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Abstract

We analyze a nonlocal PDE model describing the dynamics of adaptation of a pheno-
typically structured population, under the effects of mutation and selection, in a changing
environment. Previous studies have analyzed the large-time behavior of such models, with
particular forms of environmental changes, either linearly changing or periodically fluctuat-
ing. We use here a completely different mathematical approach, which allows us to consider
very general forms of environmental variations and to give an analytic description of the
full trajectories of adaptation, including the transient phase, before a stationary behavior
is reached. The main idea behind our approach is to study a bivariate distribution of two
‘fitness components’ which contains enough information to describe the distribution of fitness
at any time. This distribution solves a degenerate parabolic equation that is dealt with by
defining a multidimensional cumulant generating function associated with the distribution,
and solving the associated transport equation.

We apply our results to several examples, and check their accuracy, using stochastic
individual-based simulations as a benchmark. These examples illustrate the importance of
being able to describe the transient dynamics of adaptation to understand the development
of drug resistance in pathogens.

1 Introduction and main assumptions

Understanding the impact of external factors on the dynamics of fitness distributions in asexu-
als is a fundamental issue in population genetics, with implications for the evolution of micro-
bial pathogens such as viruses, bacteria and cancer cells. Drug resistance may occur when a
pathogenic organism (e.g., a bacteria in presence of an antibiotic) manages to reach a positive
growth rate (equivalently absolute fitness) due to genetic adaptation. Being able to describe the
effect of various types of environmental changes on the trajectories of adaptation is therefore a
crucial issue for the elaboration of drug resistance management strategies, to which mathemat-
ical models may help answer.

Recent models of asexual adaptation based on partial differential equations (PDEs) or
integro-differential equations (IDEs) typically describe the dynamics of the distribution of a sin-
gle phenotypic trait in a fixed environment. This trait can be fitness itself as in [2, 20, 21, 36],
or a given trait x ∈ R determining fitness, as in [3, 4, 12, 24], leading to equations of the form:

∂tq(t, x) =M[t, x, q(t, x)] + q(t, x) (m(x)−m(t)).

Here, M is a differential or an integral operator describing the effect of mutations on the dis-
tribution q(t, ·) of the trait x. The last term q(t, x) (m(x) − m(t)) corresponds to the effects
of selection, see e.g. [36]: m(x) is a function which describes the relationship between the trait
x and fitness, and m(t) is the mean fitness in the population at time t. The fitness that we
consider in this work is a ‘relative fitness’. It is connected to the Malthusian growth rate r via
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the formula: r(x) = rmax + m(x) (m(x) ≤ 0 and rmax > 0 is a constant corresponding to the
growth rate of an optimum phenotype).

In Fisher’s geometrical model (FGM), a multivariate phenotype at a set of n traits (a vector
x ∈ Rn) determines fitness. The most widely used version assumes a quadratic form of the
Malthusian fitness function m(x), which decreases away from a single optimumO0 ∈ Rn, [31, 35]:

m(x) = −‖x−O0‖2

2
, (1)

with ‖ · ‖ the Euclidian norm in Rn. To describe the mutation effects on phenotypes, the stan-
dard ‘isotropic Gaussian FGM’ uses a normal distribution N (0, λ In) with λ > 0 the phenotypic
mutational variance at each trait and In the identity matrix [25, 26]. Overall, assuming a con-
stant mutation rate U per capita per unit time, the corresponding integro-differential equation
describing the dynamics of the phenotype distribution q(t,x), under the combined effects of
selection and mutation, is ∂tq(t,x) = U (J ? q − q) + q(t,x) (m(x)−m(t)), t > 0, x ∈ Rn, with
m(t) the mean fitness in the population at time t, and ? the standard convolution product in
Rn and J the (Gaussian) probability density function associated with the normal distribution
N (0, λ In).

In this work, we focus on the case of a changing environment: we assume that, due to an
external factor (e.g., a drug dose, a temperature, etc), the phenotype to fitness relationship (1)
is changed. We take this change into account through a moving optimum, i.e. we assume that

m(t,x) = −‖x−O(t)‖2

2
, (2)

with
O(t) = O0 + δ(t) u, (3)

with δ(t) ∈ C(R+), δ(0) = 0 and u a unit vector in Rn (without loss of generality, we assume
in the sequel that O0 = 0, and u = (1, 0, . . . , 0)). In such case, the equation describing the
dynamics of the phenotype distribution becomes:

∂tq(t,x) = U (J ? q − q) + q(t,x) (m(t,x)−m(t)), t > 0, x ∈ Rn, (4)

with this time:

m(t) =

∫
Rn
m(t,x) q(t,x) dx. (5)

We approach the mutational effects U (J ? q − q) by a diffusion (Laplace) operator, leading
to the main equation that is studied in this paper:

∂tq(t,x) =
µ2

2
∆q + q(t,x) (m(t,x)−m(t)), t > 0, x ∈ Rn, (6)

with µ =
√
U λ > 0 the mutation parameter; we refer to [24] (Appendix) for further details

on the derivation of this diffusion approximation. The regime where it applies corresponds
to the ‘Weak Selection Strong Mutation’ (WSSM) regime, where a wide diversity of lineages
accumulate mutations and co-segregate at all times.

The main goal of our work is to describe the dynamics of the mean fitness m(t) in the
population for very general scenarios of environmental changes, i.e., with a general form for
δ(t). The value of m(t) is fundamentally connected with the question of drug resistance, or
evolutionary rescue in a broader context [22], as they occur when the mean growth rate (or
equivalently mean absolute fitness) in the population r(t) := rmax +m(t) becomes positive.

Several particular forms of environmental changes have already been considered. The case
of an optimum shifting with a constant speed δ(t) = c t has inspired several developments.
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First, in models without adaptation, where a favorable region moves at a constant speed, as
in the Fisher-KPP reaction-diffusion equations studied in [7, 8, 9]. Then, [1] considered again
an optimum shifting with a constant speed, in a model including both a 1D space variable and
a 1D phenotypic trait. From a mathematical viewpoint, this corresponds to an equation of
the form (6) in R2. The case of periodically fluctuating environments has also attracted much
interest from mathematicians. In the 1D case, [28] derived explicit Gaussian solutions of a PDE
model describing the dynamics of a phenotype distribution with a periodically varying phenotype
optimum. In [10], comparable models were considered, with phenotypes in some bounded subset
of Rn; the authors give conditions for the persistence of the population, based on the sign of the
principal eigenvalue of a time-periodic parabolic operator, and study the large-time behavior of
the solution. In [16], fitness functions m(t,x), periodic with respect to t and with x ∈ Rn have
also been considered (see also [17]). The works [16, 17] are based on the method of constrained
Hamilton-Jacobi equations, which has been developed to study the evolution of phenotypically
structured populations, with integral or differential mutation operators (e.g., [6, 15, 19, 29, 33]).
This method assumes a small mutation parameter of order ε � 1, and is based on a scaling
t → t/ε. Thus, it typically describes asymptotic evolutionary dynamics, at large times and in
a ‘small mutation’ regime. To the best of our knowledge, it cannot lead to explicit transient
trajectories of adaptation. Temporally piecewise constant environments have also been studied
with the same type of methods in the recent work [13]. Note that the equations that were
studied in [1, 10, 16, 17, 28] have the general form:

∂tn(t,x) =
µ2

2
∆n+ n(t,x) (r(t,x)− ρ(t)), t > 0, x ∈ Ω ⊆ Rn, (7)

with n(t,x) the total population density and ρ(t) its integral over Ω. The study of this equation
is in fact equivalent to our problem (6): it is easily checked that q(t,x) = n(t,x)/ρ(t) satisfies
(6) with r(t,x) = rmax +m(t,x), see Appendix A.

Compared to the above-mentioned works, we use here a completely different approach, which
allows us: (i) to consider very general forms of environmental variations; (ii) to give an analytic
description of the full trajectories of adaptation, including the transient phase, before a station-
ary behavior is reached. Our results are valid in any dimension n, and do not assume that the
solution has a Gaussian form. The main ideas behind our approach is to study a bivariate distri-
bution p(t,m1,m2) of two ‘fitness components’ which contains enough information to describe
the distribution of fitness at any time t. The distribution p solves a degenerate parabolic equa-
tion that is dealt with by defining a multidimensional cumulant generating function associated
with the distribution, and solving the associated transport equation.

Our main results are presented in the next section. We begin in Section 2.1 with a preliminary
standard existence and uniqueness results of the solution q(t,x) of the Cauchy problem associated
with (6); then, in Section 2.2 we study the distribution p(t, ·) and derive the equation solved by
the cumulant generating function; in Section 2.3, we present our main results on the dynamics
of the mean fitness in a general setting; in Section 2.4, we apply these results to particular
forms of the function δ(t), and we compare our results with the existing literature. In Section 3,
we compare our theoretical results with numerical simulations of a stochastic individual-based
model. These sections are followed by a discussion. Proofs are presented in Section 5.

2 Main results

2.1 Existence and uniqueness of the solution of the Cauchy problem

The existence and uniqueness of the solution q(t,x) of (6) with initial condition q0 does not
follow from standard parabolic theory as the function m(t,x) is unbounded. However, they can

3



easily be adapted from the results in [24], in order to take into account the time-dependence of
m(t,x). We recall here the main arguments that lead to these existence and uniqueness results.

We need the following assumptions on the initial distribution q0:

q0 ∈ C2+α(Rn), (8)

for some α ∈ (0, 1), that is, ‖q0‖C2+α(Rn) < +∞. Moreover, as q0 is a (probability) distribution,
we assume that:

q0 ≥ 0 and

∫
Rn
q0(x)dx = 1. (9)

We also assume that q0 has a fast decay rate as ‖x‖ → +∞, in the sense that there exists a
non-increasing function g ∈ C(R+,R+) (with R+ = [0,+∞)) such that:

0 ≤ q0 ≤ g(‖ · ‖) in Rn, and

∫
Rn
eb‖x‖ g(‖x‖) dx < +∞ for all b > 0. (10)

We first recall a standard existence and uniqueness result for linear parabolic equations with
unbounded coefficients in Rn.

Theorem 2.1 ([5, 11]). The problem ∂tv(t,x) =
µ2

2
∆v +m(t,x) v(t,x), t ≥ 0, x ∈ Rn,

v(0,x) = q0(x), x ∈ Rn,
(11)

admits a unique positive bounded solution v ∈ C1,2(R+ × Rn).

Moreover, it follows from the same arguments as those in lemma 4.2 of [24] that, with v
defined in Theorem 2.1,

t 7→ mv(t) :=

∫
Rn
m(t,x) v(t,x) dx,

is real-valued and continuous in R+ and, for every t ≥ 0, there holds:

1 +

∫ t

0
mv(s) ds = 1 +

∫ t

0

∫
Rn
m(t,x)v(s,x) dx ds =

∫
Rn
v(t,x) dx > 0.

This allows us to define:

q(t,x) =
v(t,x)

1 +
∫ t

0 mv(s) ds
, (12)

for every (t,x) ∈ R+×Rn. Arguing as in theorem 4.1 of [24], it is straightforward to check that
q is the unique solution of (6). More precisely,

Theorem 2.2 ([24]). There exists a unique nonnegative solution q ∈ C1,2(R+×Rn) of (6) such
that q ∈ L∞((0, T )× Rn) for all T > 0, and the function:

t 7→ m(t) =

∫
Rn
m(t,x) q(t,x) dx,

is real-valued and continuous in R+. Moreover, we have:

∀ t ≥ 0,

∫
Rn
q(t,x) dx = 1.

4



Additionally, as m(t,x) ≤ 0 and m(t) is bounded, a standard comparison argument implies
that:

0 ≤ q(t,x) ≤ B(t)K ? q0(x),

for some positive bounded function B(t), and with K the heat kernel in dimension n:

K(x) =
1

(2π t µ2)n/2
e
− ‖x

2‖
2 t µ2 .

With the assumption (10), this implies that q is exponentially bounded at all times:

for all t ≥ 0 for all b > 0,

∫
Rn
eb‖x‖ q(t,x) dx < +∞. (13)

2.2 Fitness components and cumulant generating functions

In the previous work [24], where the optimum O0 remained constant, it was shown that the dis-
tribution of fitness, say p(t,m), satisfies a 1D degenerate parabolic PDE. Defining the cumulant
generating function

C(t, z) = ln

(∫
R
p(t, s) es z ds

)
,

associated with this distribution, an analytically tractable 1D transport equation for C(t, z) was
obtained, leading to an explicit formula for m(t) = ∂zC(t, 0) (which was consistent with the
formula in [32] in the isotropic case).

Here, due to the time-dependence of O(t), one cannot expect to obtain a single autonomous
PDE for the fitness distribution p(t,m). Consider for instance two initial distributions of q(0,x)
which are symmetric with respect to O0 = 0: q1(0,x) = q2(0,−x); then the corresponding initial
distribution of fitness is the same, as m(0,x) = m(0,−x): p1(0,m) = p2(0,m). However, it is
natural to expect that p1(t,m) 6≡ p2(t,m) for t > 0: if q1(0, ·) is localised around the position of
the optimum at later times, q2(0, ·) is localised in the opposite direction.

Thus, instead of focusing on the fitness distribution, we define two time-independent ‘com-
ponents’:  m1(x) = u · x = x1,

m2(x) = −‖x‖
2

2
,

(14)

and we denote M(x) = (m1(x),m2(x)) for all x ∈ Rn, see Fig. 1. We observe that, at any time
t, the fitness associated with x is uniquely determined from its components by the following
formula:

m(t,x) = −‖x−O(t)‖2

2
= δ(t)m1(x) + m2(x)− δ(t)2

2
. (15)

We define p(t,m1,m2) the (bivariate) distribution of the components (m1,m2) at time t.
More precisely, p is defined in the next theorem.

Theorem 2.3. There exists a unique nonnegative density function p ∈ C1(R+, L
2(R × R−))

that satisfies the following relationship∫
Rn
q(t,x)ϕ(M(x))dx =

∫
R×R−

p(t,m1,m2)ϕ(m1,m2)dm1dm2, (16)

for every test functions ϕ ∈ L2(R× R−) and all t ≥ 0.

5



Figure 1: Schematic illustration of the fitness components. Given O(t), the fitness of a
phenotype x, m(t,x) = −‖x−O(t)‖2/2, is uniquely defined by the couple (m1(x),m2(x)).

Using (15), we observe that the mean fitness in the population at time t is given by

m(t) =

∫
Rn
m(t,x) q(t,x) dx =

∫
R×R−

p(t,m1,m2)

(
δ(t)m1 +m2 −

δ(t)2

2

)
dm1dm2. (17)

Similarly, the fitness variance in the population,

Vm(t) :=

∫
Rn
m(t,x)2 q(t,x) dx−m(t)2, (18)

is given by

Vm(t) = δ(t)2Vm1(t) + Vm2(t) + 2δ(t)covm(t), (19)

with, for j = 1, 2 Vmj (t) =

∫
R×R−

p(t,m1,m2)m2
jdm1dm2 −

(∫
R×R−

p(t,m1,m2)mjdm1dm2

)2

,

and:

covm(t) =

∫
R×R−

p(t,m1,m2)m1m2dm1dm2

−
(∫

R×R−
p(t,m1,m2)m1dm1dm2

)(∫
R×R−

p(t,m1,m2)m1dm1dm2

)
.

Moreover, we can define the ‘cumulant generating function’ associated with p.

Theorem 2.4. The cumulant generating function of the components m1, m2:

C(t, z1, z2) := ln

(∫
R×R−

p(t,m1,m2) em1 z1+m2 z2 dm1 dm2

)
, (20)

for all t ≥ 0, z1 ∈ R and z2 ∈ R+ is well-defined and belongs to C1(R+ × R × R+). It satisfies
the following equation, for t ≥ 0 and (z1, z2) ∈ R× R+:

∂tC(t, z1, z2) = a(t) · (∇C(t, z1, z2)−∇C(t, 0, 0)) + k(z1, z2) · ∇C(t, z1, z2) + γ(z1, z2),
C(0, z1, z2) = C0(z1, z2),
C(t, 0, 0) = 0,

(21)

where a(t) = (δ(t), 1) ∈ R2 and

{
k(z1, z2) = −µ2(z1 z2, z

2
2),

γ(z1, z2) = µ2 (z2
1/2− n z2/2).

(22)
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The cumulant generating function leads to simple characterizations of the central moments
of the distribution. For instance, the mean fitness and the variance can easily be computed
from C. For j = 1, 2 ∂jC(t, 0, 0) =

∫
R×R−mj p(t,m1,m2) dm1 dm2, ∂jjC(t, 0, 0) = Vmj (t), and

∂1,2C(t, 0, 0) = covm(t). Using (17), and (19), we get:

m(t) = δ(t) ∂1C(t, 0, 0) + ∂2C(t, 0, 0)− δ(t)2

2
, (23)

Vm(t) = δ(t)2∂11C(t, 0, 0) + ∂22C(t, 0, 0) + 2δ(t)∂12C(t, 0, 0). (24)

2.3 General formulas for the mean fitness and the fitness variance

In order to solve the equation (21) satisfied by C, we first note that a simpler problem can be
solved explicitly. Namely, we have the following proposition.

Proposition 2.5. Let β ∈ C1(R3
+,R) with β(t, 0, 0) = 0 for all t ≥ 0, and Q0 ∈ C(R2

+,R). For
t ≥ 0 and (z, z̃) ∈ R2

+, the problem
∂tQ(t, z, z̃) = (∂zQ+ ∂z̃Q)(t, z, z̃)− (∂zQ+ ∂z̃Q)(t, 0, 0) + β(t, z, z̃),
Q(0, z, z̃) = Q0(z, z̃),
Q(t, 0, 0) = 0,

(25)

admits a unique solution, which is given by the expression:

Q(t, z, z̃) =

∫ t

0
β(t− s, z + s, z̃ + s)− β(t− s, s, s) ds+Q0(z + t, z̃ + t)−Q0(t, t). (26)

Next, we look for a change of variables such that the function C in the rescaled variables
solves a system of the form (25). This leads to our main theorem, which can be stated as follows.

Theorem 2.6. For each t ≥ 0, define ϕt : R2
+ → R×R+, by ϕt(z, z̃) = (y1(t, z, z̃), y2(z)), with

y1(t, z, z̃) :=

∫ z

0
δ(z + t− s) cosh(µ s)

cosh(µ z)
ds+ (z − z̃) cosh(µ(z + t))

cosh(µ z)
,

y2(z) :=
tanh(µ z)

µ
.

Let β(t, z, z̃) := γ(ϕt(z, z̃)) with γ defined in (22) and Q be defined by (26). Then, for all t ≥ 0
and (z, z̃) ∈ R2

+, the solution of (21) satisfies:

C(t, ϕt(z, z̃)) = Q(t, z, z̃), (27)

This result leads to an explicit expression for m(t), as stated below.

Corollary 2.7. Let Q be defined as in Theorem 2.6 and R(t, z) := Q(t, z, z). The mean fitness
in (6) is given by

m(t) = ∂zR(t, 0)− δ(t)2/2, (28)

or, more explicitly,

m(t) = −µ n
2

tanh(µ t)− 1

2
(Hδ(t)− δ(t))2 +R′0(t), (29)

with Hδ(t) := µ

∫ t

0
δ(u)

sinh(µu)

cosh(µ t)
du and

R′0(t) =
1

cosh(µ t)
(δ(t)−Hδ(t)) ∂1C0(ϕ0(t, t)) + (1− tanh2(µ t)) ∂2C0(ϕ0(t, t)). (30)
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The term −µ (n/2) tanh(µ t) in (29) corresponds to the dynamics of m(t) with a steady opti-
mum (δ ≡ 0), and is consistent with the results in [21, 24, 32]. The second term−1

2 (Hδ(t)− δ(t))2

is a sort of squared distance between the position of the optimum at time t, and a ‘weighted
history’ of δ for u ∈ (0, t).

The dependence of the dynamics of m(t) with respect to the initial phenotype distribution
clearly shows up in Corollary 2.7, through R′0(t). Let Cclonal be the solution of (21), with an
initial condition C0,clonal(z1, z2) = 0 corresponding to a clonal population at the optimum at
t = 0, i.e. with q0 a Dirac mass at x = 0 (the cumulant generating function associated with a
Dirac mass at x∗ is z1 x

∗
1−z2 ‖x∗‖2/2). Even though this initial data does not satisfy the previous

conditions (8)-(9) on q0, the function Cclonal can still be defined, at least locally, through the
equality (27). We denote by mclonal(t) the corresponding value of the mean fitness:

mclonal(t) = −µ n
2

tanh(µ t)− 1

2
(Hδ(t)− δ(t))2 .

Then, the mean fitness in (6) is given by

m(t) = mclonal(t) +R′0(t), (31)

with R′0 given by (30).
Another corollary of Theorem 2.6 gives a characterization of the variance of the fitness

distribution at any time.

Corollary 2.8. The fitness variance Vm(t) defined by (18) is given by

Vm(t) = ∂zzR(t, 0) +
δ′(t)

cosh(µ t)
∂z̃Q(t, 0, 0). (32)

Other moments of the distribution of fitness could be computed as well, based on the result
of Theorem 2.6. For instance, the third standardized moment of the distribution (skewness) is
given by the formula (87) in Appendix B.

2.4 Explicit expressions for m(t) and Vm(∞): some examples

In this section, we apply the general formula form(t) derived in Corollary 2.7 to several particular
forms of functions δ(t). Explicit but lengthy expressions for Vm(t) can also be derived from
Corollary 2.8. We only give here the formula for the asymptotic variance as t → +∞. These
results are left without proof, as they are straightforward consequences of formulas (29) and (32).

Optimum shifting with a constant speed. We make here the standard assumption (e.g.,
[1, 17]) of an optimum O(t) which moves at a constant speed.

Proposition 2.9. Assume that δ(t) = c t for some c ∈ R. Then the mean fitness is given by:

m(t) = −µ n
2

tanh(µ t)− c2

2µ2
tanh2(µ t) +R′0(t), (33)

with

R′0(t) =
c

µ

tanh(µ t)

cosh(µ t)
∂1C0(ϕ0(t, t)) + (1− tanh2(µ t)) ∂2C0(ϕ0(t, t))

and

ϕ0(t, t) =

(
c

µ2

(
1− 1

cosh(µ t)

)
,
tanh(µ t)

µ

)
.

8



Passing to the limit t→ +∞ in (33), we observe that

m(∞) = −µn
2
− c2

2µ2
,

is independent of the initial phenotype distribution. In the case c = 0 (steady optimum),
m(∞) = −µn/2. This quantity is the ‘mutation load’, i.e., the decrease in fitness (compared
to the optimum 0), due to mutations. When c 6= 0, the additional negative term −c2/(2µ2)
describes the ‘lag load’, which corresponds here to the decrease in fitness due to the shifting in
the optimum. We observe that the mutation parameter has opposite effects on the mutation
and lag loads: it tends to increase the mutation load and to decrease the lag load. This leads
to an optimum value µ∗ = (2 c2/n)1/3 which maximizes m(∞).

We recall that the growth rate of a population whose phenotype distribution satisfies (6) can
be described by r(t) := rmax+m(t), with rmax > 0 a fixed constant corresponding to the growth
rate of an optimum phenotype. Persistence of the population at large times is then equivalent
to r(∞) := rmax + m(∞) > 0 (see Appendix A). The results of Proposition 2.9 show that the
critical speed c∗ for persistence (r(∞) > 0 if c < c∗) or extinction (r(∞) ≤ 0 if c ≥ c∗) of the
population is given by:

c∗ = µ
√

2 rmax − µn. (34)

Note that the condition 2 rmax−µn ≥ 0 is necessary for the survival of the population in a fixed
environment.

A consequence of the results of [1] is that the critical speed satisfies c∗ = 2
√
−λ∞ µ2/2, with

λ∞ the principal eigenvalue of the operator ϕ 7→ −µ2/2∂xxϕ − (rmax − x2/2)ϕ in R, which is
given here by λ∞ = µ/2− rmax (principal eigenfunction: ϕ(x) = exp(−x2/(2µ))). Our formula
(34) is therefore fully consistent with the formula c∗ = 2

√
−λ∞ µ2/2 in [1].

Using Corollary 2.8, we also obtain an explicit expression for the limit Vm(∞) of Vm(t) as
t→ +∞:

Vm(∞) = µ2n

2
+
c2

µ
.

Thus, the variance of the fitness distribution increases with the speed c: a higher speed leads
to a flatter distribution. However, it is a nonmonotonic function of µ: contrarily to the case
of a fixed environment, Vm(∞) first decreases with µ, until a critical value which is reached at
µ = (c2/n)1/3, and then increases with µ.

Finally using the expression for the skewness (87) derived in Appendix B, we obtain that as
t→ +∞, the skewness converges to:

Skewm(∞) = −µ
3 n+ 3 c2

Vm(∞)3/2
.

This negative skewness implies that the distribution of fitness is asymmetrical, with a longer left
tail. The skewness becomes even more negative when the speed c is increased, which therefore
reinforces the asymmetry of the distribution.

Sub- and superlinear cases. We assume here that the position of the optimum O(t) is a
sublinear, or superlinear function of t: δ(t) = c tα, with α > 0, α 6= 1. The general formulas (28)
and (32) can be applied to derive explicit expressions for m(t) and Vm(t). As these expressions
are rather complex, we only summarize some asymptotic properties below.

Proposition 2.10. Assume that δ(t) = c tα for some c ∈ R∗ and α > 0.
(i) If α < 1, then m(t)→ −µn/2 and Vm(t)→ µ2 n/2, as t→ +∞.
(ii) If α > 1, then m(t)→ −∞ and Vm(t)→ +∞, as t→ +∞.
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Thus, if α < 1 (sublinear case), the lag load is equal to 0: at large times, the population
tends to be as well adapted as in the case of a steady optimum. On the other hand, if α > 1
(superlinear case) the lag load is infinite; this means that adaptation is not possible.

Periodically varying optimum. The case of an optimum O(t) with a periodic trajectory is
particularly relevant in applications, when a population faces an external factor which is itself
periodic (concentration of an antibiotic, temperature, . . . ). We consider here a particular case,
to illustrate the global shape of m(t) in such situations: O(t) oscillates between the two points
±δmax u ∈ Rn.

Proposition 2.11. Assume that δ(t) = δmax sin(ω t) for some ω ∈ R∗+ and δmax > 0. The
mean fitness is given by

m(t) = −µ n
2

tanh(µ t)− 1

2

(
δmax ω

ω2 + µ2

)2

(ω sin(ω t) + µ cos(ω t) tanh(µ t))2 +R′0(t), (35)

and the average value of m(t) over one period converges to

〈m∞〉 := lim
t→+∞

ω

π

∫ t+π/ω

t
m(s) ds = −µ n

2
− δ2

max ω
2

4ω2 + 4µ2
. (36)

Thus, asymptotically in time, the mean fitness m(t) becomes periodic with period π/ω.
Additionally, the formula (36) tells us that the average mean fitness at large times is a decreasing
function of the frequency ω/π: higher frequencies tend to impede adaptation. In a rapidly
oscillating environment, i.e. as ω → +∞, the average lag load converges to −δ2

max/4, which
means that the system behaves in average as if the phenotype distribution was at a distance
δmax from the optimum. Conversely, in a slowly oscillating environment, i.e. as ω → 0, the
average lag load is equivalent to −δ2

max ω
2/(4µ2); in this case, the system behaves in average

as in the case of a steadily moving optimum, with speed δmax ω/
√

2 (see Proposition 2.9).
Formula (36) also enables us to study the dependence of 〈m∞〉 with respect to the mutation
parameter µ: it is convex until the inflexion point µ = ω/

√
3 and then concave. At this inflexion

point, ∂µ〈m∞〉(µ = ω/
√

3) = −n/2+3δ2
max

√
3/(32ω). Thus, if −n/2+3δ2

max

√
3/(32ω) ≤ 0, the

average mean fitness 〈m∞〉 is a decaying function of µ; otherwise, if −n/2+3δ2
max

√
3/(32ω) > 0,

〈m∞〉 reaches a minimum for some value of µ in (0, ω/
√

3), and then becomes concave and
reaches a maximum for some larger value of µ. This type of dependence, with the occurrence
of an optimal mutation parameter (here, leading to a higher value of 〈m∞〉), has already been
described for a fluctuating environment in [10], based on numerical simulations (see their figure 2;
in their case, the mean population over one period is represented).

In [16], the same example (with n = 1) δ(t) = δmax sin(ω t) was inspired by an experiment
on the bacterial pathogen Serratia marcescens. The method in [16] is based on large time small
mutation limit, and therefore can only give an equivalent of m(t) at large times. Their work do
not focus on the mean fitness, but on the mean trait x(t) and variance v2(t) (the general theory
deals with n dimensions, but this particular example is in 1D):

x(t) :=

∫
R
x q(t, x) dx and v2(t) :=

∫
R
x2 q(t, x) dx− x(t)2.

They show that:

x(t) ≈ ε δmax
ω

sin(ω t− π/2) and v2(t) ≈ ε
√

2.

In our framework, in the case n = 1, the mean fitness is given by:

m(t) = −1

2

∫
R

(x− δ(t))2 q(t, x) dx = −1

2

(
v2(t) + x(t)2

)
+ δ(t)x(t)− δ(t)2

2
.
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Thus, their results can be used to compute an approached formula for m(t) :

m(t) ≈ −µ
2
− 1

2

(
δmax
ω

)2

(ω sin(ω t) + µ cos(ω t))2. (37)

We note that this is fully consistent with the large time asymptotics given by our formula (35),
in a small mutation regime (ω/(ω2 + µ2) is approached by 1/ω) and with n = 1.

Other forms of δ(t) could be considered as well, leading to more or less complex expressions
for m(t). For instance, with δ(t) = δmax sin2(ω t), m(t) is given by (29), with

Hδ(t) = δmax

[
1

2
− 1

8ω2 + 2µ2

(
2ω µ sin(2ωt) tanh(µt) + µ2 cos(2ωt) +

4ω2

cosh(µ t)

)]
, (38)

and the average value of m(t) over one period converges to

〈m∞〉 := lim
t→+∞

ω

π

∫ t+π/ω

t
m(s) ds = −µ n

2
− δ2

max ω
2

16ω2 + 4µ2
. (39)

Again, we observe that 〈m∞〉 is a decreasing function of the frequency ω/π. In light of for-
mulas (36) and (39), a natural conjecture is that higher frequencies always tend to impede
adaptation in periodically fluctuating environments. In the case of bounded domains, for equa-
tions of the form (7), theorem 1.2 in [10] shows that, for rmax large enough (so that persistence
occurs), the average value of the total population ρ(t) over one period converges as t → +∞
towards the principal eigenvalue λ1(ω) of the time-periodic operator ϕ 7→ ∂tϕ− µ2

2 ∆ϕ−r(t,x)ϕ,
and ρ(t) converges to a periodic function. Using the relationship (86) (Appendix A) between
ρ(t) and r(t), integrating over one period and passing to the limit t → +∞, we obtain that
〈m∞〉 = −λ1(ω)− rmax. Then, theorem 1.1 in [27] implies that λ1(ω) is an increasing function
of the frequency ω/π. Finally, this shows that in bounded domains, 〈m∞〉 is indeed a decreasing
function of the frequency. In our case, proving this result would require further investigation of
the general formula (28) of Corollary 2.7.

Shifting and periodically fluctuating optimum. Assume that δ(t) = δ1(t) + δ2(t), with
δ1(0) = δ2(0) = 0. Formula (29) implies that:

m(t) = −µ n
2

tanh(µ t)− 1

2
(Hδ1(t)− δ1(t) +Hδ2(t)− δ2(t))2 +R′0(t),

as Hδ is linear with respect to δ. Thus, we get:

m(t) = −µ n
2

tanh(µ t) + L1(t) + L2(t)− (Hδ1(t)− δ1(t)) (Hδ2(t)− δ2(t)) +R′0(t),

with

Li(t) := −1

2
(Hδi(t)− δi(t))

2

the lag associated with δi. Let us now consider the specific example of a periodically fluctuating
and shifting optimum. Combing the results of Propositions 2.9 and 2.11, we obtain the following
result.

Proposition 2.12. Assume that δ(t) = c t+δmax sin(ω t) for some c ∈ R, ω ∈ R∗+ and δmax > 0.
The mean fitness is given by

m(t) =− µ n
2

tanh(µ t)

− c2

2µ2
tanh2(µ t)− 1

2

(
δmax ω

ω2 + µ2

)2

(ω sin(ω t) + µ cos(ω t) tanh(µ t))2 (40)

− c

µ
tanh(µ t)

(
δmax ω

ω2 + µ2

)
(ω sin(ω t) + µ cos(ω t) tanh(µ t))

+R′0(t).

11



The average value of m(t) over one period converges to

〈m∞〉 := lim
t→+∞

ω

2π

∫ t+2π/ω

t
m(s) ds = −µ n

2
− c2

2µ2
− δ2

max ω
2

4ω2 + 4µ2
. (41)

The effect of the two simultaneous changes (constant speed shift and periodic oscillations)
is therefore not additive: we observe the emergence of an additional term that changes sign.
However, in average, over one period 〈m∞〉 is the sum of the mutation load and of the lag load
induced by each movement independently.

With the growth rate r(t) := rmax + m(t) and assuming that the population size satisfies
ρ′(t) = r(t) ρ(t) or ρ′(t) = ρ(t)(r(t) − ρ(t)) (as in Appendix A), we can compute the critical
shifting speed for persistence (by persistence, we mean that ρ(t) 6→ 0 as t → +∞). Proposi-
tion 2.12 shows that r(t) converges to a periodic function, thus persistence occurs if and only
if 〈r∞〉 := rmax + 〈m∞〉 ≥ 0 (the inequality is strict if ρ′(t) = ρ(t)(r(t) − ρ(t))). Applying
formula (41), we obtain the following formula for the critical shifting speed:

c∗ = µ

√
2 rmax − µn−

δ2
max ω

2

2ω2 + 2µ2
, (42)

provided that rmax is large enough so that 2 rmax − µn − δ2max ω
2

2ω2+2µ2
≥ 0 (otherwise persistence

never occurs). We observe that the critical speed decreases with the frequency and with the
amplitude of the periodic fluctuations.

3 Numerical computations

In this section, we check the validity of our results, (i) compared to the initial integro-differential
equation (4), and (ii) compared to stochastic individual-based simulations of a standard model
of genetic adaptation. With these two comparisons, we test the accuracy of the diffusion approx-
imation ((4) vs (6)) and the effect of neglecting the stochastic aspects of mutation and selection.
See Supplementary Material (S1) for some details on the numerical computation of the solution
of (4).

Description of a Wright-Fisher individual-based model (IBM) with moving opti-
mum. We assume a constant population size N . Under the assumptions of the Fisher’s geo-
metrical model, each individual i = 1, . . . , N is characterized by a phenotype xi ∈ Rn. Its relative
Malthusian fitness at time t (exponential growth rate) is given by (2), i.e., mi = −‖xi−O(t)‖2/2
and its corresponding Darwinian fitness is exp(mi) (geometric growth rate, a discrete time coun-
terpart of the Malthusian fitness). We assume non-overlapping generations of duration δt = 1.
Each generation, selection and genetic drift are jointly simulated by the multinomial sampling of
N individuals from the previous generation, each with weight given by their Darwinian fitnesses.
Mutations are then simulated by randomly drawing, for each individual, a Poisson number of
mutations, with rate U . We use a classic Gaussian FGM: each single mutation has a random
phenotypic effect dx drawn into a multivariate Gaussian distribution: dx ∼ N (0, λIn), where
λ > 0 is the mutational variance at each trait, and In is the identity matrix of size n × n.
Multiple mutations in a single individual have additive effects on phenotype.

Parameter values. In all cases, we take n = 3 and λ = 0.005. Based on arguments in [21, 32],
the WSSM (diffusion) approximation should apply for U & Uc := n2 λ/4, see Supplementary
Material (S2) for more details. We assume here that U = 10Uc (recall that µ =

√
U λ). Smaller

values of U are considered in Supplementary material (S2). In the individual-based model, we

12



assume an initially clonal distribution of the phenotypes, at the optimum 0; to be consistent
with this assumption, we take Q0 ≡ 0.

Numerical results. Fig. 2a depicts the trajectory of mean fitness when the optimum moves at
a constant speed. We observe a good agreement between the analytical result of Proposition 2.9,
the numerical value of m(t) given by solving (4) and the mean value of m(t) averaged over 103

realisations of the IBM. Note that the value of the speed c was chosen here such that the lag
load is equal to the mutation load.

The trajectories of mean fitness corresponding to periodically varying optimums are pre-
sented in Figs. 2b,c. Again, the theoretical formulas accurately describe the average dynamics
of the IBM and of the integro-differential equation (4). In particular, they capture the transient
dynamics of adaptation, before m(t) tends to become periodic. In Fig. 2c, the lowest value of
m(t) is reached during this transient stage, which means that extinction (or evolutionary rescue)
will mainly depend on the early adaptation of the population, and not on the ultimate periodic
behavior. In these plots, the parameter values are chosen such that the lag load averaged over
one period is approximately equal to the mutation load.

In Fig. 2d, we considered the case of a shifting and periodically fluctuating optimum, cor-
responding to the situation studied in Proposition 2.12. As expected, the trajectory of mean
fitness is not just a combination of the trajectories of Figs. 2a,b: the extra term

− c
µ

tanh(µ t)

(
δmax ω

ω2 + µ2

)
(ω sin(ω t) + µ cos(ω t) tanh(µ t))

in (40) tends to lower some fluctuations and to increase others, leading to minimum values of
m(t) much lower than expected by simply adding the trajectories in panels a,b.

Lastly, we tested the accuracy of the general formula (29) in the case of a stochastic moving
optimum. We assumed here that δ(t) was an Ornstein-Uhlenbeck process:

dδ(t) = −νδ(t) dt+ β dWt, (43)

with Wt the Wiener process. Given a realization of this process, the formula (29) can still be
used to compute the value of m(t) (though it requires a numerical evaluation of the integral in
Hδ). The results are presented in Fig. 3. Again, the dynamics of the mean fitness simulated
by the IBM are well-described by our theory. Note that all of the simulations were carried out
based on a single realization δ(t) of the Ornstein-Uhlenbeck process. The comparison between
Figs. 3 a) and b) illustrates the complex interplay between the environment and the mutation
rate: the same environment leads to very different dynamics of adaptation depending on U (or
equivalently µ).

4 Discussion

The approach developed in this paper led to an explicit characterization of the mean fitness and
variance associated with the solution of (6) under very general assumptions on the movement
of the optimum. Our results encompass in a single framework several examples that have been
recently treated in the literature, and are consistent with these anterior results.

As pointed out in [23], most experimental studies are by nature restricted to finite time
horizons. Contrarily to ‘traveling wave’, Hamilton-Jacobi, ‘Gaussian solution’ or spectral ap-
proaches, which deal with large time asymptotics, our framework leads to a description of the
full dynamics of the mean fitness, since the initial state t = 0, which is therefore particularly rel-
evant for the understanding of drug resistance. Besides, as illustrated in Section 3, the transient
dynamics can be very different from the large time dynamics, even in a periodically fluctuating
environment.
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(a) δ(t) = c t (b) δ(t) = δmax sin(ω t)

(c) δ(t) = δmax sin
2(ω t) (d) δ(t) = c t+ δmax sin(ω t)

Figure 2: Trajectories of mean fitness. Blue curve: theoretical value of m(t) (given by
Proposition 2.9 in panel a, by Proposition 2.11 in panel b, by formula (29) with Hδ given
by (38) in panel c and Proposition 2.12 in panel d). Black dashed curve: numerical value
obtained by solving the integro-differential equation (4); red circles: mean value of the mean
fitness, averaged over 103 replicate individual-based simulations (N = 104 individuals in panel
a; N = 103 individuals in panels b,c,d); pink shading: interval between the 0.025 and 0.975
quantiles of the distribution of m(t) obtained from the individual-based model; thin horizontal
red line: mutation load −µn/2; thin horizontal black line (panels b,c): asymptotic average value
of the mean fitness, 〈m∞〉 given by (36) and (39); green lines: δ(t). Parameter values: panel a:
c =

√
nµ3; panel b: δmax =

√
31λ and ω = µπ; panel c: δmax = 10

√
λ and ω = µπ; panel d:

same values as in panels a,b.
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(a) U = Uc (b) U = 10Uc

Figure 3: Trajectories of mean fitness with a stochastically varying optimum. Blue
curve: theoretical value of m(t) given by (29); red circles: mean value of the mean fitness,
averaged over 103 replicate individual-based simulations with N = 103 individuals; pink shading:
interval between the 0.025 and 0.975 quantiles of the distribution of m(t) obtained from the
individual-based model; thin horizontal red line: the mutation load −µn/2. We assumed here
that the position of the optimum was given by O(t) = δ(t) u, with u = (1, 0, 0) a unit vector in
R3. Green line: δ(t), a realization of the Ornstein-Uhlenbeck process (43), with ν = 0.01 and
β = 0.1.

As mentioned in the Introduction the most widely used version of the FGM assumes that the
Malthusian fitness decreases quadratically away from the optimum [31, 35]. Several empirical
tests showed that a deviation from the quadratic would actually lead to a lower fit of the data
(see [18] and fig. 5 in [30]). Thus, this assumption seems to be justified from a biological point
of view. From a mathematical viewpoint, extending our approach to more general phenotype to
fitness landscape model remains an interesting perspective. Being able to deal with anisotropic
mutation effects, as in [24] in the case of a fixed environment, could also lead to nontrivial
results regarding the interaction between the direction of the environmental change and the
type of anisotropy.

5 Proofs

5.1 Proof of Theorem 2.3

For any couple of functions f and g in L2(R × R−), we denote by 〈·, ·〉R×R− the usual inner
product on L2(R× R−):

〈f, g〉R×R− =

∫
R×R−

f(s1, s2) g(s1, s2) ds1 ds2.

Similarly, 〈·, ·〉Rn is the usual inner product on L2(Rn).
Let q(t,x) be the solution of (6) defined in Theorem 2.2 and M(x) : Rn → R × R− the

vector field defined by (14). For the sake of simplicity, for each t ≥ 0, we denote by qt(·) the
function x 7→ q(t,x). We consider T , the linear form defined over the Hilbert space L2(R×R−)
by:

T (ϕ) := 〈qt, ϕ ◦M〉Rn .
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First, we ensure that T is a well-defined continuous linear form. Let ψ ∈ L1(Rn). Thanks to a
change of variables, the following identity holds true:∫

Rn
ψ

(
x1,−

‖x‖2

2
, x3, . . . , xn

)
dx =

2

∫
E1,2

∫
En−2

ψ(y1, y2, . . . , yn)
1√

−2y2 − y2
1 −

∑n
i=3 y

2
i

dy3 . . . dyn

 dy1dy2, (44)

where:

E1,2 =
{

(y1, y2) ∈ R× R−/ − 2y2 − y2
1 ≥ 0

}
, and

En−2 =
{

(y3, . . . , yn) ∈ Rn−2/

n∑
i=3

y2
i ≤ −2y2 − y2

1

}
for (y1, y2) ∈ E1,2.

We will use this formula to show that qt(·)ϕ◦M(·) is a L1(Rn) function and that T is a continuous
linear form. Let ϕ ∈ L2(R×R−). The Cauchy-Schwartz inequality implies that, for any b > 0,:

|T (ϕ)| =
∣∣∣∣∫

Rn
qt(x)ϕ(M(x))dx

∣∣∣∣
≤

∣∣∣∣∣
∫
Rn
ϕ

(
x1,−

‖x‖2

2

)2

e−b‖x‖dx

∣∣∣∣∣
1
2
∣∣∣∣∫

Rn
qt(x)2eb‖x‖dx

∣∣∣∣ 12 . (45)

Using (13) we know that qt is exponentially bounded, and so is q2
t . Thus the last term of

the above inequality is finite. We can now deal with the other part. Applying (44) with
ψ(x) = ϕ(x1,−‖x‖2/2)2 exp(−b ‖x‖), we get∫

Rn
ϕ

(
x1,−

‖x‖2

2

)2

e−b‖x‖dx =

2

∫
E1,2

ϕ(m1,m2)2e−b
√
−2m2

∫
En−2

1√
−2m2 −m2

1 −
∑n

i=3 y
2
i

dy3 . . . dyn

 dm1dm2. (46)

Moreover, by a polar change of coordinates, we know that, for any y ≥ 0, and k ∈ N:∫
∑k
i=1 y

2
i≤y

1√
y −

∑k
i=1 y

2
i

dy1 . . . dyk =

∫ √y
0

1√
y − r2

Volk−1(
√
y)dr,

where Volk−1(s) is the volume of the ball of radius s in dimension k−1, that is Vk(s) = Ck−1s
k−1,

with Ck−1 a generic constant depending only upon the dimension k. Therefore,∫
∑k
i=1 y

2
i≤y

1√
y −

∑k
i=1 y

2
i

dy1 . . . dyk =
π

2
Volk−1(

√
y),

= Cky
k−1
2 .

Plugging this computation into (46), we have found∫
Rn
ϕ

(
x1,−

‖x‖2

2

)2

e−b‖x‖dx = Cn−2

∫
E1,2

ϕ(m1,m2)2e−b
√
−2m2(−2m2 −m2

1)
n−3
2 dm1dm2,

≤ Cn
∫
E1,2

ϕ(m1,m2)2dm1dm2

≤ Cn
∫
R×R−

ϕ(m1,m2)2dm1dm2,
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for some generic constant Cn that depends only on the dimension n. Using this estimate together
with (45), we get:

|T (ϕ)| ≤ Cq ‖ϕ‖L2(R×R−) ,

where Cq depends only on the bound on q established in (13) and on the dimension. Therefore,
T is a well-defined continuous linear form on L2(R× R−).

From then, the existence and uniqueness of a function pt ∈ L2(R× R−) satisfying

T (ϕ) = 〈pt, ϕ〉R×R−

for all ϕ ∈ L2(R × R−) is a straightforward application of the Riesz-Frechet representation
theorem, see for instance theorem 6.19 in [34]. Defining p(t, ·, ·) := pt for each t ≥ 0, the
regularity p ∈ C1(R+, L

2(R× R−)) is a straightforward consequence of the regularity of q. �

5.2 Proof of Theorem 2.4

Fix z1, z2 ∈ R × R+ and consider an increasing sequence (ϕk)k∈N of nonnegative functions in
C∞c (R× R−) satisfying:{

ϕk(m1,m2) = exp(z1m1 + z2m2), if m2
1 +m2

2 < k,
ϕk(m1,m2) = 0, if m2

1 +m2
2 > k + 1.

(47)

Applying Theorem 2.3, one gets∫
Rn
q(t,x)ϕk(M(x))dx =

∫
R×R−

p(t,m1,m2)ϕk(m1,m2)dm1dm2,

with M(x) = (m1(x),m2(x)) : Rn → R× R− defined by (14). Using the monotone convergence
theorem, we can pass to the limit k → +∞ on each side of the above equality. This yields:∫

Rn
q(t,x) exp

(
z1u · x− z2

‖x‖2

2

)
dx =

∫
R×R−

p(t,m1,m2) exp(z1m1 + z2m2)dm1dm2.

According to (13), q is integrable against exponential functions. Therefore, the left hand side is
finite (and positive, since q 6≡ 0), and so is the right hand side. Thus, the quantity

C(t, z1, z2) := ln

(∫
R×R−

p(t,m1,m2) em1 z1+m2 z2 dm1 dm2

)
,

is well-defined.
We now detail how to derive the equation (21) satisfied by C. First, differentiating (16) with

respect to time, we find that for any compactly supported test function ϕ ∈ C∞c (R× R−,R):

〈∂tp, ϕ〉R×R− = 〈∂tq, ϕ ◦M〉Rn .

Plugging in (6), the equation solved by q, for any t > 0, one has

〈∂tp(t, ·, ·), ϕ(·, ·)〉R×R− =
µ2

2
〈∆q(t, ·), ϕ(M(·))〉Rn + 〈q(t, ·)(m(t, ·)−m(t)), ϕ(M(·))〉Rn . (48)

We deal separately with each term on the right hand side of (48). First, for the Laplace operator,
we use a duality argument:

µ2

2
〈∆q, ϕ ◦M〉Rn =

µ2

2
〈q,∆(ϕ ◦M)〉Rn ,
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since ∆ is self-adjoint in L2(Rn). We can then write:

µ2

2
∆(ϕ ◦M) = (Aϕ) ◦M, (49)

with A such that for all (m1,m2) in R× R−,

A(ϕ)(m1,m2) = −µ2m2∂22ϕ(m1,m2) +
µ2

2
∂11ϕ(m1,m2)− µ2m1∂21ϕ(m1,m2)

− µ2n

2
∂2ϕ(m1,m2). (50)

With p defined by Theorem 2.3, we have:

µ2

2
〈∆q, ϕ ◦M〉Rn = 〈q, (Aϕ) ◦M〉Rn ,

= 〈p,A(ϕ)〉R×R− . (51)

Going back to (48), we notice that thanks to (15),

〈q(t, ·)m(t, ·), ϕ(M(·))〉Rn =

〈
q(t, ·)

(
δ(t)m1(·) + m2(·)− δ(t)2

2

)
, ϕ(M(·))

〉
Rn
,

which can be decomposed as

〈q(t, ·)m(t, ·), ϕ(M(·))〉Rn = δ(t) 〈q(t, ·),m1(·)ϕ(M(·))〉Rn + 〈q(t, ·),m2(·)ϕ(M(·))〉Rn

− δ(t)2

2
〈q(t, ·), ϕ(M(·))〉Rn .

We apply Theorem (2.3) three times, to get

〈q(t, ·)m(t, ·), ϕ(M(·))〉Rn =

〈
p(t,m1,m2),

(
δ(t)m1 +m2 −

δ(t)2

2

)
ϕ(m1,m2)

〉
R×R−

. (52)

To deal with the last part of (48), we first notice that:

m(t) = 〈q(t, ·),m(t, ·)〉Rn =

〈
q(t, ·), δ(t)m1(·) + m2(·)− δ(t)2

2

〉
Rn

= δ(t)〈p(t,m1,m2),m1〉R×R− + 〈p(t,m1,m2),m2〉R×R− −
δ(t)2

2
.

Again, the above equality involves Theorem (2.3), with ϕ = IdR×R− , which is made possible by
considering increasing compactly supported approximations of identity, and a uniform limit as
in (47). Thus,

m(t)〈q(t, ·), ϕ(M(·))〉Rn =

(
δ(t) m̂1(t) + m̂2(t)− δ(t)2

2

)
〈p(t,m1,m2), ϕ(m1,m2))〉R×R− , (53)

where m̂j is defined by m̂j(t) := 〈p(t,m1,m2),mj〉R×R− (j = 1, 2). Plugging (51), (52) and (53)
into (48), we find that

〈∂tp(t,m1,m2), ϕ(m1,m2)〉R×R− = 〈p(t,m1,m2),A(ϕ)(m1,m2)〉R×R− +〈
p(t,m1,m2),

(
δ(t) (m1 − m̂1(t)) +m2 − m̂2(t)

)
ϕ(m1,m2)

〉
R×R−

. (54)
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To be able to compute an equation on the cumulant generating function C defined by (20), we
first define the moment generating function, for all z1 ∈ R and z2 ∈ R+:

M(t, z1, z2) := 〈p,Ez1,z2〉R×R− with Ez1,z2(m1,m2) := exp(z1m1 + z2m2).

Applying the relationship (54) to the sequence (ϕk)k∈N defined by (47) and passing to the limit
k → +∞, we get:

〈∂tp(t, ·, ·), Ez1,z2(·, ·)〉R×R− =
〈
p(t,m1,m2), A(Ez1,z2)(m1,m2)

+
(
δ(t) (m1 − m̂1(t)) +m2 − m̂2(t)

)
Ez1,z2(m1,m2)

〉
R×R−

. (55)

With the explicit expression of A given in (50), we can compute ∂tM since

∂tM(t, z1, z2) = 〈∂tp(t, ·, ·), Ez1,z2(·, ·)〉R×R− .

We find,

∂tM(t, z1, z2) =

〈
p,−µ2m2z

2
2Ez1,z2 +

µ2

2
z2

1Ez1,z2 − µ2m1z2z1Ez1,z2 −
µ2n

2
z2Ez1,z2

〉
R×R−

+
〈
p,Ez1,z2

(
m2 − m̂2 + δ(t)(m1 − m̂1)

)〉
R×R−

. (56)

Moreover, for j = 1, 2,

〈p,mjEz1,z2〉R×R− = ∂jM(t, z1, z2) and m̂j(t) = 〈p,mj〉R×R− = ∂jM(t, 0, 0).

Therefore, (56) can be rewritten as

∂tM(t, z1, z2) =δ(t)
(
∂1M(t, z1, z2)−M(t, z1, z2)∂1M(t, 0, 0)

)
+ ∂2M(t, z1, z2)−M(t, z1, z2)∂2M(t, 0, 0)− µ2z1 z2∂1M(t, z1, z2)

− µ2z2
2∂2M(t, z1, z2) + µ2(z2

1/2− n z2/2)M(t, z1, z2).

Dividing this expression by M(t, z1, z2), and since C(t, z1, z2) = ln(M(t, z1, z2)), this shows that
C satisfies the equation in Theorem 2.4. �

5.3 Proof of Theorem 2.6

We begin with the proof of Proposition 2.5.
Proof. Let T > 0. For all t ∈ [0, T ] and z, z̃ ∈ [t− T,+∞)2 we define

W (t, z, z̃) = Q(t, z + T − t, z̃ + T − t)−Q(t, T − t, T − t).

First, we observe that:

∂tW (t, z, z̃) = (∂tQ− ∂zQ− ∂z̃Q)(t, z + T − t, z̃ + T − t)
− (∂tQ− ∂zQ− ∂z̃Q)(t, T − t, T − t). (57)

Using (25), we then obtain:

∂tW (t, z, z̃) = β(t, z + T − t, z̃ + T − t)− β(t, T − t, T − t).

19



Integrating between 0 and t, and noting that W (0, z, z̃) = Q0(z + T, z̃ + T )−Q0(T, T ), we get:

W (t, z, z̃) =

∫ t

0
β(s, z + T − s, z̃ + T − s)− β(s, T − s, T − s) ds+W (0, z, z̃),

which leads to:

Q(t, z + T − t, z̃ + T − t)−Q(t, T − t, T − t)

=

∫ t

0
β(s, z + T − s, z̃ + T − s)− β(s, T − s, T − s) ds+W (0, z, z̃). (58)

Computing this quantity at (z, z̃) = (t− T, t− T ) and using Q(t, 0, 0) = 0, we get:

−Q(t, T − t, T − t) =

∫ t

0
β(s, t− s, t− s)− β(s, T − s, T − s) ds+W (0, t− T, t− T ). (59)

Combining (58) and (59), we obtain:

Q(t, z + T − t, z̃ + T − t) =

∫ t

0
β(s, z + T − s, z̃ + T − s)− β(s, t− s, t− s) ds

+W (0, z, z̃)−W (0, t− T, t− T ), (60)

which implies that

Q(t, z, z̃) =

∫ t

0
β(s, z + t− s, z̃ + t− s)− β(s, t− s, t− s) ds+Q0(z + t, z + t)−Q0(t, t).

Conversely, it is straightforward to check that this expression solves (25), and the proposition
follows. �

In order to solve our main equation (21), we look for a function ϕt(z, z̃) = (y1(t, z, z̃), y2(z)),
with y1 ∈ C1(R3

+,R) and y2 ∈ C1(R+,R+), such that the function

Q(t, z, z̃) = C(t, ϕt(z, z̃)) (61)

satisfies a problem of the form (25). In that respect, we first establish some conditions on the
functions y1, y2.

Lemma 5.1. Assume that C is a solution of (21), and assume that y1 ∈ C1(R3
+,R) and y2 ∈

C1(R+,R+), satisfy, for (t, z, z̃) ∈ R3
+:

∂ty1 − ∂zy1 − ∂z̃y1 = −δ(t) + µ2 y1 y2,
∂zy2 = 1− µ2 y2

2,
y1(t, 0, 0) = 0, ∂ty1(t, 0, 0) = 0, y2(0) = 0,

(62)

then the function Q(t, z, z̃) defined by (61) satisfies (25), with β(t, z, z̃) = γ(y1(t, z, z̃), y2(z))
and Q0(z, z̃) = C0(y1(0, z, z̃), y2(z)).

Proof of Lemma 5.1. Let Q be defined by (61). Then, one can note that:
∂tQ(t, z, z̃) = ∂tC(t, ϕt(z, z̃)) + ∂ty1(t, z, z̃)∂1C(t, ϕt(z, z̃)),
∂zQ(t, z, z̃) = ∂zy1(t, z, z̃)∂1C(t, ϕt(z, z̃)) + ∂zy2(z)∂2C(t, ϕt(z, z̃)),
∂z̃Q(t, z, z̃) = ∂z̃y1(t, z, z̃)∂1C(t, ϕt(z, z̃)).

(63)
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Thus, Q satisfies (25), with β(t, z, z̃) = γ(ϕt(z, z̃)) if and only if

∂tC(t, ϕt(z, z̃)) = (∂zy1 + ∂z̃y1 − ∂ty1)∂1C(t, ϕt(z, z̃)) + (∂zy2) ∂2C(t, ϕt(z, z̃))
−(∂zy1 + ∂z̃y1)(t, 0, 0) ∂1C(t, ϕt(0, 0))− ∂zy2(0) ∂2C(t, ϕt(0, 0))
+γ(ϕt(z, z̃)).

(64)

Using (62), we just have to check that the coefficients in front of the differential terms in (64)
correspond to those in (21), computed at (t, ϕt(z, z̃)) to conclude the proof. Note that, at z = 0,
∂ty1 − ∂zy1 − ∂z̃y1 = −δ(t), and ∂ty1(t, 0, 0) = 0 thus implies that (∂zy1 + ∂z̃y1)(t, 0, 0) = δ(t).
�

Our goal is now to find some functions y1, y2, satisfying the conditions of Lemma 5.1. In
order to solve the system (62), we first note that

y2(z) = tanh(µ z)/µ (65)

satisfies the second equation in the system and the condition y2(0) = 0. Then, fix T > 0 and
define, for t ∈ [0, T ) and z, z̃ ∈ [t − T,+∞)2, h(t, z, z̃) := y1(t, z + T − t, z + z̃ + T − t). The
function h satisfies

∂th(t, z, z̃) = −δ(t) + µ2 h(t, z, z̃) y2(z + T − t), (66)

which can be solved explicitly. Namely, for any function B in C1(R2), a solution is given by:

h(t, z, z̃) = F (t, z + T − t)
(
B(z + T, z̃)−

∫ t

0
δ(s)F (−s, z + T ) ds

)
,

with

F (t, z) =
cosh(µ(z + t))

cosh(µ z)
.

This leads to the following expression for y1(t, z, z̃) = h(t, z + t− T, z̃ − z):

y1(t, z, z̃) = F (t, z)

(
B(z + t, z̃ − z)−

∫ t

0
δ(s)F (−s, z + t) ds

)
. (67)

The function B must be such that y1(t, 0, 0) = 0. We chose

B(z + t, z̃ − z) = z − z̃ +

∫ z+t

0
δ(s)F (−s, z + t) ds,

and finally get:

y1(t, z, z̃) =

∫ z

0
δ(z + t− s) cosh(µ s)

cosh(µ z)
ds+ (z − z̃)F (t, z). (68)

Finally, it is immediate to check that y2 and y1 respectively defined by (65) and (68) satisfy the
conditions of Lemma 5.1.

Now, let C ∈ C1(R+ × R× R+,R) be defined by (21), ϕt(z, z̃) := (y1(t, z, z̃), y2(z)) : R+ →
R × R+ and set Q(t, z, z̃) = C(t, ϕt(z, z̃)) for all t ≥ 0 and z, z̃ ∈ R2

+. Then, Lemma 5.1
implies that Q(t, z, z̃) satisfies (25) with Q0(z, z̃) = C0(ϕ0(z, z̃)) and β(t, z, z̃) = γ(ϕt(z, z̃)).
Proposition 2.5 implies that Q(t, z, z̃) is given by the expression (26). This proves the result of
Theorem 2.6. �
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5.4 Proof of Corollary 2.7

Set R(t, z) = Q(t, z, z). We have ∂zR(t, 0) = ∂zQ(t, 0, 0) + ∂z̃Q(t, 0, 0). Using (63), we observe
that

∂zR(t, 0) = (∂zy1 + ∂z̃y1)(t, 0, 0)∂1C(t, 0, 0) + ∂zy2(0)∂2C(t, 0, 0).

From (62), we have (∂zy1+∂z̃y1)(t, 0, 0) = δ(t) and ∂zy2(0) = 1. Finally, ∂zR(t, 0) = δ(t) ∂1C(t, 0, 0)+
∂2C(t, 0, 0), and using (23) we obtain the general formula (28) for m(t) :

m(t) = ∂zR(t, 0)− δ(t)2

2
. (69)

To derive a more explicit expression, we begin by observing that:

∂zR(t, 0) =

∫ t

0
(∂zβ + ∂z̃β)(t− u, u, u) du+R′0(t), (70)

and

(∂zβ + ∂z̃β)(t− u, u, u) = [(∂zy1 + ∂z̃y1)∂1γ(y1, y2) + ∂z y2 ∂2γ(y1, y2)] (t− u, u, u),

= µ2
[
y1(∂zy1 + ∂z̃y1)− n

2
∂z y2

]
(t− u, u, u).

(71)

Let us set

ỹ1(t, u) := y1(t− u, u, u) =
1

cosh(µu)

∫ u

0
δ(t− s) cosh(µ s) ds.

We have
∂uỹ1(t, u) = [−∂ty1 + ∂zy1 + ∂z̃y1](t− u, u, u),

thus,
[y1(∂zy1 + ∂z̃y1)](t− u, u, u) = [ỹ1 (∂uỹ1 + ∂tỹ1)](t, u). (72)

Using (62), and since y2(u) = tanh(µu)/µ, we get:

∂uỹ1(t, u) = δ(t− u)− µ ỹ1(t, u) tanh(µu), (73)

and differentiating ỹ1 with respect to t and integrating by parts, we get:

∂tỹ1(t, u) =
1

cosh(µu)

∫ u

0
δ′(t− s) cosh(µ s) ds,

=
1

cosh(µu)

[
δ(t)− δ(t− u) cosh(µu) + µ

∫ u

0
δ(t− s) sinh(µ s) ds

]
.

(74)

Combining (72), (73) and (74), we get:

[y1(∂zy1 + ∂z̃y1)](t− u, u, u)

= ỹ1

[
δ(t)

cosh(µu)
− µ ỹ1 tanh(µu) + µ

∫ u

0
δ(t− s) sinh(µ s)

cosh(µu)
ds

]
. (75)

Next, integrating by parts and using standard trigonometric formulas, we note that:∫ t

0

1

cosh(µu)
ỹ1(t, u) du =

∫ t

0

1

cosh2(µu)

∫ u

0
δ(t− s) cosh(µ s) ds du,

=
1

µ

[
tanh(µ t)

∫ t

0
δ(t− u) cosh(µu)du−

∫ t

0
δ(t− u) sinh(µu)du

]
,

=
1

µ2
Hδ(t),

(76)
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with

Hδ(t) := µ

∫ t

0
δ(u)

sinh(µu)

cosh(µ t)
du.

Similarly,∫ t

0
ỹ1(t, u)

[
−µ ỹ1(t, u) tanh(µu) + µ

∫ u

0
δ(t− s) sinh(µ s)

cosh(µu)
ds

]
du = − 1

2µ2
Hδ(t)

2. (77)

Integrating (75) between 0 and t, and using (76) and (77), we get:∫ t

0
[y1(∂zy1 + ∂z̃y1)](t− u, u, u) du =

1

µ2
δ(t)Hδ(t)−

1

2µ2
Hδ(t)

2. (78)

Using (71), we get:∫ t

0
(∂zβ + ∂z̃β)(t− u, u, u) du = δ(t)Hδ(t)−

1

2
Hδ(t)

2 − µ n
2

tanh(µ t), (79)

and coming back to (70), this shows that:

m(t) = −µ n
2

tanh(µ t)− 1

2
(Hδ(t)− δ(t))2 +R′0(t), (80)

with R′0(t) = (∂zQ0 + ∂z̃Q0)(t, t) = (∂zy1 + ∂z̃y1)(0, t, t)∂1C0(0, ϕ0(t, t)) + ∂zy2(t)∂2C0(ϕ0(t, t)).
This proves the formula (29).

Lastly, we note that

(∂zy1 + ∂z̃y1)(0, t, t) = −µ tanh(µ t) ỹ1(t, t) + ∂tỹ1(t, t),

and from formula (74),

(∂zy1 + ∂z̃y1)(0, t, t) =
1

cosh(µ t)

[
−µ tanh(µ t)

∫ t

0
δ(t− s) cosh(µ s) ds+ µ

∫ t

0
δ(t− s) sinh(µ s) ds+ δ(t)

]
=

µ

cosh2(µ t)

[∫ t

0
δ(t− s) (sinh(µ s) cosh(µ t)− sinh(µ t) cosh(µ s)) ds

]
+

δ(t)

cosh(µ t)

=
µ

cosh2(µ t)

[∫ t

0
δ(t− s) sinh(µ (s− t)) ds

]
+

δ(t)

cosh(µ t)

=
1

cosh(µ t)
(δ(t)−Hδ(t)) .

(81)

Finally, this yields:

R′0(t) =
1

cosh(µ t)
(δ(t)−Hδ(t)) ∂1C0(0, ϕ0(t, t)) + (1− tanh2(µ t)) ∂2C0(ϕ0(t, t)), (82)

with ϕ0(t, t) = (y1(0, t, t), y2(t)). This concludes the proof of Corollary 2.7. �

5.5 Proof of Corollary 2.8

In order to simplify the computations, we introduce in this section the function

ŷ1(t, z) := y1(t, z, z). (83)
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Notice that: 
ŷ1(t, z) =

∫ z

0
δ(z + t− s) cosh(µ s)

cosh(µ z)
ds

∂tŷ1 − ∂z ŷ1 = −δ(t) + µ2 ŷ1 y2,
ŷ1(t, 0) = 0, ∂tŷ1(t, 0) = 0,

(84)

and, finally with R defined by R(t, z) := Q(t, z, z),

R(t, z) = C(t, ŷ1, y2).

Then, from a straightforward computation, we get:

∂zzR(t, 0) = (∂z ŷ1(t, 0))2∂11C(t, 0, 0) + (∂zy2(0))2∂22C(t, 0, 0)

+ 2∂z ŷ1(t, 0)∂zy2(0)∂12C(t, 0, 0) + ∂1C(t, 0, 0)∂zz ŷ1(t, 0) + ∂2C(t, 0, 0)∂zzy2(0). (85)

Thanks to (84),

∂zzR(t, 0) = δ(t)2∂11C(t, 0, 0) + ∂22C(t, 0, 0) + 2δ(t)∂12C(t, 0, 0) + ∂1C(t, 0, 0)δ′(t).

Now coming back to the formula for the variance we established thanks to the CGF in (24),

Vm(t) = ∂zzR(t, 0)− ∂1C(t, 0, 0)δ′(t).

Next, from Theorem 2.6, differentiating with respect to z̃, we get:

∂z̃Q(t, 0, 0) = ∂1C(t, 0, 0)∂z̃y1(t, 0, 0).

Since ∂z̃y1(t, 0, 0) = − cosh(µt), we obtain the expression of the variance given in Corollary 2.8.

Appendix A: relationship between the equations (6) and (7)

Consider q(t,x) the solution of (6) and set r(t,x) = rmax +m(t,x), with rmax > 0 and m(t,x)
defined by (2). Define the ‘total population’ at time t as the solution of

ρ′(t) = ρ(t) (r(t)− ρ(t)), (86)

with

r(t) :=

∫
Rn
r(t,x) q(t,x) dx,

the mean growth rate in the population at time t. Then, setting n(t,x) := ρ(t) q(t,x) (the
population density) we observe that

∂tn(t,x) =
µ2

2
∆n+ n(t,x) (r(t,x)− ρ(t)), t > 0, x ∈ Rn.

Thus, if m(t) has a limit m(∞) as t→ +∞ (e.g., in the case of a linearly or sublinearly moving
optimum, see Propositions 2.9 and 2.10 (i)) the population size ρ(t) converges to rmax +m(∞).
In particular, large-time persistence is equivalent to rmax +m(∞) > 0.
Conversely, consider n(t,x) a positive solution of (7) with ρ(t) =

∫
Ω n(t,x) dx > 0 and r(t,x) ≤

rmax, with rmax a positive constant. Define q(t,x) = n(t,x)/ρ(t). Integrating the equation (7)
over Ω ⊆ Rn, and provided that

∫
Ω ∆n = 0 (which means that the mutations do not change the

total mass) we note that ρ(t) satisfies (86). Thus,

∂tq(t,x) = ∂tn(t,x)/ρ(t)−q(t,x) ρ′(t)/ρ(t) =
µ2

2
∆q+q(t,x) (r(t,x)−r(t)), t > 0, x ∈ Ω ⊆ Rn,

and finally, q solves an equation of the form (6), with m(t,x) = r(t,x)− rmax.
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Appendix B: Skewness

As the fitness satisfies (15), m(t,x) = δ(t)m1(x) + m2(x) − δ(t)2/2, the third central moment
M3(t) of the variable m(t,x) is equal to the third central moment of δ(t)m1(x) +m2(x). Let us
define

S(t, z) := C(t, δ(t) z, z), t ≥ 0, z ≥ 0.

The function S(t, z) satisfies:

S(t, z) = ln

(∫
R×R−

p(t,m1,m2)ez(δ(t)m1+m2) dm1 dm2

)
,

and therefore corresponds to the cumulant generating function of δ(t)m1(x) + m2(x). Its third
central moment is therefore given by: M3(t) = ∂zzzS(t, 0). The skewness of the distribution of
fitness is therefore given by the formula:

Skewm(t) =
∂zzzS(t, 0)

Vm(t)
3
2

.

By differentiating, one finds that

∂zzzS(t, 0) = δ(t)3∂111C(t, 0, 0) + 3δ(t)2∂112C(t, 0, 0) + 3δ(t)∂122C(t, 0, 0) + ∂222C(t, 0, 0).

Moreover, since ∂zzy2(0) = 0,

∂zzzR(t, 0) =δ(t)3∂111C(t, 0, 0) + 3δ(t)δ′(t)∂11C(t, 0, 0) + 3δ(t)2∂112C(t, 0, 0)

+ ∂222C(t, 0, 0) + 3δ(t)∂221C(t, 0, 0) + 3δ′(t)∂12C(t, 0, 0)

+ ∂zzz ŷ1(t, 0)∂1C(t, 0, 0) + ∂zzzy2(0)∂2C(t, 0, 0),

with ŷ1 defined by (83). Therefore, the skewness is equal to:

Skewm(t) =
∂zzzR(t, 0)

Vm(t)3/2

− 3δ(t)δ′(t)∂11C(t, 0, 0) + 3δ′(t)∂12C(t, 0, 0) + ∂zzz ŷ1(t, 0)∂1C(t, 0, 0) + ∂zzzy2(0)∂2C(t, 0, 0)

Vm(t)3/2
.

Next, straightforward computations yield

∂z̃z̃Q(t, 0, 0) = ∂11C(t, 0, 0) cosh(µt)2,
∂zz̃Q(t, 0, 0) = −(δ(t) + cosh(µ t))∂11C(t, 0, 0) cosh(µt)− ∂12C(t, 0, 0) cosh(µt)

−µ sinh(µt)∂1C(t, 0, 0),
∂zzzy2(0) = −2µ2,

∂zzz ŷ1(t, 0) = −2µ2δ(t) + δ′′(t).

Finally, one finds that

Skewm(t) =
1

Vm(t)3/2

[
∂zzzR(t, 0) + 2µ2∂zR(t, 0) + δ′′(t)

∂z̃Q(t, 0, 0)

cosh(µt)

+3δ′(t)
∂zz̃Q(t, 0, 0) + ∂z̃z̃Q(t, 0, 0)− µ tanh(µt)∂z̃Q(t, 0, 0)

cosh(µt)

]
. (87)
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