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DEEP TEMPORAL PYRAMID DESIGN FOR ACTION RECOGNITION

Ahmed Mazari Hichem Sahbi

Sorbonne University, CNRS LIP6, Paris, France

ABSTRACT

Deep convolutional neural networks (CNNs) are nowadays
achieving significant leaps in different pattern recognition
tasks including action recognition. Current CNNs are in-
creasingly deeper, data-hungrier and this makes their success
tributary of the abundance of labeled training data. CNNs also
rely on max/average pooling which reduces dimensionality
of output layers and hence attenuates their sensitivity to the
availability of labeled data. However, this process may dilute
the information of upstream convolutional layers and thereby
affect the discrimination power of the trained representations,
especially when the learned categories are fine-grained.

In this paper, we introduce a novel hierarchical aggre-
gation design, for final pooling, that controls granularity of
the learned representations w.r.t the actual granularity of ac-
tion categories. Our solution is based on a tree-structured
temporal pyramid that aggregates outputs of CNNs at dif-
ferent levels. Top levels of this hierarchy are dedicated to
coarse categories while deep levels are more suitable to fine-
grained ones. The design of our temporal pyramid is based on
solving a constrained minimization problem whose solution
corresponds to the distribution of weights of different repre-
sentations in the temporal pyramid. Experiments conducted
using the challenging UCF101 database show the relevance
of our hierarchical design w.r.t other related methods.

Index Terms— deep representation learning, temporal
pyramids, video action recognition

1. INTRODUCTION

Video action recognition is a major challenge in computer vi-
sion which consists in assigning labels (also known as classes
or categories) to sequences of video frames. The challenge
in action recognition stems from (i) the difficulty to learn
mapping models that assign action categories to frames while
being resilient to their acquisition conditions (namely occlu-
sion, illumination, spatial-temporal resolution/scale/length,
camera motion and velocity, truncation, background clutter,
etc.) and also (ii) the hardness in hand-labeling large collec-
tions of training videos prior to build these mapping models.

Existing action recognition techniques are usually based
on machine learning [4, 5, 1, 8, 28]; their general principle
consists first in describing video frames using handcrafted

or learned representations and then assigning these rep-
resentations to action categories using variety of machine
learning and inference techniques including support vector
machines [14, 8, 27, 24, 17, 25] and deep networks [13, 12, 2,
11, 6, 16]. In particular, deep learning models are successful
but their success is highly dependent on the availability of
large collections of hand-labeled videos1 which are usually
difficult to collect and expensive – even at reasonable frame
rates – especially when handling fine-grained action cate-
gories. As a result, existing labeled training sets, for action
recognition, are at least two orders of magnitude smaller
compared to other neighboring tasks (such as the well studied
image classification) while action recognition is intrinsically
more challenging. Furthermore, training and fine-tuning
these models, together with their hyper-parameters for the
challenging task of action recognition, is known to be mem-
ory and time demanding even when using highly efficient
GPU resources and reasonable size videos.
The increase in the discrimination power of the aforemen-
tioned convolutional networks (due to an increase in the
number of their parameters) comes to the detriment of an
increase of their sensitivity to the acquisition conditions es-
pecially on challenging datasets such as the UCF101. Hence,
these networks become more data-hungry and more subject
to over-fitting. Pooling based on average or max operators,
also known as aggregation, attenuates such effect and makes
it possible to reduce the sensitivity and hence enhances the re-
silience of these CNNs to the lack of training data and thereby
to the acquisition conditions. However, pooling produces a
downside effect: a loss in the discrimination power espe-
cially when videos belong to fine-grained action categories.
Put differently, convolutional layers without pooling help
discriminating fine-grained categories while pooling helps
discriminating coarse-grained categories; choosing a granu-
larity for pooling is clearly a challenging task that requires an
appropriate design and this constitutes the main contribution
of this work.

In this paper, we introduce a novel hierarchical aggrega-
tion design that balances the discrimination power of CNN
outputs and their resilience to video acquisition conditions.
Our solution is based on a temporal pyramid that aggregates
the outputs of CNNs at different levels, resulting into a hi-
erarchical representation. Top levels of this hierarchy are

1that cover all the intra-class variability of action categories.



dedicated to coarse action categories while deep levels are
dedicated to fine-grained ones. The design principle of our
temporal pyramid is based on solving a constrained minimiza-
tion problem whose solution corresponds to the distribution
of weights of different representations in the temporal pyra-
mid. Experiments conducted, on action recognition, using
the challenging UCF101 database show the substantial gain
and the complementary aspect of our hierarchical design w.r.t
other related methods [3, 13].

2. PROPOSED METHOD

Considering a collection of videos S = {Vi}ni=1, with each
one being a sequence of frames Vi = {fi,t}Ti

t=1; in this paper,
and unless explicitly mentioned, the symbol i is omitted and
Vi, fi,t are simply rewritten as V , ft respectively. As shown
subsequently, frames in V are described using “end-to-end”
trained network representations (see details in the subsequent
sections). Without a loss of generality, we assume Ti constant
and simply denoted as T ; otherwise frame sampling could be
achieved to make Ti constant.

In what follows, we first present the branches used to
build a representation at the frame-level. Then, we show
how these frame-level representations are aggregated and
combined at the video-level in order to achieve highly effec-
tive action recognition. Finally, we discuss our hierarchical
aggregation design and mainly the learning of its parameters.

2.1. Deep frame-wise representations

In order to describe the visual content of a given video V , we
rely on a two-stream process; the latter provides a complete
description of appearance and motion, based on [13, 3], that
characterizes the spatio-temporal aspects of moving objects
and their interactions. The output of the appearance stream
(denoted as {ψa(ft)}t ⊂ Rq with q = 2048 in practice) is
based on the deep residual network (ResNet-152) trained on
ImageNet [26]. Besides the high performances reported in
ImageNet classification [22], the particularity and the strength
of this network resides in its skip connections which (i) reduce
the sensitivity of the network to its architecture and (ii) re-
duce the effect of gradient collapse/explosion thereby making
the optimization and fine-tuning of this network parameters
(through stochastic gradient descent) effective and numeri-
cally more stable. The output of the motion stream (denoted
as {ψm(ft)}t) is based either on 3D CNN [3] or 2D CNN
[13]; the former is trained with normalized multi-frame opti-
cal flows2 while the latter is trained with heatmaps colorized
at the video-level.

2Normalized means that the values of the optical flow range between 0
and 255.

2.2. Deep hierarchical aggregation

Given a video V , we introduce in this section an aggrega-
tion process that combines representations obtained at the
frame-level of V . A good aggregation design should tradeoff
the global description of videos while capturing their details
that distinguish possible fine-grained categories of actions.
Hence, the design principle of our aggregation process is
tree-structured and relies on a hierarchy of convolutional
network representations. Without a loss of generality, we
consider a binary hierarchy of L levels, where Nk,` stands
for the set of frames that belong to the k-th node and the
`-th level. Top levels of this hierarchy provide coarse (long-
term) video representations that capture global motion and
appearance of actions while deep levels capture fine (and
timely-resolute) details of these actions, such as “beginning”,
“middle” and “late” aspects of actions, resulting into coarse-
to-fine spatio-temporal representations.

Each node Nk,` is assigned an appearance representa-
tion, referred to as Ψk,`

a (V); this representation is defined as
Ψk,`
a (V) = 1

|Nk,`|
∑
t∈Nk,`

ψa(ft). Given a set of action cate-
gories C = {1, . . . , C}; we train multiple classifiers (denoted
{gc}c∈C) on top of the hierarchy of these representations. In
practice, we use SVMs as classifiers whose kernels corre-
spond to linear combinations of elementary kernels dedicated
to {Nk,`}k,`. SVMs are suitable choices as they allow us
to weight the impact of nodes in the hierarchy and put more
emphasis on the most relevant granularity of the learned rep-
resentations. Hence, depending on the granularity of action
categories, SVMs will prefer top or deep layers of the hierar-
chy.

Considering a training set of videos {(Vi, yic)}i associated to
an action category c, with yic = +1 if Vi belongs to the cat-
egory c and yic = −1 otherwise, the SVM associated to this
action category c is given by gc(V) =

∑
i α

c
iyicK(V,Vi)+bc,

here bc is a shift, {αci}i is a set of positive parameters andK is
a positive semi-definite kernel; details about the setting of K,
as a part of SVM training and hierarchical aggregation design
of our temporal pyramid, are given in the subsequent section.

2.3. Coarse-to-fine hierarchical aggregation design

Let N = ∪k,`Nk,` be the union of all possible nodes (frame
sets) in the hierarchy of depth up to L levels and width up to
2L nodes; in this section, we introduce our hierarchical aggre-
gation design that allows us to combine multiple representa-
tions inN . Our method is based on learning a convex combi-
nation of representations, and finds the “optimal” weights of
this combination while training multi-class SVMs.

In what follows, unless explicitly mentioned, we write
Ψk,`
a (Vi) for short as Ψk,`(Vi). We consider {Ψk,`(Vi)}ni

as a training set of representations and yi ∈ {1, . . . , C} as
the label (or category) of Ψk,`(Vi) taken from a well defined
ground-truth; in practice C = 101 (see experiments). Multi-



class SVMs use the mapping Ψk,`(V) that takes a given video
V from an input space into its representation space and find
the unknown label of V as

arg max
c∈C

gk,`c (V), (1)

here gk,`c (V) = 〈wk,`c ,Ψk,`(V)〉 + bk,`, with wk,`c , bk,` being
respectively hyperplane normal and bias associated to a given
category c ∈ C and node (k, `).

In order to combine different nodes in the hierarchy and
hence design appropriate aggregation, we use multiple rep-
resentation learning that generalizes the above SVM frame-
work [18]. Its main idea consists in finding a kernel K as
a convex linear combination of positive semi-definite (p.s.d)
elementary kernels {Kk,`}k,` associated to {Nk,`}k,`. Thus,
the kernel value between two videos V , V ′ is defined as

K(V,V ′) =

L∑
k=1

2k∑
`=1

βk,` Kk,`(V,V ′), (2)

here βk,` ≥ 0,
∑
k,` βk,` = 1 and each kernel Kk,` oper-

ates using only the subset Nk,` (in practice, Kk,`(V,V ′) =
〈Ψk,`(V),Ψk,`(V ′)〉). Resulting from the closure of the p.s.d
of {Kk,`}k,` w.r.t the sum, the final kernelKwill also be p.s.d.
Hence, using a primal SVM formulation, we predict the un-
known category of a given video V as arg maxc∈C gc(V), with
gc(V) =

∑
k,` βk,`〈wk,`c ,Ψk,`(V)〉+ bc and bc, {wk,`c }k,` be-

ing respectively the bias and the hyperplane normals associ-
ated to a given class c for different nodes. We choose the
parameters β = {βk,`}k,`, b = {bc} and w = {wk,`c }k,` by
solving the following constrained minimization problem

min
β,w,b,ξ

1

2

∑
k,`

∑
c

βk,`〈wk,`c , wk,`c 〉+

n∑
j=1

ξj

s.t. ξj = max
c′∈C\c

l(gc(Vj)− gc′ (Vj)),

(3)

here c ∈ C is the actual label of Vj , ξ = {ξj}j acts as a
softmax and l(.) is a convex loss function. As this prob-
lem is not convex w.r.t the training parameters β,w, b, ξ taken
jointly and convex when taken separately, an EM-like itera-
tive optimization procedure can be used: first, β is fixed and
the above problem is solved w.r.t w, b, ξ using quadratic pro-
gramming, then w, b, ξ are fixed and the resulting problem is
solved w.r.t β using linear programming. This iterative pro-
cess stops when the values of all these parameters remain un-
changed (from one iteration to another) or when it reaches a
maximum number of iterations (see for instance [18, 7]).

3. EXPERIMENTS

In this section, we evaluate the performance of action classi-
fication using the challenging UCF101 database [19]. This

Fig. 1. This figure shows steps (A, B and C) of deep hierarchical ag-
gregation that controls (via {βk,`}k,`) the granularity of the learned
representations. Better to zoom the PDF.

dataset includes 13320 video shots taken from various ac-
tions belonging to 101 categories. These videos have diverse
contents and were taken under extremely challenging and un-
controlled conditions, with many viewpoint changes (see ex-
amples of video frames in Fig. 2). Each video is processed
in order to extract its underlying CNN representations at the
frame-level, followed by their hierarchical aggregation at the
video-level as discussed in section 2; Fig. 1 is an illustration
of the whole video representation process.

3.1. Setting and evaluation protocol

The purpose of our evaluation is to show the performance of
the hierarchical aggregation design of our temporal pyramid
(TP) compared to different coarse and fine aggregations as
well as other baselines. We also extend the comparison of ac-
tion classification against reported results in the related work.
We plugged our temporal pyramid into support vector classi-
fiers in order to evaluate their performances. Again the tar-
geted task is action classification (a.k.a recognition); given
a video shot described with a temporal pyramid, the goal is
to predict which action (class) is present into that shot. For
this purpose, we trained a one-vs.-all SVM classifier for each
class; we use the train-test split2 evaluation protocol (sug-
gested in [19]) in order to compare the performance of our
method against the related work under exactly the same con-
ditions. We repeat this training and testing process through
different classes and we take the average accuracy over all the
classes of actions.

3.2. Performance and comparison

Baselines. We first show a comparison of action recogni-
tion performance, using our temporal pyramid, against two
baselines: global average pooling and also spectrograms; the
former produces a global representation that averages all the
frame descriptions while the latter keeps all the frame rep-
resentations and concatenate them prior to their classifica-
tion. Note that these two comparative baselines are interest-
ing as they correspond to two extreme cases of our hierarchy,



Fig. 2. Sample of classes from UCF-101 dataset. From top-
left to bottom-right, classes are: riding horse, playing violin, golf
swing, pizza tossing, military parade, playing guitar, pushups, soccer
penalty, bench press, haircut, bowling, punch, billiard, ice-dancing,
typing.

Setting action recognition performance on UCF101
Temporal pyramid (level 1) 66.15%
Temporal pyramid (level 2) 66.74%
Temporal pyramid (level 3) 67.14%
Temporal pyramid (level 4) 67.41%
Temporal pyramid (level 5) 67.45%
Temporal pyramid (level 6) 67.47%

Temporal pyramid +Multiple Rep 68.58%
Spectrograms 64.41%

Table 1. Performances (on split 2 of UCF101) for level-wise and
with multiple representation learning (referred to as ”Multiple Rep”)
as described in section 2.3. As already described, level 1 corresponds
to the global average pooling.

namely the root and the leaf levels; in particular, the spectro-
gram (of a video V with T frames) is obtained when the num-
ber of leaf nodes, in the temporal pyramid, is exactly equal
to T . We also consider as baselines: level-wise representa-
tions of our temporal pyramid. Early observations, reported
in Table. 1, show that our hierarchical representation design
makes it possible select the best configuration (combination)
of level representations in order to improve the classification
accuracy; indeed, the results show a clear gain when using
this design compared to all the other levels when taken sep-
arately as well as spectrograms. This gain results from the
match between the granularity of the learned representations
in the temporal pyramid and the actual granularities of action
categories.

Comparison w.r.t the related work. We also compared the
classification performances and the complementary aspect
of our temporal pyramid design against related work includ-
ing [13] and [3]. The method in [13] is based on colorized
heatmaps, as a variant of the global average pooling baseline;
the latter corresponds to timely-stamped and averaged frame-
wise probability distributions of human keypoints. From the
results in Table. 2, our hierarchical design, brings a substan-
tial gain of at least 12 points w.r.t colorized heatmaps. The
method in [3] is based on 3D CNNs including two-streams;
one for motion and another one for appearance. While these
two-streams are highly effective, their combination with our
temporal pyramid, through a simple late fusion, brings a

noticeable gain. We also observe the same behavior on all
the combinations – of this two stream CNN with the other
baselines; despite the fact that bridging the last few percent-
age gap is very challenging, for each setting our temporal
pyramid succeeds in improving the performances.

Method action recognition performances
col. heatM [13] 64.38%

col. heatM [13] +TP 77.34%
Spect 64.41%

Spect +TP 68.40%
Spect + col. heatM [13] 66.87%

Spect + col. heatM[13] +TP 74.65%
3D 2-stream (motion) [3] 96.41%

3D 2-stream (appearance) [3] 95.60%
3D 2-stream (combined) [3] 97.94%

3D 2-stream (motion) [3] +TP 97.50%
3D 2-stream (appearance) [3] +TP 95.77%
3D 2-stream (combined) [3] +TP 97.94%

3D 2-stream (motion) [3] + col. heatM [13] 94.89%
3D 2-stream (appearance) [3] + col. heatM [13] 94.32%
3D 2-stream (combined) [3] + col. heatM [13] 97.02%

3D 2-stream (motion) [3] + col. heatM [13] +TP 95.70%
3D 2-stream (appearance) [3] + col. heatM [13] +TP 94.60%
3D 2-stream (combined) [3] + col. heatM [13] +TP 97.56%

3D 2-stream (motion) [3] + spect 95.64%
3D 2-stream (appearance) [3] + spect 94.72%
3D 2-stream (combined) [3] + spect 97.70%

3D 2-stream (motion) [3] + spect +TP 95.77%
3D 2-stream (appearance) [3] + spect +TP 94.95%
3D 2-stream (combined) [3] + spect +TP 97.74%

3D 2-stream (motion) [3] + col. heatM [13] + spect 95.12%
3D 2-stream (appearance) [3] + col. heatM [13] + spect 94.70%
3D 2-stream (combined) [3] + col. heatM [13] + spect 97.32%

3D 2-stream (motion) [3]+ col. heatM [13] + spect +TP 96.35%
3D 2-stream (appearance) [3]+ col. heatM [13] + spect +TP 95.10%
3D 2-stream (combined) [3]+ col. heatM [13] + spect +TP 97.51%

Table 2. Comparison w.r.t the related work (on split2 of UCF101
dataset); in this table: “heatM” stands for colorized heatmaps,
“spect” for spectrograms and TP for temporal pyramid + multiple
representation. We observe a clear gain (highlighted in bold) when
TP is used and combined w.r.t the related work.

4. CONCLUSION

We introduced in this paper an action recognition method
based on convolutional neural networks and a novel hierar-
chical aggregation design. The latter defines pooling opera-
tions at different granularities and makes it possible to fit the
actual granularity of action categories resulting into a clear
gain in performance compared to global average pooling and
also spectrograms. Our method is based on solving a con-
strained minimization problem whose solution corresponds
to the level-wise weight distributions which also maximize
performances. Comparison, using the challenging UCF101
dataset, shows the validity and the complementary aspect of
our method with respect to the related work. As a future work
we are currently investigating the application of our hierar-
chical aggregation to activity recognition, on longer duration
video datasets, and this requires deeper temporal pyramids.
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