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ARITHMETIC STATISTICS OF GALOIS GROUPS

DAVID KOHEL

Abstract. We develop a computational framework for the statistical characterization of Galois

characters with finite image, with application to characterizing Galois groups and establishing

equivalence of characters of finite images of Gal(Q/Q).

1. Introduction

The absolute Galois group G = Gal(Q/Q) is a fundamental object of study in number theory.
The objective of this work is to develop an explicit computational framework for the study of its
finite quotients. We may replace G with the absolute Galois group of any global field, but restrict
to that of Q for simplicity of exposition.

As point of departure, we consider an irreducible polynomial f(x) ∈ Z[x] of degree n as input.
We set K = Q[x]/(f(x)), denote by L its normal closure and by G(K) the Galois group Gal(L/Q)
equipped with a permutation representation in Sn determined by the action on the roots of f(x).
Let PS(Z) be the set of primes, coprime to the finite set S of primes ramified in Z[x]/(f(x)).

The statistical perspective we develop expresses the map from PS(Z) to factorization data as
an equidistributed map to a finite set X (K) equipped with a probability function induced from
the Haar measure on G(K). A Frobenius lift at p, defined up to conjugacy, acts on the roots
of f(x). The permutation action on the roots of f(x) induces a representation in O(n), fixing
the formal sum of the roots. The orthogonal complement gives the standard representation in
O(n − 1), spanned by differences of basis elements. Let P (x) be the characteristic polynomial of
Frobenius in the permutation representation and

S(x) = P (x)/(x− 1) = xn−1 − s1xn−2 + · · ·+ (−1)n−1sn−1.

the characteristic polynomial in the standard representation. This polynomial is independent of
choices of lift of Frobenius and choice of basis. As such, the coordinates (s1, . . . , sn−1) ∈ Zn−1
are invariants of the Frobenius conjugacy class Frobp in the set C̀ (G(K)) of conjugacy classes
of G(K). Denote the finite set of such class points by X (K). We note that the class points
are entirely determined by the factorization data of f(x) mod p, and X (K) ⊂ Zn−1 is equipped
with the structure of a finite probability space, induced from the cover C̀ (G(K)) → X (K). The
irreducible characters are known to form an orthogonal basis for the class functions on C̀ (G(K)),
and the rational characters are integer-valued class functions on the class space X (K).

In what follows we develop this approach by describing systems of rational characters on G(K)
algebraically as a basis of polynomials in Z[s1, . . . , sn−1] modulo the defining ideal for X (K),
together with their associated inner product. As a consequence we develop algorithms for the
characterization of Galois groups, and more generally, tools for determining equivalence of finite
Galois representations.

2. Representations of orthogonal groups

Let G be a compact Lie group. In practice, G will be an orthogonal group

G = O(n− 1) ⊂ O(n) or G = SO(n− 1) ⊂ O(n− 1),

or a finite permutation group, equipped with the standard representation in O(n− 1),

G ⊆ Sn ⊂ O(n− 1) or G ⊆ An ⊂ SO(n− 1).
1
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The standard representation of Sn provides the motivation for an algebraic presentation of the
character ring of a permutation group. For the character theory of permutation groups, we appeal
to known algorithms for its computation.

The symmetric group Sn acts on a set of n elements, and the linear extension to a basis of
Zn ⊂ Rn gives the permutation representation of Sn. Denote a basis {e1, . . . , en}. Since e1+· · ·+en
is fixed by Sn, a line is fixed, and we consider the action on the hyperplane spanned by the
orthogonal complement. In the basis {e1−e2, . . . , en−1−en}, we obtain the standard representation
of Sn in O(n − 1). The choice of basis is noncanonical, but the character theory is independent
of any such choice. The orthogonal group O(n) and its subgroup O(n − 1) have two connected
components, with principal component SO(n− 1) ⊂ SO(n), such that An = Sn ∩ SO(n− 1).

Representation ring. For a compact Lie group G, we denote the set of conjugacy classes of G
by C̀ (G). We define the representation ring of G,

R(G) =
⊕
χ

Zχ,

as the free abelian group on irreducible characters χ : G→ C of finite degree. We identify addition
with direct sum, and thereby the abelian submonoid

⊕
Nχ ⊆ R(G) with characters, and define

multiplication on R(G) by the linear extension of tensor product on
⊕

Nχ. We refer to elements
of R(G) as virtual characters.

As class functions, R(G) can be identified with a subring of complex-valued functions on C̀ (G).
Indeed, when G is finite, the number h of conjugacy classes (and of irreducible characters) is finite,
and the character table is defined as the evaluation vectors

(χi(C1), . . . , χi(Ch)) .

in the ring Ch = C× · · · × C, for χi running over the irreducible characters, forming a generator
set for the representation ring. For a subfield F ⊂ C, we denote by RF (G) the subring of F -valued
virtual characters. While R(G) = RQ(G) for G = Sn or G = O(n− 1), for a general finite group
that we may consider, the field of definition of an irreducible character may be a proper extension
of Q.

Considering the group O(n) in GLn(R), an element g satisfies a characteristic polynomial of
the form

xn − s1xn−1 + · · ·+ (−1)nsn.

The coefficient s1 is the trace in its representation on Rn, and sn is its determinant character. We
note that sk is an invariant of the class of g, and we can identify g 7→ sk as characters. Specifically,

sk is the character on the k-th exterior power
∧k Rn. We recall the structure of the character ring

for O(n) (cf. Takeuchi [20]).

Lemma 1. The virtual character ring R(O(n)) is generated by sk, 1 ≤ k ≤ n, and

R(O(n)) ∼=
Z[s1, . . . , sn]

(sksn − sn−k, s2n − 1)
·

The restriction Res : R(O(n))→ R(SO(n)) surjects on

R(SO(n)) ∼=
Z[s1, . . . , sn]

(sk − sn−k, sn − 1)

with kernel ideal (sn − 1).

Remark. If n = 2m or n = 2m+ 1, then R(SO(n)) = Z[s1, . . . , sm], and R(O(n)) is an extension
by the quadratic character ξ = sn such that ξ|SO(n) = 1.
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Algebraic parametrization. If H is a subgroup of G, there is an induced map C̀ (H)→ C̀ (G) on
conjugacy classes and concomitant restriction homomorphism Res : R(G)→ R(H) on representa-
tion rings. Applied to the standard representation of Sn in O(n−1), the restriction homomorphism
equips the representation ring of R(Sn) with a surjective restriction map from R(O(n−1)), giving
an algebraic presentation of R(Sn) by polynomials in Z[s1, . . . , sn−1] modulo the defining ideal
(sksn−1 − sn−k−1, s

2
n−1 − 1). Given a permutation group G ⊂ Sn, the subsequent restriction

captures a significant subring of RQ(G) ⊂ R(G).
As a tool to characterize permutation groups in Sn, for subgroups G and H, with H ⊆ G ⊆ Sn,

we develop the branching rules — explicit forms for the decomposition

Res(χi) =

ni∑
j=1

aijψj .

of irreducible characters {χ1, . . . , χr} on G in terms of the irreducible characters {ψ1, . . . , ψs}
on H. In light of the algebraic parametrization by Z[s1, . . . , sn−1], we deduce the kernel ideals
IG ⊆ IH for each permutation group in the lattice (poset) of subgroups. A basis of generators
provides test functions for membership in a given subgroup. We develop the algorithmic details
later.

Using the Brauer-Klimyk formula (see Bump [4, Proposition 22.9]), it is possible to develop
recursive formulas for the character theory of orthogonal groups, as done in Shieh [18, 19] for
USp(2m), and using the algebraic presentation, to deduce recursive branching rules for Res :
R(O(n − 1)) → R(G). Instead, we content ourselves with the algebraic parametrization from
R(O(n−1)) and exploit the well-established computational character theory of permutation groups
to develop branching rules in the lattice of permutation subgroups of Sn.

3. Representations of permutation groups

Let G be a permutation group — a finite group equipped with an embedding in Sn. The cycle
type of g ∈ G is the multiset of cardinalities of its orbits under the action of Sn on {1, . . . , n}. A
multiset can be denoted by a tuple (d1, . . . , dt) or a formal product me1

1 · · ·mes
s , where

d1 ≤ d2 ≤ · · · ≤ dt or m1 < · · · < ms such that

t∑
i=1

di =

s∑
i=1

eimi = n.

The cycle type is invariant under conjugation in Sn, thus the cycle type is well-defined for the
conjugacy class C = C(g) ∈ C̀ (G), where C(g) = {xgx−1 : x ∈ G}.

Lemma 2. The map C̀ (Sn) −→ {(d1, . . . , dt) :
∑t
i=1 di = n} from conjugacy classes of Sn to

cycle types is a bijection.

Proof. Clearly, giving a cyclic ordering to any partition of {1, . . . , n} into orbits determines an
element of Sn, hence the map is surjective. Moreover, by definition the symmetric group is n-
transitive, conjugating any cyclically ordered orbit partition to any another of the same cycle type.
Consequently the map is injective. �

Remark. For a permutation group G ⊂ Sn the induced map C̀ (G)→ C̀ (Sn) in general is neither
injective nor surjective. The failure of injectivity means that the cycle type fails to distinguish the
conjugacy classes. We will later see this in the failure of R(Sn) to surject on R(G). In fact, the
irreducible characters are known to form a basis of the class functions on G (cf. Serre [17, Theo-
rem 6]), hence the failure to separate conjugacy classes means that the restriction homomorphism
from R(Sn) does not surject on R(G).

On the one hand, the cycle type of a conjugacy class characterizes the class. On the other
hand, the characteristic polynomial (hence its coefficients) is class invariant of an orthogonal group
element, and the permutation and standard representations thus provide other class invariants.
We make this association explicit. Given (d1, . . . , dt) be the cycle type of an element g ∈ Sn. It is
easy to see that the characteristic polynomial of the permutation representation of g is

P (x) = (xd1 − 1) · · · (xdt − 1) = (xm1 − 1)e1 · · · (xms − 1)es .
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The eigenvalue on the trivial space is 1, so the characteristic polynomial in the standard represen-
tation is

S(x) =
P (x)

(x− 1)
= xn−1 − s1xn−2 + · · ·+ (−1)n−1sn−1,

and (s1, . . . , sn−1) is the tuple of class invariants associated to the the conjugacy class C(g) under
the standard representation in O(n− 1). This gives the following lemma.

Lemma 3. The map C̀ (Sn) → Zn−1 from conjugacy classes to the (n − 1)-tuples (s1, . . . , sn−1)
of coefficients of the characteristic polynomial under the standard embedding is injective.

Proof. By Lemma 2 the map from conjugacy classes to cycle types is a bijection. However, by
unique factorization in Q[x], a polynomial of the form (xd1−1) · · · (xdt−1) is uniquely determined
by the cycle type (d1, . . . , dt), hence the map to its coefficients (s1, . . . , sn−1) is injective. �

Representation rings and character tables. Let G be a permutation group and let C̀ (G) =
{C1, . . . , Ch}, and {χ1, . . . , χh} be its irreducible characters. For a conjugacy class C, define the
ideal

mC = {f ∈ R(G) : f(C) = 0}.
such that the value f(C) of a virtual character f at C is a well-defined class in the residue class
ring R(G)/mC . The character table of G is typically represented as a matrix whose i-th row is the
evaluation vector (χi(C1), . . . , χi(Ch)). With this notation, we interpret as the embedding of the
character χi in the product ring, under the injection

R(G) −→ R(G)/mC1 × · · · ×R(G)/mCh .

Lemma 4. The image of the homomorphism R(G) → R(G)/mC1 × · · · × R(G)/mCh has finite
index in its codomain.

Proof. Clearly R(G) is torsion-free, since the image of a virtual character is a subring of C. Thus
R(G) embeds in R(G)⊗Q, which is an étale algebra, and R(G)/mCi ⊗Q its component fields (see
Brakenhoff [3] for details). It follows that the index is finite. �

More generally in the direction of the Lemma, Brakenhoff [3] finds that the center of the group
ring Q[G] over Q and the tensor product of the representation ring R(G)⊗Q are related by Brauer
equivalence. We give two examples below. In view of the restriction map from R(Sn) to R(G),
and since all characters on Sn are rational, the image of R(Sn) = RQ(Sn) lies in the subring
RQ(G) ⊂ R(G). In the examples below, we illustrate the role of nontrivial Galois action and
of quadratic characters in failure of surjectivity of R(Sn) on R(G) and on RQ(G). In the next
section we exploit the embedding by interpolating the character table values by the polynomial
presentation Z[s1, . . . , sn−1]→ RQ(G).

Orthogonality relations. The role of arithmetic statistics of G comes from the orthogonality re-
lations for the irreducible characters. Let {χ1, . . . , χh} be the irreducible characters for G, and
A(G) be the character matrix:

A(G) =

 χ1(C1) · · · χ1(Ch)
...

...
χh(C1) · · · χh(Ch)


The orthogonality relations for characters (see Serre [17, Section 2.3]), expressed in terms of group
elements, reformulated in terms of conjugacy classes, takes the form

δij = 〈χi, χj〉G :=
1

|G|
∑
g∈G

χi(g)χj(g) =

h∑
k=1

|Ck|
|G|

χi(Ck)χj(Ck).

Set D(G) to be the diagonal matrix with diagonal entries (p1, . . . , ph), where pk = |Ck|/|G| is the
weight of the conjugacy class Ck. The orthogonality relations are then expressed by the equality

Ih = A(G)D(G)A(G)†,
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where † denotes the conjugate transpose. The matrix D(G) can be viewed as the inner product
matrix of the Haar measure induced by G on C̀ (G).

Rational character table. Let χ be a character on G, let m be the exponent of G, and let C =
C(g) be a conjugacy class. As the trace of a representation of g, the value χ(C) lies in Z[ζm],
since each of its eigenvalues are in µm = 〈ζm〉. We thus obtain two actions of the Galois group
Gal(Q(ζm)/Q) ∼= (Z/mZ)∗. Denote σ : (Z/mZ)∗ → Gal(Q(ζm)/Q) the isomorphism such that

ζ
σ(k)
m = ζkm. The first of the actions is on conjugacy classes, by C(g) 7→ C(gk), and the second on

characters by χσ(k)(C(g)) = χ(C(g))σ(k). Considering the action on eigenvalues we see immediately
that

χσ(k)(C(g)) = χ(C(gk)).

Restriction from R(Sn). Only characters in the image of R(Sn) can be parametrized by polynomi-
als in Z[s1, . . . , sn−1] from the standard representation. We note by example, that the pre-image
of C in C̀ (Sn) under the induced map C̀ (G)→ C̀ (Sn) can split into an even number of conjugacy
class separated by a quadratic character not coming from Sn. We observe this phenomenon for
G = D4 and G = Q8 in the examples section below.

4. Algorithms for Galois representations

In what follows we describe algorithms for testing equivalence of finite Galois characters. As
principal application, we consider input f(x) of degree n, determining a number field K =
Q[x]/(f(x)), and describe how to evaluate a sample set of primes S at characters on the per-
mutation group G(K). The approach is completely general, allowing one to compare the set
of characters on the absolute group G mapping through permutation groups G(K1) and G(K2)
determined by number fields K1 and K2.

Factorization types of irreducible polynomials. Consider an irreducible polynomial f(x) in
Z[x] of degree n, set K = Q[x]/(f(x)) and let L be its normal closure with maximal order OL.
For a rational prime p and prime P over p in OL, the Frobenius lift FrobP is the unique element
of the decomposition subgroup DP ⊂ G = G(K), such that

FrobP(a) ≡ ap mod P

for all a in OL. Denote by Frobp the conjugacy class of FrobP in C̀ (G).
For p not dividing disc(f(x)) we define the factorization type of f(x) mod p to be the multiset of

degrees of the factorization of f(x) in Fp[x], which we may denote (d1, . . . , dt), where d1 ≤ · · · ≤ dt
and d1 + · · ·+ dt = n. We can now identify the data of the factorization type with the cycle type
of the Galois group G = G(K) equipped with its embedding in Sn.

Lemma 5. The factorization type of f(x) mod p is the cycle type of Frobp ⊂ G(K).

Proof. The factorization pOK = p1 · · · pt is determined from f(x) ≡ f1(x) · · · ft(x) mod p, with
pk = (p, fk(x)) a prime of degree dk = deg(fk). The Galois group acts transitively on primes
of OL over p, and there exist conjugates P1, . . . ,Pt over p1, . . . , pt, from which we see that dk
divides deg(P), and each dk is the cardinality of an orbit of roots modulo p under the action of
FrobP. �

Character inner products as expectation. The factorization type of a polynomial gives a
means of taking random samples of character values (s1, . . . , sn−1) at a set S of primes mapping to
the group G. Other data, for particular characters, may come from weight one modular eigenforms,
character sums, or Kronecker symbols. Let S be such a sample set of primes, and ψ, χ two
characters which can be evaluated on S. We write ψ(p) and χ(p) for the value of the character at
a sample point. We obtain an approximation for the orthogonal product 〈ψ, χ〉 as the expectation
of ψχ:

〈ψ, χ〉 = E(ψχ) ∼ ES(ψχ) =
1

|S|
∑
p∈S

ψ(p)χ(p).
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Assuming the multiplicity of each irreducible character in the support of ψ and χ is one, then
m = 〈ψ, χ〉 is an integer counting the number of irreducible characters in the support of both ψ
and χ. When ψ and χ are irreducible, to determine equality ψ = χ, one needs only sufficient
precision to distinguish the one bit 〈ψ, χ〉 = 0 or 〈ψ, χ〉 = 1.

The interest in working with irreducible characters, or nearly irreducible characters as captured
by the image of restriction from R(Sn), is that the variance of the character products ψχ is
minimized, and the number of primes needed to recognize convergence small, as observed by
Shieh [18, 19] in the case of symplectic groups USp(2m) (see also Fité and Guitart [8]).

One should note that in view of classifying the Galois group, nonvanishing of an element of the
kernel ideal of the restriction R(Sn)→ R(G) can be used to provably exclude G as a Galois group.
This was already observed by Pohst [15], who proposed the use of factorization types as a lower
bound for the Galois group, and that for n ≥ 8 the factorization types, and their probabilities, fail
to separate groups. This statement, however, concerns the data of the induced Haar measure on
C̀ (G), and not that of the character table of G. Precisely we have two data structures on C̀ (G)
at our disposal, that of a probability space and of class functions (given by a character table):

• C̀ (G) with Haar measure p : C̀ (G)→ R, and
• Ch = Hom(C̀ (G),C) with orthonormal basis {χ1, . . . , χh}.

Due to failure of surjectivity of the restriction homomorphism from R(Sn), the subset of characters
determined from the cycle types are unlikely to separate groups for sufficiently large n. Never-
theless, the joint data of Haar measure and character table, plus the system of restriction maps
coming from common embeddings in Sn gives more information than either the Haar measure or
character table alone.

Restriction kernel ideal. To a conjugacy class C for Sn we associate an ideal mC in Z[s1, . . . , sn−1]
of the form

mC = (s1 − s1(C), . . . , sn−1 − sn−1(C)),

where (s1(C), . . . , sn−1(C)) are the values of si at C. Then the kernel ideal for the restriction of
R(Sn) to R(G) is the intersection ideal

I(G) =
⋂

C∈π(C̀ (G))

mC ,

where π : C̀ (G)→ C̀ (Sn).

Example. Consider the restriction from R(O(3)) to R(S4). Since

R(O(3)) =
Z[s1, s2, s3]

(s1s3 − s2, s23 − 1)

and the values of (s1, s2, s3) are in

{(3, 3, 1), (−1,−1, 1), (0, 0, 1), (−1, 1,−1), (1,−1,−1)},

we obtain a defining ideal of S4 given by the additional generators:

s1(s1 + 1)(s1 − s3 − 2), s1(s1 + 1)(s1 − 1)(s1 − 3), (s1 + 1)(s1 − 1)(s3 − 1).

The map C̀ (D4)→ C̀ (S4) fails to surject on (0, 0, 1), hence there are only four maximal ideals in
the intersection and the kernel ideal for R(S4)→ R(D4) is generated by:

s21 − s1 − s2 − s3 − 2, s2 − s1s3, s23 − 1.

The first polynomial is not in the kernel ideal for R(S4) and its vanishing provides a test for D4.
Geometrically, it means that the tensor square of the representation with trace s1 decomposes into
a direct sum of representations with trace s1 + s2 + s3 + 2.
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Restriction homomorphism. Let H ⊂ G be permutation groups, and set ` = |C̀ (H)| and h =
|C̀ (G)| their cardinalities of their conjugacy class sets. Suppose that {ψ1, . . . , ψ`} and {χ1, . . . , χh}
are the irreducible characters, which are given by embeddings in C` and Ch, respectively. We thus
have isomorphisms

R(H) =
⊕̀
i=1

Zψi −→ Λ(H) ⊂ C`, and R(G) =

h⊕
j=1

Zχj −→ Λ(G) ⊂ Ch,

where Λ(H) and Λ(G) are the lattices in C` and Ch spanned by the rows of the character table.
The restriction homomorphism R(G) 7→ R(H) is induced by the map π : C̀ (H)→ C̀ (G), by

χ 7−→ (χ(π(C1)), . . . , χ(π(C`))) ∈ Λ(H) ⊂ C`.

The linear transformation Λ(G)→ Λ(H) gives the restriction homomorphism as an integral (h×`)-
matrix with respect to the respective bases of irreducible characters. The rows of this matrix can
be interpretted as branching rules, giving the decomposition of an irreducible character on G as a
sum of irreducible characters on H.

Inside each Λ(G) we have a sublattice (generally of lower rank) ΛQ(G) = Λ(G)∩Qh of rational-
valued characters. We recall that for a conjugacy class C of group elements of order m, the value
of χ(C) is a sum of eigenvalues in Q(ζm). We thus obtain an action by the Galois group of a
cyclotomic field on the irreducible characters. As a consequence, the lattice ΛQ(G) is generated by
the sums over Galois orbits of irreducible characters. Since these orbits are disjoint, this basis of
rational characters remains orthogonal, but not orthonormal, since 〈χ, χ〉 measures the cardinality
of the orbit (assuming χ is a sum of irreducible characters of multiplicity one). On the other hand,

the restriction images ResGH(Λ(G)) ⊂ Λ(H) and ResGH(ΛQ(G)) ⊂ ΛQ(H) do not possess natural
reduced orthogonal bases. In order to determine a generating set which is small with respect to
the orthogonality relations on characters, we need to apply a constrained lattice reduction inside
the submonoid of characters: ⊕̀

j=1

Nψj ⊂
⊕̀
j=1

Zψj = R(H).

Rather than a generic LLL algorithm, we need to carry out a structured lattice reduction in the
character monoid order to be able to invoke the heuristic arguments for convergence of small
characters.

Algebraic parametrization. In order to interpret factorization types of polynomials (or split-
ting types of primes) as conjugacy classes on which we can apply the class functions s1, . . . , sn−1,
we need to find an explicit algebraic parametrization

Z[s1, . . . , sn−1]

I(Sn)
→ R(Sn)→ ResSnG (Λ(Sn)) ⊆ Λ(G)

The presentation Z[s1, . . . , sn−1]/I(Sn) → R(Sn) comes from the standard representation of Sn,
and its composition into Λ(Sn) can be effectively computed. In order to lift characters in Λ(Sn)
back to representative polynomials in (s1, . . . , sn−1), we must invert

Z[s1, . . . , sn−1]

I(Sn)
→ Λ(Sn).

As noted above, the isomorphism R(Sn)→ Λ(Sn) is obtained by the Chinese remainder theorem.
More precisely, over Q, we obtain a product decomposition of the étale algebra R(Sn)⊗Q:

R(Sn)⊗Q −→ R(Sn)

mC1
⊗Q× · · · × R(Sn)

mCh
⊗Q ∼= Qh.

under which R(Sn) ∼= Λ(Sn) ⊆ Zh. Since the generators s1, . . . , sn−1 can be evaluated at conjugacy
classes, we can evaluate a basis of monomials modulo I(Sn) and invert a matrix to determine
the pre-image of a basis of irreducible characters. The same applies to a basis of characters in
ResSnG (Λ(Sn)) modulo the restriction kernel I(G).
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Database of restriction-induction. Databases of transitive permutation groups of degree up
to 30 are available in GAP [9] and Magma [2, 14], computed by Greg Butler, John McKay, Gor-
don Royle and Alexander Hulpke (see [5], [6], [16], [7], [11]). The above is intended to motivate
an interest in a metastructure of the restriction relations (and adjoint induction relations) be-
tween character rings R(G), and for the algebraic parametrizations arizing from the restriction
homomorphism from orthogonal groups.

5. Explicit computations

We illustrate the approach through arithmetic statistics of character theory by applying the
methods to groups of low degree. First we analyze the dihedral and quaternionic groups D4 and Q8

of order 8, the smallest groups sharing the same character table. Then we consider an example of a
pair of permutation groups of degree 8 and order 16 whose cycle types and induced Haar measure
on S8-conjugacy classes are equal. We show how an auxillary (sub)field suffices to distinguish the
characters using joint Frobenius cycle data. In a final example, we treat different permutation
representations of A5, to show how this approach can be used to establish the equivalence of the
absolute Galois representations determined by different fields.

Dihedral and quaternionic groups of order 8. The groups D4 and Q8, known to share
the same character table, can nevertheless be separated by the restriction data coming from a
permutation representation. We first recall that the common character table takes the form

A(G) =


1 1 1 1 1
1 1 −1 1 −1
1 1 1 −1 −1
1 1 −1 −1 1
2 −2 0 0 0


with weights (1/8, 1/8, 1/4, 1/4, 1/4) on the conjugacy classes. The semisemimple group algebras
Q[D4] and Q[Q8] have Wedderburn decompositions

Q[D4] ∼= Q×Q×Q×Q×M2(Q), and Q[Q8] ∼= Q×Q×Q×Q×H,

where H is the quaternion algebra over Q ramified at 2 and ∞. These decompositions correspond
to the four linear characters and sole degree-2 irreducible representation.

Only the former group, D4, embeds in S4, which shows that the permutation embedding con-
tains distinguishing information not in the character table. We make explicit the above approach
through character theory for the degree-4 permutation representation. Let {1, χ1, χ2, χ3, χ4} be a
basis of characters, with χ1, χ2, and χ3 = χ1χ2 quadratic linear characters, and χ4 of degree 2.
The standard representation of S4 in O(3) provides irreducible characters

{1, s1, s2, s3, s21 − s1 − s2 − 1}
where s3 is the quadratic determinant character, s1 and s2 = s1s3 are degree-3 representations,
and the last one is of degree 2. Computing the inner product matrices for these characters on S4
and D4, we obtain 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and


1 0 0 0 1
0 2 1 0 0
0 1 2 0 0
0 0 0 1 1
1 0 0 1 2

·
For example, this was the output to the nearest integer for the expectation method on a sample
size of 16 unramified primes, for the polynomials x4 +x+1 and x4−2x2 +2 with respective Galois
groups S4 and D4.

One identifies the polynomial expression χ = s21 − s1 − s2 − 1 for the irreducible degree-2
character χ on S4, which decomposes into a direct sum 1 + s3 on D4, from which we deduce
that s21 − s1 − s2 − s3 − 2 is in the kernel ideal I(D4). Similarly, we read from the inner products
〈s1, s1〉 = 〈s2, s2〉 = 2 and 〈s1, s2〉 = 1 on D4 that each of s1 and s2 decompose into two irreducible
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characters, which share a common irreducible summand. The restriction homomorphism from
R(S4) thus captures

1, s1 = χ1 + χ4, s2 = χ2 + χ4, s3 = χ3.

The restriction fails to span all characters, because the conjugacy classes are not separated by
characters on S4. Indeed the cycle types of the five conjugacy classes in C̀ (D4) are 14, 1221, 22,
22, and 41, and hence the two classes of cycle type 22 map to the same class in C̀ (S4).

The missing character χ1 is easily recovered. It arises from the quadratic subfield (here with
defining polynomial x2 − 2x+ 2), which can be expressed as a Legendre symbol. In terms of the
basis of characters {1, s1, s2, s3, χ1}, we now obtain an inner product matrix:

1 0 0 0 0
0 1 0 0 0
0 0 2 1 1
0 0 1 2 0
0 0 1 0 1


which can be reduced to an orthonormal basis for R(D4).

Since both D4 and Q8 admit permutation representations of degree 8, we carry out a similar
analysis of the permutation representations of degree 8 for D4 and Q8, given by

D4
∼=

〈(1, 8)(2, 7)(3, 4)(5, 6),
(1, 2)(3, 5)(4, 6)(7, 8),
(1, 6)(2, 4)(3, 8)(5, 7)

〉
and Q8

∼=
〈

(1, 2, 4, 7)(3, 6, 8, 5),
(1, 3, 4, 8)(2, 5, 7, 6)

〉
·

The cycle types 18, 24, 42 arise with probabilities (1/8, 5/8, 1/4) in D4 whereas in Q8, theses same
types have probabilities (1/8, 1/8, 3/4). Both groups embed in A8 ⊂ SO(7), hence the character
rings are parametrized by R(SO(7)) ∼= Z[s1, s2, s3] (s7 = 1 and s4 = s3, s5 = s2, s6 = s1). Since
the cycle types are the same, the kernel ideals agree, but the Haar measures differentiate the
groups. However, a naive tabulation of the probabilities gives a poor empirical invariant. In fact,
computing these probabilities is tantamount to evaluating the expectations of the idempotents e1,
e2, e3 under the isomorphism

R(G)⊗Q =
Q[s1, s2, s3]

I(G)⊗Q
−→ R(G)⊗Q

mC1 ⊗Q
× R(G)⊗Q

mC2 ⊗Q
× R(G)⊗Q

mC3 ⊗Q
∼= Q×Q×Q.

To express this computation in the character ring framework, we scale by the group order to
have integer values. As a general strategy for a group G ⊂ Sn this amounts to asking whether the
scaled idempotents converge to

(〈|G|e1, 1〉, . . . 〈|G|es, 1〉) = (|C1|, . . . , |Cs|),

where Ci are the Sn-conjugacy classes for G.
Let {1, χ1, χ2, χ3, ψ} be a basis of irreducible characters for D4, and {1, χ′1, χ′2, χ′3, ψ′} be a

basis of irreducible characters for Q8. The parametrization gives a Q-basis {1, s1, s2} and an
idempotent basis {e1, e2, e3} which are characteristic functions for the evaluations on conjugacy
classes. A reduced basis for the image of R(S8) in R(D4) is {1, σ1, σ2}, described as follows in
these respective bases:

D4 {1, s1, s2} {e1, e2, e3} {1, χ1, χ2, χ3, ψ}
1 1 e1 + e2 + e3 1
σ1 −s1 + s2/2− 1/2 2e1 − e2 + e3 χ1 + ψ
σ2 2s1 − s2/2 + 1/2 4e1 − 2e3 χ1 + χ2 + χ3

Similarly, a reduced basis for the image of R(S8) in R(Q8) is {1, τ1, τ2}, expressed in the respective
bases as follows:

Q8 {1, s1, s2} {e1, e2, e3} {1, χ′1, χ′2, χ′3, ψ′}
1 1 e1 + e2 + e3 1
τ1 −s1 + s2/2− 3/2 2e1 − 2e2 ψ′

τ2 3s1 − s2 + 3 3e1 + 3e2 − e3 χ′1 + χ′2 + χ′3
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Relative to the parametrizations from R(SO(7)), the bases (σ1, σ2) and (τ1, τ2) are related by
(σ1, σ2) = (τ1 + 1, τ1 + τ2 − 1), and inversely (τ1, τ2) = (σ1 − 1, σ1 + σ2 + 2). we thus express
(8e1, 8e2, 8e3 in the respective bases:

{1, s1, s2} {1, σ1, σ2} {1, τ1, τ2}
8e1 s1 + 1 1 + σ1 + σ2 1 + 2τ1 + τ2
8e2 5s1 − 2s2 + 7 5− 3σ1 + σ2 1− 2τ1 + τ2
8e3 −6s1 + 2s2 2 + 2σ1 − 2σ2 6− 2τ2

giving inclusions of submodules 〈8e1, 8e2, 8e3〉 ⊂ 〈1, σ2, σ3〉 = 〈1, τ2, τ3〉 ⊂ 〈e1, e2, e3〉.
Computing the expectations of the test functions {1, σ1, σ2}, for D4 on polynomials with Galois

groups G = D4 or Q8, the Gram matrix M(G) = (E(σiσj)) (σ0 = 1) takes the form

M(G) =

 1 0 0
0 2 1
0 1 3

 where G = D4 and otherwise

 1 1−1
1 2 0
−1 0 5

·
With respect to test functions {1, τ1, τ2} for Q8, the Gram matrices are

M(G) =

 1 0 0
0 1 0
0 0 3

 where G = Q8 and otherwise

 1−1 2
−1 3−3

2−3 7

·
It should be clear that the full Gram matrix gives a more complete picture of the orthogonality
relations of charactes than the triple of inner products (〈8e1, 1〉), (〈8e2, 1〉), (〈8e3, 1〉), which is just
one linear combination of the rows in the above Gram matrices.

In the next section, we show that the choice of reduced basis for the target group gives a better
set of test functions, converging more rapidly to the asymptotic Gram matrix. With respect to
the polynomials x8 + 6x4 + 1 of Galois group D4 and x8− 12x6 + 36x4− 36x2 + 9 of Galois group
Q8, we obtain reasonably good convergence (to within a half integer) with the first 80 primes.

Non distinguished representations of degree 8. The first example of nonisomorphic permu-
tation representations not distinguished by their cycle types and Haar measure are the degree-8
groups of order 16 denoted 8T10 and 8T11 (see the LMFDB [13] Galois groups database). Specif-
ically we define the representative groups

G0 = 〈(1, 2, 3, 8)(4, 5, 6, 7), (1, 5)(3, 7)〉 and
G1 = 〈(1, 3, 5, 7)(2, 4, 6, 8), (1, 4, 5, 8)(2, 3, 6, 7), (1, 5)(3, 7)〉

whose character tables are given by

A(G0) =



1 1 1 1 1 1 1 1 1 1
1 1 1 1−1−1−1−1 1 1
1 1 1 1−1−1 1 1−1−1
1 1 1 1 1 1−1−1−1−1
1−1−1 1 1−1 i −i −i i
1−1−1 1−1 1 −i i −i i
1−1−1 1−1 1 i −i i −i
1−1−1 1 1−1 −i i i −i
2−2 2−2 0 0 0 0 0 0
2 2−2−2 0 0 0 0 0 0


and A(G1) =



1 1 1 1 1 1 1 1 1 1
1 1 1 1−1−1 1−1−1 1
1 1 −1 −1−1−1−1 1 1 1
1 1 −1 −1 1 1−1−1−1 1
1 1 1 1 1−1−1 1−1−1
1 1 1 1−1 1−1−1 1−1
1 1 −1 −1−1 1 1 1−1−1
1 1 −1 −1 1−1 1−1 1−1
2−2−2i 2i 0 0 0 0 0 0
2−2 2i−2i 0 0 0 0 0 0


with respective probabilities (1/16, 1/16, 1/16, 1/16, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8). We note that the
first 8 characters are linear, and the latter two are of degree 2. The linear characters admit
a group structure, isomorphic to C2 × C4 and C3

2 , respectively. We denote the characters by
{1, χ1, χ2, χ3, ρ1, ρ̄1, ρ2, ρ̄2, ψ1, ψ2} and {1, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ψ, ψ̄}. In the groups G0 and G1

the character of the standard representation (of degree 7) decomposes as

s1 = χ1 + ρ1 + ρ̄1 + ψ1 + ψ2 and s1 = ξ1 + ξ2 + ξ2 + ψ + ψ̄,

respectively, but the individual characters in s1 are not separated.
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Given the obvious Galois action (on the codomain field Q(i)), we see that the subrings RQ(G0)
and RQ(G1) have different ranks, 8 and 9. On the other hand, the images of the restriction
homomorphism from R(S8) have rank 4 in each of R(G0) and R(G1), generated for instance by
{1, s1, s2, s3}. Moreover, since exactly the same four cycle types occur, with the same probabilities
(1/16, 5/16, 1/8, 1/2), the characters in the image of restriction from R(S8) to R(G0) and R(G1)
can not be differentiated.

Let K0 and K1 be number fields whose normal closures have respective Galois groups G0 and
G1. In order to distinguish these fields, it suffices to construct missing characters from the linear
character groups. In fact these number fields have nontrivial automorphism groups, isomorphic
to V4 and C4, respectively. This induces respective subfield lattices of the forms

K0 K1

F ′0 F0 F ′′0 F1

G0 G′1 G1 G′′1

Q Q
For each field we recover a significant subgroup of the linear character groups from the quartic
and quadratic characters. In fact there is a unique cyclic subfield F0/Q in K0 which recovers
the characters ρ1, ρ̄2, and χ1 = ρ21. (The other fields F ′0 and F ′′0 are non-normal.) And there
exists a unique biquadratic field F1/Q in K1 which yields the quadratic characters ξ1, ξ2, ξ3. The
pairs (K0, F0) and (K1, F1) give characters on the pairs of permutation groups of degree 8 and 4,
(G0, G0/H0

∼= C4) and (G1, G1/H1
∼= V4), such that the joint factorization types of Frobenius

characters separate the Galois structures.

Representations of A5. We denote the irreducible characters of the alternating groups A5 by
{1, χ1, χ2, χ3, χ4}, where χ1 is the character of the degree-4 standard representation, χ2 is the
character of a degree-5 representation, and χ3 and χ4 are the conjugate characters of degree-3
icosohedral representations over Q(

√
5). The rational representations are thus spanned by the

orthogonal characters {1, χ1, χ2, χ3 + χ4} of degrees 1, 4, 5, and 6.
On the other hand, the permutation representation of A5 in S5 gives a parametrization by

R(SO(4)) =
Z[s1, s2, s3, s4]

(s1 − s3, s4 − 1)
∼= Z[s1, s2],

and while |C̀ (A5)| = 5, there are two conjugacy classes which map to the same cycle type 51

in C̀ (S5). Thus the restriction from R(S5) gives a basis of four independent characters, and we
identify:

(1, s1, s
2
1 − s2 − s1 − 1, s2) = (1, χ1, χ2, χ3 + χ4).

In addition to its degree-5 permutation representation, A5 admits a faithful permutation represen-
tation in S6. In the restriction of Z[s1, s2] ∼= R(SO(5)) we recognize the same characters equipped
with a different parametrization

(1, s21 − 2s1 − s2 − 1, s1, s2 − χ1) = (1, χ1, χ2, χ3 + χ4).

Consider the number fields, each with Galois group A5, defined by polynomials

f = x5 − 5x4 + 48x3 + 28x2 + 5x− 1,
g = x6 + 4x5 + 10x4 − 10x3 + 17x2 + 10x+ 1

constructed as subfields of the same normal closure. Although not isomorphic, we can construct
the inner product matrix of the same characters set {1, χ1, χ2, χ3 + χ4} on A5 with respect to its
different embeddings in S5 and S6. Jointly evaluating the characters on factorization types of f
or g with those of either f or g, yields the same diagonal inner product matrix (= diag(1, 1, 1, 2)
to nearest integer). This gives a means of recognizing the same character of the absolute Galois
group via different presentations. The arithmetic statistic approach through character theory



12 DAVID KOHEL

gives a powerful tool to not only characterize Galois groups, but to recognize equivalence of finite
representations of the absolute Galois group G which may arise in different contexts.

6. Variance, covariance and convergence

The focus on irreducible characters provides, on the one hand, a theoretic framework for un-
derstanding the arithmetic statistics of Frobenius distributions. On the computational side, ir-
reducible characters provide test functions with optimal convergence properties. Naively, the
orthogonality relations for a system {χ1, . . . , χr} of irreducible characters as test functions, it suf-
fices to recognize the integer 〈χi, χj〉 = δij to one bit of precision. Furthermore, χi 6= 1 and χj 6= 1
the inner products 〈χi, 1〉 = 〈χj , 1〉 = 0 imply that χi and χj have mean 0, hence we can interpret

ES(χiχj) =
1

|S|
∑
p∈S

χi(p)χj(p)

as a (sample) variance (i = j) or covariance (i 6= j) of the sample S, we see that the use of
irreducible characters (or of reduced characters in R(G) as the next best approximation when
irreducible characters are not in the restriction image from R(Sn)) minimizes the variance of the
test functions, and orthogonality minimizes the covariance.

We can illustrate the convergence properties with the lattice of subgroups between the repre-
sentation of PSL2(F7) on P1(F7) and S8:

PGL2(F7) ∼= G1 S8

PSL2(F7) ∼= H1 H2 A8

with respective orders |H1| = 168, |G1| = 336, and |H2| = 1344.
Let h(G) be the number of conjugacy classes of G, equal to the number of irreducible characters

and to the rank of R(G); let r(G) be the number of characters irreducible over Q, equal to the
rank of RQ(G); and let s(G) the rank of the image of the restriction of R(Sn) to R(G). For each
of the groups we give the respective numbers h(G), r(G) and s(G), as well as a representative
polynomial (from the LMFDB [13]) with Galois group G.

G h(G) r(G) s(G) fG(x)
S8 22 22 22 x8 − x− 1
A8 14 12 12 x8 − 2x7 + 3x5 − 5x4 + 2x3 + 2x2 − x+ 1
G1 9 8 8 x8 − x7 + x6 + 4x5 − x4 − 3x3 + 5x2 − 2x+ 1
H2 11 10 8 x8 − 4x7 + 8x6 − 9x5 + 7x4 − 4x3 + 2x2 + 1
H1 6 5 5 x8 − 4x7 + 7x6 − 7x5 + 7x4 − 7x3 + 7x2 + 5x+ 1

For the generic group Sn the characters (1, s1, . . . , sn−1) are irreducible on Sn and form a system
of test functions for Sn. On An and its subgroups the relations sn−1−i = si hold, and so the
characters (1, s1, . . . , sm), where n = 2m+ 1 or 2m+ 2, form a system of test functions for An.

The Gram matrices M(G) with respect to the test characters (1, s1, . . . , s7) for G = S8, A8,
and G1, respectively are:

M(S8) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, M(A8) =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1


, M(G1) =



1 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0
0 0 3 2 1 1 1 0
0 1 2 6 4 1 1 1
1 1 1 4 6 2 1 0
0 1 1 1 2 3 0 0
0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 1


·

For the indicated representative polynomials, characters (χ1, . . . , χr) and set of non-ramified
primes S, we define the error matrix: ZS(G) = ES(χiχj) − M(G) and for an (r × r)-matrix
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Z = (zij) and define the normalized `p-norms

||Z||p =
( 1

r2

∑
i,j

|zij |p
)1/p

and ||Z||∞ = max
i,j
{|zij |}.

In particular we need ||ZS(G)||∞ < 0.50 in order for the approximation to round to M(G). We
say that a sequence stably converges to M(G) after m terms if ||ZS(G)||∞ < 0.50 for all initial
segments S of the sequence with |S| > m.

Setting S equal to the first 128k non-ramified primes, in the case of S8 and A8 the symmet-
ric functions give good convergence in the `2, `8 and `∞-norms to M(G) on small sample sets
consisting of the first 128k non-ramified primes.

S8
||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞

1 : 0.104870 < 0.184799 < 0.257812
2 : 0.104915 < 0.197659 < 0.269531
3 : 0.093747 < 0.189553 < 0.255208
4 : 0.072267 < 0.138632 < 0.191406
5 : 0.063890 < 0.112834 < 0.151562
6 : 0.063620 < 0.115167 < 0.171875
7 : 0.052897 < 0.083975 < 0.116071
8 : 0.045921 < 0.070367 < 0.097656

A8

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
1 : 0.080624 < 0.112569 < 0.140625
2 : 0.099134 < 0.174740 < 0.226562
3 : 0.074997 < 0.128586 < 0.166666
4 : 0.057739 < 0.092246 < 0.119140
5 : 0.058826 < 0.128167 < 0.181250
6 : 0.053728 < 0.112338 < 0.158854
7 : 0.049278 < 0.098191 < 0.138392
8 : 0.036335 < 0.065900 < 0.092773

Even with sample size 128, we obtain a close approximation to the correct Gram matrix, and the
convergence remains stable. In contrast, for the group G1 (of index 120 in S8) taking increments
of size 1024 we find that 214 = 1024 · 16 primes gives an exact approximation of M(G1) (in the
`∞-norm) but that at least 1024 · 22 primes are needed for stable convergence:

G1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
1 : 0.876885 < 1.841975 < 2.686523
2 : 0.229706 < 0.475835 < 0.701171
3 : 0.437539 < 0.862551 < 1.233723
4 : 0.542897 < 1.080542 < 1.525878
5 : 0.267850 < 0.528893 < 0.756054
6 : 0.365931 < 0.733534 < 1.035156
7 : 0.199105 < 0.407255 < 0.580217
8 : 0.229675 < 0.471416 < 0.672363
9 : 0.111158 < 0.231270 < 0.333224

G1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
10 : 0.187304 < 0.375945 < 0.533105
11 : 0.211544 < 0.429012 < 0.613725
12 : 0.231261 < 0.465137 < 0.665364
13 : 0.279154 < 0.560439 < 0.800030
14 : 0.201504 < 0.399819 < 0.572195
15 : 0.189139 < 0.375454 < 0.534960
16 : 0.178182 < 0.348732 < 0.493652
17 : 0.143345 < 0.282338 < 0.397633
18 : 0.136637 < 0.266879 < 0.378417

Extending the computation further, we find that the apparent stable convergence fails when
||ZS(G1)||∞ > 0.50 for |S| = 1024 · k for 19 ≤ k ≤ 21 and again in the range 45 ≤ k ≤ 48.

Passing to a basis of rational irreducible characters (r(G1) = s(G1)), the rational character
table A(G1) and the inner product matrix D(G1) of the Haar measure on conjugacy classes are
respectively

A(G1) =



1 1 1 1 1 1 1 1
1 1 −1 1 1 −1 1 −1
6 −2 0 0 2 0 −1 0
12 4 0 0 0 0 −2 0
7 −1 1 1 −1 1 0 −1
7 −1 −1 1 −1 −1 0 1
8 0 −2 −1 0 1 1 0
8 0 2 −1 0 −1 1 0


and D(G1) =

1

336



1 0 0 0 0 0 0 0
0 21 0 0 0 0 0 0
0 0 28 0 0 0 0 0
0 0 0 56 0 0 0 0
0 0 0 0 42 0 0 0
0 0 0 0 0 56 0 0
0 0 0 0 0 0 48 0
0 0 0 0 0 0 0 84


,

which determine the diagonalized matrix M(G1) = A(G1)D(G1)A(G1)t = diag(1, 1, 1, 2, 1, 1, 1, 1)
with respect to the rational irreducible characters. With respect to this basis, in increments of
128k primes, we find stable convergence after just 512 = 128 · 4 primes:
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G1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
1 : 0.191903 < 0.557482 < 0.937500
2 : 0.107457 < 0.204107 < 0.312500
3 : 0.111166 < 0.316320 < 0.531250
4 : 0.085609 < 0.199992 < 0.335937
5 : 0.087717 < 0.208395 < 0.350000
6 : 0.094278 < 0.217121 < 0.364583
7 : 0.103194 < 0.236602 < 0.397321
8 : 0.110885 < 0.249000 < 0.417968

G1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
9 : 0.114006 < 0.234514 < 0.392361

10 : 0.116967 < 0.233938 < 0.390625
11 : 0.120169 < 0.241507 < 0.403409
12 : 0.090920 < 0.197313 < 0.330729
13 : 0.093108 < 0.180276 < 0.300480
14 : 0.070129 < 0.145311 < 0.243303
15 : 0.074861 < 0.160193 < 0.268750
16 : 0.030534 < 0.066387 < 0.111328

For the subgroup chain H1 ⊂ H2 ⊂ A8, starting with the characters (1, s1, s2, s3), irreducible on
A8, we find a similar analysis. In particular, the Gram matrices with respect to this basis are

M(A8) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, M(H2) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

, M(H1) =


1 0 0 1
0 1 1 2
0 1 4 3
1 2 3 10

·
In the former two cases, the characters are orthogonal and irreducible or nearly so (s3 decomposes
as a sum of three distinct irreducibles on H2), and convergence is relatively good. In constrast,
the Gram matrix M(H1) has determinant 14, and far from being orthogonal or irreducible (except
for 1 and s1) on H1. In increments of 1024, we find stable convergence only after 215 = 1024 · 32
primes:

H1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
1 : 1.300776 < 2.685076 < 3.787109
2 : 0.457035 < 0.943691 < 1.331054
3 : 0.316304 < 0.671333 < 0.948242
4 : 0.149549 < 0.327977 < 0.463623
...

...
...

...
13 : 0.201940 < 0.417409 < 0.588792
14 : 0.219831 < 0.449876 < 0.634137
15 : 0.207462 < 0.427431 < 0.602799
16 : 0.170705 < 0.352046 < 0.496520

H1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
17 : 0.162082 < 0.331846 < 0.467773
18 : 0.249476 < 0.507743 < 0.715332
19 : 0.260497 < 0.533048 < 0.751336
20 : 0.250136 < 0.514311 < 0.725195
...

...
...

...
29 : 0.183952 < 0.364100 < 0.511112
30 : 0.193960 < 0.384122 < 0.539257
31 : 0.148770 < 0.290129 < 0.406060
32 : 0.132390 < 0.258615 < 0.362091

Going further one finds that the `∞-norm gradually decreases and does indeed stay below 0.50 after
this point. In contrast, in terms of the basis (1, χ1 = ϕ + ϕ̄, χ2, χ3, χ4) of irreducible characters
over Q, of degrees (1, 6, 6, 7, 8) given by

χ1 = (4s2 + 3s3 − s1s2 − 4s1 − 2)/2, χ3 = s1,
χ2 = (2s2 + 5s3 − s1s2 − 6s1 − 4)/4, χ4 = (s1s2 + 2s1 + 2− 2s2 − 3s3)/2,

the test characters stable converge to M(H1) after only 128 primes, with results here in increments
of 128 primes:

H1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
1 : 0.227868 < 0.301886 < 0.406250
2 : 0.225747 < 0.296604 < 0.398437
3 : 0.127307 < 0.165588 < 0.216145
4 : 0.149822 < 0.191605 < 0.250000
5 : 0.166819 < 0.214155 < 0.271875
6 : 0.085019 < 0.114926 < 0.148437
7 : 0.101179 < 0.132950 < 0.166294
8 : 0.114860 < 0.148922 < 0.193359

H1

||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞
9 : 0.064413 < 0.088651 < 0.114583

10 : 0.079219 < 0.104501 < 0.132812
11 : 0.091419 < 0.119029 < 0.154829
12 : 0.056475 < 0.076844 < 0.097656
13 : 0.047871 < 0.066901 < 0.086538
14 : 0.041653 < 0.062817 < 0.083705
15 : 0.029993 < 0.041051 < 0.053125
16 : 0.041465 < 0.054989 < 0.069335

These convergence results give empirical support to the principle of using irreducible characters
as test functions, based on the theoretical interpretation of inner product relations on characters



ARITHMETIC STATISTICS OF GALOIS GROUPS 15

as variance and covariance. Moreover, when using irreducible characters, the number of primes
necessary to recognize the Gram matrix associated to a Galois group is strikingly small.

7. Asymptotics in the degree

In analyzing the character theory of a permutation group of large degree, one must avoid certain
bottlenecks in the complexity. First the number of transitive permutation groups is too large to
enumerate, and so clearly the poset must be navigated in a lazy fashion. Second, the number
of conjugacy classes (hence of irreducible characters) for Sn is too large to enumerate. For the
generic groups Sn and An, the characters (1, s1, . . . , sn−1) and (1, s1, . . . , sm), where n = 2m+ 1
or 2m+ 2, give a subset of rational irreducible test functions (when n = 2m+ 2, the character sm
is the sum of two characters on An, conjugate over a quadratic field). In general the number of
conjugacy classes is the partition number p(n), whose asymptotic growth is known by Hardy and
Ramanujan [10] to be

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
·

In particular, we will treat a nontrivial example of degree 120 (and 240) despite the large size
p(120) = 1844349560 (and p(240) = 105882246722733) of the corresponding partition numbers.
Finally, computation of the kernel ideal of the restriction R(O(n− 1))→ R(G) by Groebner basis
algorithms is prohibitively expensive, even if the s(G) points in the kernel can be computed.

Polynomials with interesting Galois groups of large degree, outside the generic groups Sn and
An and cyclic and dihedral groups Cn and Dn rely on specific constructions. We consider such
an example of Jouve, Kowalski and Zywina [12], a polynomial f(x) of degree 240 with Galois
group the Weyl group W (E8) of the lattice E8, of order 696729600. In contrast to the large
number of conjugacy classes of S240, the number of conjugacy classes of W (E8) is 112, and the
restriction homomorphism from R(S240) has full rank. We take the quotient of order 348364800
by its center, which is the Galois group of the degree 120 polynomial g(x) such that f(x) = g(x2).
The quotient group G = W (E8)/Z(W (E8)) has 67 conjugacy classes, all characters are rational,
and the restriction homomorphism from R(S120) is a subring of rank 65. We consider the 18
absolutely irreducible rational characters in the image. In increments of 256 primes, we compute
the convergence to the Gram matrix A(G) for these 18 characters to 213 = 256 · 32 primes:

W (E8)/Z(W (E8))
||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞

1 : 0.512041 < 1.947691 < 3.843750
2 : 0.256200 < 0.868283 < 1.609375
3 : 0.180087 < 0.525172 < 0.929687
4 : 0.251753 < 0.848164 < 1.571289
...

...
...

...
13 : 0.161766 < 0.376064 < 0.648137
14 : 0.151537 < 0.350967 < 0.611049
15 : 0.139688 < 0.325884 < 0.550000
16 : 0.128557 < 0.298173 < 0.504638

W (E8)/Z(W (E8))
||ZS(G)||2 ||ZS(G)||8 ||ZS(G)||∞

17 : 0.122505 < 0.279019 < 0.473345
18 : 0.118703 < 0.265146 < 0.452473
19 : 0.114018 < 0.254474 < 0.432360
20 : 0.110361 < 0.248728 < 0.442968
...

...
...

...
29 : 0.110513 < 0.283699 < 0.530980
30 : 0.108019 < 0.275711 < 0.514713
31 : 0.105191 < 0.262830 < 0.491053
32 : 0.102228 < 0.251891 < 0.468505

Extending the computation further suggests that the convergence to M(G) is stable for m > 213.

8. Conclusion

A standard tool in Galois group computation is to recognize the probable group from an analysis
of Frobenius cycle types. We use an explicit polynomial parametrization of the character ring to
identify the irreducible characters in the restriction from orthogonal groups and subsequently from
the symmetric group. As in the thesis work of Shieh [18, 19], with the view to classifying Sato-Tate
groups, it is recognized that the irreducible characters on the target group provide optimal test
functions for recognizing (or rejecting) a given group coming from a Galois representation. We
develop this perspective in the application to the parametrized representation rings of finite groups,
with associated lattice structure. Although we focus on Galois groups arising from splitting fields
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of polynomials over Q, the same methods apply to Galois representations coming form L-series
and modular forms, families of exponential sums, and global fields of any characteristic.

At a higher level, the approach through character theory and arithmetic statistics lets us iden-
tify when Frobenius distributions of different degrees admit a common Galois subrepresentation.
Examples arise in the form of fields with isomorphic normal closures, as described in the above
examples of A5 representations, but more generally one can recognize whether two normal fields
admit a common subfield. In this framework orthogonality relations of characters are measured
by correlations of Frobenius distributions associated to different representations of the absolute
Galois group. This perspective has promising potential for the computational investigation of
Galois representations.
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