elementary laplacians
and also the match between the topological properties of the learned multiple laplacians and
the actual topology of the manifolds enclosing the input graphs. Besides, “expansion+GP”
aggregates the representations of the learned GCN filters in a way that maintains their high
discrimination power (at the node level) while achieving permutation invariance. The latter
is clearly necessary especially when handing videos with multiple interacting persons that
frequently appear in interchangeable orders (as in SBU and UCF).

Finally, we compare the performances of our MLGCN against related methods ranging
from standard machine learning ones (SVMs [61, 88], sequence based such as LSTM and
GRU [50, 51, 53], 2D/3D CNNs [16, 17, 18, 61] including appearance and motion streams)
to deep graph (no-vectorial) methods based on spatial and spectral convolution [1, 2, 37].
From the results in table 4, MLGCN brings a substantial gain w.r.t state of the art graph-
based methods on both sets, and provides comparable results with the best vectorial methods
on SBU. On UCF, while vectorial methods are highly effective, their combination with our
MLGCN (through a late fusion) brings an extra gain despite the fact that bridging the – last
few percentage – gap is challenging, and this clearly shows its complementary aspect.

Pooling Single-lapl Multi-lap
SBU UCF SBU UCF

No pooling 93.94 59.16 95.70 61.20
Global Pooling (GP) 93.90 59.10 95.62 61.17
Features prop [37] 94.27 59.30 96.36 61.31

Features prop [37] + GP 94.30 59.26 96.43 61.25
Exp (r = 1, L = 1)+GP 94.15 59.20 96.35 61.25
Exp (r = 2, L = 1)+GP 94.32 59.33 96.42 61.30
Exp (r = 1, L = n)+GP 96.00 60.54 98.60 63.27

(a)

Depth Leaky ReLU ReLU
SBU UCF SBU UCF

1 98.60 63.10 98.57 63.07
2 98.56 63.27 98.52 63.25
3 98.30 63.27 98.23 63.23

(b)

skeleton representation accuracy
Cloud of joints 31.65/34.25

Spatio-temporel skeletons 36.10/38.00
Orthocentred joints 43.25/45.80

Cylindrical features [42, 43] 38.42/40.10
3D coord +velocity features [39] 38.50/40.20

Joint joint orientation [44] 74.95/ 76.20
Joint line distance [44] 85.60/ 87.50

Our temporal chunking (sec 2) 96.00/ 98.60
(c)

Table 3: (a) Behavior of our MLGCN with and without expansion, i.e., after its ablation and replace-
ment with other pooling methods. Note that results with the best single laplacians taken from tables
1 and 2 are also shown. (b) Behavior of our MLGCN w.r.t different depths and activation functions.
(c) Performance of MLGCN on SBU for different state of the art skeleton graph/node representations;
again results are also shown for the best underlying single laplacians (taken from tables 1 and 2). In
this table, "Cloud of joints" stand for graphs based on the similarity between all the keypoints of differ-
ent frames; "Spatio-temporel skeleton" graphs are obtained by computing intra-frame joint similarity
and by connecting them to their predecessors and successors through frames; "Orthocentered joints"
are obtained by centering the keypoint coordinates of each skeleton in each frame. Details about the
other used node features (namely "Cylindrical features", "3D coord + velocity features", " Joint joint
orientation" and "Joint line distance") can be found in [39, 40, 41, 42, 43, 44].
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Table 4: Comparison against state of the art methods.

5 Conclusion
We introduced in this paper a novel Multi-Laplacian Graph Convolutional Network (ML-
GCN) for action recognition. The strength of our method resides in its effectiveness in learn-
ing combined laplacian convolutional operators each one dedicated to a particular setting
of the manifold enclosing the input graph data. Our method also considers a novel pooling
process which first expands nodes with their context prior to achieve global average pooling.
Extensive experiments conducted on the SBU as well as the challenging UCF-101 datasets,
show the outperformance and also the complementary aspect of our MLGCN w.r.t different
baselines and the related work including graph-based methods.
As a future work, we are currently studying other laplacian combination strategies and also
the extension of our graph convolutional networks to other tasks and benchmarks.

Appendix
[Proof of Proposition 2]

Details of the first part of the proof, based on recursion, are omitted and result from the application of definition (1) to L=∑q w`
q,p L`

q

(for different values of `) while considering {L1
q}q c.p.d. Now we show the second part of the proof (i.e., if L is c.p.d, then g(L) is

also c.p.d for ReLU and leaky ReLU).

i) For g(L) = log(1+exp(L)) [ReLU]: considering L c.p.d, and following proposition (1), one may define a positive definite L̂ and
obtain ∀{ci}

n

∑
i, j=1

cic j exp(Li, j) = exp(Ln+1,n+1)
n

∑
i, j=1

(ci exp(Li,n+1)).(c j exp(Ln+1, j)).exp(L̂i, j
)
≥ 0

so exp(L) is also positive definite. Besides, for any arbitrary α > 0, (1+exp(L))◦α is also positive definite with ◦α being the entry-
wise matrix power. By simply rewriting (1+ exp(L))◦α = exp(α g(L)), it follows (from [86]) that g(L) is c.p.d since exp(α g(L))
is positive definite for all α > 0.

ii) For g(L) = log(exp(aL)+ exp(L)) with 0 < a� 1 [leaky-ReLU]: one may write g as

g(L) = a L+ log(1+ exp((1−a) L)). (6)

Since exp(L) is positive definite, it follows that (1+exp((1−a) L))◦α is also positive definite for any arbitrary α > 0 and 0 < a� 1
so from [86], log(1+ exp((1−a) L)) is c.p.d and so is g(L); the latter results from the closure of the c.p.d with respect to the sum.

�
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