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ABSTRACT

In this paper, we introduce a novel hierarchical aggregation
design that captures different levels of temporal granularity in
action recognition. Our design principle is coarse- to-fine and
achieved using a tree-structured network; as we traverse this
network top-down, pooling operations are getting less invari-
ant but timely more resolute and well localized. Learning the
combination of operations in this network — which best fits
a given ground-truth – is obtained by solving a constrained
minimization problem whose solution corresponds to the dis-
tribution of weights that capture the contribution of each level
(and thereby temporal granularity) in the global hierarchical
pooling process. Besides being principled and well grounded,
the proposed hierarchical pooling is also video-length agnos-
tic and resilient to misalignments in actions. Extensive ex-
periments conducted on the challenging UCF-101 database
corroborate these statements.

Index Terms— Hierarchical pooling, deep multiple rep-
resentation learning, action recognition

1. INTRODUCTION

Many applications such as video surveillance [1, 2], scene
captioning and understanding [3–10] as well as robotics
[11–15] require automatic recognition of human actions.
This task is one of the most challenging problems in video
analysis which consists in assigning action categories to
image sequences. The difficulty of this task stems from
the intrinsic properties of actions (human appearance and
motion, articulation, velocity, etc.) and also their extrinsic
acquisition conditions (camera motion and resolution, illu-
mination, occlusion, cluttered background, etc). Existing
action recognition solutions process videos in order to extract
(handcrafted or learned) representations [16–22, 36] prior to
their classification using shallow [19, 20, 23, 25–28, 42] or
deep models [24, 29–32, 32–35]. The latter are particularly
powerful in visual recognition [39,40] (and other neighboring
fields [37, 38]) and successful methods include 2D/3D two-
stream convolutional neural networks (CNNs) [29–31, 41].
This success, which comes at the expense of a substantial
increase in the number of training parameters, is tributary to
the availability of large labeled video datasets that capture all
the intrinsic and the extrinsic properties of scenes and actions.

However, labeled videos are scarce and existing ones are at
least an order of magnitude smaller compared to the datasets
used in other related tasks (such as image classification) while
action recognition is inherently far more challenging. As a
result, deep networks used for action recognition become
more exposed to over-fitting.

Deep convolutional networks have nonetheless the ability
to attenuate the high dependency on labeled data by intro-
ducing pooling (a.k.a aggregation) operators which gradually
reduce the dimensionality, the number of training parame-
ters and thereby the risk of over-fitting. However, pooling
(such as averaging) may dilute the relevant information espe-
cially when action categories exhibit strong variations in their
temporal granularity. Indeed, while coarsely-grained actions
could still remain easy to discriminate using average pooling,
fine-grained ones become more confound; hence, one should
design a pooling mechanism which conveys multiple levels
of granularity across categories.

In this paper, we introduce a novel hierarchical pooling
(aggregation) design that captures different levels of tempo-
ral granularity in action recognition. Our design principle
is “coarse-to-fine” and achieved using a tree-structured net-
work; as we parse this hierarchy top-down, pooling opera-
tions are getting less invariant but timely more resolute and
well dedicated to fine-grained action categories. Given a hier-
archy of aggregation operations, our goal is to learn weighted
(linear and nonlinear) combinations of these pooling oper-
ations that best fit a given action recognition ground-truth.
We solve this problem by minimizing a constrained objec-
tive function whose parameters correspond to the distribution
of weights through multiple aggregation levels; each weight
measures the contribution of its granularity in the global
learned video representation. Besides being able to handle
aggregations at different levels, the particularity of our solu-
tion resides in its ability to handle misaligned1 and variable
duration videos (without any explicit alignment or up/down-
sampling) and thereby makes it possible to fully benefit from
the whole frames in videos. Extensive experiments conducted
on the challenging UCF-101 benchmark show the validity and
the out-performance of our hierarchical aggregation design
w.r.t the related work.

1misalignments are usually due to imprecise detection and trimming of actions in
videos (which is also known to be a cumbersome task when achieved manually and
error-prone when achieved automatically [47–51]) and this adds spurious details/context
in the analyzed actions.



2. FRAME-WISE DESCRIPTION AT A GLANCE

We consider a collection of videos S = {Vi}ni=1 with each
one being a sequence of frames Vi = {fi,t}Ti

t=1 and a set
of action categories (a.k.a classes or categories) denoted as
C = {1, . . . , C}. In order to describe the visual content of
a given video Vi, we rely on a two-stream process; the lat-
ter provides a complete description of appearance and mo-
tion that characterizes the spatio-temporal aspects of mov-
ing objects and their interactions. The output of the appear-
ance stream (denoted as {φa(fi,t)}Ti

t=1 ⊂ R2048) is based
on the deep residual network (ResNet-101) trained on Ima-
geNet [46] and fine-tuned on UCF-101 while the output of
the motion stream (denoted as {φm(fi,t)}Ti

t=1 ⊂ R2048) is
also based on ResNet-101 but trained on optical flow input
frames [41, 46]; in the appearance stream, the number of in-
put channels in the underlying ResNet is kept fixed (equal to
3) while in the motion stream, the number of channels is re-
set to 20 (instead of 3). When training the latter, the initial
weights of these 20 channels are obtained by averaging the
3 original (appearance) channel weights and by replicating
their values through the 20 new motion channels. Consider-
ing these frame-wise representations, our goal is to introduce
an alternative to usual frame aggregation schemes (namely
sampling and global average pooling) which instead learns a
hierarchical aggregation that models coarse as well as fine
grained action categories.

3. MULTIPLE AGGREGATION LEARNING

Given a video V with T frames, we define N as a tree-
structured network with depth up to D levels and width up
to 2D−1. Let N = ∪k,lNk,l with Nk,l being the kth node
of the lth level of N ; all nodes belonging to the lth level
of N define a partition of the temporal domain [0, T ] into
2l−1 equally-sized subdomains. A given node Nk,l in this
hierarchy aggregates the frames that belong to its underlying
temporal interval. Each nodeNk,l also defines an appearance
and a motion representation respectively denoted as ψak,l(Vi),
ψmk,l(Vi) and set as ψak,l(Vi) = 1

|Nk,l|
∑
t∈Nk,l

φa(fi,t),
ψmk,l(Vi) = 1

|Nk,l|
∑
t∈Nk,l

φm(fi,t). Depending on the level
inN , each representation captures a particular temporal gran-
ularity of motion and appearance into a given scene; it is clear
that top-level representations capture coarse visual character-
istics of actions while bottom-levels (including leaves) are
dedicated to fine-grained and timely-resolute sub-actions.
Knowing a priori which levels (and nodes in these levels)
capture the best – a given action category – is not trivial. In
the remainder of this section, we introduce a novel learning
framework which achieves multiple aggregation design and
finds the best combination of levels and nodes in these levels
that fits different temporal granularities of action categories.

3.1. Multiple aggregation learning

Considering the motion stream, we define – for each node
Nk,l – a set of variables βm = {βmk,l}k,l (with βmk,l ∈ [0, 1]
and

∑
k,l β

m
k,l = 1) which measures the importance (and

hence the contribution) of ψmk,l(V) in the global motion rep-
resentation of V (denoted as ψm(V)). Precisely, two variants
are considered for ψm

(*) ψm(V) =
(
βm1,1ψ

m
1,1(V) . . . βmk,lψmk,l(V) . . .

)>
(**) ψm(V) =

∑
k,l

βmk,lψ
m
k,l(V).

(1)

As shown above, the variant in (*) corresponds to a con-
catenation scheme while (**) corresponds to averaging; the
former relies on the hypothesis that nodes in N (and hence
sub-actions in different videos) are well aligned whereas the
latter relaxes this hypothesis (see later Eq. 2). Similarly to
motion, we define the aggregations and the set of variables
βa = {βak,l}k,l associated to appearance stream. In the re-
mainder of this paper, and unless explicitly mentioned, the
symbols m, a are omitted in the notation and all the subse-
quent formulation is applicable to motion as well as appear-
ance streams.

In order to weight the impact of nodes in the hierarchy
N and put more emphasis on the most relevant granularity of
the learned aggregation, we consider multiple representation
learning that generalizes [43, 44] both to linear and nonlinear
combinations. Its main idea consists in finding a kernel K
as a combination of positive semi-definite (p.s.d) elementary
kernels {κ(., .)} associated to {Nk,l}k,l. Considering the two
maps in Eq. (1), we define the two variants of K as

K(V,V ′) =
∑
l

∑
k

βk,l κ(ψk,l(V), ψk,l(V ′))

K(V,V ′) =
∑
l,l′

∑
k,k′

βk,lβk′,l′ κ(ψk,l(V), ψk′,l′(V ′)).
(2)

As βk,l ∈ [0, 1], the kernel K is p.s.d resulting from the clo-
sure of the p.s.d of κ w.r.t the sum and the product. Let C =
{1, . . . , C} be a set of action categories and let {(Vi, yic)}i
be a training set of actions associated to c ∈ C with yic = +1
if Vi belongs to the category c and yic = −1 otherwise.
Using K, we train multiple max margin classifiers (denoted
{gc}c∈C) whose kernels (in Eq. 2) correspond to level-wise
linear (resp. cross-wise nonlinear) combinations of elemen-
tary kernels dedicated to {Nk,l}k,l. A classifier associated to
an action category c is given by gc(V) =

∑
i α

c
iyicK(V,Vi)+

bc, here bc is a shift, {αci}i is a set of positive parameters
found (together with β = {βk,l}k,l) by minimizing the fol-
lowing constrained quadratic programming (QP) problem

min
0≤β≤1,‖β‖1=1,{αc

i}

1

2

∑
c

∑
i,j

αciα
c
jyicyjcK(Vi,Vj)−

∑
i

αci

s.t. αci ≥ 0,
∑
i

yicα
c
i = 0, ∀i, c.

(3)



As the problem in Eq. 3 is not convex w.r.t β, {αci} taken
jointly and convex when taken separately, an EM-like itera-
tive optimization procedure can be used: first, parameters in
β are fixed and the above problem is solved w.r.t {αci} using
QP, then {αci} are fixed and the resulting problem is solved
w.r.t β using either linear programming for (*) and QP for
(**). This iterative process stops when the values of all these
parameters remain unchanged or when it reaches a maximum
number of iterations. However, in spite of being relatively ef-
fective (see later Table 1), this EM-like procedure is computa-
tionally expensive as it requires solving multiple instances of
constrained quadratic problems2 and the number of necessary
iterations to reach convergence is large in practice.

Fig. 1. Examples of networks used to train a 2-level hierarchical aggregation with
“concatenation” (left) and “averaging” (right). These two networks correspond to the
two equations in (2); their inputs correspond to the elementary kernels evaluated on
pairwise nodes inN : constrained to be aligned for “concatenation” and unconstrained
for “averaging” (Better to zoom the PDF version).

3.2. Deep contrastive loss design

In what follows, we consider a procedure that decouples the
learning of β from {αci} resulting into more efficient and also
still effective training process. In this procedure, we first
model the kernels in Eq. 2 using two networks (see Fig. 1),
and we learn their parameters using a contrastive loss crite-
rion (that benefits from larger training data pairs), then we
plug the resulting K into Eq. 3 in order to learn the parame-
ters {αci} in one step. We consider an end-to-end framework
which learns the parameters β of these networks (that capture
the importance of nodes in the hierarchical aggregation) by
minimizing

min
0≤β≤1,‖β‖1=1

E(β,S,K, Y ), (4)

hereE models the disagreement between the predicted kernel
values on video pairs {K(Vi,Vj)}Vi,Vj∈S and their ground-
truth {Y (Vi,Vj)}Vi,Vj∈S with Y (Vi,Vj) = +1 iff Vi and
Vj belong to the same class and Y (Vi,Vj) = −1 otherwise.
This objective function can still be minimized using gradient
descent and back-propagation. However, some constraints

2whose complexity scales quadratically w.r.t the size of training data and the number
of nodes in the hierarchyN .

should be carefully tackled; indeed, whereas the forward
step can be achieved, gradient back-propagation (through our
multiple aggregation shown mainly in Fig. 1-right) should
be achieved while sharing parameters in the same layers and
across layers. Besides, constraints on β′s should also be
handled.

3.3. Constraint implementation

Considering ∂E
∂K available, the gradients ∂E∂β cannot be straight-

forwardly obtained using a direct application of the chain rule
(as already available in PyTorsh); on the one hand, any step
following the gradient ∂E

∂β should preserve equality and in-
equality constraints in Eq. (4) while a direct application of
the chain rule provides us with a surrogate gradient which ig-
nores these constraints. On the other hand, as the parameters
β are shared across layers (when using “averaging” in Fig. 1),
this requires a careful update of ∂E∂β as shown subsequently.

In order to implement the equality and inequality con-
straints in Eq. 4, we consider a re-parametrization as βk,l =
h(β̂k,l)/

∑
k′,l′ h(β̂k′,l′) for some {β̂k,l}k,l with h being

strictly monotonic real-valued (positive) function and this
allows free settings of the parameters {β̂k,l}k,l during opti-
mization while guaranteeing βk,l ∈ [0, 1] and

∑
k,l βk,l = 1.

During back-propagation, the gradient of the loss E (now
w.r.t β̂’s) is updated using the chain rule as

∂E

∂β̂k,l
=

∑
p,q

∂E

∂βp,q
.
∂βp,q

∂β̂k,l

with
∂βp,q

∂β̂k,l
=

h′(β̂k,l)∑
k′,l′ h(β̂k′,l′ )

.(δp,q,k,l − βp,q),

(5)

and δp,q,k,l = 1{(p,q)=(k,l)}. In practice h(.) = exp(.) and
∂E
∂βp,q

is obtained from layerwise gradient backpropagation
(as already integrated in standard deep learning tools includ-
ing PyTorch). Hence, ∂E

∂β̂k,l
is obtained by multiplying the

original gradient
[
∂E
∂βp,q

]
p,q

by the Jacobian
[∂βp,q

∂β̂k,l

]
p,q,k,l

which simply reduces to
[
βk,l(δp,q,k,l − βp,q)

]
p,q,k,l

when
h(.) = exp(.).
As the parameters {β̂k,l}k,l are not totally independent across
layers (see again Fig. 1-right), we consider a further step that
accumulates (averages) the gradients { ∂E

∂β̂k,l
}k,l with shared

indices and replaces these gradients by the averaged ones. It
is easy to see that these accumulated (shared) gradients (when
used to update β̂’s using gradient descent) also preserve the
equality and inequality constraints in Eq. 4.

4. EXPERIMENTS

We evaluate the performance of our action recognition
method on the challenging UCF-101 (split-2) dataset [45].
The latter includes 13,320 videos belonging to 101 action
categories of variable duration, cluttered background and



misaligned content3. As discussed previously, we first extract
2D two-stream frame-wise representations, then we com-
bine them using our hierarchical aggregation design prior
to achieve action recognition. We follow the exact protocol
in [45] to evaluate and compare our method w.r.t different
settings as well as the related work.
Settings. Different settings are considered in order to assess
the performance of our method: i) multiple depths of our
hierarchical aggregation network ranging from 2 to 6, ii) two
streams (motion and appearance) as well as their fusion, and
iii) the two types of aggregations namely “concatenation”
and “averaging”. In order to learn the weights of our hier-
archical aggregations for all the aforementioned settings, we
conducted experiments using both the EM-like procedure as
well as the deep multiple kernel learning (DMKL) shown in
section 3. In the latter, we achieve DMKL for 4,000 iterations
using PyTorch Adam optimizer4 and we set the learning rate
to 0.0005 and the batch-size to 2048. As already discussed,
we use a contrastive loss for DMKL and we plug the resulting
kernel into multi-class SVMs for training and testing; given
a test video, its category corresponds to the SVM with the
highest score.

Depth (D) Appearance Motion Fusion

C
on

ca
te

na
t. 2 82.78 80.12 89.49

3 82.91 80.59 89.68
4 83.04 80.73 89.72
5 83.17 80.80 89.76
6 82.76 80.62 89.63

Av
er

ag
in

g 2 82.96 80.53 89.67
3 83.16 80.78 89.74
4 83.28 81.00 89.87
5 83.36 81.00 89.89
6 83.36 81.07 89.91

Table 1. This table shows the behavior of our multiple aggregation learning using
the EM procedure w.r.t the depth of the networkN . These results are reported for both
motion and appearance streams as well as their combination and also for concatenation
and averaging (note that RBF is used as an elementary kernel for DMKL). The drop in
the performances of the “concatenation” scheme (fromD = 5 toD = 6, i.e., the most
resolute nodes) is mainly due to the sensitivity of “concatenation” to misalignments in
the most resolute nodes ofN while “averaging” enhances the performances steadily.

Performances and comparison. Table 1 shows the perfor-
mances of the different configurations (described earlier);
from these results, we observe a consistent gain as the depth
of our hierarchy increases with an advantage of “averaging”
w.r.t “concatenation”. This gain is observed on both motion
and appearance streams with a significant leap when fusing
them. These gains also reflect the importance of node cross-
breeding (“averaging” vs. “concatenation”) especially when
videos are subject to cluttered context and when their actions
are misaligned as frequently observed in the UCF-101.

We also show (in Table. 2) a comparison of our hierar-

3Many actions are misaligned as their videos are endowed with large context while
others are precisely trimmed and contain only the actions of interest

4We run experiments on single GPU; GeForce RTX 2080 Ti (with 11 GB).

chical aggregation against two other aggregation methods:
global average pooling and also spectrograms [24]; the for-
mer produces a global representation that averages all the
frame descriptions while the latter keeps all the frame rep-
resentations and concatenate them (as an image) prior to
their classification using 2D CNNs [24]. Note that these
two comparative methods are interesting as they correspond
to two extreme cases of our hierarchy, namely the root and
the leaf levels; in particular, the spectrogram (of a video V
with T frames) is obtained when the number of leaf nodes,
in the hierarchy N , is exactly equal to T (see again [24]).
We also compare our method against another aggregation
method based on colorized heatmaps [32] as a variant of the
global average pooling; these heatmaps correspond to timely-
stamped and averaged frame-wise probability distributions
of human keypoints. Finally, we compare the classification
performances of our method against two closely related 2D
CNN action recognition works: 2D two-streams CNNs in
[29] and [46] (respectively based on VGG and ResNet) as
well as the method in [52]. From these results, we observe
a consistent gain of our hierarchical aggregation design w.r.t
these related methods.

Methods Appearance Motion Fusion
Our HA+C (EM) 82.76 80.62 89.63

Our HA+C (DMKL) 82.82 80.69 89.66
Our HA+A (EM) 83.36 81.07 89.91

Our HA+A (DMKL) 83.44 81.17 89.95
GAP in [24] 66.15 7 7

Spectrogram [24] 64.41 7 7
Colorized heatmaps [32] 7 64.38 7

C3D [52] 82.3 7 7
Temporal Pyramid [24] 68.58 7 7
2D 2-stream VGG [29] 73 83.7 86.9

2D 2-stream ResNet [46] 82.1 79.4 88.5

Table 2. Comparison w.r.t state-of-the-art methods. In this table HA, C, A, GAP
stand for “Hierarchical Aggregation”, “Concatenation”, “Averaging” and “Global Aver-
age Pooling” respectively. Note that our HA results are obtained with D = 6 and RBF
is used for both EM and DMKL settings. In the related work, the symbol “7” means
that the configuration either “does not apply” or “not tested” in the related paper.

5. CONCLUSION

In this paper, we introduced a hierarchical aggregation de-
sign for cross-granularity action recognition. Our method is
based on the minimization of a constrained objective function
whose solution corresponds to the distribution of weights in
a hierarchy of pooling operations that best fits the granularity
of action categories. Besides being able to handle videos with
multiple granularities, the strength of our method resides also
in its ability to handle videos with variable duration and mis-
alignment. Experiments conducted on UCF-101 dataset show
the validity of our approach w.r.t the related work. As future
work, we are currently investigating the extension of our hier-
archical crossbreeding aggregation method in order to handle
longer videos as a part of the more challenging problem of
activity recognition.
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