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From Discrete to Continuous Motion Planning

Nicolas Perrin

Abstract In this paper, we demonstrate an equivalence between a large class of dis-
crete motion planning problems, and piano mover’s problems, which we refer to as
“continuous motion planning problems”. We first prove that under some assump-
tions, discrete motion planning in d dimensions can be transformed into continu-
ous motion planning in 2d + 1 dimensions. Then we prove a more specific, similar
equivalence for which the number of dimensions of the configuration space does
not necessarily have to be increased. We study two simple cases where this theorem
applies, and show that it can lead to original and efficient motion planning algo-
rithms, which could probably be applied to a wide range of multi-contact planning
problems. We apply this equivalence to a simulation of legged locomotion planning
for a hexapod robot.

1 Introduction

After decades of research in motion planning, we now have plenty of tools to solve
the quintessential piano mover’s problem. Several sampling-based algorithms are
known to be very efficient in practice, such as PRM [13], RRT [17], etc. Some
methods have been improved in ordrer to get better convergence properties [12].
There exist also several libraries that contain state-of-the-art implementations of
these algorithms and can be used in almost any configuration space, as long as the
user defines the validity tests (i.e. collision checks) via the API. Examples include
OMPL [18] and KineoWorks(TM). There are also several algorithms for path opti-
mization ([7], [20]), and algorithms that take advantage of parallel architectures to
reduce the computation costs [19].
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On the other hand, some classes of motion planning problems have been much
less studied, and among them hybrid motion planning problems that have a contin-
uous component but whose output must be a finite sequence of configurations (we
call them “discrete motion planning problems”). A typical example is multi-contact
planning [2] where the desired output is a finite sequence of contact configurations,
two consecutive configurations differing by exactly one contact. In this paper we
consider a general class of such discrete motion planning problems, and prove that
they can be converted into continuous motion planning problems that are in essence
nothing else but the piano mover’s problem. More precisely, we first prove that
discrete motion planning problems in d-dimensional configuration spaces can be
converted into continuous motion planning problems in (2d + 1)-dimensional con-
figuration spaces. Then, we prove a more specific equivalence where an increase
of dimensionality is not compulsory, and study two basic examples where it can be
applied and leads to original motion planning algorithms. We then show that this
equivalence can be advantageously used in real applications, and in particular apply
it in simulation to plan the walking motion of a hexapod robot.

2 Notations and Definitions

We only consider metric configuration spaces, and denote by dist() their distance
functions. Let CS be a metric configuration space. Here are some important nota-
tions that we will extensively use:

e For X C CS we denote by X the interior of X, by X its closure, and by X¢ its
complement.

e For X C CS and s € CS we pose d(s,X) = inf{dist(s,s")|s’ € X }.

e While Z(CS) denotes the set of subsets of CS, we denote by Zx(CS) the set
of non-empty compact subsets of CS, and by RegOp*(CS) the set of non-empty
bounded regular open subsets of CS, i.e. the non-empty bounded open subsets
that are equal to the interior of their closure.

e We denote by dy() the Hausdorff distance on Z(CS). It turns FPk(CS) into a
metric space in its own right.

e For s € CS and r > 0, we denote by .#(s,r) the closed sphere of center s and
radius r, and by % (s,7) the open sphere of center s and radius r.

We non-ambiguously use the same notations for any metric space other than CS.

Definition 1 (uniformly followable functions).
We say that a function X : CS; — RegOp*(CS>) is “uniformly I"-followable” for
I" > 0 if it verifies the three following properties:

1. There exists 0 < y < I" such that Vs € CSy, ¥(s4,55) € X(s5)2, dist (sq,5p) < 7.

2. The function s — X(s) is continuous on CS; w.r.t. the Hausdorff metric on
Pk(CS,), and the function (s,s') — d(s,X(s')¢) is continuous on CS? (on CS?
we use the distance disteo((sq,50;), (Sﬁ,sb)) = max(dist(sa,sﬁ),dist(s'a,sb))).
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3. For all 1 > 0, there exists A > 0 such that ¥(s,s') € CS?,dp(X(s),X(s')) < A
implies that X (s) N X (s") is non-empty and dp (X (s),X(s) N X(s')) < 7.

Common functions that map elements of a metric configuration space to geomet-
ric shapes in another configuration space are often uniformly I"-followable. This
property can be seen as a form of uniform continuity.

3 Problem Definition and Related Work

We first define the class of continuous motion planning problems. As we previously
mentioned, we are interested in problems that are in essence nothing but the piano
mover’s problem, i.e. problems for which classical sampling-based algorithms (e.g.
PRM, RRT) readily apply. In particular, we do not let the possibility of adding non-
holonomic constraints, or allowing only curvature-bounded paths, etc. So, let CS be
a metric configuration space and let dist () be its distance function. The property C()
defines the notion of collision-freeness, and the free space F.S = {s € CS|C(s)} is
assumed to be an open subset of CS.
Continuous motion planning problems are defined as follows:

Definition 2 (continuous motion planning problems).

INPUT: CS, C(), s; € FS and s/ € FS.

OBJECTIVE: find a continuous path (s()),e[0,1) such that V¢ € [0, 1], C(s(t)) (we
call “valid” such a continuous path), and such that s(0) = s; and s(1) = 5.

We will also consider slight variants of these problems where then initial and
final configurations are not fixed but must simply belong to some sets.

Now, for discrete motion planning, instead of continuous paths the outputs are
finite sequences of configurations: the motion is abrupt between a configuration and
the next one. Configurations must still be collision-free, but there is an additional
relation R() that defines a relationship between consecutive configurations. Such
discrete motion planning problems arise in particular when simplified models are
used to solve hybrid motion planning problems, i.e. problems that have both contin-
uous and discrete aspects. For example, in footstep planning for humanoid robots,
the motion of the robot is continuous, but the sequence of contacts with the ground
is discrete. To make the problem easier we can use a simplified model in which the
feasibility of a sequence of footsteps is not directly related to the actual continuous
motion of the robot. In that case, R() is be the relation that defines which next steps
are feasible.

Here is our general definition of discrete motion planning problems:

Definition 3 (discrete motion planning problems).

INPUT: CS, C(), R(), si € FS and 57 € FS.

OBJECTIVE: find a finite sequence of configurations (si,s2,...,s,) such that
Vke{l,...,n—1}, we have C(sg), C(sk+1), and R(sg,sx+1) (we call “valid” such a
finite sequence), and such that so = s; and s,, = s7.
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The purpose of this paper is to make a bridge between these two classes, from
discrete to continuous motion planning problems.

There is a lot of related work, but the goal is often to transform a continuous mo-
tion planning problem into a discrete one. The simple fact that polygonal chains can
approximate arbitrarily closely any continuous path can already be seen as a sim-
ple equivalence result that has for consequence the probabilistic completeness of
most sampling-based algorithms for the piano mover’s problem. A similar result for
more complex problems is the small-time local controllability property [16] which
allows to solve problems that require continuous solutions by looking for discrete
sequences of small motions, which can for example belong to a finite collection
of motion primitives [3]. Another bridge from continuous to discrete problems con-
cerns collision checks: it has been shown that checking the validity of configurations
along a continuous path can be done in a sound way without necessarily having to
perform an infinite number of checks [6]. In any case, it is compulsory to make
problems discrete if one wants to solve them with computers.

The objective of the present paper, i.e. transforming discrete problems into con-
tinuous ones, is much less common, but we can mention [1] where a reduction prop-
erty shows that for some class of manipulation problems, the existence of a solution
path with discrete “grasp” and “release” events is equivalent to the existence of a
path where the grasp is continuously modified. This kind of equivalence can be es-
pecially useful when the hybrid nature of a problem makes it difficult to be solved.
For example, in the problem of footstep planning for humanoid robots, the relation-
ship between a footprint and the next one is continuous, but it is a discrete sequence
of footprints that must be found. It is not easy to design an algorithm that would
deal with both continuous and discrete aspects of the problem, and that is why the
standard approach is to make the problem completely discrete by deciding in ad-
vance on a finite set of possible steps ( [15], [4]). Some orthogonal approaches try
to make the problem completely continuous. For example in [11] and [5], the robot
first slides its feet on the ground. In both approaches it is shown that the continuous
motions can always be transformed into finite sequences of steps, so the approaches
are sound. Unfortunately, they are not complete: if the robot has no other choice
but to step over some obstacles a solution can never be found. In [22], a sound and
complete approach is proposed for a specific 2D walking robot whose discrete se-
quences of footsteps are produced from continuous paths. It is also used in [21] for
more complex footstep planning. Basically, the result shown in [22] is a particular
case of a more general theorem that we state in the present paper, and which can
probably have many applications other than footstep planning.

Several algorithms have already been proposed to solve hybrid motion planning
problems such as multi-modal or more specifically multi-contact motion planning,
and it would be interesting to compare their efficiency to that of the algorithms based
on the equivalence proposed in the present paper. In multi-modal motion planning,
a finite or discrete number of modes correspond each to a submanifold of the config-
uration space, and the planner must choose a discrete sequence of modes as well as
continuous single-mode paths through them. A general algorithm with good conver-
gence properties has been introduced in [9]. It combines a graph search algorithm to
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find the sequence of modes, together with probabilistic roadmaps to plan the single-
mode paths.

4 From Discrete Motion Planning in 4 Dimensions to Continuous
Motion Planning in 2d + 1 Dimensions

In this section we demonstrate a quite general theorem that shows a strong rela-
tionship between discrete and continuous motion planning problems as we have de-
fined them in the previous section. Our goal is to prove that for an arbitrary discrete
motion planning problem (with just a few assumptions), it is possible to define an
equivalent continuous motion planning problem. So, let us consider a discrete mo-
tion planning problem in an d-dimensional metric configuration space CS, defined
by the collision-freeness property C(), the relation R() and initial and final con-
figurations s; and sy. We make only 3 not so restrictive but important assumptions
related to the regularity of R():

1. Ris symmetric: R(sq,sp) = R(sp,Sq4)-

2. The sets R(s) = {s' € CS|R(s,s’)} are path-connected: Vs € CS, ¥(s4,s;) € R(s)?,
there exists a continuous path inside R(s) from s, to sp.

3. s+ R(s) is a uniformly I"-followable function from CS to RegOp*(CS), for some
I >0.

Under these assumptions, we prove that we can always define an equivalent con-
tinuous motion planning problem. To do so, the key is to define a new configuration
space CS and a new notion of collision-freeness C(). CS is simply CS2 x (0,I'), i.e.
a metric space of dimension 2d + 1. The definition of C () is a bit more complex.

Definition 4 (C()).
C(s,s',p) is verified if and only if the two following properties are verified:

1. The set A(s,s',p) = R(s) N (s, p) has a non-empty intersection with the free
space: Jsq € A(s,s’,p)|C(s¢). Note that the function (s,s',p) — A(s,s’,p) is
continuous.

2. The set B(s,s’,p) = {sp, € CS|R(sp) D A(s,s’,p)} has also a non-empty intersec-
tion with the free space. Note that we always have s € B(s,s’,p).

Obviously, verifying the property C () might be much more difficult than verify-
ing C(), but we will discuss this later. We first demonstrate the following theorem:

Theorem 1. The discrete motion planning problems in CS defined by C() and R()
are equivalent to the continuous motion planning problems in cS defined by c (): for
any initial and final configurations s; € CS and sy € CS, there exists a valid discrete
sequence of configurations from s; to sy if and only if there exists a continuous path

((6))rcion €CS such thar ¥t € [0,1],C(v(1)), and si € B(v(0)), and s; € A(v(1))
orsy € B(v(1)).
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Section 4.1 and Section 4.2 are dedicated to the proof of each implication of this
equivalence, but first we state the following lemma (the proof is straightforward and
not given here):

Lemma 1. Let Y : [0,1] — RegOp*(CS) be a function such that t — Y (t) is con-
tinuous on [0,1], and let k¥ : CS x [0,1] = R be a continuous function. Then
t — sup{x(s,t)|s € Y(¢)} is continuous on [0,1].

4.1 From a valid discrete sequence in CS to a valid continuous path
in CS

Theorem 2. If there exists a valid sequence (s1 = s;,52,...,5, = sy) in CS, then

there exists a valid continuous path (v(t))c(o,1) in CS such that v(0) is of the form
(s1,52,p), and v(1) of the form (sp—1,8n,P) OF (Sn,Sn—1,P)-

Proof. We prove this implication by induction on r, the size of the valid sequence.
For n = 2 the result is obvious since for any 0 < p < I" we have s, € A(s1,52,p),
and, A(sy,s2,p) being a subset of R(s;), we have also s; € B(s1,s2,p). Hence, the
stationary path such that Vz € [0,1],v(¢) = (s1,s2,p), is valid.

Let us now assume that the result is true for any sequence of size n, and consider
. . ~10,1
a valid sequence of size n+ 1: (s1 = s;,51,...,Sn+1 = 5¢). Let (v(t));e0,1) € CS[ ]

be a valid path such that v(0) = (s1,s2,P0), and v(1) = (sp—1,84,01) or v(1) =
(Snasn—lapl)o

First, we suppose that v(1) = (s,—1,8,,P1)-

We have s,_1 € R(s,) and 5,11 € R(s,). Besides, R(s,) is path-connected so
there exists a continuous path u : [0,1] — CS from s,_; to s,4+1 inside R(sy).
For any ¢ € [0,1], R(u(#)) is an open set that contains s,. Since s — R(s) is uni-
formly I'-followable, ¢ — d(s,,R(1(2)€) is continuous on [0, 1]. Besides, we al-
ways have d(s,, R(tt(¢)¢) > 0. Thus, we deduce that there here exists 0 < &, < I
such that Vr € [0,1], R(u(1)) D -7 (sp, Emin). First, we move continuously from
(Sn—1,5n,P1) tO (Sp—1,8n,Emin) (this is a valid path). Then, we follow the path
U to move continuously from (s,—1,51,Emin) tO (Snt1,Sn, Emin). Along this path
any state (L(),Sn,Emin) is such that A(W(2),sn, Emin) = j(sn,ém,-n) C R(sp—1) N
R(su+1), and thus we have s, € A(U(t), 5u, Emin)» Sn—1 € B(U(2), 50, Emin), and s, €
B(u(t),8n,Emin). As a result, the path is valid. We deduce that appending these two
paths to (v(t)),c[o,1) gives us a valid continuous path from (s1,52,00) t0 (S5-+1,52; Emin)-
This reasoning is illustrated in Fig. 1.

We now suppose that v(1) = (su,85—1,P1)-

For &, > 0 close enough to I', we have Vs € R(sy,),A(sn, S, Enax) = R(sy). First,
we move continuously from (sy,s,—1,01) t0 (5,511, Emax) (this is a valid path).
Then, we follow a path inside R(s,) to go from (s,,Sn—1,Emax) 10 (Sn,Sns15 Emax)-
Along this path, any element (s,,s, &y ) is such that A(sy, s, Epax) = R(s,), which
contains both s,_; and s, 1, and such that s, € B(sy, s, &nax). Therefore the path is
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—
Sn41
° . L]
R(sn)— s S\2p1
. \, h S"‘s2£min
\ .7
//¢ A(Sn—hsnafmin)
A(Sp—1,5n,p1)
n—1
B(sn—hsnwpl) \ \
R(sp—1) R(Snfl)

Fig. 1 We illustrate how to go continuously from v(1) = (sy—1,5n,01) t0 (Spt1,Sn,Emin) With
a valid path. When decreasing p, the size of B(s,—1,s,,p) increases, and when p tends to
zero, B(s,—1,sn,p) “converges” towards R(s,). For some value &,;,, we not only have s, €
B(sp—1,5n,Emin), we have s,1 € B(U(t),5n,Emin) for all configurations (1(¢) along the path from
Sn—1 tO Sp+1. As a result, the continuous path (v/(¢)) from v(1) t0 (Sy+41,5n, Emin) is such that at all
time, A(V/(¢)) contains s,, which is collision-free, and B(v/(r)) contains either s, or 5,1, which
are both collision-free, and thus C(V/(¢)) is verified. As a consequence, the path is valid.

valid (cf. Fig. 2), and appending this path and the previous one to (v(¢))c(o,1] gives
us a valid continuous path from (s;,s2,00) to (Sn,Sn+1,Emin)- That concludes the
demonstration of Theorem 2. O

7
.
‘ %
intl,'\ 201 ¢"/’
R(s,— \ /
($n-1)— ! \ R(sn-1)— |
.
\ n—l/,‘—' i \
Y - s'n‘\
\ A(smsn—lapl) \\
N
B(Sn»sn—l,pl) R(S") ~

B(snv Sn—1; émaa:)

R(Sn) = A(S”, Sp—1; émam)

Fig. 2 We illustrate how to go continuously from v(1) = (sy,5,—1,01) t0 (Sn,Snt1,Emax) With
a valid path. When increasing p, the size of A(s,,s,—1,p) increases, and at some point it be-
comes equal to R(s,). For p = &,,.x, we even have: Vs € R(sy), A(sn,s,p) = R(sn). It follows that
we can first go from v(1) to (sp,5y—1,Emax) With a valid path, and then from (s,,s,—1,Emax) to
(SnySnt1,Emax ), again with a valid path.
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4.2 From a valid continuous path in CS to a valid discrete sequence
in CS

—~—[0,1
Theorem 3. If there exists a continuous path (v(t))cj0,1] € CS[ ! such that ¥t €

[0,1], C(v(t)), and s; € B(v(0)), and sp € A(v(1)) or sy € B(v(1)), then there exists
in CS a valid finite sequence of configurations from s; to sy.

Proof. Letus write: v(t) = (sq(t),s5(t),p(t)).
For any collision-free configuration s € CS and 7 € [0, 1] we define:

dops(s,t) = min(min{dist(s,s")|s' € FS}, min{dist(s,s')|s’ € j(sﬁ (#),p(1))})

It can be verified that (s,2) — d,ps(s,?) is a continuous function on CS x [0, 1]. We
know that # — R(sq(t)) is continuous on [0,1]. Using Lemma 1, it follows that 7 —
Sops(t) = sup{d,ps(s,t)|s € R(sg(2))} is also continuous on [0,1]. Since V¢ € [0,1],
C(v(t)), we can deduce that Vr € [0,1], 8,ps(¢) > 0. As a result there exists Ayps > 0
such that V¢ € [0, 1], 8yps () > Aops-

Since ¢ — v(¢) is uniformly continuous on [0, 1], and s + R(s) is uniformly I"-
followable, there exists 177 > 0 such that:

V(t,t') €[0,1], ]t —'| <M = du(R(sa(t)),R(sa(t)) NR(sa (1)) < §Aobs,
with R(sq (1)) NR(s¢(t")) non-empty.

There also exists 172 > 0 such that V/(z,7) € [0, 1], |t —1'| < n2 = dist (s (), 55(t')) <
*Aops, and V(1,1) € [0, 1], |t —#'| < 1Mo = |p(t) — p(')] < §Aops- Let N be a positive
integer such that 1/N < min(n;,12).

We now consider v(0/N),v(1/N),...,v(N/N) and try to construct a valid se-
quence (81,52, ..,52n+1) such thats; € B(v(0)) and Vi€ {1,...,N}, s2; €A(v(i/N))
and 52,11 € B(v(i/N)). We pose s; = s; € B(v(0)). Now, let us assume that we have
been able to construct such a sequence up to sy with 0 < k < N. We try to con-
)

struct spp+2 and sy;13. Let us write: A( % ) sa,sﬁ,p) and A( (k+1)) =
A(six,s;},p’). We have:

dist(sﬁ,sb) < %A,,bs and |p —p'| < %A,,;,X and dy (R(sq),R(s) NR(s),)) < éA()hs

There exists s collision-free in R(sq) such that d,ps(s,k/N) > lebS > 0. s belongs
to R(sq) N (sp, p) = A(v(k/N)). We have dm(s 5p) < P — $Aops and:

dist (s, s ) <p- Obs—&—dlst(sﬁ s ) <p- 0bs+ LAops <P —|p—p'| = 2 Aps
dzst(s Y ) < p Aops

Besides, dy (R(sq),R(sq) ﬂl?(sﬁx)) < %Aobs. Therefore, there exists sn € R(s¢) N
R(s},) such that dist (sn,s) < A,,;,‘ Since 3Aops < A,,;,‘, sn 1s necessarily collision-
free. We also have dzst(sm,sﬁ) < p' — 2 Ayps and dtst(sm,sﬁ) < p—2A,ps. We de-
duce that s is a collision-free conﬁguratlon that belongs to A(v (k/N NNAW((k+
1)/N)). Since we have sy € B(v(k/N)), it follows that sn € R(s2¢1). Therefore,
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we can set sp;17 = sn. For 5543, we can take any collision-free configuration inside
B(v((k+1)/N)).

By iteration, we can obtain a valid sequence (s; = s;,52,...,5n+1). However,
at this point spy41 is not necessarily equal to sy. But soy41 € B(v(1)) and soy €
A(v(1)).If sp € B(v(1)), we have R(say, s7) and thus we can set soy41 = s, while if
sy €A(v(1)) we have R(san41,5y), and thus we can add a new configuration soy 42 =
s¢. The sequence constructed is valid (we illustrate its construction in Fig. 3), and
this concludes the demonstration of Theorem 3 as well as the demonstration of
Theorem 1. O

F'S¢ (obstacles)

Fig. 3 From a valid continuous path to a valid sequence.

What shows Theorem 1 is that a large range of d-dimensional discrete motion
planning problems can be converted into equivalent (2d + 1)-dimensional contin-
uous motion planning problems. This result is interesting in itself, and might have
a wide scope of potential applications, but because of the curse of dimensionality
which particularly affects sampling-based motion planning algorithms, using such a
conversion to actually solve discrete motion planning problems might be convenient
but not be very efficient. In the next section, we show that with different assumptions
on the relation R(), it is possible to obtain a similar equivalence without necessarily
having to increase the dimensionality of the configuration space.

5 More Specific Reductions With Less Increase of
Dimensionality

In this section, we relax the previous assumptions on R(). However, we assume that
R() is reflexive, and that there exists another metric configuration space 2 and a
function f : Q — RegOp*(CS) such that the four following properties are verified:
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1. f is uniformly I"-followable for some I" > 0.

2. Yo € Q, f(¢) is such that ¥(s,s') € f(9)?, R(s,s").

3. ¥(s,s') € CS? such that R(s,s'), there exists ¢ € Q such that s € f(¢) and s’ €
f(o).

4. Y(s,s',s") € CS? such that R(s,s’) and R(s',s""), and V¢pp € © such that s € f(¢p)
and 5’ € f(@), there exists a continuous path from ¢y to a configuration @
verifying s” € f(¢;), such that for any configuration ¢ along this path, we have
s' € f().

We define yet another notion of collision-freeness Cg ():

Definition 5 (Cq()). ¢ € Q verifies Cq (@) if and only if the intersection between
f(@) and the free space is non-empty, i.e. 3s € f(¢@) such that C(s).

We have the following equivalence:

Theorem 4. There exists a valid finite sequence from s; to sy in CS if and only if there
exists a continuous path (X(t)),c(o,1) € QO such that s; € f(x(0)), sy € f(x(1)),
and V't € [0,1], Cq(x(2)).

The next two sections are dedicated to the proof of each implication of this equiv-
alence, while in sections 5.3 and 5.4, we study two examples of discrete motion
planning problems where Theorem 4 applies.

5.1 From a valid discrete sequence in CS to a valid continuous path
in Q2

Theorem 5. If there exists a valid sequence (S| = $i,52,...,85 = sf), then there
exists a valid continuous path (X(t))e(o,1) such that s1 € f(x(0)), s2 € f(x(0)),
sn—1 € f(x(1)) and s, € f(x(1)).

Proof. We prove this implication by induction on #, the size of the valid sequence.
For n = 2, we have R(s;,sr), and there exists ¢ € Q such that s; € f(¢) and 57 €
f(@). The stationary path such that V¢ € [0,1], x(¢) = @, is valid.

Let us now assume that the result is true for any sequence of size n > 2, and
consider a valid sequence of size n+1: (s1 = $i,52, ... ,5p+1 = 5y). Let (X(¢))rejo,1] €
Q01 be a valid path such that so € f(x%(0)), s1 € f(x(0)), 5,1 € f(x(1)) and
sn € f(x(1)). We have R(sp—_1,s,) and R(sy,Sn+1), so there exists a continuous path
(1)) sepo) € Q1 from x(1) to a configuration @y € Q verifying 5,11 € f(¢y),
such that for any configuration ¥ along this path, we have s, € f(¢), and thus
Ca(¥). Appending this path to the path (x(t)),c[o,1) gives us a valid continuous
path, and this conludes the demonstration of Theorem 5. 0O
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5.2 From a valid continuous path in (2 to a valid discrete sequence
in CS

Theorem 6. If there exists a valid continuous path (X(t))efo,1] € QO with 5; €
x(0) and sy € x (1), then there exists a valid sequence (51 = 8i,82,...,5, = §f).

Proof. The demonstration is a bit similar to the one of Theorem 3, and we give
here only a sketch of the proof. Using the fact that f is uniformly I"-followable,
we can show that for any € > 0, there exists N € N* such that the sequence
(x(0/N),x(1/N),...,x(N/N)) verifies the following property: Vk € {0,...,N —
1}, for any configuration s € f(x(k/N)), the sphere . (s,€) intersects the non-
empty set f(x(k/N))Nf(x((k+1)/N)). For € small enough, we can show that
vt € [0, 1], there exists s, € f(x(t)) collision-free and such that the sphere .%(s;, €)
is entirely inside F'S. We thus deduce that all the sets f(x(k/N))N f(x((k+1)/N))
have a non-empty intersection with F'S. Using the property that two elements s, s’
of the same set f(x(r)) are always such that R(s,s’), we can construct a valid se-
quence (s1,52,...,Sn+2) such that s; = s;, sy42 = s, and Vk € {2,... , N+ 1}, we
have s, € f(x((k—2)/N))Nf(x((k—1)/N). Such a construction is illustrated in
Fig. 4, and it concludes the demonstration of Theorem 6. O

Fig. 4 From a valid continu- J(X(N/N)) FS¢ (obstacles
ous path (%(t))epo,1) € 21 FOX(/N)) \ (obstacles)
to a valid finite sequence of

configurations in CS. F(x(0/N))

SN+2 = Sf

\

.
S1 =8

5.3 Flea motion planning

First, let us consider the simple example of flea motion planning, which has been
introduced in [21] to illustrate the method used in [22] and [21] to convert footstep
planning into classical continuous motion planning. Compared to the version pre-
sented in [21], we make some small modifications in the definition of the problem
so as to fit the premises of our theorems (which could also be slightly modified in
order to directly apply to the version of [21]).

The flea is a point in a 2D environment, and thus we use CS = R? as the config-
uration space. There are obstacles in this 2D environment such that the free space
FS = {s € R?|C(s)} is an open set. The flea can make jumps in any direction and
of any length strictly less than /,,, > 0. The goal is to find a sequence of jumps
from a location (x4,y4) to a location (xp,yg) while avoiding the obstacles. This
problem clearly fits our definition of discrete motion planning problem, with, for
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(s,8') € (R?)?, R(s,s') < dist(s,s') < Lya. This relation R() is reflexive. Let us
consider the function f : R? — RegOp*(R?) such that f(s) = .7 (s, ). It can be
verified that f is uniformly 2/,,,.-followable. Besides, the other properties required
by Theorem 4 are also verified:

e Vs € R?, any two points s', s” in f(s) are such that dist(s’,s") < Lyay, and there-
fore we have R(s',s").

e For any two points s, s’ verifying R(s,s’), there exists an open disk of radius
l"’% containing both points, and thus there exists s” € R? such that s € f(s”) and

s' e f(s").
e Asexplained in Fig. 5 the fourth property required for Theorem 4 to apply is also
verified.

Fig. 5 For any three points
s, ', s" verifying R(s,s’)
and R(s',s"), and any ¢ €
R? such that s € f(¢p) and
s' € f(@o), there exists a
continuous path from ¢y to
a configuration @ verifying
s” € f(¢1), and such that any
configuration ¢ along this
path verifies s’ € f(¢).

As a consequence of these properties, we can apply Theorem 4. This means that
trying to solve the flea motion planning problem is equivalent to trying to find a valid
continuous path for the disk of radius l"’% It turns out that this equivalence gives
a very efficient algorithm to solve the flea motion planning problem. Indeed, the
new notion of collision-freeness for the disk is the following one: a configuration
of the disk is collision-free if and only if there exists a point inside the disk that
is outside the obstacles. This new notion of collision-freeness is called “weakly
collision-freeness” in [21]. To check this property, we can apply to the obstacles
a morphological operation of erosion by an open sphere of radius l’"Z“x (see [23]),
and the collision-freeness of the disk becomes equivalent to the classical collision-
freeness of the center of the disk in the environment with the eroded obstacles. So,
once the eroded obstacles are obtained, we can use any classical sampling-based
algorithm to find a short continuous collision-free path for the disk. To actually
convert this continuous path to a finite sequence of jumps, we can apply the greedy
approach already used in [21] which consists in repeatedly trying to jump from the
current disk f(@(z)) to a disk f(@(¢')) with ¢’ as large as possible and obtained by
dichotomy.

Let us add a few comments on the problem of flea motion planning. Firstly, the
flea motion planning problem can be extended to R? for d > 2 (the R(s) sets become
d-dimensional spheres), and Theorem 4 still applies. Secondly, the conditions of
Theorem 1 are also verified. Therefore, we could have used Theorem 1 to convert
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flea motion planning into a continuous motion planning problem in a configuration
space with 2 X 24 1 = 5 dimensions. But, because with flea motion planning the
relation R() is geometrically simple, it was possible to use a similar equivalence
to convert it into a 2-dimensional continuous motion planning problem. A question
of prime importance is raised by this remark: for a given discrete motion planning
problem, how can we simplify or approximate the relation R so as to obtain an
equivalent continuous motion planning problem in a configuration space with as
few dimensions as possible? We show an example of such simplification in the next
section.

5.4 A variant of the flea motion planning problem

Let us first consider a variant of the flea motion planning problem where the flea
cannot make jumps smaller than some fixed length. The relation R() becomes:
R(s,5") < Lpin < dist(s,s') < lyax. With this variant, R() is not reflexive and The-
orem 4 cannot be applied. In order not to have to apply Theorem 1 and do the
continuous motion planning in a configuration space of dimension 5, we modify a
bit the relation R(). We pose:

R(s,5') & Lyin < dist(s,s") < lypax V dist(s,5") < lpax — bnin

It still seems difficult to apply Theorem 4 with a new configuration space £ of
dimension 2 like we just did for flea motion planning, and we leave it as an open
question. However, we show that we can do it with a space of dimension 3.

Let us consider the function f : SE(2) — RegOp*(R?) as described in Fig. 6.
With this function, the properties required by Theorem 4 are verified (we do not

Fig. 6 f(x,y,0) is the union
of two open disk of radius

M , the first one of center

(x,y)+ l’"“‘%(cos 0,sin0),
and the second one of center
(x,y) _ Irmn;lmin (COS 6,sin 9)'

demonstrate it here), and so the theorem applies. This means that trying to find a
sequence of jumps for this new variant of the flea motion planning problem is equiv-
alent to trying to find a continuous collision-free path in SE(2). The same greedy
method as for flea motion planning can be applied. So, we have just seen that a slight
modification of R() enabled us to use Theorem 4 and obtain an equivalent contin-
uous motion planning problem in a configuration space with 3 dimensions rather
than 5 with Theorem 1. This can be interesting, but depending on the problem, such
a simplification might not make sense, especially if like here it increases the motion
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capabilities. In general, it is better to look for simplifications that reduce the motion
capabilities, leading to conservative approaches. Another remark of importance is
that short paths in the continuous space are not necessarily converted into short se-
quences of jumps, even with the greedy approach. In practice, it seems more likely
to be true with the standard flea motion planning problem. It would be interesting to
investigate under which circumstances it is always possible to convert short contin-
uous paths into short finite sequences, or more precisely to try to transfer bounds of
sub-optimality from the continuous paths to the resulting finite sequences, but this
is out of the scope of this paper.

6 Applications

The technique used in [22] and [21] for footstep planning for humanoid robots can
be seen as an application of Theorem 4. In the present paper, we show that it is easy
to extend the method in order to plan the walking motion of a hexapod robot (cf.
Fig. 7). Our objective is to make the hexapod walk on uneven terrain with non-gaited
locomotion planning (which is typically computationally costly). The uneven terrain
is described by a heightmap, i.e. a function z = F(x,y). The heightmap can be used
to set the height of the contact positions, and we ignore the contact orientations,
SO we use (Rz)6 as the configuration space (it is easy to define a heuristic that sets
a unique whole-body configuration from the 6 contact positions; in particular, we
require the robot main body to remain horizontal). Here is how we define the relation
C(): from the heightmap we infer what locations are allowed for individual contacts,
and for a configuration in (R?)%, we require our heuristic to lead to a valid whole-
body configuration that does not collide with the heightmap.

We try to apply Theorem 4 with the configuration space Q = SE(2). To do so,
we simplify the walking capabilities of the hexapod. For a configuration (x,y, 0), we
define f(x,y, ) as the set of configurations in (R?)® such that each contact belongs
to an open disk, as shown in Fig. 7 (it is important that the disks are disjoints).
With this assumption, we first replace C() by heuristic checks: for a configuration
s € f(x,y,0),C(s) is verified if the contacts are safe (i.e. the heightmap is almost flat
around their locations), if the maximum height difference between two contacts with
the ground is less than some threshold, and if the maximum height of the heightmap
in the “robot zone” (i.e. the convex hull of the contacts) is not much higher than
the height of the contacts. Here is how we simplify the walking capabilities of the
hexapod: we consider transitions where all the 6 legs are moved at the same time,
and we say that a transition from s € (R?)® to s’ € (R?)° is allowed if and only if
there exists (x,y,0) € SE(2) such that s € f(x,y,0) and ' € f(x,y,0). With this
restriction, we can verify that the conditions of Theorem 4 apply (only the fourth
property is difficult to verify), and thus we can use the equivalence to convert our
problem of locomotion planning into a continuous motion planning in SE(2) (we
use the library OMPL and the algorithm RRT-Connect [14] to perform the motion
planning). Once the conversion of a continuous path is done, we obtain a finite
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sequence of transitions for which the 6 foot locations are changed at each transition.
It is not difficult to convert it into a sequence of feasible transitions where at most 3
feet are moved at the same time (but sometimes 2, or just 1).

This original technique for legged locomotion planning is convenient and fast: in
the example described in Fig. 7 where the hexapod must go across an uneven and
challenging terrain, the whole planning (continuous planning and two-stage conver-
sion into a discrete sequence of steps) was done in 57ms on an Intel(R) Core(TM)
i7 1.60GHz CPU. We cannot readily use this method to solve planning problems as
complex as the ones considered in [8], but it is a good compromise between gaited
methods and more complex approaches such as [8]. It would be interesting to try
to make an advantageous use of our method in advanced software architecturesf or
multi-contact motion planning, such as the ones presented in [10] or [24].

Fig.7 On the left: the motion of the hexapod accross this challenging terrain was planned in 57ms.
On the right: the six open disks that constrain the configurations and steps of the hexapod (each
leg must have its contact with the ground within its assigned disk).

7 Conclusion

In this paper we have proved two new equivalence results between discrete and
continuous motion planning. They can be used to convert discrete problems into
continuous ones that are similar to the piano mover’s problem, and thus enable the
application of standard motion planning algorithms to a new class of problems. We
have shown that it leads to original and efficient techniques for legged locomotion
planning, and expect various other types of applications such as for example regrasp
planning. In future work, it would be interesting to study more precisely the com-
plexity of the algorithms made possible by our approach, and in particular the com-
plexity of the new collision checks, an issue that we did not address in the present
paper. Another question of importance is whether a similar equivalence could be ob-
tained with motion planning problems with kinodynamic constraints, which is not
obvious at all at this stage.
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