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Abstract: An important step in paleoclimate reconstructions based on vadose cave carbonate deposits 
or speleothems is to evaluate the sensitivity of the cave environment and speleothems to 
regional climate. Accordingly, we studied four caves, located at different altitudes along the 
western flank of Mount-Lebanon (Eastern Mediterranean). The objectives of this study are 
to identify the present-day variability in temperature, pCO2, and water isotopic composition 
and to assess the possible influence of the altitudinal gradient on cave drip waters and cave 
streams. We present here an overview of the spatial variability of rainwater based on local 
and regional data, and we compare these data with our results, i.e., temperature, air pCO2, 
and the isotopic composition of cave water and modern cave calcite collected in 2011 and 
2014. The results show that the rainwater isotopic signal is generally preserved in the cave 
dripwater isotopic composition with some exceptions in large caves with high ceilings where 
evaporation effects may influence its isotopic composition. The altitude effect observed 
in rainwater isotopic composition seems to be transferred to the cave dripwater. Different 
δ18O/100 m gradients between dripwater and rainwater (0.13‰ and 0.21‰, respectively) are 
noted. This is mainly attributed to the δ18O/100 m value of the dripwater which is site-specific 
and dependent on i) local processes within the epikarst/soil, ii) the relation to the precipitation 
altitude gradient and iii) the extension of the defined infiltration basin.
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INTRODUCTION

Speleothems, which are secondary cave carbonate 
deposits that precipitate from cave drip water are 
increasingly used to reconstruct changes in regional 
climate and vegetation. Their isotopic composition, 
δ18O, and δ13C is influenced mainly by respectively the 
isotope signature of rainwater linked to temperature 
(Clarck & Fritz, 1997; Lachniet, 2009) and by the 
carbon isotopic composition of dissolved carbon 
influenced by the soil bioactivity (δ13C), linked to 
vegetation and thus to temperature and water 
availability (Hellstrom et al., 1998; Genty et al., 2006). 

Rainwater and dissolved carbon circulate through the 
unsaturated zone, i.e. the upper part of the epikarst, 
which is affected by dissolution and is characterized 
by a mainly vertical transfer of percolation water to 
the cave (Hendy, 1971; Bar-Matthews et al., 1996; 
Ford & Williams, 2007; Fairchild & Baker, 2012). 

Several cave monitoring programs have been 
conducted worldwide, providing information on the 
role of local cave environment and hydrology that 
possibly influence stalagmite-based palaeoclimate 
proxy records (Bar-Matthews et al., 1996; Spotl et al., 
2005; Baldini et al., 2006; Verheyden et al., 2008a; 
Mattey et al., 2010; Miorandi et al., 2010; Tremaine 
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et al., 2011; Johnston et al., 2013; Genty et al., 2014; 
Deininger et al., 2014; Van Rampelbergh et al., 2014; 
Suric et al., 2016; Beddows et al., 2016). These studies 
aim at understanding better the registration of the 
nowadays climatic signal in speleothems in order to 
more precisely constrain the past climatic records. 

In the Levant region, although speleothems 
from Palestine/Israel are well studied and proxy 
interpretations well-supported by monitoring 
programs, the rest of the region is still understudied 
in terms of speleothem-based paleoclimate studies 
(Nader et al., 2007, Verheyden et al., 2008b, Cheng 
et al., 2015, Nehme et al., 2015; 2018). Nearly no 
cave monitoring information is available and only 
limited rainwater isotopic data is available (Aouad-
Rizk et al., 2005; Gat el al., 2005, Abou Zakhem & 
Hafez, 2010). Aouad-Rizk et al. (2005) and Koeniger 
& Margane (2014) each defined a local meteoric 
water line (LMWL) based on data from central Mount-
Lebanon. Both studies display some differences which 
will be further discussed in the paper. The Levant 
(East-Mediterranean) is characterized by abrupt 
temperature and rainfall gradients, due to its current 
location on the arid/semi-arid boundary and to its 
steep topography between coastal and inland areas.

In a first attempt to understand the local 
environmental conditions, four Lebanese caves 
were investigated for their temperature, pCO2 
concentration, and dripwater isotopic composition. 
Here, modern changes in the rainwater isotopic 
composition across the steep altitudinal trend of 
Mount-Lebanon, are compiled based on a literature 
review, and compared with the observed changes in 
modern cave drip waters. The main objectives of this 
paper are to discuss if rainwater signal is generally 
preserved in the cave dripwaters and to assess the 
possible influence of the altitudinal gradient on cave 
drip waters and cave streams. This study will help 
also verify the ability of cave waters in Lebanon to 
transfer spatial changes in isotopic composition of 
rainwaters and by extension of spatial and temporal 
changes in regional climate. 

THE STUDY AREA: REGIONAL CLIMATIC 
CONTEXT AND SITE DESCRIPTION

The Levant region in general is mainly influenced 
by the mid-latitude westerlies (Fig. 1A), which 
originate from the Atlantic Ocean, forming a series of 
subsynoptic low-pressure systems (Gat et al., 2003; 
Ziv et al., 2010) across the Mediterranean Sea. In 
winter, cold air plunging south over the relatively 
warm Mediterranean enhance cyclogenesis, creating 
the Cyprus Low (Alpert et al., 2005). This low-
pressure system drives moist air onshore, generating 
intense orographic rainfall across the mountains of 
the northern Levant. The duration, intensity, and 
track of these storm systems strongly influence 
the rainfall amount in this region. In summer, the 
westerly belt is shifted to the north, following the 
northern shift of the North-African subtropical high 
pressures, and the region experiences hot and dry 
conditions with more southward winds. In Lebanon 
(Fig. 1B and 1C), the annual rainfall varies between 
700 and 1000 mm along the coastline and more than 
1400 mm in higher mountains with 4 months snow 
coverage (Shabaan et al., 2015). As a consequence of 
the above circulation system, the climate is seasonal 
with wet winters (November to February) and dry, hot 
summers (May to October). A general N-S gradient in 
rainfall amount and mirrored by the isotopic signal 
(δ18O and δ2H) is clearly evident from northern Syria 
(Abou Zakhem & Hafez, 2010), to southern Israel/
Palestine (Gat et al., 2005). A West-East gradient, 
i.e. from the Levantine coastline to inner regions 
(Fig. 1A), is also visible as a consequence of the 
continental and/or altitudinal effects related to the 
Rayleigh distillation processes (Dansgaard, 1964; 
Rozanski et al., 1993).

Four caves are selected at different altitudes along 
a transect from the coast to the Makmel Mountain, 
which is the highest peak in the Mount-Lebanon 
range (Fig. 2). These are: Kanaan Cave (96 m above 
sea level - asl), Jeita Cave (98 m asl), Mabaage 
Cave (770 m asl), and Qadisha Cave (1720 m asl). 

Fig. 1. Climate and geographic setting of the study area. A) Eastern Mediterranean map showing the position of the mid latitude winds (http://iridl.
ldeo.columbia.edu/Maproom), NS and EW precipitation gradients and δ18O mean values NS and EW precipitation gradients, of rainwater stations 
over coastal and inner cities (Kailani et al., 2003; El-Asrag, 2004; Aouad-Rizk et al., 2005; Dirican et al., 2005; Gat el al, 2005; Saad et al., 2005; 
Abou Zakhem & Hafez, 2010; GNIP database); B) Precipitation gradients of Lebanon and histograms of Beirut and the Cedars with mean annual 
rainfall and temperature (Abi-Saleh & Safi, 1988; http://fr.climate-data.org); C) Rainwater isotope graph with several published meteoric waterlines: 
the Lebanese MWL in Saad et al. (2005), the Global MWL in Rozanski et al. (1993), and the Mediterranean MWL in Gat (1980).

http://iridl.ldeo.columbia.edu/Maproom
http://iridl.ldeo.columbia.edu/Maproom
http://fr.climate-data.org
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Except for Qadisha Cave which is developed mainly 
in Quaternary deposits and Cretaceous limestones 
(Dubertret, 1975), Mabaage, Jeita and Kanaan caves 
develop in the middle Jurassic Kesrouane Formation, 
a faulted micritic limestone and dolomite sequence 
(Walley, 1998). The studied caves (Table 1) are located 
in the western flank of Mount-Lebanon (Fig. 1)
along a N-S altitudinal transect. All four caves were 
previously studied for their speleothem content 
(Verheyden et al., 2008a; Cheng et al., 2015; Nehme 
et al., 2015, 2018). 

Kanaan Cave (162 m long) is located 15 km 
northeast of Beirut. This fossil cave was discovered 
after quarrying activity in the late 1990s (Nehme et 
al., 2009). The Jeita multi-level system cave, located 
at 4.5 km distance from the coast, hosts a series of 

dry and active galleries (Karkabi, 1990), a permanent 
stream with a discharge of 1 to 25 m3/s (Doummar, 
2012) and is the most visited show cave in Lebanon. 
A 75 m deep canyon connects fossil galleries with the 
lower galleries in the downstream extremity of the  
10 km karstic network, making the cave a well-
ventilated system (Fig. 2). Mabaage Cave 400 m 
long, located at 40 km northeastern of Beirut and in 
the inner part to the Fidar valley (Jabbour-Gedeon 
& Zaatar, 2013) was recently transformed into a 
touristic cave during summer but closes in winter 
due to flooding of the cave stream. Finally, Qadisha 
Cave, located in the northern part of Mount-Lebanon, 
hosts a permanent spring with a discharge rate up 
to 1 m3/s (Edgell, 1997). Qadisha cave was partially 
transformed into a touristic cave in 1934.

The vegetation cover above the caves mainly 
develops in shallow Mediterranean soil. Between 100 
and 800 m asl, the vegetation consists of densely 
evergreen shrubs (juniper, oaks, and partially pine 

Fig. 2. The study area and cross-sections of A) Kanaan Cave (Nehme et al., 2013); B) Jeita Cave (Karkabi, 1990; Nehme, 2013); C) Mabaage Cave 
(Zaatar et al., 2013). For the cross-sec`tion of Qadisha Cave, see Tawk et al. (2008). Red stars indicate the location of water samples taken inside 
each cave and cave elevations are in m above sea level (asl). Refer to Table 1 for additional cave site data.

trees) growing on calcareous slopes above Kanaan, 
Jeita and Mabaage caves. The vegetation cover above 
Qadisha Cave (1720 m asl) is composed of sparse 
herbs, shrubs, and conifers (Table 1).

Cave Coordinates Cave type Entrance 
(m)

Infiltration 
basin 

elevation (m)
Aspect Length 

(m) Host Rock  Vegetation type

Kanaan 33°54'25"N; 35°36'25"E Horizontal, 
relict 98 547 SE-NW 162 J4-J5 dense garrigue, 

pine forest

Jeita upper 33°56'35"N; 35°38'48"E Horizontal, 
relict 96 1067 N-S 1300 J4-J5 dense garrigue, 

pine forest

Jeita Lower 33°56'35"N; 35°38'48"E Horizontal, 
active 60 1669 E-W 8750 J4-J6 dense garrigue, 

pine forest

Mabaage 34°06'25"N; 35°46'01"E Descending 
cave 770 1379 E-W 400 J6 sparse garrigue, 

oaks, pine

Qadisha 34°14'38"N; 36°02'11"E horizontal, 
spring 1720 2244 NE-SW 1076 Q; C4 Sparse hurbs, 

shrubs, conifer 

Table 1. Locations, morphology of the studied caves, and their soil characteristics.

SAMPLES AND METHODS 

A total of 35 cave drip water and 12 underground 
stream water samples were collected in the Jeita and 
Qadisha caves for δ18O and δ2Η analyses, respectively. 
The samples were obtained during two sampling 
campaigns: a first one held in September 2011 in 
Jeita and Qadisha caves and a second one between 

September and November 2014 in Jeita, Qadisha, 
Mabaage, and Kanaan caves. 

Temperature and pCO2 of cave air were measured 
using a hand thermometer with a precision of 
0.5°C and a Dräger pump system (σ ± 50 ppmv), 
respectively. Continuous temperature monitoring 
using a Niphargus (Burlet et al., 2015) temperature 
logger (precision of 0.1°C and resolution of 0.05°C) 
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was pursued from December 2015 to March 2017 in 
Qadisha and Jeita caves with one measurement every 
20 minutes.

Isotopic analyses of cave waters collected in 
2014 were carried out using a PICARRO L2130-i 
Cavity Ring-Down Spectrometer (CRDS) at the Vrije 
Universiteit Brussel. Measured values were corrected 
using three house standards calibrated against the 
international VSMOW2, GISP, and SLAP2 standards 
following the method described in De Bondt et al., 
(2018). Analytical uncertainties (2σ) equal 0.06‰ for 
δ18O values and 0.3‰ for δ2H values. Water samples 
collected were analyzed in 2011 at the Laboratoire 
des Sciences du Climat et de l’Environnement (LSCE-
CEA), Paris. Hydrogen isotopes were measured on an 
ISO-PRIME mass spectrometer and a PICARRO CRDS 
with a 1 sigma error of ±0.7‰. Oxygen isotopes were 
analyzed using a Finnigan MAT 252 by equilibration 
with CO2. The 2 sigma error of the δ18O is ±0.05‰. All 
values obtained from both laboratories are calibrated 
against and reported in permill (‰) relative to Vienna 
Standard Mean Ocean Water (V-SMOW2). 

To calculate the altitudinal gradient of the cave 
dripwaters with respect to the altitude of the entrance 
and the infiltration basin of the studied caves, the 
infiltration basin elevation (Table 1) was derived 
after plotting the georeferenced caves maps on a 
Digital Elevation Model (DEM) using a Geographical 
Information System (ArcGIS). The infiltration watershed 
area of the cave is defined by considering the altitudes 
between the cave entrance and the limit of the 

surface watershed. The underground waterflow main 
directions identified in Hakim (1985) and Hakim et al. 
(1988) for the Lebanese karst basins were considered 
to derive the most significant infiltration surface 
above the caves. The mean altitude is then calculated 
for the delimited infiltration basin for each cave using 
the DEM. Note that the Jeita Cave develops on two-
levels (an upper fossil and a lower active gallery) thus 
has two different infiltration elevations.

RESULTS

Cave air temperature and pCO2 

Cave air and underground stream temperatures, 
measured at different sites inside each cave (see 
Supplementary Data), a fairly constant (Fig. 3A) with 
variations of less than 1°C over the sampling period. 
The measured air temperatures in Kanaan (19°C ± 
0.5), Jeita upper (20°C ± 0.5), Mabaage (13°C ± 0.5), 
and Qadisha caves (9°C ± 0.5) all display autumn 
values roughly in agreement with the outside mean 
temperature (Fig. 3B) data (Karam, 2002), despite 
the small offset compared to the surface temperature 
trendline and some small internal changes (up to 
0.3°C) as shown by the continuous monitoring data 
in Jeita and Qadisha (Fig. 3C).

As for the pCO2 concentrations in each cave, the 
measured values reached 3,600 and 8,000 ppmv in Jeita 
and Mabaage caves respectively, whereas low values 
(600 ppmv) close to the atmospheric concentrations are 
detected in Qadisha Cave (see Supplementary Data).

Fig. 3. A) Cave-air and underground stream temperature measurements collected each month in both 2011 and 2014 171 campaigns; B) cave-
air temperature trendline (black line) vs the cave entrance altitude. The air-temperature trendline from compiled data of Lebanese meteorological 
stations (Karam, 2002) is represented in red line; C) continuous cave-air temperature monitoring from November 2014 to March 2017 for Qadisha 
and from January 2016 to March 2017 for Jeita Cave.

Cave dripwater δ18O and δ2H
Cave dripwaters and stream waters δ18O and 

δ2H are summarized in Table 2 and detailed in the 
Supplementary Data. Jeita Cave dripwaters exhibit 
an average of -5.7 ± 1.1‰ for δ18O and –26.6 ± 6.9‰ 
for δ2H (Table 2), with an amplitude of 2.9 and 20.5‰, 
respectively. As for Kanaan Cave, measurements show 
an average of -5.40 ± 0.04‰ for δ18O and –24.0 ± 0.2‰ 
for δ2H (Table 2), with an amplitude of 0.2 and 0.5‰ 
respectively. Mabaage Cave located at higher altitude 
(770 m) shows an average of -7.2 ± 0.6‰ for δ18O and 
–36.6 ± 6.2‰ for δ2H, whereas the amplitude varies 
between 1.8 and 14.0‰, respectively. 

Qadisha Cave, located at the highest altitude in our 
study area, shows an average of -8.48 ± 0.05‰ for 
δ18O and –46.1 ± 0.31‰ for δ2H with an amplitude 
of 0.2 and 1.1‰, respectively. The variability of the 
dripwater oxygen isotopic signal in Kanaan (avg. 
-5.4‰) and Qadisha (avg. -8.5‰) does not exceed 
±0.1‰ (Table 2). Drip water values in both Jeita 
and Qadisha caves show lower isotopic values than 
Jeita (avg. -7.2‰) and Qadisha (avg. -9.0‰) stream 
waters. However, the difference is much higher 
between dripwater and stream water isotopic values 
in Jeita Cave (~1.5‰) than those of Qadisha Cave  
(~0.4‰).

https://scholarcommons.usf.edu/cgi/viewcontent.cgi?filename=12&article=2253&context=ijs&type=additional
https://scholarcommons.usf.edu/cgi/viewcontent.cgi?filename=12&article=2253&context=ijs&type=additional
https://scholarcommons.usf.edu/cgi/viewcontent.cgi?filename=12&article=2253&context=ijs&type=additional
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Table 2. Summary of the isotopic results of the drip and stream waters collected from the studied caves. Note that Jeita upper is the fossil 
cave and Jeita lower in the active cave with a permanent stream. (n) is the number of samples and oxygen isotopic composition ranges. 
The mean (avg.), maximum and minimum values of the δ18O drip and stream water and mean (avg.) of the δ2H of the autumn values, are 
reported in ‰ VSMOW.

Fossil Caves n Dripwater δ18O (‰ VSMOW) Dripwater δ2H (‰ VSMOW)

min max avg. 2s avg. 2s

Kanaan 6 -5.48 -5.37 -5.43 ±0.04 –24 ± 0.2

Jeita Upper 11 -6.92 -4.05 -5.71 ±1.11 –26.6 ± 6.9

Mabaage 8 -8.28 -6.64 -7.18 ±0.66 -36.6 ± 6.2

Qadisha 10 -8.55 -8.38 -8.48 ±0.05 -46.1 ± 0.3

Cave Streams n Stream water δ18O (‰ VSMOW) Stream water δ2H (‰ VSMOW)

min max avg. 2s avg. 2s

Jeita lower 6 -7.35 -7.17 -7.28 ±0.06 -35.73 ± 0.48

Qadisha 6 -8.96 -8.92 -8.95 ±0.02 -49.24 ± 0.26

DISCUSSION

In order to determine if the current spatial gradients 
in rainwater isotopic composition are recorded in the 
cave dripwater, we discuss i) the available meteoric 
water lines of Lebanon and their altitudinal trends, 
ii) the cave waters δ18O/δ2H signals compared to 
the available δ18O/δ2H rainwater data, and iii) the 
altitudinal trend in rainwater δ18O/δ2H and the 
potential altitudinal trends in cave water δ18O to test 
for their agreement. 

Rainwater data of Lebanon: different meteoric 
water lines and altitudinal trends

Several studies on the rainwater isotopic signal 
in Lebanon (Aouad-Rizk et al., 2005; Saad et al., 
2005; Saad and Kazpard, 2007; Koeniger & Margane, 
2014; Koeniger et al., 2017) exist in the literature 

Table 3. Summary of the Global MWL and the MWLs previously calculated for the Mediterranean, Lebanon and Kelb basin.

(Table 3). The trendline slopes of the MWL (Lebanon, 
Mount-Lebanon, etc.) are different than that of the 
Mediterranean MWL, due mainly to a secondary 
evaporation effect during rainfall events (Saad et al., 
2005; Saad & Kazpard, 2007). The evaporation occurs 
mostly during hot (dry) seasons and is particularly 
impacting light rains. Consequently, this process will 
determine the lowering of the slope and the “d-excess” 
value of the rain sample (Clark & Fritz, 1997). 

In general, the constructed Lebanese Meteoric water 
lines based on δ18O and δ2H data of rainwater are 
roughly in agreement with a general depletion trend 
with elevation. However, the local MWL (Koeniger & 
Margane, 2014; Koeniger et al., 2017) for the Kelb 
basin, the Mount-Lebanon (Aouad-Risk et al., 2005) 
and the general Lebanese MWL (Saad et al., 2005; Saad 
& Kazpard, 2007) are calculated based on different 
locations of the meteorological stations (Fig. 4A).

Meteoric water line Equation Author
Global meteoric water line δ2H = 8* δ18O + 10 Craig, 1961
Mediterranean water line δ2H = 8* δ18O + 22 Gat, 1980; Gat et al., 2003
Lebanese water line δ2H = 7.13* δ18O + 15.98 Saad et al., 2005 ; Saad & Kazpard, 2007
Mount-Lebanon water line δ2H = 6.3* δ18O + 8.2 Aouad-Rizk et al., 2005
Kelb basin water line (Local) δ2H = 6.04* δ18O + 8.45 Koeniger & Margane, 2014; Koeniger et al., 2017

The MWL after Aouad-Risk et al. (2005) referred 
here as the Mount-Lebanon MWL, is constructed 
using data from meteorological stations which display 
the same E-W trend than the stations used for the 
MWL of the Kelb basin (Koeniger & Margane, 2014). 
Indeed, the MWL after Aouad-Risk et al. (2005) and 
the local MWL after Koeniger & Margane (2014) show 
the same gradient (Table 3).

The altitudinal trendline (Fig. 4B) used in this study 
is constructed after the latest rainwater data (Koeniger 
& Margane, 2014; Koeniger et al., 2017) from stations 
located in the Kelb basin (central Mount-Lebanon) 
since the collected data covers an elevation range 
up to 1600 m (Chabrouh station) close to the basin 
altitude of the studied caves and includes snowfall 
isotopic signals. This altitudinal trendline show a 
linear δ18O-altitude relation of -0.13‰/100 m in West 
Mount-Lebanon (Fig. 4B), i.e., a decrease in rainwater 
δ18O of 0.13‰ per 100 meters altitudinal increase.

Cave waters δ18O/δ2H signals compared to the 
available δ18O/δ2H rainwater data

The isotopic results of cave waters (drip and stream) 
of the four studied caves fall well on the Mount 
Lebanon MWL (Aouad-Risk et al., 2005), except for 
some of the Jeita Cave dripwaters (Fig. 4C). In general, 
Kanaan, Jeita, Mabaage and Qadisha δ18Owater (drip 
and stream) values seems to fall more closely to the 
Mount Lebanon and Lebanese MWL than the regional 
Mediterranean MWL (Gat, 1980; Gat et al., 2003).

The δ18Odrip values of Kanaan Cave are at the lower 
part of both Lebanese and Mount-Lebanon MWLs 
whereas Mabaage δ18Odrip values are located at the 
center. δ18Odrip values of Qadisha cave correspond to 
the highest part on both MWLs. Both Qadisha and 
Jeita δ18Odrip results of 2014 fall generally close to the 
Lebanese MWL trend. Jeita δ18Odrip results of 2011 
show a distinct displacement to the right of the Mount 
Lebanon MWL, that clearly indicates evaporation 
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processes (Saad & Kazpard, 2007). The positive 
δ18Odrip values of the 2011 campaign in Jeita Cave (Fig. 
4C) suggest several processes and factors that might 
explain this particularity. Mickler et al. (2004) and Day 
and Handerson (2011) showed that the evaporation 
effect often occurs in caves with higher cave-air 

Fig. 4. Summary of major cave drip and stream water δ18O and δ2H values plotted on the available 
meteoric water lines (MWL) with the location of their meteorological stations. A) location of the studied 
caves (yellow stars) and the meteorological stations (blue circles) in Saad et al. 2005 and Saad & Kazpard, 
2007 and (orange circles) in Koeniger & Margane, 2014; B) the altitudinal trendline used in this study 
and derived from the Local MWL of 222 the Kelb basin (Koeniger & Margane, 2014); C) δ18O and δ2H 
values of 47 dripwater and stream samples plotted on the available MWLs.

temperatures, which is the case for Jeita Cave (20°C), 
and less so for Qadisha Cave (9°C). Another possibility 
is related to other cave environment parameters 
which include enhanced ventilation (Muhlinghaus et 
al., 2009; Deininger et al., 2012) that would lead to 
enhanced out-of-equilibrium processes.

The δ18O values for stream waters in the Qadisha 
and Jeita caves plot along the Mount Lebanon and 
Lebanese MWLs. The Qadisha stream water displays 
δ18O values close to the drip water isotopic signal of 
the same cave suggesting a similar water infiltration 
source for the vadose and the karst aquifer (phreatic) 
zones. However, the isotopic signal of Jeita stream 
exhibits higher values than the drip water isotopic 
signal in Jeita upper cave advocating for different 
infiltration reservoir for the unsaturated and saturated 

zones. Indeed, the Jeita underground stream exhibits 
a δ18O signal which is very close to the average δ18O 
signal of the highest karstic springs feeding the 
Kelb basin: Nabaa el-Labane spring at 1647 m (avg. 
-7.26‰) and Nabaa al-Assal spring at 1528 m (avg. 
-7.32‰) (Aouad-Rizk et al., 2005; Koeniger et al., 
2017). The isotopic signals are also in agreement with 
the well-known infiltration basin (or recharge area) 
for the Jeita underground stream situated at a mean 
altitude of 1669 m asl (Table 1).
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The spread of the isotopic values cave waters along 
the Mount Lebanon MWL is related to the variability 
in δ18O and δ2H in rainwater and therefore in cave drip 
water. This is mainly due to the spatial variability, 
inter-seasonal, or interannual variations in isotopic 
composition of rain. It suggests that all sampled 
dripwaters in the caves, especially in Jeita and less 
in Qadisha may be related to rainwater from different 
seasons or even years depending on the residence 
time of the water in the vadose, here epikarst zone.

The deuterium excess (d-excess) value is calculated 
from δ18O values and δ2H using this equation: 

d-excess = δ2H – 8 * δ18O

The d-excess, an indicator for the source and 
trajectories of atmospheric moisture (Rozanski, 1993; 
Sharp, 2007), is associated with evaporation at the 
moisture source. The comparison of d-excessdrip vs 

d-excessrain is necessary to understand if the measured 
cave waters are controlled by a similar vapor source 
than the rainwater. The Eastern Mediterranean source 
waters have d-excess values ranging from 14‰ to 
19‰ (Kattan, 1997), whilst they reach 15‰ (Frot et 
al., 2007) for Western Mediterranean sourced waters, 
and are close to 10‰ for Atlantic-sourced moisture. 
The Lebanese MWL exhibit a d-excess of 15.98‰ 
which is within the range of the Eastern Mediterranean 
waters’ values (Kattan, 1997). The d-excess for the 
dripwater in cave indicate a value of 16.25, which is 
close to the one defined by the Lebanese MWL (Aouad-
Rizk et al., 2005; Saad & Kazpard, 2007; Koeniger &  
Margane, 2014).

Altitudinal trends in cave water δ18O
The Mediterranean air masses arriving from the 

west are orographically uplifted as they reach the 
Mount-Lebanon range. As the air rises and cools, 
the rainwater with a heavier isotope falls first, 
resulting in rainwater exhibiting more negative 
isotopic values with altitude (Bowen & Wilkinson, 
2002). Globally, the average change in δ18Orain is 
-0.2‰ per 100 m elevation gain (Rozanski et 
al., 1993). Locally, we determined this trend as 
-0.13‰/100 m (Fig. 4B). In order to understand 
the altitude effect on the isotopic composition of 
cave water (drip and stream), the δ18O cave water 

values are plotted first against altitude of the cave  
entrances (Fig. 5A).

Only the δ18Odrip and δ18Ostream values that fall closely 
on the local MWL were retained for the altitudinal 
trend analysis (Fig. 5A). Figure 5A clearly shows a 
poor altitudinal trend when considering only the 
altitude of the cave entrance. However, there is a 
clear altitudinal trend with a regression coefficient  
R2 = 0.86 (P < 0.001) when considering the mean 
altitude of the infiltration basin (or recharge area) of 
these caves (Fig. 5B and 5C). Indeed, the basin from 
where water infiltrates is at higher elevation relative to 
the cave entrance due to the thick limestone overburden 
and the topography above the caves entrance. The 
δ18Owater values of Jeita stream are a clear example 
of that particularity, showing that the underground 
water originates from an infiltration basin at a higher 
altitude (avg. alt. 1669 m) than the cave entrance  
(60 m) (Doummar, 2012; Koeniger et al., 2017).

With the infiltration basin altitude (Table 1) taken 
into consideration here, all points fall within the 
95% confidence interval (Fig. 5B and 5C) except 
one point, which represent cave waters taken from 
Mabaage Cave at the end of August 2014. All drip 
and stream waters δ18O values reach 0.2‰ per  
100 m (Fig. 5B) with an overall offset of 0.07‰ 
compared to the rainwater trend of 0.13‰ per 100 m 
calculated form the trendline (Fig. 4B) after Koeniger 
& Margane (2014). 

Comparable studies in the Mediterranean region 
showed different small offsets between altitudinal 
gradients for precipitation and dripwater δ18O values. 
In the steep northern Italian Alps, eight caves 
aligned along two transects, show slightly different 
gradients of 0.15 and 0.08‰ in dripwater (Johnston 
et al., 2013). In the eastern Adriatic coast and Dinaric 
mountains (Croatia), the offset reaches up to 0.2‰ 
(Suric et al., 2016) similar to the offset measured in 
Mount-Lebanon cave waters.

Clearly, the Δδ18O/100 m value of the dripwater  
(Fig. 5C) is site-specific, mainly due to: i) local 
processes that influence the δ18Odrip on its way to 
the cave, such as those within the litter, soil, and 
epikarst (Beddows et al., 2016), ii) the relation to 
the precipitation altitude gradient (rainfall quantity, 
patterns, and frequencies above the cave infiltration 

Fig. 5. Altitudinal trends in cave water δ18O (drips and streams). A) Adjusted linear regression between the δ18Ocave water and the altitude of the cave 
entrance; B) δ18Ocave water and the altitude of the infiltration basin; C) Plot showing the δ18Odripwater trendline only vs the infiltration basin altitude. The 
calculated interval of confidence (dashed line) for each linear regression is 95% and the significance p-value for all three graphs is P < 0.001.
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basin), or iii) the hilly topography above the cave and 
the limits of the calculated infiltration basin defined 
herein.

Figure 6A compares the offset between altitudinal 
gradients for precipitation and dripwater δ18O values. 
Within the limit of the 95% confidence interval of 
the precipitation δ18O trendline and considering the 
2σ sigma error of the dripwater, the drip δ18O values 
fall generally close to the precipitation δ18O trendline 
except for Qadisha Cave. There is, however, a minor 
negative offset (0.2‰ at low altitude to 1.2‰ at high 
altitude) between the dripwater and the precipitation 
δ18O trendline. 

This offset, similar to the one observed for the 
Adige, Valsugana valleys, northern Italy (Johnston 
et al., 2013), the Adriatic coast (Suric et al., 2016), 
and Vancouver, Canada (Beddows et al., 2016) 
represents a bias due to the infiltration effects 
of rainwater. In winter, the infiltrated water from 
rainfall/snowmelt with lower δ18O values reaches the 

Fig. 6. Cave dripwaters δ18O values in Lebanese caves compared to δ18Orain: A) trendline showing the mean δ18Odripwater (blue dots) of each cave 
(this study) compared to the altitudinal trendline used in this study (red rectangles) and derived from the Local MWL (δ18O weighted-mean 
rainwater values) after Koeniger & Margane (2014). The calculated interval of confidence (dashed line) for the δ18O weighted-mean rainwater 
regression is 95% and the significance p-value is P < 0.002; B) δ18Odripwater measured at nine different sampling sites (JC-01to 09) in Jeita Cave 
on a yearly basis (data in Koeniger & Margane, 2014).

cave, while in summer seasons, 18O (2H)-enriched 
water will partially evaporate in the unsaturated zone, 
especially when shallow overburden exists above the 
cave (Wackerbarth et al., 2010, 2012). The cave waters 
are therefore normally biased towards lower/lighter 
δ18O/δ2H values compared to the rainwater isotopic 
signal (Wackerbarth et al., 2012). 

Generally, cave dripwaters in Lebanon are mostly 
the result of percolation happening during the wet 
season (from autumn to spring snowmelt), with a 
longer infiltration period at higher altitudes due to 
snowmelt. For Qadisha Cave, which is located at a 
higher altitude, the offset between the precipitation 
δ18O trendline and the dripwaters isotopic signals 
is the most negative when compared to the other 
studied caves. This is explained by the infiltration of 
winter water enhanced by a negative isotopic value 
of winter snow, especially at higher altitudes (Aouad-
Rizk et al., 2005) and contributing into the vadose  
water budget. 

Regarding the altitudinal effect on the 18O- and 
2H-depleted dripwater, our study shows that δ18Odrip 

values decrease up to 3‰ between Kanaan and 
Qadisha caves (Fig. 6A). This amplitude attributed to 
the altitudinal effect could theoretically be increased 
by variations in the δ18Odrip values related to site-
specific characteristics or to a seasonal bias between 
winter and summer dripwaters values transferred by 
the rainwater seasonal variations. Indeed, rainwater 
δ18O values in Lebanon show clearly a seasonal bias 
with a variation up to 5‰ (Saad & Kazpard, 2007; 
Koeniger & Margane, 2014) between early-winter and 
winter-spring seasons. In fact, seasonal variations 
in meteoric precipitation may range up to >15‰ 
for δ18O (Genty et al., 2014). However, the majority 
of cave sites studied around the world (Genty et al., 
2014; Beddows et al., 2016) demonstrated that drip 
waters typically show little or no isotopic seasonality 
compared to the variations in meteoric precipitation. 
For instance, the δ18Odrip variability of caves in 
Vancouver Island, Canada is reduced in amplitude by 

60–90% compared to the Victoria rainfall records of 
the same year. In Villars, Chauvet, and Orgnac caves, 
southern France, the δ18Odrip values stayed stable for 
15 years with little seasonal variations compared 
to drip rate measurement. In Lebanon, our δ18Odrip 

data, even though stable during the autumn season 
prevent us from assessing a seasonal variability for 
all four cave sites. However, a previous campaign on 
dripwater isotopic measurement completed at nine 
drip sites in Jeita Cave (Koeniger & Margane, 2014) 
show little variability at each drip site over a complete 
rainy and early-summer season (Fig. 6B), but rather a 
spatial variability between each drip site. Indeed, the 
maximum seasonal variability of 1‰ is only recorded 
in JC-05 site (Fig. 6B). The δ18Odrip yearly average 
is -5.24‰ in Jeita cave showing a low seasonal  
variability with a standard deviation of ±0.48. 
Therefore, the seasonal variations in cave dripwaters 
as seen in Jeita δ18Odrip measurement, account less in 
the altitudinal effect on the lowering of the dripwater  
isotopic values. 
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Implications for future speleothems-based 
paleoclimate studies

The isotopic signal of the dripwater in Lebanese 
caves located on the western flank of Mount-Lebanon 
falls generally on the local MWL (Koeniger & Margane, 
2014) as well as the Mount-Lebanon MWL (Aouad-
Rizk et al., 2005). This implies: i) an identical source 
of water being derived from rain forming over the 
Mediterranean basin as indicated by similar d-excess 
values of the water, ii) a reduced evapotranspiration 
effect, observable on only some samples with a 
clear offset to the right of the MWL, probably due to 
increased cave ventilation, and iii) a longer infiltration 
period occurring in the unsaturated zone at higher 
altitudes. 

 Whilst some exceptions might occur as seen 
in some drip water in Jeita Cave during the 2011 
campaign, which were more exposed to ventilation at 
some locations, most of the cave dripwater exhibits 
a similar δ18O and δ2H signal as the local rainwater. 
However, a slight offset towards lower ‘winter values’ 
may occur due to a preferential water recharge during 
winter months, including the recharge by melting 
snow.  

Regarding the altitudinal trend observed in the 
rainwater over the Mount-Lebanon range (Fig. 4B), 
the isotopic signal in dripwater exhibits an altitudinal 
trend, but with a slightly different gradient (-0.21‰ 
per 100 m) than the rainwater (-0.13‰ per 100 m). 
This is however, more significant when the dripwater 
isotopic signal is compared to the altitude of the 
infiltration basin of each cave (Fig. 5C).

CONCLUSION

The preliminary dripwater isotopic measurements 
and temperature conducted on four caves located in 
the western flank of Mount-Lebanon, revealed the 
following important conclusions for future speleothem-
based interpretation of paleoclimate changes at both 
local and regional scales: 

•	 Despite for some water samples influenced by 
evaporative processes, the drip water exhibits 
isotopic values in agreement with the local 
rainwater. Therefore, stalagmites for paleoclimatic 
reconstructions (or fluid inclusion analysis) 
should be preferentially chosen outside a possible 
ventilation-influenced area of the cave. 

•	 The altitudinal trend confirmed previously in the 
rainwater isotopic composition on the western 
flank of Mount-Lebanon is demonstrated also in 
cave drip water indicating the transfer to the cave 
through the vadose zone of the spatial isotopic 
signals of the rainwater. The isotopic composition 
of the dripwaters, however, exhibits a slightly 
higher negative δ18O/100 m gradient for cave drip 
water due to slower infiltration of winter waters. 
The isotopic dripwater signal represents therefore 
mostly a lower limit of the isotopic signal of the 
corresponding rain/snow melt.  

•	 The results of this study can further help in the 
interpretation of past altitudinal trends based 
on speleothems. Additional future cave water 

and calcite monitoring with automated logging 
equipment (pCO2, temperature, humidity, etc.) 
will continue to refine the interpretations that 
have been based on the initial monitoring findings 
presented here. 

•	 To build further on this study, the altitudinal 
trend signal should be confirmed by modern 
calcite from the same caves, in which the trend 
should have a similar gradient.
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