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Introduction

This work is incorporated within the framework of the study of a sediment transport modelling. One aim of this contribution, is to provide first, an useful simulation tool, in the context of a 1D space-time problem. Considering the geophysical aspect, the sediment transport can be divided into several categories, in this paper we will be interested in bedload transport. The governing equations consist of a system of three equations, modelling the interaction between fluid and sediment in a river. The hydrodynamical component is described by the shallow-water equations (SWE) and the morphodynamical component, is given by a solid transport discharge due to the Exner law with the Grass formula. In this way, the model can be depicted by a non-conservative and non-linear hyperbolic system, and our main objective is to seek numerical solutions in accordance with these specific aspects. In particular, a good scheme for that model, must comply with the well-balanced property and the path-conservative character. Moreover, as the fluid interacts very weakly with the sediment and characteristic velocities being such a different magnitude, long time simulation and high order accuracy (at least second order) are needed.

To treat hyperbolic problem, finite volumes are the most popular methods as the Godunov scheme. For conservation laws, first attempts to propose approximate solver for hyperbolic systems in non-conservative form, were due to Roe [START_REF] Roe | Approximate Riemann solvers, parameter vectors and difference schemes[END_REF]. After that, several approaches have been introduced like approximate finite volume Roe with characteristic flux scheme [START_REF] Ghidaglia | Une méthode de volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation[END_REF], schemes based on exact or incomplete Riemann solvers [START_REF] Benkhaldoun | Solution on the sediment transport equations using a finite volume method based on sign matrix[END_REF], WENO schemes [START_REF] Xing | High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms[END_REF], generalized Roe methods with or without WENO reconstruction [START_REF] Castro | High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow water systems[END_REF][START_REF] Castro Diaz | Sediment transport models in shallow water equations and numerical approach by high order finite volume methods[END_REF][START_REF] Castro | On some fast well-balanced first order solvers for nonconservative systems[END_REF], or kinetic schemes [START_REF] Perthame | A kinetic scheme for the Saint-Venant system with a source term[END_REF]. In parallel to finite volume, another family of methods called Residual Distribution (RD) methods that emerged from Roe's works in the 80s, is used in this paper [START_REF] Roe | Approximate Riemann solvers, parameter vectors and difference schemes[END_REF][START_REF] Deconinck | Residual distribution schemes: foundations and analysis[END_REF]. Combining advantages from finite volume and finite element methods, their construction allows them nowadays to be monotone, conservative, well-balanced and easily high order accurate [START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF][START_REF] Warzynski | Runge-Kutta residual distribution schemes[END_REF][START_REF] Arpaia | An ALE formulation for explicit Runge-Kutta residual distribution[END_REF][START_REF] Abgrall | High-Order Methods for CFD[END_REF][START_REF] Mazaheri | Improved second-order hyperbolic residual-distribution scheme and its extension to third-orer onn arbitrary triangular grids[END_REF][START_REF] Lin | High order residual distribution for steady state problems for hyperbolic conservation laws[END_REF]. In this contribution, a RD scheme, viewed as a recast of the approximate Riemann solver, called FV-Roe approximation scheme is proposed with simulations. Often used to solve the shallow-water problem, the residual based method is adapted here to solve the coupling problem with sediment transport. And for that the use of a TVD Runge Kutta procedure, but also upwinding and a flux limiter procedures, have been added, to compute weak entropic solution, considering Lax entropy. To introduce our scheme, the present paper is organized according to the following outline: In section 2, the governing equations are introduced. In section 3, our scheme is proposed. And finally, numerical tests are given, in order to show how accurate the scheme is, but also its well-balanced preserving aspect, for the lake at rest.

A sediment transport in a shallow water

In the context of the study of sediment transport in shallow water, several morphodynamical models can be found in the litterature depending on the way of considering the displacement mode. In the case of bedload transport, among several models [START_REF] Meyer-Peter | Formulas for Bed-Load transport[END_REF][START_REF] Van Rijn | Sediment transport (i): bed load transport[END_REF][START_REF] Kalinske | Movement of sediment as bed load in rivers[END_REF][START_REF] Einstein | Formulas for the transportation of bed load[END_REF], the discharge is written by the Grass formula [START_REF] Grass | Sediments transport by waves and currents[END_REF] for simplicity. It involves that the critical shear stress is neglected, then the sediment is viewed as starting its own movement as soon as the fluid starts to move. About the hydrodynamical part, shallow-water equations are considered. The result is an hyperbolic system of three equations. The governing system for the 1D space-time problem, is as follows

               ∂ h ∂t + ∂q ∂ x = 0 ∂q ∂t + ∂ ∂ x q 2 h + 1 2 gh 2 = gh ∂S ∂ x -ghS f ∂S ∂t -ζ ∂q b ∂ x = 0, (1) 
where x denote the horizontal variable at the axis of the channel and t the time variable (see [START_REF] Castro Diaz | Sediment transport models in shallow water equations and numerical approach by high order finite volume methods[END_REF]). By h(x, t) we denote the height of the water column, q(x, t) is the discharge, g is the gravity constant, S f models the friction term and ζ a parameter linked to the sediment porosity (ζ = 1/(1ρ 0 ) with ρ 0 the porosity). The third equation of the model describes the sediment transport by the expression of the sediment volume equation, q b being the solid transport discharge obtained by Grass formula (here, q b = A g (q/h) 3 with A g related to the interaction between the fluid and the sediment). The variable S(x, t) is the distance from a given reference level to the bottom layer. A schematic description is provided (see Fig. 1), η denoting the extra height of the water column.

Neglecting S f in this study, a classical approach is to treat the system (1) as a hyperbolic system with a non-conservative term B:

∂W ∂t + A(W) ∂W ∂ x = 0, (2) 
with W = W(x, t) and (x, t) ∈ I R × I R + . In fact, the vector of unknowns is

W = (h, q, S) T ,
F is the flux function and, A(W) equals to the difference between the Jacobian matrix of F and the non-conservative part:

A(W) = ∂F ∂W (W) -B(W).
More precisely,

F(W) = q q 2 h + 1 2 gh 2 -ζ q b , B = 0 0 0 0 0 gh 0 0 0 , A(W) = 0 1 0 - q 2 h 2 + gh 2 q h 0 -ζ ∂q b ∂ h -ζ ∂q b ∂q 0 , and A(W) = 0 1 0 - q 2 h 2 + gh 2 q h -gh -ζ ∂q b ∂ h -ζ ∂q b ∂q 0 .

A residual based predictor-corrector upwind discretization for 1D space-time sediment transport

Following the introduction, the scheme built in this work, can be viewed as an high order recast of the approximate FV-Roe as introduced by Ghidaglia et al. in [START_REF] Ghidaglia | Une méthode de volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation[END_REF]. Instead of using a high order reconstruction, our approach exploits the residual based approach discussed in [START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF][START_REF] Ricchiuto | An explicit residual based approach for shallow water flows[END_REF].

To present the scheme, one neglects the friction term, and one considers the hyperbolic system with a non-conservative term. Also, to simplify writing in this section, in integrals the term dx will be omitted (all are space integrals). One will consider the intervals (computing cells) defined by

I i = [x i-1 2 , x i+ 1 2 ], i ∈ Z Z, but also the intervals I i+ 1 2 = [x i , x i+1 ]. Let the step ∆x i = x i+ 1 2 -x i-1 2
and that

x i-1 2 = i-1 k=1
∆x k is the intercell located at the middle of I i-1 ∪ I i . ∆t is the time step and t n = n∆t. As usual, we denote by W n i the approximate mean value of W in node x i and at time t n . The RD procedure consists of making the computation of the residual, called global, on a cell I i and then distributing fractions of this quantity to each of its verteces. Under these assumptions, one gets for a linear approximation of W(x, t n ),

W n i := 1 ∆x i ∫ I i W(x, t n ) ≈ W(x i , t n ).
Then, the residual-based predictor corrector method developed in [START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF][START_REF] Ricchiuto | An explicit residual based approach for shallow water flows[END_REF] can be written as follows

W n+1 i = W n i - ∆t ∆x 1 2 Θ i (W n ) + 1 2 Θ i (W * ) + Ψ i-1 2 + Ψ i+ 1 2 , (3) 
with Θ i (W) corresponds to the approximate FV-Roe scheme discrete evolution operator (without the additional term)

Θ i (W) = P + (A i-1 2 )φ i-1 2 + P -(A i+ 1 2 )φ i+ 1 2 .
Concerning the non-conservative terms, one proceeds by linearization along the path joining W i and W i±1 , to compute an approximate value of

W i± 1 2 = 1 2 (W i + W i±1 ). We then denote by A i± 1 2 = A(W i± 1 2 ), B i± 1 2 = B(W i± 1 2
). Also, the fluctuations are:

φ i-1 2 = F i -F i-1 -B i-1 2 (W i -W i-1 ) and φ i+ 1 2 = F i+1 -F i -B i+ 1 2 (W i+1 -W i ),
and the projectors,

P ± (A i∓ 1 2 ) = 1 2 (I ± sign A i∓ 1 2 )),
with the sign of a matrix computed by eigen-decomposition

sign(A i∓ 1 2 ) = K i∓ 1 2 sign(L i∓ 1 2 )K -1 i∓ 1 2 .
The matrix K gathering the eigenvectors of the Roe matrix (along the path), sign(L) is the diagonal matrix whose coefficients are the sign of the eigenvalues (see [START_REF] Parés | On the well-balance property of roe's method for nonconservative hyperbolic systems. applications to shallow-water systems[END_REF] for example). We denote by W * , a predicted value of the solution that has been obtained, from the upwind scheme,

W * i =W n i - ∆t ∆x i Θ i (W n ).
Actually, if we introduce a parallel approach using Galerkin method by seeking a piecewise linear solution, in a domain

Ω =]0, L[, W h (x, t) = i ϕ i (x)W i (x i , t), and 
F h = F(W h ),
with ϕ i representing the standard Lagrange basis fonctions associated to the node x i . One replaces the unknown solution by its approximate solution by finite element from the variational form

∫ Ω ϕ i ∂ t W h + ∫ Ω ϕ i ∂ x F h - ∫ Ω ϕ i B(W h )∂ x W h = 0. (4) 
And one can notice that by linear approximation,

∫ Ω ϕ i ∂ x F h = ∫ I i-1 2 ϕ i ∂ x F h + ∫ I i+ 1 2 ϕ i ∂ x F h ≈ F i -F i-1 2 + F i+1 -F i 2 . ( 5 
)
Hence, the resulting non-stabilized method reads

∫ Ω ϕ i ∂ t W h + 1 2 φ i+ 1 2 + 1 2 φ i-1 2 = 0, (6) 
with the approximation of the first term ∆x i dW i dt , one recovers the mass lumping process.

But as it is known that Galerkin method suffers from lack of stability, one adds a residual based stabilization in the spirit of the streamline upwind method or Streamline Upwind Petrov Galerkin (SUPG) [START_REF] Hughes | Finite element formulation for computational fluid dynamics : I symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics[END_REF][START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF][START_REF] Ricchiuto | An explicit residual based approach for shallow water flows[END_REF]. For a node x i , the stabilization operator S i reads

S i = ∫ Ω A(W h )∂ x ϕ i T r with r = ∂ t W h + ∂ x F h -B(W h )∂ x W h ,
the matrix T being a scaling factor guaranteeing the uniform boundedness of the stabilization w.r.t. the residual. As before, explicit computable expressions are obtained when introducing the linear finite element approximation and introducing appropriate mean value linearizations of the matrices that appear. Recalling that for a linear approximation

∂ x ϕ i I i± 1 2 = ∓1/∆x i± 1 2
, the stabilization term can be evaluated as

S i = A i+ 1 2 T i+ 1 2 ∫ I i+ 1 2 ∂ t W h + φ i+ 1 2 -A i-1 2 T i-1 2 ∫ I i-1 2 ∂ t W h + φ i-1 2 (7)
In one dimension, a typical definition of the scaling matrix T , also used here, being the following

T i± 1 2 = 1 2 ∆x i± 1 2 sign(A i± 1 2 )A -1 i± 1 2 = ∆x i± 1 2 2 |A i± 1 2 | -1 , (8) 
the complete semi-discrete (in space) equations read ∫

I i-1 2 ϕ i + sign(A i-1 2 ) ∂ t W h + ∫ I i+ 1 2 ϕ i -sign(A i+ 1 2 ) ∂ t W h = -P + (A i-1 2 )φ i-1 2 + P -(A i+ 1 2 )φ i+ 1 2 . (9) 
As it has been explained in [START_REF] Ricchiuto | Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case[END_REF], a simplified stabilization step can be added in the Galerkin process with the Runge-Kutta scheme without any loss of accuracy (here, an explicit RK2 of second order accuracy is used). Thus, the residual

r n+1 := W n+1 h -W n h ∆t + 1 2 (∂ x F h -B h ∂ x W h ) * + 1 2 (∂ x F h -B h ∂ x W h ) n (10) 
can be replaced with a simplified residual

r * := W * h -W n h ∆t + 1 2 (∂ x F h -B h ∂ x W h ) * + 1 2 (∂ x F h -B h ∂ x W h ) n , (11) 
to design the scheme by computing

∫ Ω ϕ i r n+1 + ∫ I i-1 2 ∪I i+ 1 2 A(W h )∂ x ϕ i T r * = 0. ( 12 
)
Using an explicit scheme by performing mass lumping in the predictor step [START_REF] Benkhaldoun | A flux-limiter method for dam-break flows over erodible sediment beds[END_REF], and with midpoint rule to evaluate the integrals, one obtains after few calculations and recast equation ( 3), that one recalls

W n+1 i = W n i - ∆t ∆x 1 2 Θ i (W n ) + 1 2 Θ i (W * ) + Ψ i-1 2 + Ψ i+ 1 2 ,
with the aim to define Ψ i± 1 2 as:

ψ i± 1 2 = ∆t ∆x ∫ I i± 1 2 ϕ i - 1 2 (I ∓ sign(A i± 1 2 )) W * h -W n h ∆t ≈ 1 2 W * i -W n i -(I ∓ sign(A i± 1 2 ))(W * i± 1 2 -W n i± 1 2 
) .

However, comparing to the FV-Roe scheme, the additional terms Ψ i± 1 2 that derive from residual stabilization are of second order, that cannot always match with non regular solution. To avoid their effects accross discontinuous features, cell based limiters have been introduced and finally,

Ψ i± 1 2 = δ i± 1 2 ψ i± 1 2 with δ i± 1 2
computed by means of a standard finite volume limiters using values of the MUSCL MinMod flux limiter function [START_REF] Bilanceri | Linearized implicit time advancing and defect correction applied to sediment transport simulations[END_REF].

Numerical results

We present the numerical results of several reference problems. In this section, we aim at validating our numerical scheme and highlighting its characteristic properties against classical tests. The first test consists in proving an approximate well-balanced property of our scheme. We then underline the ability of our scheme to simulate a parabolic sediment transport until a discontinuous solution is obtained. We also prove its high order accuracy by means of an order test problem that has been discussed in [START_REF] Castro Diaz | Sediment transport models in shallow water equations and numerical approach by high order finite volume methods[END_REF]. Finally, we prove that our scheme is capable of faithfully reproducing a dam-break problem over a wet bottom topography [START_REF] Audusse | A simple three-wave approximate riemann solver for the saint-venant-exner equations[END_REF].

Test of well-balanced property

To check the property, the following numerical test is used [START_REF] Qian | Well-balanced central weno schemes for the sediment transport model in shallow water[END_REF]. It deals with the ability of the scheme to reproduce the behaviour of the steady state. Thus, if the numerical scheme is well-balanced, a small difference should be observed between the initial solution and the solution obtained at the final instant. For this, the interval [0, 10] is assumed as the physical domain and the simulation is performed up to T = 0.5s with 100 and 200 cells. A discontinuity in the bed is assumed as the initial condition, so the thickness of the sediment layer is considered,

z b (x, 0) = 4 if 4 ≤ x ≤ 8 0 elsewhere ( 13 
)
and q(x, 0) = 0, h(x, 0) + z b (x, 0) = 10. The results in Table 1, show that the scheme preserves the approximate wellbalanced property [START_REF] Munoz-Ruiz | On the convergence and well-balanced property of pathconservative numerical schemes for systems of balance laws[END_REF]. The differences between the initial solution and the solution at final time are very small. More precisely, the ratio is of around 1.5 between the doubled gridpoints and the coarser one. The accuracy seems to be of order 1.5.

A 1D space-time dune test case

To verify the shock capturing property, the classical transport of parabolic sediment layer has been taken. For this case proposed in [START_REF] Hudson | Numerical techniques for morphodynamic modelling[END_REF][START_REF] Bilanceri | Linearized implicit time advancing and defect correction applied to sediment transport simulations[END_REF][START_REF] Castro Diaz | Sediment transport models in shallow water equations and numerical approach by high order finite volume methods[END_REF], the interval [0, 1000] is assumed as the physical domain and a strong interaction between the fluid and the sediment is taken (A g = 1). The initial conditions are given as follows: the bathymetry is of 10 m, q(x, t) = 10 for the discharge of the fluid, h(x, t) = 10z b (x, t) for the water column height with the sediment layer thickness,

z b (x, 0) = 0.1 + sin 2 π(x-300) 200 if 300 ≤ x ≤ 500 0.1 elsewhere . (14) 
Numerical solutions are generated up to T = 700s. As shown in Fig. 3, the solution of our scheme (solid line) is compared to the solution of the FV-Roe approximation Fig. 2 The dune at initial time. (dotted line), and we note that the RD scheme is less diffusive than the first and the shock is more visible (thanks to the limiters). Therefore, the results show that our numerical scheme seems to satisfy the shock capturing property for this test. It can be noted that it is also stable, more precisely the RD scheme does not generate oscillations even though the interaction between the fluid and the sediment is strong (somewhat artificial with the initial conditions chosen [START_REF] Hudson | Numerical techniques for morphodynamic modelling[END_REF]). The comparison between the evolution of the dune between the RD scheme and the SRNH scheme (a secondorder scheme extracted from [START_REF] Benkhaldoun | A flux-limiter method for dam-break flows over erodible sediment beds[END_REF], see fig. 4 and5) seems to confirm that our scheme is of the second order and is less diffusive than the other.

A test of order

To check the accuracy of the numerical scheme, let us introduce the following one-dimensional problem for which initial conditions are: This test problem has been considered in a previous work by Castro Diaz et. al. [START_REF] Castro Diaz | Sediment transport models in shallow water equations and numerical approach by high order finite volume methods[END_REF], and as the exact solution is unknown, we use a reference solution obtained by a fine mesh of 5120 volumes (as it has been done in their work) with a medium interaction (A g = 0.3). Numerically, the results for h, q and the sediment layer thickness (z b ) and different error norms, show that the second order of accuracy seems to be obtained (see Tables 2, 3 and4). 

q(0, x) = 0, h(0, x) = 2 -0.1 exp(-x 2 ), z b (0, x) = 0.1 -0.01 exp(-x 2 ). (15) 

A dam break test over a wet bottom topography

In this classical test case ( [START_REF] Audusse | A simple three-wave approximate riemann solver for the saint-venant-exner equations[END_REF]) a dam break is considered over a flat wet bottom, in a channel of 10m long. A low interaction between the fluid and the sediment is taken (A g = 0.005), and the initial conditions are,

h(x, 0) = 2 if x ≤ 5m 0.125 if x > 5m , (16) 
q(x, 0) = 0m/s and the bottom topography z b = 0m. The numerical test is performed until T = 1s. The results confirm that our scheme keep the stability as attempted for the coupled approaches (see Fig. 6,7), in comparison the approach by splitting [START_REF] Audusse | Sediment transport modelling: relaxation schemes for saint-venant-exner and three layer models[END_REF]. The accuracy of our RD scheme is of course better than those obtained by the FV-Roe scheme (8). More precisely, as expected and considering the bottom firstly (Fig. 6) the solution computed with the RD scheme forms two plates without any oscillation (in a critical region includes the interval [START_REF] Audusse | A simple three-wave approximate riemann solver for the saint-venant-exner equations[END_REF][START_REF] Benkhaldoun | A flux-limiter method for dam-break flows over erodible sediment beds[END_REF] with -0.1 < z b < -0.05, and in a region where x > 6.5 with z b > 0.5). Then, for the free surface (Fig. 7), the solution of the RD scheme (dashed line) is decreasing along the time, and a plate is reached without oscillation in the critical region [START_REF] Audusse | A simple three-wave approximate riemann solver for the saint-venant-exner equations[END_REF][START_REF] Benkhaldoun | A flux-limiter method for dam-break flows over erodible sediment beds[END_REF]. For both unknowns, a comparison with the FV-Roe approximation (dotted line) is proposed, underlying that the results are quite similar. However the RD scheme is more accurate for the bottom (see Fig. 8 for which the L 2 errors are produced from a referent solution computed with 2000 elements grid). 

Concluding remarks

This contribution proposed a new predictor-corrector scheme, based on the residual, to simulate a sediment transport problem. Numerical tests have highlighted its high order accuracy, its approximate well-balancedness property and its stability for some test problems. In particular, the solutions obtained for the problem of dam-break with wet topography are sharp. Work is in progress to take into account dry bottoms, for example. The extension of this model to take into account a coastal configuration (2D physical domain), by parallel programming, will also be done in a future contribution.
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Table 1

 1 Accuracy of the scheme for the well-balanced test property

	precision	L 2 -error h	ratio	L 2 -error q	ratio
	100	8.6052 × 10 -16	-	7.1712 × 10 -15	-
	200	5.2050 × 10 -16	1.65	5.8743 × 10 -15	1.22

Table 2

 2 Accuracy of the RD-scheme with distributed residual scheme for h

	# gridpts	L 1 -error	Order L 2 -error	Order L ∞ -error	Order
	20	5.628 × 10 -3	-	8.600 × 10 -3	-	2.088 × 10 -2	-
	40	2.421 × 10 -3	1.22	4.159 × 10 -3	1.05	1.086 × 10 -2	0.94
	80	7.918 × 10 -4	1.61	1.408 × 10 -3	1.56	4.036 × 10 -3	1.43
	160	2.072 × 10 -4	1.93	3.815 × 10 -4	1.88	1.211 × 10 -3	1.74
	320	5.257 × 10 -5	1.98	9.693 × 10 -5	1.98	3.159 × 10 -4	1.94
	640	1.314 × 10 -5	2.00	2.423 × 10 -5	2.00	7.927 × 10 -5	1.99

Table 3

 3 Accuracy of the RD-scheme with distributed residual scheme for q, the discharge

	# gridpts	L 1 -error	Order L 2 -error	Order L ∞ -error	Order
	20	2.350 × 10 -2	-	3.771 × 10 -2	-	9.248 × 10 -2	-
	40	1.042 × 10 -2	1.17	1.835 × 10 -2	1.04	4.783 × 10 -2	0.95
	80	3.435 × 10 -3	1.60	6.205 × 10 -3	1.56	1.783 × 10 -2	1.42
	160	8.995 × 10 -4	1.93	1.681 × 10 -3	1.88	5.349 × 10 -3	1.73
	320	2.281 × 10 -4	1.98	4.269 × 10 -4	1.98	1.397 × 10 -3	1.94
	640	5.697 × 10 -5	2.00	1.067 × 10 -4	2.00	3.510 × 10 -4	1.99

Table 4

 4 Accuracy of the RD-scheme with distributed residual scheme for z b , the height of the

	sediment layer						
	# gridpts	L 1 -error	Order L 2 -error	Order L ∞ -error	Order
	20	2.969 × 10 -5	-	5.443 × 10 -5	-	1.423 × 10 -4	-
	40	1.265 × 10 -5	1.23	2.739 × 10 -5	0.99	8.168 × 10 -5	0.80
	80	4.469 × 10 -6	1.50	9.014 × 10 -6	1.60	2.861 × 10 -5	1.51
	160	1.200 × 10 -6	1.90	2.536 × 10 -6	1.83	8.578 × 10 -6	1.74
	320	3.019 × 10 -7	1.99	6.409 × 10 -7	1.98	2.217 × 10 -6	1.95
	640	7.516 × 10 -8	2.01	1.596 × 10 -7	2.00	5.571 × 10 -7	1.99
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