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Abstract. We are concerned with modelling a particulate flow in a 3–dimensional
domain. The particles are assumed to be rigid, allowing us to describe their mo-
tion using the Newton laws. As we aim to take into account complex shapes for
the solid inclusions, we adopt volume penalization methods. Those methods al-
low us to extend the fluid problem inside the solid domain by assimilating the
particle as a porous medium. The homogeneous fluid flow is governed by the
incompressible Navier–Stokes equations. The whole problem is solved with a
projection–correction method using finite volumes and a staggered mesh to en-
sure the infsup condition for the stability. Regarding the transport of the particles,
a marker–based front tracking method is used for the fluid–solid interface, as well
as a collision strategy. Both penalization methods are studied and compared in the
context of particulate flows.

Keywords: Fluid–structure interactions · Fictitious domain · Penalization

1 Introduction

We are interested in the modelling of fluid–solid systems where we consider rigid solid
inclusions in an incompressible viscous fluid flow in a 3–dimensional domain. Such
problems led to a wide panel of methods to attempt to model and reproduce faithfully
the fluid–solid interactions observed in real life problems. Depending on the needs,
different degrees of coupling between the fluid and the particles may be applied. In
what follows we will resort to a strong coupling to make evident the influence of the
solid inclusions on the fluid. Using an Eulerian formulation for the fluid flow, we extend
the fluid problem inside the solid domain as defined by the fictitious domain methods.
Given the assumptions on the particles we require a rigidity constraint on the solid
domain. Among the most famous methods in this field, the works of Glowinsky et. al [6]
which resort to Lagrange multipliers for the constraint, and volume penalty methods
[1, 8]. The latter idea is based on porous laws and will be considered in our model.

Let us introduce our physical domain Ω along with its boundary Γ, containing the
fluid domain Ωf (t) and N particles Ωis(t) such that ∪Ni=1Ω

i
s(t) = Ωs(t) defines the

solid domain. Therefore we have Ωf (t) = Ω \ Ωs(t). Given the assumptions, we will
work with the incompressible Navier Stokes equations to govern the fluid flow,
? The computational tests have been performed using the server of the Centre Commun de Calcul

Intensif (C3I) of Université des Antilles.
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

ρ
(∂v
∂t

+(v · ∇)v
)
− 2∇ · (µD(v)) +∇p = f in R+ ×Ωf (t)

∇ · v = 0 in R+ ×Ωf (t)

v(0,x) = v0 in R+ ×Ωf (0)
v(t,x) = vΓ on R+ × Γ
v(t,x) = V i(t) + ωi(t)× ri(t,x) on R+ × ∂Ωis(t)

with the fluid velocity v and pressure p as the unknowns. The fluid here is defined by its
density ρ and dynamic viscosity µ. The termD(v) in the momentum equation refers to
the tensor of deformation rate of the fluid, and we have:D(v) = 1

2 (∇v+(∇v)T ). The
last equality defines the no–slip condition; it closes the boundary conditions on Ωf and
enables the coupling with the solid domain. It states that the fluid velocity and the solid
velocity are equal on the fluid–solid interface. Finally, as the particles are assumed to
be rigid, their motion can be described using the translational and rotational velocities
(V i,ωi) of their respective center of massXi. As such we can define the rigid velocity
field vs(t,x) inΩs(t): ∀x ∈ Ωs(t), ∃(V i(t),ωi(t)), vs(t) = V i(t)+ωi(t)×ri(t,x)
where ri(t,x) = x−Xi(t). In addition we have for each particle that,

Mi
dV i

dt
=

∫
Ωi

s(t)

ρsf i(t,x)dx+

∫
∂Ωi

s

σ(v, p) · ndS

d(Ji(t)ωi)

dt
=

∫
Ωi

s(t)

ρsri(t,x)× f i(t,x)dx+

∫
∂Ωi

s

ri(t,x)× (σ(v, p) · n)dS

Here the particle is subjected to the exterior force f i. The coupling with the fluid exists
within the surface integrals, as they involve σ(v, p) = (−pI + 2µD(v)), the surface
stress tensor of the incompressible fluid. The surface integral applied to the translational
(resp. rotational) acceleration will be denoted F i (resp. T i). We also define the density,
mass and inertia tensor (ρs,Mi, Ji) of the particle i.

So as to prevent the use of time–dependent spatial meshes, we resort to fictitious
domain methods to extend the fluid problem inside the solid domain. In our case we will
be using and comparing the L2–penalty and the H1–penalty methods, which consist in
penalizing specific quantities in the fluid problem. Convergence estimates can be found
in [1,3] for fixed obstacles. Notably, the L2–penalty has a convergence rate of O(η1/2)
in the fluid in regard to the penalization parameter η whereas the H1–penalty has a
convergence rate of O(η).

1.1 The Darcy or L2–penalty

We penalize the velocity itself by introducing a perturbation term to the momentum
equation in order to extend the problem inside the solid domain:

ρ
(∂v
∂t

+(v · ∇)v
)
− 2∇ · (µD(v)) +∇p+ µ

η
1Ωs

(v − vs) = f in R+ ×Ω

∇ · v = 0 in R+ ×Ω
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The parameter η roughly describes the permeability of the solid domain, which is now
considered as a porous medium. The latter will be taken as small as possible, in order
to obtain the no–slip condition on ∂Ωs in a weak sense with fixed point iterations re-
garding the convergence of vs.

Following the introduction, the system of equations above is coupled to the Newton
laws for the transport of the solid domain. Owing to the modified momentum equation,
we can consider for the fluid contributions on the particle Ωis(t):

F i = lim
η→0

µ

η

∫
Ωi

s(t)

(v − vs)dx+ ρ

∫
Ωi

s(t)

dv

dt
dx

T i = lim
η→0

µ

η

∫
Ωi

s(t)

ri(t,x)× (v − vs)dx+ ρ

∫
Ωi

s(t)

ri(t,x)×
dv

dt
dx

Using these definitions, one deals with volume integrals, favoring greatly their compu-
tation in the context of fictitious domain methods.

1.2 The Viscous or H1–penalty

We constraint the extended fluid velocity by penalizing its tensor of deformation rate
D(v) inside the solid domain, in the momentum equation. To achieve this we resort to
a multiphase flow representation of the problem, using the non–homogeneous incom-
pressible Navier–Stokes equations with variable viscosity,



∂ρ

∂t
+
(
v · ∇

)
ρ = 0 in R+ ×Ω

∂(ρv)

∂t
+∇ · (ρv ⊗ v)− 2∇ · (µ(ρ)D(v)) +∇p = f in R+ ×Ω

∇ · v = 0 in R+ ×Ω

along with inflow boundary conditions for ρ on {x ∈ Γ, (v(t,x) · n(x)) < 0} as well
as initial conditions. Consequently we have introduced the transport equation of the
two–valued density ρ(t,x) ≥ ρ > 0, which will carry out the transport of the particles
rather than the Newton laws. Similarly we have for the viscosity µf ≤ µ(ρ) ≤ µs.
The solid viscosity µs will be taken as great as possible to enforce the penalization
of the tensor D(v). We aim that way to tend towards ‖D(v)‖L2(Ωs(t)) = 0. With
this property we can go back to a rigid motion velocity field in Ωs(t) for an accurate
representation of the rigid behaviour of the particles.

2 Numerical method to solve the problem

In the present section we describe time and spatial discretization schemes applied to the
penalized problems, followed by the strategies regarding the fluid–structure coupling.
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We resort to the incremental projection scheme [5, 7] adapted to both penalty meth-
ods to solve the extended problem in Ω. Using the Hodge–Helmholtz decomposition
of a given vector in L2(Ω), we are able to decouple the computation of the velocity
and pressure. In a first substep we account for the viscous terms to determine a pre-
dicted velocity, followed by a second substep where we enforce the incompressibility
constraint to obtain the pressure and corrected velocity. For the discretization of the
derivatives, we use a BDF2 formulation for the time derivative of the velocity and a
Richardson extrapolation for the non–linear inertia term. Thereafter we complete the
projection scheme with the transport of the solid domain. For the Darcy penalty, we use
an implicit scheme of the Newton laws in regards to the particle velocities.

Resorting to an advection scheme of the phase field of the particles for the viscous
penalty could render difficult the localisation of the fluid–solid interface. Instead we
carry out the transport of markers defined on the surface of the particles using Runge–
Kutta schemes [2]. We require at leastNdf = 6 markers for each particle,Ndf being the
degree of freedom for a 3–dimensional rigid solid. Using the no–slip condition, we end
up with at most an overdetermined system given by the rigid–body equations valued on
each marker.

As we aim to simulate a large collection of particles we need to adopt a fitting
strategy to account for the potential collisions between particles or the boundaries of
the computational domain. One can resort to repulsive forces using the given position
and orientation of the particle. In our case we will couple the fluid–solid scheme above
with the method introduced in [4]. In the latter reference
we break down a particle in sub–spheres in such a way
that we can define the particle as the union of the con-
vex hulls of two neighbour sub–spheres (Fig. 1). Using
an Uzawa algorithm, the predicted velocities of all sub–
spheres are projected on a set of admissible velocities.
Regarding the spatial discretizations, finite volumes and
a staggered mesh have been chosen. We define the fields
for the penalty quantities (ρ, µ,1Ωs) on the velocity
grids. To compute those fields on the cells where the
fluid–solid interface is located, we adopt an averaging
method.

x
j

x
k

m
1
jk

m
2
jk

Fig. 1: Defining the
markers for a particle
in 2D

3 Validation tests and comparisons

3.1 Dropping a ball in a viscous fluid

For a first test we drop a rigid heavy sphere in a viscous fluid and observe it attaining its
terminal velocity according to the principle that the drag force exerted on the particle
by the fluid as well as buoyancy balances the gravity applied to the sphere. We define
the fluid using the density ρf = 1 and viscosity µf = 0.01. The sphere with radius
r = 0.05 and density ρs = 5 is falling in the rectangular domain [0, 1]× [0, 1]× [0, 3]
to which we applied channel–flow boundary conditions. The gravity constant applied
to the ball is g = 98.1. We take for the penalty parameters µs = 104 and 1/η = 107.
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For the time step we will be using δt = 0.001. The spatial step h is such that h =
max
i=x,y,z

hi = 1/50. The initial position for the ball is (0.5, 0.5, 1).

Fig. 2: Fluid velocity magnitude for the L2–
penalty (left) and H1–penalty (right) when
Z(t) = 2.617

Fig. 3:W -component of the trans-
lational velocity reaching a termi-
nal velocity of the for the L2–
penalty (above) and H1–penalty
(bottom)

In both cases the velocity of the particle keeps a straight trajectory and reaches
a terminal velocity, which is a first satisfying result. However the terminal velocities
while being within the same order (4L.T−1 against 12L.T−1) still differ. We can also
observe a diffusion around the sphere constrained with the H1/viscous penalty. This
could be explained by the fact that no specific treatment regarding the interface is used
when computing the viscous part of the momentum equation of the penalized problem.
Meanwhile the Darcy penalty probably requires corrections regarding the physical pa-
rameters and external forces to obtain a coherent coupling between the Newton laws
and the fluid problem.

3.2 A Rigid rod in a lid–driven cavity

To demonstrate the marker strategy of the viscous penalty method with a non–spherical
particle, we place a rigid rod in the domainΩ = [0, 1]3 with the boundary conditions of
a lid–driven cavity problem. On the side {(x, y, z) ∈ Γ, z = 1} of Ω we set u(t,x) =
1. The rigid rod is defined with the density ρs = 0.8, a length l = 0.1 and width
w = 0.02. For the fluid we use ρf = 1.0, µf = 1.0. We neglect the gravity and leave
the boundary conditions to establish the flow. We use the spatial step h = 1/70 and the
same time step as the previous test. We take µs = 104 to penalize the solid.
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Fig. 4: State of the problem at times t = 2.25, t = 4.25, t = 6.0, t = 6.75

Despite the rather coarse mesh and the thin rod used in this test, the particle properly
follows the flow and rotates appropriately, while remaining rigid. The markers seem to
handle correctly the decomposition of a complex particle using sub-spheres from the
collision strategy.

4 Concluding remarks

We were able to study and compare the L2–penalty and the H1–penalty methods in the
context of particulate flows. As far as we know, comparative studies between those two
methods do not exist for such situations. Therefore, this work can be considered as a
novel short progress in this direction. The numerical tests were overall satisfying and
allowed us to take a step further in validating our code. However more work is required
regarding the calibration of the Darcy penalty problem and the sharpness of the interface
with the viscous-penalized problem to help with the comparison of the methods and the
global observations.
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