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Abstract. We introduce a category of O-oriented supersingular elliptic curves and de-
rive properties of the associated oriented and nonoriented `-isogeny supersingular isogeny
graphs. As an application we introduce an oriented supersingular isogeny Diffie-Hellman
protocol (OSIDH), analogous to the supersingular isogeny Diffie-Hellman (SIDH) pro-
tocol and generalizing the commutative supersingular isogeny Diffie-Hellman (CSIDH)
protocol.
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1 Introduction

In this paper we introduce a category of supersingular elliptic curves oriented by an
imaginary quadratic order O, and derive properties of the associated oriented and
non-oriented supersingular `-isogeny graphs. This permits one to derive a faithful
group action on a subset of oriented supersingular curves, equipped with a forget-
ful map to the set of non-oriented supersingular curves. As an application we in-
troduce an oriented supersingular isogeny Diffie-Hellman protocol (OSIDH), anal-
ogous to the supersingular isogeny Diffie-Hellman (SIDH) of De Feo and Jao [18]
and generalizing the commutative supersingular isogeny Diffie-Hellman (CSIDH)
of Castryck, Lange, Martindale, Panny and Renes [5], the latter based on the idea
of group actions on sets by Couveignes [9] and Rostovtsev-Stolbunov [25]. Re-
newed interest in these isogeny-based protocols is motivated by their presumed
resistance to quantum attacks, and this work both enlarges the class of isogeny-
based protocols and provides a framework for their security analysis.

We study some theoretical and practical aspects of the endomorphism ring of
a supersingular elliptic curve and their connection with isogeny graphs. The cen-
tral idea is to use an embedding of an quadratic imaginary order into the endo-
morphism ring of a supersingular elliptic curve, a maximal order in a quaternion
algebra, to introduce an orientation on the curve. This extra piece of information
permits one to impose compatible actions of the class groups of the suborders of
this quadratic order on the descending isogeny chains and therefore on the isogeny



2 L. Colò and D. Kohel

volcano of oriented curves.
We observe that the starting vertex of the chain can be chosen to have a spe-

cial orientation (by an order of class number one) and that computations can be
performed using modular polynomials. This motivates us to introduce a Diffie-
Hellman key exchange protocol that avoids limitations imposed by earlier con-
structions.

The idea of SIDH is to fix a large prime number p of the form p = `eAA `eBB f ± 1
for a small cofactor f and to let the two parties Alice and Bob take random walks
(i.e., isogenies chains) of length eA (or eB) in the `A-isogeny graph (or the `B-
isogeny graph, respectively) on the set of supersingular j-invariants defined over
Fp2 . In order to have the two key spaces of similar size `eAA ≈ `

eB
B , we need to take

`eAA ≈ `eBB ≈
√
p. Since the total number of supersingular j-invariants is around

p/12, this implies that, for each party, the space of choices for the secret key is
limited to 1/

√
p of the whole set of supersingular j-invariants over Fp2 . In other

words, in choosing their secrets, Alice and Bob can go only “halfway” around the
graph from the starting vertex j0.

Recently, Castryck, Lange, Martindale, Panny and Renes proposed another key
exchange protocol based on supersingular isogeny graphs over the prime field Fp.
We fix a prime of the form p = 4`1·. . .·`t−1 and an elliptic curveE/Fp defined by
the equationE : y2 = x3+ax2+x. The peculiarity of CSIDH is that it works with
curves defined over Fp and restricts the endomorphism rings of such curves to the
commutative subring consisting of Fp-rational endomorphisms. Starting from this
setup, the scheme is an adaptation of the Couveignes and Rostovtsev-Stolbunov
idea. Observe that the choice of looking at curves defined over Fp, instead of Fp2 ,
limits the key spaces for Alice and Bob to #C̀ (Z[√−p]) supersingular points. For
a given p, this is the same order of magnitude, O(

√
p log(p)), as for SIDH, but the

class group is transitive on this subset.
In this paper we want to describe a new cryptographic protocol, the OSIDH,

defined over an arbitrarily large subset of oriented supersingular elliptic curves
over Fp2 , which combines features of SIDH and CSIDH, and permits one to to
cover an arbitrary proportion of all isomorphism classes of supersingular elliptic
curves.

A feature shared by SIDH and CSIDH is that the isogenies are constructed as
quotients of rational torsion subgroups: the secret path of length eA in the `A-
isogeny graph corresponds to a secret cyclic subgroup 〈A〉 ⊆ E [`eA ] where A
is a rational `eAA -torsion point on E. The need for rational points imposes limits
the choice of the prime p and, thus, of the finite field we work on. In contrast
OSIDH relies on constructions that can be carried out only with the use of modular
polynomials hence avoiding conditions on the rational torsion subgroup.

In summary, an orientation provides a class group action on lifts of an arbitrarily
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large subset of supersingular points. Exploiting an effective subring O of the full
endomorphism ring we obtain an effective action by the class group of this sub-
ring on the isogeny volcano (whirlpool). This approach generalizes the class group
action of CSIDH where supersingular elliptic curves are oriented by the commuta-
tive subring Z [π] generated by Frobenius π =

√−p. To avoid subexponential (or
polynomial) time reductions, in the OSIDH protocol, as detailed in Section 5, the
orientation and associated class group action is hidden in the intermediate data ex-
changed by Alice and Bob. This gives a protocol for which the best known attacks
at present are fully exponential.

2 Orientations, isogeny chains, and ladders

Let E be a supersingular elliptic curve over a finite field k of characteristic p, and
denote by End(E) the full endomorphism ring. We denote by End0(E) the Q-
algebra End(E) ⊗Z Q. We suppose that k contains Fp2 and E is in an isogeny
class such that Endk(E) = End(E).

Orientations

Let B be a quaternion algebra over Q ramified at p and∞, K a quadratic imagi-
nary field of discriminant ∆K , OK its maximal order and O an arbitrary order in
OK . We recall that B is unique up to isomorphism and if p is ramified or inert
in OK then K embeds in B. By hypothesis on E, there exists an isomorphism
End0(E) ∼= B.

Definition 2.1. A K-orientation on a supersingular elliptic curve E/k is a homo-
morphism ι : K ↪→ End0(E). AnO-orientation on E is a K-orientation such that
the image of the restriction of ι toO is contained in End(E). We write End((E, ι))
for the order End(E) ∩ ι(K) in ι(K). An O-orientation is primitive if ι induces
an isomorphism of O with End((E, ι)).

Let φ : E → F be an isogeny of degree `. A K-orientation ι : K ↪→ End0(E)
determines a K-orientation φ∗(ι) : K ↪→ End0(F ) on F , defined by

φ∗(ι)(α) =
1
`
φ ◦ ι(α) ◦ φ̂.

Conversely, given K-oriented elliptic curves (E, ιE) and (F, ιF ) we say that an
isogeny φ : E → F is K-oriented if φ∗(ιE) = ιF , i.e. if the orientation on F is
induced by φ.
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If E admits a primitive O-orientation by an order O in K, φ : E → F is
an isogeny then F admits an induced primitive O′-orientation for an order O′
satisfying

Z+ `O ⊆ O′ and Z+ `O′ ⊆ O.

We say that an isogeny φ : E → F is an O-oriented isogeny if O = O′.
If ` is prime, as direct analogue of Proposition 4.2.23 of [19], one of the follow-

ing holds:

• O = O′ and we say that φ is horizontal,

• O ⊂ O′ with index ` and we say that φ is ascending,

• O′ ⊂ O with index ` and we say that φ is descending.

Moreover if the discriminant of O is ∆, then there are exactly `−
(

∆

`

)
descending

isogenies. If O is maximal at `, then there are
(

∆

`

)
+ 1 horizontal isogenies, and

if O is non-maximal at `, then there is exactly one ascending `-isogeny and no
horizontal isogenies.

Isogeny chains and ladders

Let E0/k be a fixed supersingular elliptic curve, equipped with an O-orientation,
and let ` 6= p be a prime.

Definition 2.2. We define an `-isogeny chain of length n from E0 to E to be a
sequence of isogenies of degree `:

E0
φ0−−−−→ E1

φ1−−−−→ E2
φ2−−−−→ . . .

φn−1−−−−−−→ En = E.

We say that the `-isogeny chain is without backtracking if ker(φi+1 ◦ φi) 6= Ei[`]
for each i = 0, . . . , n−1, and say that the isogeny chain is descending (or ascend-
ing, or horizontal) if each φi is descending (or ascending, or horizontal, respec-
tively).

Remark. Since the dual isogeny of φi, up to isomorphism, is the only isogeny
φi+1 satisfying ker(φi+1 ◦φi) = Ei[`], an isogeny chain is without backtracking if
and only if the composition of two consecutive isogenies is cyclic. Moreover, we
can extend this characterization in terms of cyclicity to the entire `-isogeny chain.

Lemma 2.3. The composition of the isogenies in an `-isogeny chain is cyclic if and
only if the `-isogeny chain is without backtracking.
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Remark. If an isogeny φ is descending, then the unique ascending isogeny from
φ(E), up to isomorphism, is the dual isogeny φ̂, satisfying φ̂φ = [`]. As an
immediate consequence, a descending `-isogeny chain is automatically without
backtracking, and an `-isogeny chain without backtracking is descending if and
only if φ0 is descending.

Suppose that (Ei, φi) is an `-isogeny chain, with E0 equipped with an OK-
orientation ι0 : OK → End(E0). For each i, let ιi : K → End0(Ei) be the
inducedK-orientation on Ei, and we noteOi = End(Ei)∩ ιi(K) withO0 = OK .
In particular, if (Ei, φi) is a descending `-chain, then ιi induces an isomorphism

ιi : Z+ `iOK −→ Oi.

Let q be a prime different from p and ` that splits in OK , let q be a fixed prime
over q. For each i we set q(i) = ιi(q) ∩ Oi, and define

Ci = Ei[q(i)] = {P ∈ Ei[q] | ψ(P ) = 0 for all ψ ∈ q(i)}.

We define Fi = Ei/Ci, and let ψi : Ei → Fi, an isogeny of degree q. By
construction, it follows that φi(Ci) = Ci+1 for all i = 0, . . . , n− 1. In particular,
if (Ei, φi) is a descending `-ladder, then ιi induces an isomorphism

ιi : Z+ `iOK −→ Oi.

The isogeny ψ0 : E0 → F0 = E/C0 gives the following diagram of isogenies:

E0 E1 E2 En

F0

ψ0

φ0 φ1 φ2 φn−1

and for each i = 0, . . . , n − 1 there exists a unique φ′i : Fi → Fi+1 with kernel
ψi(ker(φi)) such that the following diagram commutes:

Ci ⊆ Ei Ei+1 ⊇ Ci+1

Fi Fi+1

φi

ψi ψi+1
φ′i

The isogenies ψi : Ei → Fi induce orientations ι′i : O′i → End(Fi). This con-
struction motivates the following definition.
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Definition 2.4. An `-ladder of length n and degree q is a commutative diagram
of `-isogeny chains (Ei, φi) and (Fi, φ

′
i) of length n connected by q-isogenies

(ψi : Ei → Fi):

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψ0 ψ1 ψ2 ψn

We also refer to an `-ladder of degree q as a q-isogeny of `-isogeny chains, which
we express as ψ : (Ei, φi)→ (Fi, φ

′
i).

We say that an `-ladder is ascending (or descending, or horizontal) if the `-
isogeny chain (Ei, φi) is ascending (or descending, or horizontal, respectively).
We say that the `-ladder is level if ψ0 is a horizontal q-isogeny. If the `-ladder is
descending (or ascending), then we refer to the length of the ladder as its depth
(or, respectively, as its height).

Lemma 2.5. An `-ladder ψ : (Ei, φi) → (Fi, φ
′
i) of oriented elliptic curves is

level if and only if End((Ei, ιi)) is isomorphic to End((Fi, ι′i)) for all 0 ≤ i ≤ n.
In particular, if the `-ladder is level, then (Ei, φi) is descending (or ascending, or
horizontal) if and only if (Fi, φ′i) is descending (or ascending, or horizontal).

Remark. In the sequel we will assume thatE0 is oriented by a maximal orderOK .
In Section 3 we investigate using the effective horizontal isogenies of E0 to derive
an effective class group action, and introduce a modular version of this action in
Section 4. Walking down a descending isogeny chain, each elliptic curve will be
oriented by an order of decreasing size and the final elliptic curve, which will be
our final object of study, will have an orientation by an order of large index in OK
with action by a large class group.

Since the supersingular `-isogeny graph is connected, every supersingular ellip-
tic curve admits an `-isogeny chain back to a curve oriented by any given maximal
order OK , so such a construction exists for any supersingular elliptic curve.

3 Oriented curves and class group action

Let SS(p) denote the set of supersingular elliptic curves over Fp up to isomor-
phism, and let SSO(p) be the set of O-oriented supersingular elliptic curves up to
K-isomorphism over Fp, and denote the subset of primitive O-oriented curves by
SSprO (p).



Orienting supersingular isogeny graphs 7

Class group action

The set SSO(p) admits a transitive group action:

C̀ (O)× SSO(p) SSO(p)

([a] , E) [a] · E = E/E[a]

where a is any representative ideal coprime to the index [OK : O] so that the
isogeny E → E/E[a] is horizontal. When restricted to primitive O-oriented
curves, we obtain the following classical result, extending the standard result for
CM elliptic curves.

Theorem 3.1. The class group C̀ (O) acts faithfully and transitively on the set of
O-isomorphism classes of primitive O-oriented elliptic curves.

In particular, for fixed primitiveO-oriented E, we hence obtain a bijection of sets:

C̀ (O) SSprO (p)

[a] [a] · E

For any ideal class [a] and generating set {q1, . . . , qr} of small primes, coprime to
[OK : O], we can find an identity [a] = [qe1

1 · . . . · qerr ], in order to compute the
action via a sequence of low-degree isogenies.

On vortices and whirlpools

Instead of considering the union of different isogeny graphs as in Couveignes [9]
and Rostovtsev-Stolbunov [25], we focus on a fixed prime ` and we think of the
other primes as acting on the `-isogeny graph. The resulting object is the union of
`-isogeny volcanoes mixing under the action of C̀ (O). This action stabilizes the
subgraph at the surface (the craters) and preserves descending paths. This view is
consistent with the construction of orientations by `-isogeny chains (paths in the `-
isogeny graph) anchored at the surface, with action of the class group determined
by ladders.

Definition 3.2. A vortex is defined to be an `-isogeny subgraph whose vertices are
isomorphism classes of O-oriented elliptic curves with `-maximal endomorphism
ring, equipped with the action of C̀ (O). A whirlpool is defined to be a complete
`-isogeny graph of O-oriented elliptic curves acted on by C̀ (O).
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C`(O)

Figure 1. A vortex consists of `-isogeny cycles acted on by C̀ (O).

Figure 2. A whirlpool is an `-isogeny graph acted on by C̀ (O).

The underlying graph of a whirlpool may be composed of several `-isogeny
cycles, although the class group is transitive in any given isogeny class (see Fig-
ure 5). The existence of multiple `-volcanoes is studied in [21] and [15], where
the set of `-volcanoes is called an `-cordillera.

Example 3.3. As an example, we can consider the set of ordinary elliptic curves
E/F353 in the isogeny class with 344 rational points. The set of j-invariants of
such curves is: {66, 160, 182, 197, 230, 236, 253, 264, 270, 298, 304, 330}. The 2-
isogeny graph, depicted in Figure 3, consists of two different 2-volcanoes, and
hence the whirlpool consists of two components permuted by the class group of
Z[2
√
−82].

160 270

182 253 66 236

230 298

197 304 264 330

Figure 3. A 2-cordillera.
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Figure 4 represents the whirlpool, with blue lines indicating the 7-isogenies and
red lines corresponding to the 13-isogenies.

160 270

182 253 66 236

230 298

197 304 264 330
264

236

66

330

304

182

253

197

Figure 4. A whirlpool with two components.

In conclusion, a general whirlpool can be depicted as in Figure 5, as an `-
cordillera (black lines) acted on by the class group (represented by colored ar-
rows).

Figure 5. The `-isogeny graph of a whirlpool may have multiple components.

Forgetful map

By Theorem 3.1, we have a bijection (isomorphism of sets with C̀ (O)-action):

C̀ (O) ∼= SSprO (O) ⊆ SSO(p)

determined by any choice of base point. On the other hand, for a descending chain
of imaginary quadratic orders of index `,

OK = O0 ⊃ O1 ⊂ · · · ⊃ Oi ⊃ · · ·
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determined by a descending `-isogeny chain, the class numbers satisfy the geomet-
ric growth h(Oi+1) = `h(Oi) for all i ≥ 1. In particular, the inclusionOi+1 ⊂ Oi
determines an inclusion SSOi(p) ⊂ SSOi+1(p) = SSOi(p) ∪ SSprOi+1

(p). Conse-
quently we have an unbounded chain of sets

SSOK
(p) ⊂ SSO1(p) ⊂ · · · ⊂ SSOi(p) ⊂ · · ·

equipped with forgetful maps SSOi(p) → SS(p) sending the Oi-isomorphism
class [(E,Oi)] to the isomorphism class [E] determined by the j-invariant j(E).

This motivates the questions of when the map SSOi(p)→ SS(p) and its restric-
tion to SSprOi

(p) are injective, and when these maps are surjective. We adopt the
notation H(p) for the cardinality |SS(p)| of supersingular curves, denote by Xi

the image of SSOi(p) in SS(p) and write Yi for the subset in the image of SSprOi
(p).

Moreover we write λi = logp(|∆i|) where ∆i = `2i∆K = disc(Oi). With this no-
tation Figure 6 and Figure 7 give tables of values for |Yi|, |Xi|, and λi, for primes
of 10 and 12 bits respectively, depicting the boundary line for injectivity at λi = 1
and the critical line for surjectivity at λi = 2. We conclude this section with a
general proposition, which follows from the following algebraic lemma, in order
to justify the injectivity bound.

Lemma 3.4. Let α1 and α2 be elements of a maximal quaternion order in a quater-
nion algebra over Q ramified at a prime p. Set ∆i = disc(Z[αi]) for i ∈ {1, 2},
and define ω to be the commutator [α1, α2] = α1α2 − α2α1. Then ω satisfies
Tr(ω) = 0, Nr(ω) = (∆1∆2 − T 2)/4 where T = 2Tr(α1α2)− Tr(α1)Tr(α2), and
Nr(ω) ≡ 0 mod p.

Proof. The equality Tr(ω) = 0 follows from the relation Tr(α1α2) = Tr(α2α1)
and linearity of the reduced trace. The expression for the reduced norm Nr(ω)
is an elementary calculation. The congruence Nr(ω) = 0 mod p holds since the
unique maximal ideal P over p in the quaternion order is the subset of elements α
with Nr(α) ≡ 0 mod p, and the quotient by P is isomorphic to the (commutative)
finite field Fp2 . Hence α1α2 ≡ α2α1 mod P which implies ω mod P = 0, from
which Nr(ω) ≡ 0 mod p holds.

Proposition 3.5. Let O be an imaginary quadratic order of discrminant ∆ and p a
prime which is inert in O. If |∆| < p, then the map SSO(p)→ SS(p) is injective.

Proof. If the map is not injective, there exists a supersingular elliptic curve E/Fp,
such that End(E) admits disjoint embeddings ιi : O = Z[α] → End(E), for
i ∈ {1, 2}. Let αi = ιi(α) and set ω = [α1, α2]. By the previous lemma, we have

Nr(ω) =
∆2 − T 2

4
≡ 0 mod p.
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Since p is prime, and T ≡ ∆ mod 2, we have either |∆| − |T | ≡ 0 mod 2p or
|∆|+ |T | ≡ 0 mod 2p. Moreover, since End(E) is an order in a definite quaternion
algebra, we have Nr(ω) > 0, hence |T | < |∆|. It follows that 2p ≤ |∆| + |T | ≤
2|∆|, and hence p ≤ |∆|. As a consequence, we conclude that if the map is injec-
tive, then |∆| < p.

p = 1013
i h(Oi) |Yi| |Xi| H(p) λi

1 1 1 1 85 0.3590
2 2 2 3 85 0.5593
3 4 4 7 85 0.7596
4 8 8 15 85 0.9599

5 16 16 29 85 1.1603
6 32 26 47 85 1.3606
7 64 43 66 85 1.5609
8 128 70 82 85 1.7612
9 256 79 85 85 1.9615

10 512 83 85 85 2.1618

p = 1019
i h(Oi) |Yi| |Xi| H(p) λi

1 1 1 1 86 0.3587
2 2 2 3 86 0.5588
3 4 4 7 86 0.7590
4 8 8 15 86 0.9591

5 16 15 30 86 1.1593
6 32 29 49 86 1.3594
7 64 46 69 86 1.5595
8 128 64 81 86 1.7597
9 256 83 84 86 1.9598

10 512 86 86 86 2.1600

Figure 6. Sizes of images of oriented classes mapping to supersingular curves

4 Modular isogenies

In this section we consider the way in which we effectively represent and compute
isogenies. With the view to oriented isogenies, we focus on horizontal isogenies
with kernel E[q], where E is a primitive O-oriented elliptic curve and q a prime
ideal of ι(O). In what follows we suppress ι and identify O with ι(O).

Effective endomorphism rings and isogenies

We say a subring of End(E) is effective if we have explicit polynomial or rational
functions which represent its generators. The subring Z in End(E) is thus effec-
tive. Examples of effective imaginary quadratic subrings O ⊂ End(E), are the
subring O = Z[π] generated by Frobenius, for either an ordinary elliptic curve, or
a supersingular elliptic curve defined over Fp, or an elliptic curve obtained by CM
construction for an order O of small discriminant (in absolute value).
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p = 4079
i h(Oi) |Yi| |Xi| H(p) λi

1 1 1 1 341 0.2988
2 2 2 3 341 0.4656
3 4 4 7 341 0.6323
4 8 8 15 341 0.7991
5 16 16 31 341 0.9658

6 32 31 62 341 1.1326
7 64 61 113 341 1.2993
8 128 111 196 341 1.4661
9 256 180 276 341 1.6328
10 512 258 326 341 1.7996
11 1024 318 340 341 1.9663

12 2048 340 341 341 2.1331

p = 4091
i h(Oi) |Yi| |Xi| H(p) λi

1 1 1 1 342 0.2987
2 2 2 3 342 0.4654
3 4 4 7 342 0.6321
4 8 8 15 342 0.7988
5 16 16 31 342 0.9655

6 32 30 59 342 1.1322
7 64 59 110 342 1.2989
8 128 107 182 342 1.4656
9 256 186 263 342 1.6323
10 512 266 326 342 1.7990
11 1024 314 341 342 1.9657

12 2048 339 342 342 2.1323

Figure 7. Sizes of images of oriented classes mapping to supersingular curves

In the Couveignes [9] or the Rostovtsev-Stolbunov [25] constructions, or in the
CSIDH protocol [5], one works with the ring O = Z[π]. The disadvantage is that
for large finite fields, the class group of O is large and the primes q in O have no
small degree elements. For large p and small q, the smallest degree element of a
prime q of norm q is the endomorphism [q], of degree q2. The division polynomial
ψq(x), which cuts out the torsion group E[q], is of degree (q2 − 1)/2. Conse-
quently factoring ψq(x) to find the kernel polynomial (see Kohel [19, Chapter 2])
of degree (q − 1)/2 for E[q] is relatively expensive. As a result, in the SIDH pro-
tocol [18], the ordinary protocol of De Feo, Smith, and Kieffer [11], or the CSIDH
protocol [5], the curves are chosen such that the points of E[q] are defined over a
small degree extension κ/k, particularly [κ/k] ∈ {1, 2}, and working with rational
points in E(κ).

In the OSIDH protocol outlined below, we propose the use of an effective CM
order OK of class number 1. In particular every prime q of norm q is generated
by an endomorphism of the minimal degree q. For example we may take OK to
be the Eisenstein or Gaussian integers of discriminant −3 or −4, generated by
an automorphism. The kernel polynomial of degree (q − 1)/2 can be computed
directly without need for a splitting field for E[q], and the computation of a gen-
erator isogeny is a one-time precomputation. Using an analog of the construction
of division polynomials, the computation of the kernel polynomial requires O(q)
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field operations.

Push forward isogenies

The extension of an isogeny (or, as we will see in the next section, of an endomor-
phism) ofE0 to an `-isogeny chain (Ei, φi) reduces to the construction of a ladder.
At each step we are given φi : Ei → Ei+1 and ψi : Ei → Fi of coprime degrees,
and need to compute

ψi+1 : Ei+1 → Fi+1 and φ′i : Fi → Fi+1.

Rather than working with elliptic curves and isogenies, we construct the oriented
graphs directly as points on a modular curve linked by modular correspondences
defined by modular polynomials.

Modular curves and isogenies

The use of modular curves for efficient computation of isogenies has an established
history (see Elkies [14]). For this purpose we represent isogeny chains and ladders
as finite sequences of points on the modular curve X = X(1) preserving the
relations given by a modular equation.

We recall that the modular curve X(1) ∼= P1 classifies elliptic curves up to
isomorphism, and the function j generates its function field. The family of elliptic
curves

E : y2 + xy = x3 − 36
(j − 1728)

x− 1
(j − 1728)

covers all isomorphism classes j 6= 0, 123 or∞, such that the fiber over j0 ∈ k is
an elliptic curve of j-invariant j0. The curves y2 + y = x3 and y2 = x3 + x deal
with the cases j = 0 and j = 1728.

The modular polynomial Φm(X,Y ) defines a correspondence in X(1)×X(1)
such that Φm(j(E), j(E′)) = 0 if and only if there exists a cyclic m-isogeny φ
from E to E′, possibly over some extension field. The curve in X(1)×X(1) cut
out by Φm(X,Y ) = 0 is a singular image of the modular curveX0(m) parametriz-
ing such pairs (E, φ).
Remark. The modular curve X(1) can be replaced by any genus 0 modular curve
X parametrizing elliptic curves with level structure. Lifting the modular polyno-
mials back to X of higher level (but still genus 0) has an advantage of reducing the
coefficient size of the corresponding modular polynomials Φm(X,Y ).

In the case of CSIDH, the authors use X = X0(4), with a modular function
a ∈ k(X0(4)) to parametrize the family of curves

E : y2 = x(x2 + ax+ 1),
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together with a cyclic subgroup C ⊂ E of order 4, whose generators are cut out
by x = 1. The map X → X(1) is given by

j =
28(a2 − 3)3

(a− 2)(a+ 2)
·

The approach via modular isogenies of this section can be adapted as well to the
CSIDH protocol.

Definition 4.1. A modular `-isogeny chain of length n over k is a finite sequence
(j0, j1, . . . , jn) in k such that Φ`(ji, ji+1) = 0 for 0 ≤ i < n. A modular `-ladder
of length n and degree q over k is a pair of modular `-isogeny chains

(j0, j1, . . . , jn) and (j′0, j
′
1, . . . , j

′
n),

such that Φq(ji, j
′
i) = 0.

Clearly an `-isogeny chain (Ei, φi) determines the modular `-isogeny chain
(ji = j(Ei)), but the converse is equally true.

Proposition 4.2. If (j0, . . . , jn) is a modular `-isogeny chain over k, and E0/k is
an elliptic curve with j(E0) = j0, then there exists an `-isogeny chain (Ei, φi)
such that ji = j(Ei) for all 0 ≤ i ≤ n.

Given any modular `-isogeny chain (ji), elliptic curve E0 with j(E0) = j0, and
isogeny ψ0 : E0 → F0, it follows that we can construct an `-ladder ψ : (Ei, φi)→
(Fi, φ

′
i) and hence a modular `-isogeny ladder. In fact the `-ladder can be effi-

ciently constructed recursively from the modular `-isogeny chain (j0, . . . , jn) and
(j′0, . . . , j

′
n), by solving the system of equations

Φ`(j
′
i, Y ) = Φq(ji+1, Y ) = 0,

for Y = j′i+1.

Remark. The modular polynomial Φq(X,Y ) is degree q + 1 in X and Y . The
evaluation at X = j ∈ Fp2 requires O(q2) field multiplications. The subsequent
gcd requires O(`q) operations, and these operations are repeated to depth n.

5 OSIDH

We consider an elliptic curve E0/k (k = Fp2) with anOK-orientation by an effec-
tive ring OK of class number 1, e.g. j = 0 or j = 123 (for which OK = Z[ζ3] or
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Z[i]), small prime `, and a descending `-isogeny chain from E0 to E = En. The
OK-orientation on E0 and `-isogeny chain induces isomorphisms

ιi : Z+ `iOK → Oi ⊂ End(Ei),

and we set O = On. By hypothesis on E0/k (the class number of OK is 1), any
horizontal isogeny ψ0 : E0 → F0 is, up to isomorphism F0 ∼= E0, an endomor-
phism.

For a small prime q, we push forward a q-endomorphism φ0 ∈ End(E0), to a
q-isogeny ψ : (Ei, φi)→ (Fi, φ

′
i).

E0

E1

E2

En

φ0

φ1

φ2

φn−1

OK

F0 = E0

ψ0 F1
φ′0

ψ1 F2
φ′1

ψ2

Fn

φ′2

φ′n−1

ψn

By sending q ⊂ OK to ψ0 : E0 → F0 = E0/E0[q] ∼= E0, and pushing forward
to ψn : En → Fn, we obtain the effective action of C̀ (O) on `-isogeny chains
of length n from E0. In other words, the action of an ideal q becomes non trivial
while pushing it down along a descending isogeny chain due to the fact that q∩Oi
becomes “less and less principal”.

In order to have the action of C̀ (O) cover a large portion of the supersingular
elliptic curves, we require `n ∼ p, i.e., n ∼ log`(p).

Recall. The previous estimates are based on two very important results. Observe
that the number of oriented elliptic curves that we can reach after n steps equals
the class number h(On) of On = Z+ `nOK . It is well-known [10, §7.D] that:

h(Z+mOK) =
h(OK)m[
O×K : O×

] ∏
p|m

(
1−

(
∆K

p

)
1
p

)
(5.1)
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where [8, VI.3]

O×K =


{±1} if ∆K < −4
{±1,±i} if ∆K = −4
{±1,±ζ3,±ζ2

3} if ∆K = −3

⇒
[
O×K : O×

]
=


1 if ∆K < −4
2 if ∆K = −4
3 if ∆K = −3

On the other hand, we know that the number of supersingular elliptic curves over
Fp2 is given by the following formula [27, V.4]:

#SS(p) =
[ p

12

]
+


0 if p ≡ 1 mod 12
1 if p ≡ 5, 7 mod 12
2 if p ≡ 11 mod 12

Therefore, in our case

h(`nOK) =
1 · `n
2 or 3

(
1−

(
∆K

`

)
1
`

)
=
[ p

12

]
+ ε =⇒ p ∼ `n

To realise the class group action, it suffices to replace the above `-ladder with
its modular `-ladder.

j0

j1

j2

jn

`

`

`

`

OK

j′0

q j′1`

q
`

q

j′n

`

`

q


Φ`(j1, j2) = 0
Φ`(j

′
1, Y ) = 0

Φq(j2, Y ) = 0

At the first index for which j′i = j(Ei/Ei[qi]) is different from j′′i = j(Ei/Ei[q̄i]),
that is, [qi] 6= [q̄i] in C̀ (Oi), we can solve iteratively for j′i+1 from j′i and ji+1 using
the equations:

Φ`(j
′
i, Y ) = Φq(ji+1, Y ) = 0.

The action of primes q through C̀ (O) can be precomputed by its action on these
initial segments which permits us to separate the action of q and q̄, hence assures
a unique solution to the above system.
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E0 E0
E0

E′′1 E′1
E1

qq

q̄

q2

Thus, E′i 6= E′′i if and only if q2 ∩ Oi is not principal and the probability that a
random ideal in Oi is principal is 1/h(Oi). In fact, we can do better; we write
OK = Z[ω] and we observe that if q2 was principal, then

q2 = N(q2) = N(a+ b`iω)

since it would be generated by an element of Oi = Z+ `iOK . Now

N(a+ b`i) = a2 ± abt`i + b2s`2i where ω2 + tω + s = 0

Thus, as soon as `2i > q2 we are guaranteed that q2 is not principal.

5.1 A first naive protocol

We now present the OSIDH cryptographic protocol based on this construction. We
first describe a simplified version as intermediate step. The reason for doing that
is twofold. On one hand it permits us to observe how the notions introduced so
far lead to a cryptographic protocol, and on the other hand it highlights the critical
security considerations and identifies the computationally hard problems on which
the security is based.

As described at the beginning of the section, we fix a maximal order OK in a
quadratic imaginary field K of small discriminant ∆K and a large prime p such
that

(
∆K
p

)
6= 1. Further, the two parties agree on an elliptic curve E0 with ef-

fective maximal order OK embedded in the endomorphism ring and a descending
`-isogeny chain:

E0 −→ E1 −→ E2 −→ · · · −→ En.

Each constructs a power smooth horizontal endomorphism ψ of E0 as the product
of generators of small principal ideals in OK . A power smooth isogeny, for which
the prime divisors and exponents of its degree are bounded, ensures that ψ can be
efficiently extended to a ladder.
Remark. In practice, we will fix OK to be either the Eisenstein integers Z[ζ3] or
the Gaussian integers Z[ζ4](= Z[i]). Since the ladder is descending, we have that
End((Ei, ιi)) ∼= Z+ `iOK for all i = 0, . . . , n.
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Alice privately chooses a horizontal power smooth endomorphism ψA = ψ0 :
E0 → F0 = E0, and pushes it forward to an `-ladder of length n:

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψA

By Lemma 2.5, this `-ladder is level, hence End((Ei, ιi)) = End((Fi, ι′i)).
The `-isogeny chain (Fi) is sent to Bob, who chooses a horizontal smooth en-

domorphism ψB , and sends the resulting `-isogeny chain (Gi) to Alice. Each ap-
plies (and, eventually, push forward) the private endomorphism to obtain (Hi) =
ψB · (Fi) = ψA · (Gi), and H = Hn is the shared secret.

In the following picture the blue arrows correspond to the orientation chosen
throughout by Alice while the red ones represent the choice made by Bob.

E0

F0

G0

H0

E1

F1

G1

H1

E2

F2

G2

H2

En

Fn

Gn

Hn

PUBLIC DATA: A descending `-isogeny chain E0 → E1 → · · · → En

ALICE BOB
Choose a smooth
endomorphism of
E0 in OK

E0

F0

E0

G0

Push it forward to
depth n

F0 → F1 → · · · → Fn︸ ︷︷ ︸
ψA

G0 → G1 → · · · → Gn︸ ︷︷ ︸
ψB

Exchange data

(Gi) (Fi)

Compute shared
secret

Compute ψA · (Gi) Compute ψB · (Fi)

In the end, Alice and Bob share a new chain E0 → H1 → · · · → Hn
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This naive protocol reveals too much information and is susceptible to attack by
computing the endomorphism rings of the end curves End(En), End(Fn), and
End(Gn). In general, the problem of computing an isogeny between two super-
singular elliptic curves E and F knowing End(E) is broadly equivalent to the
task of computing End(F ) [13, 17]. Kohel’s algorithm [19], and the refinement
of Galbraith [16], compute several paths in the isogeny graph to find isogenies
F → F . Thus, as noted in [17], computing End(F ) can be reduced to finding an
endomorphism φ : F → F that is not in Z[π].
Remark. Observe that in SIDH and CSIDH the endomorphism ring of the starting
elliptic curve is known since the shared initial curve is chosen to have special form.
In OSIDH the situation changes: we need to find an isogeny starting from En, and
not the curve E0 for which we have an explicit description of the endomorphism
ring. However, knowing End(E0), we can deduce at each step

Z+ `End(Ei) ∼= Z+ φiEnd(Ei)φ̂i ⊂ End(Ei+1)

and thus we obtain the inclusion Z+ `nEnd(E0) ↪→ End(En).
Notice that, in general, knowing the existence of a copy of an imaginary quadratic

order inside the maximal order of a quaternion algebra do not guarantee the knowl-
edge of the embedding as there might be many [12, II.5]. In this case, from
the knowledge of a subring Z + `End(Ei) of finite index `3 we can reconstruct
End(Ei+1) step-by-step from the `-isogeny chain E0 → E1 → . . . → En, and
hence compute End(En).

In the naive protocol we also share the full isogeny chain (Fi) (or their j-
invariant sequence), which allows an adversary to deduce the oriented endomor-
phism ring

Z+ `nOK ↪→ End(Fn)

of the terminal elliptic curve F = Fn. This gives enough information to deduce
Hom(E,F ) and construct a representative smooth ideal in C̀ (O) sending E to F .

We observe that there is another approach to this problem which uses only prop-
erties of the ideal class group. Suppose we have a K-descending `-isogeny chain
E0 −→ E1 −→ . . . −→ En with

End(E0) ) OK = O0 ⊃ O1 ⊃ . . . ⊃ On ' Z+ `nOK
This induces a sequence at the level of class groups

C̀ (On) · · · C̀ (Oi) · · · C̀ (OK)

' ' '

(OK/`
nOK)×

O×K(Z/`nZ)×
· · · (OK/`

iOK)
×

O×K(Z/`iZ)×
· · · {1}
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In particular, there exists a surjection

C̀ (Oi+1) '
(
OK/`i+1OK

)×
O×K (Z/`i+1Z)×

−−−→→
(
OK/`iOK

)×
O×K (Z/`iZ)×

' C̀ (Oi)

whose kernel is easily described. First, the map ψ : C̀ (O1)→ C̀ (OK) has kernel
F×
`2/F×` of order `+ 1 if ` is inert(
F×` × F×`

)
/F×` of order `− 1 if ` splits

(F` [ξ])× /F×` of order ` if ` is ramified

where ξ2 = 0 (see [10, §7.D] and [22, §12]). Thereafter, for each i > 1, the
surjection C̀ (Oi+1) → C̀ (Oi) has cyclic kernel of order ` by virtue of the class
number formula (5.1), and hence we have a short exact sequence

1→ Z/`Z→ C̀ (Oi+1)→ C̀ (Oi)→ 1

Thus if we have already constructed some representative for ψA modulo `iOK , we
can lift it to find ψA mod `i+1OK from ` possible preimages. For each candidate
lift ψA mod `i+1OK , we search for an smooth representative

ψA ≡ ψe1
1 ψ

e2
2 · . . . · ψett mod `i+1OK

with deg(ψj) = qj small. The candidate smooth lift can be applied toEi+1 and the
correct lift is that which sends Ei+1 to Fi+1 in the `-isogeny chain (see Figure 8).
This yields an algorithm involving multiple instances of the discrete logarithm
problem in a group of order ` as in Pohlig-Hellman algorithm [23] and in the
generalization of Teske [28].

In conclusion, this naïve protocol is insecure because two parties share the
knowledge of the entire chains (Fi) and (Gi). The question becomes: how can
we avoid sharing the `-isogeny chains while still giving the other party enough
information to carry out their isogeny walk?

5.2 The OSIDH protocol

We now detail how to send enough public data to compute the isogenies ψA and
ψB on G = Gn and F = Fn, respectively, without revealing the `-isogeny chains
(Fi) and (Gi). The setup remains the same with a public choice of OK-oriented
elliptic curve E0 and `-isogeny chain

E0 → E1 → · · · → En.
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ψA

m
o
d

`O
K

ψ A
m
o
d
`2
O
K

ψ
A

m
o
d
`3
O
K

ψ
A

m
o
d
`4
O
K

ψ
A

m
o
d
`5
O
K

ψ
A
m
o
d
`n
O K

E0

E1

E2
E3

E4

E5

En−1

En

F1
F2

F3 F4

F5

Fn−1
Fn

Figure 8. Construction of Alice’s secret key

Moreover, a set of primes q1, . . . , qt (above q1, . . . , qt) splitting in OK is fixed.
The first step consists of choosing the secret keys; these are represented by a

sequence of integers (e1, . . . , et) such that |ei| ≤ r. The bound r is taken so that
the number (2r+1)t of curves that can be reached is sufficiently large. This choice
of integers enables Alice to compute a new elliptic curve

Fn =
En

En
[
qe1

1 · · · qett
]

by means of constructing the following commutative diagram

E0

E1

En

E0
E0[q1]

=

E0

F
(1)
n

E0
E0[q

e1
1 ]

=

E0

F
(e1)
n

E0
E0[q

e1
1 q1

2]

=

E0

F
(e1,1)
n

E0
E0[q

e1
1 q

e2
2 ]

=

E0

F
(e1,e2)
n

E0
E0[q

e1
1 ...q

et-1
t−1]

=

E0

F
(e1,...,et-1)
n

E0
E0[q

e1
1 ...q

et
t ]

=

E0

F0

F1

Fn

F
(e1,...,et)
n

Remark. Observe that this is just a union of qi-ladders.
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At this point the idea is to exchange curves Fn and Gn and to apply the same
process again starting from the elliptic curve received from the other party. Un-
fortunately, this is not enough to get to the same final elliptic curve. Once Alice
receives the unoriented curve Gn computed by Bob she also needs additional in-
formation for each prime qi:

Bob’s curve
Gn

Horizontal pi-isogeny
with kernel Gn[q̄i]

Horizontal pi-isogeny
with kernel Gn[qi]

but she has no information as to which directions — out of qi+1 total qi-isogenies
— to take as qi and q̄i. For this reason, once that they have constructed their
elliptic curves Fn and Gn, they precompute, for each prime qi, the qi-isogeny
chains coming from q̄ji (denoted by the class q−ji ) and qji :

F
(−r)
n,i ← · · · ← F

(−1)
n,i ← Fn → F

(1)
n,i → · · · → F

(r−1)
n,i → F

(r)
n,i

and

G
(−r)
n,i ← · · · ← G

(−1)
n,i ← Gn → G

(1)
n,i → · · · → G

(r−1)
n,i → G

(r)
n,i

Now Alice obtains from Bob the curve Gn and, for each i, the horizontal qi-
isogeny chains determined by the isogenies with kernels Gn[q

j
i ]. With this in-

formation Alice can take e1 steps in the q1-isogeny chain and push forward all the
qi-isogeny chains for i > 1.

Remark. We recall that pushing forward means constructing a ladder which trans-
mits all the information about the commutative action of qeii in the class group.
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Gn q1

q2

q3

q4

G
(−1)
n,1 G

(1)
n,1

G
(1)
n,2

G
(−1)
n,2

G
(2)
n,1 G

(r)
n,1G

(−2)
n,1G

(e1)
n,1G

(−r)
n,1

G
(r)
n,2

G
(−r)
n,2

G
(e1,1)
n,2

G
(e1,e2)
n,2 G

(e2)
n,2

Alice repeats the process for all the qi’s every time pushing forward the isogenies
for the primes with index strictly bigger than i. Finally, she obtains a new elliptic
curve

Hn =
En

En
[
qe1+d1

1 · · · qet+dtt

]
Bob follows the same process with the public data received from Alice, in order
to compute the same curve Hn. Recall that, in the naive protocol, Alice and Bob
compute the group action on the full `-isogeny chains:

E0 E1 E2 En E0 G1 G2 Gn

E0 F1 F2 Fn E0 H1 H2 Hn

A
l ice

A
lice

Bob

Bob

In the refined OSIDH protocol, Alice and Bob share sufficient information to de-
termine the curve Hn without knowledge of the other party’s `-isogeny chain (Gi)
and (Fi), nor the full `-isogeny chain (Hi) from the base curve E0.
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PUBLIC DATA: A descending `-isogeny chain E0 → E1 → · · · → En
and a set of splitting primes q1, . . . , qt ⊆ O = End(En) ∩K ↪→ OK

ALICE BOB
Choose integers in
an interval [−r, r] (e1, . . . , et) (d1, . . . , dt)

Construct an
isogenous curve

Fn =
En

En
[
qe1

1 · · · qett
] Gn =

En

En
[
qd1

1 · · · qdtt
]

Precompute all
directions ∀ i Fn → F

(1)
n,i → · · · → F

(r)
n,i Gn → G

(1)
n,i → · · · → G

(r)
n,i

... and their
conjugates

F
(−r)
n,i ← · · · ← F

(−1)
n,i ← Fn︸ ︷︷ ︸ G(−r)

n,i ← · · · ← G
(−1)
n,i ← Gn︸ ︷︷ ︸

Exchange data

Gn+directions Fn+directions

Compute shared
data

Takes ei steps in
qi-isogeny chain & push

forward information
for all j > i.

Takes di steps in
qi-isogeny chain & push

forward information
for all j > i.

In the end, Alice and Bob share the same elliptic curve

Hn =
Fn

Fn
[
qd1

1 · · · qdtt
] = Gn

Gn
[
qe1

1 · · · qett
] = En

En
[
qe1+d1

1 · · · qet+dtt

] ·
Remark. We can read this scheme using the terminology of section 3.

After the choice of the secret key, we observe a vortex: Alice (respectively
Bob) acts on an isogeny crater (that in the case of OK = Z [ζ3] or Z [i] consists of
a single points) with the primes qe1

1 · . . . · qett (respectively qd1
1 · . . . · qdtt ).

This action is eventually transmitted along the `-isogeny chain and we get a
whirlpool. We can think of the isogeny volcano as rotating under the action of the
secret keys and the initial `-isogeny path transforming into the two secret isogeny
chains.

6 Security considerations

In order to ensure security of the system, we have seen that the data giving the
orientation must remain hidden. A second consideration is the proportion of curves
attained by the action of the class group C̀ (O), and by the private walks ψA and
ψB of Alice and Bob in that class group. The size of the orbit of C̀ (O) is controlled
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E0

E1

E2

E3

En

E′1 F1

F2
F3

F4

F5

Fn

E′′1 = G1
G2

G3

G4

G5

Gn

Fn q1

q2
q3

q4

F
(−1)
n,1 F

(1)
n,1

F
(1)
n,2

F
(−1)
n,2

F
(2)
n,1 F

(r)
n,1F

(−2)
n,1F

(d1)
n,1F

(−r)
n,1

F
(r)
n,2

F
(−r)
n,2

F
(d1,1)
n,2

F
(d1,d2)
n,2 F

(d2)
n,2

G
(−1)
n,1

G
(−r)
n,1

G
(1)
n,1

G
(2)
n,1

G
(e1)
n,1

G
(r)
n,1

G
(1)
n,2

G
(e2)
n,2

G
(r)
n,2

G
(−1)
n,2

G
(−r)
n,2

G
(e1,1)
n,2

G
(e1,e2)
n,2

q1

q2

q3

q4

E0 E1 En

E0/E0[q1] = E0

E0/E0[q
d1
1 ] = E0

E0/E0[q
d1
1 q2] = E0

E0/E0[q
d1
1 qd2

2 ] = E0

E0/E0[q
d1
1 . . . q

dt−1

t−1 ] = E0

E0/E0[q
d1
1 . . . q

dt−1

t−1 qt] = E0

E0/E0[q
d1
1 . . . qdt

t ] = E0

G
(1)
n

G
(d1)
n

G
(d1,1)
n

G
(d1,d2)
n

G
(d1,...,dt−1)
n

G
(d1,...,dt−1,1)
n

G
(d1,...,dt)
n = Gn

G0 G1 Gn

E0 E1 En

E0/E0[q1] = E0

E0/E0[q
e1
1 ] = E0

E0/E0[q
e1
1 q2] = E0

E0/E0[q
e1
1 qe22 ] = E0

E0/E0[q
e1
1 . . . q

et−1
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Figure 9. Graphic representation of OSIDH

by the chain length n, and the number of curves attained by the private walks is
further limited by the prime power data, up to exponent bounds, which we allow
ourselves to transmit.
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Chain length

Suppose that (Ei) is an isogeny chain of length n, from a supersingular elliptic
curve E0 oriented by OK of class number one, and consider

Hom(E0, En) = φOK + ψOK .

As a quadratic module with respect to the degree map, its determinant is p2. If the
length n is of sufficient length such that En represents a general curve in SS(p),
then a set of reduced basis elements φ and ψ satisfies

deg(φ) ≈ deg(ψ) ≈ √p.

Now suppose that φ : E0 → En is the isogeny giving the `-isogeny chain. If
deg(φ) = `n is less than

√
p, then φOK is a submodule generated by short isoge-

nies, andEn is special. We conclude that we must choose n to be at least log`(p)/2
in order to avoid an attack which seeks to determine φOK as a distinguished sub-
module of low degree isogenies.

We extend this argument to consider the logarithmic proportion λ of supersin-
gular elliptic curves we can reach. In order to cover pλ supersingular curves, out
of |SS(p)| = p/12 + εp curves, deg(φ) must be such that

|C̀ (O)| =
∣∣∣∣(OK/`nOK)∗

O∗K(Z/`nZ)∗

∣∣∣∣ ≈ `n = deg(φ) ≈ pλ.

In particular, choosing λ = 1, we find that n = log`(p) is the critical length for
reaching all supersingular curves.

Degree of private walks

Suppose now thatE = En is a generic supersingular curve andF another. Without
an OK-module structure, we have a basis {ψ1, ψ2, ψ3, ψ4} such that

Hom(E,F ) = Zψ1 + Zψ2 + Zψ3 + Zψ4.

Assuming thatE and F are generic relative to one another, a reduced basis satisfies
deg(ψi) ≈ √p, as above. Thus the private walk ψA should satisfy

logp(deg(ψA)) ≥
1
2

in order that ZψA is not a distinguished submodule of Hom(E,F ). This critical
distance is the maximal that can be attained by the SIDH protocol.
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As above, another measure of the generality of ψA is the number of curves that
can be reached by different choices of the isogeny ψA. For a fixed degree m, the
number of curves which can be attained is

|P(E[m])| ∼= |P1(Z/mZ)| ≈ m.

For the SIDH protocol, on has `nA
A ≈ `

nB
B ≈ √p, and only

√
p curves out of p/12

can be reached.
In the CSIDH or OSIDH protocols, the degree of the isogeny is not fixed. The

total number of isogenies of any degree d up to m is
m∑
d=1

|P(E[d])| ≈ m2,

but the choice of ψA is restricted to a subset of O-oriented isogenies in C̀ (O).
Such isogenies are restricted to a class proportional to m. Specifically, in the
OSIDH construction, if we let Sm ⊂ OK be the set of endomorphisms of degree
up to m, and consider the map

Sm ⊂ OK −→
(OK/`nOK)∗

O∗K(Z/`nZ)∗
∼= C̀ (O).

Since |Sm| ≈ m, to cover a subset of pλ classes, we need logp(deg(ψA)) ≥ λ.

Private walk exponents

In practice, rather than bounding the degree, for efficient evaluation one fixes a
subset of small split primes, and the space of exponent vectors is bounded. The
instantiation CSIDH-512 (see [5]) uses a prime of 512 bits such that for each of
74 primes one has a choice of 11 exponents in [−5, 5]. This gives 256 bits of
freedom which is of the order of magnitude to cover h(−p) ≈ √p classes (up to
logarithmic factors). In this instance the class number h(−p) was computed [2]
and found to be 252 bits.

For the general OSIDH construction, we choose exponent vectors (e1, . . . , et)
in the space I1 × · · · × It ⊂ Zt, where Ij = [−rj , rj ], defining ψA with kernel

ker(ψA) = E[qe1
1 · · · qett ].

We thus express the map to SS(p) as the composite of the map of exponent vectors
to the class group and the image of C̀ (O):

t∏
j=1

Ij −→ C̀ (O) −→ SS(p).
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In order to avoid revealing any cycles, we want the former map to be effectively
injective — either injective or computationally difficult to find a nontrivial element
of the kernel in

(I1 × · · · × It) ∩ ker(Zt → C̀ (O)).

In order to cover as many classes as possible, the latter should be nearly surjective.
Supposing that the former map is injective with image of size pλ in SS(O), this
gives pλ <

∏t
j=1(2rj + 1) < |C̀ (O)| ≈ `n. For fixed r = rj , this gives

n > t log`(2r + 1) > λ log`(p).

Setting λ = 1, ` = 2 and log`(p) = 256, the parameters t = 74 and r = 5
give critical values as in CSIDH-512, with group action mapping to the full set of
supersingular points SS(p).

7 Conclusion

By imposing the data of an orientation by an imaginary quadratic ring O, we
obtain an augmented category of supersingular curves on which the class group
C̀ (O) acts faithfully and transitively. This idea is already implicit in the CSIDH
protocol, in which supersingular curves over Fp are oriented by the Frobenius
subring Z[π] ∼= Z[

√−p]. In contrast we consider an elliptic curve E0 oriented
by a CM order OK of class number one. To obtain a nontrivial group action, we
consider descending `-isogeny chains in the `-volcano, on which the class group
of an orderO of large index `n inOK acts. The map from an `-isogeny chain to its
terminal node forgets the structure of the orientation, giving rise to a generic curve
in the supersingular isogeny graph. Within this general framework we define a
new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol, which has
fewer restrictions on the proportion of supersingular curves covered and on the
torsion group structure of the underlying curves. Moreover, the group action can
be carried out effectively solely on the sequences of modular points (such as j-
invariants) on a modular curve, thereby avoiding expensive isogeny computations,
and is further amenable to speedup by precomputations of endomorphisms on the
base curve E0.
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