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INTRODUCTION

Total metabolic tumor volume (TMTV) derived from 18 F-labeled fluoro-2-deoxyglucose ( 18 F-FDG) positron-emission tomography-computed tomography (PET/CT) baseline studies is a promising prognostic factor in diffuse large B-cell lymphoma (DLBCL) [START_REF] Sasanelli | Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma[END_REF][START_REF] Song | Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement[END_REF] and other types of lymphoma [START_REF] Kanoun | Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma[END_REF][START_REF] Cottereau | Prognostic value of baseline total metabolic tumor volume (TMTV0) measured on FDG-PET/CT in patients with peripheral T-cell lymphoma (PTCL) †[END_REF][START_REF] Meignan | Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies[END_REF]. DLBCL is the most frequent non-Hodgkin's lymphoma present in about 30% to 40% of non-Hodgkin's lymphoma cases worldwide. Although the prognosis of DLBCL can be improved with immunochemotherapy, more than 30% of patients are refractory or relapse following first-line treatment, with a poor outcome [START_REF] Gisselbrecht | Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era[END_REF][START_REF] Crump | Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study[END_REF]. Therefore, there is a need to identify high-risk patients who could benefit from intensive or novel therapies early. Unfortunately, the role of current prognostic factors such as the International Prognostic Index (IPI) [START_REF]The international non-Hodgkin's lymphoma prognostic factors project. A predictive model for aggressive non-Hodgkin's lymphoma[END_REF], Revised IPI [START_REF] Sehn | The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP[END_REF], and National Comprehensive Cancer Network IPI [START_REF] Zhou | An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era[END_REF], based on tumor burden surrogates is limited. Thus, baseline TMTV, which estimates the total metabolic tumor burden at diagnosis, has been proposed as an alternative prognostic tool for early risk stratification.

To date, TMTV is not yet routinely used in clinical lymphoma patient management in part because of a lack of consensus throughout the literature. Several methods have been proposed to calculate TMTV [START_REF] Cottereau | Baseline total metabolic tumor volume measured with fixed or different adaptive thresholding methods equally predicts outcome in peripheral T cell lymphoma[END_REF][START_REF] Ilyas | Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma[END_REF][START_REF] Barrington | Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumour burden[END_REF], and the cutoff values reported to detect high-risk patients differed among methods and studies. However, recent studies have suggested that, despite these differences, the majority of the methods yielded similar accuracy in predicting patient prognosis when applied in similar patient groups [START_REF] Cottereau | Baseline total metabolic tumor volume measured with fixed or different adaptive thresholding methods equally predicts outcome in peripheral T cell lymphoma[END_REF][START_REF] Ilyas | Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma[END_REF], emphasizing the strong prognostic power of baseline TMTV.

Regardless of the criteria used for delineating tumor regions, all methods for deriving TMTV require extensive and time-consuming manual input from an experienced reader. The reader either manually segments the tumor regions or, more commonly, uses an automated method to detect all regions with increased uptake and then manually eliminates the regions of physiological uptake and adds in undetected tumor regions [START_REF] Barrington | Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumour burden[END_REF]. Recently, a machine learning algorithm using a convolutional neural network (CNN) was trained to differentiate physiological from non-physiological uptake regions in whole-body 18 F-FDG PET scans acquired from an unselected population of more than 600 patients, including half who were lymphoma patients with different subtypes of diseases [START_REF] Sibille | PET uptake classification in lymphoma and lung cancer using deep learning [abstract[END_REF][START_REF] Sibille | F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks[END_REF]. This CNN achieved a high degree of accuracy in characterizing increased tracer uptake in the whole body as physiological or non-physiological.

Such automated identification of non-physiological regions would facilitate TMTV measurement and clinical adoption. This study therefore sought to assess the ability of this CNN to identify regions from which TMTV could be automatically calculated and to evaluate the ability of the resulting TMTV in predicting patient outcome among a large group of DLBCL patients included in an international phase III trial wherein TMTV has already been demonstrated to be a strong predictor of four-year progression-free survival (PFS) and overall survival (OS). To evaluate the CNN performance, regions with elevated tracer uptake automatically identified as physiological or suspicious are compared to regions attributed to suspicious uptake by an expert reader using a semi-automatic method.

MATERIALS AND METHODS

Patients

Patients from an ancillary study [START_REF] Cottereau | High total metabolic tumor volume at baseline allows to discriminate for survival patients in response after R-CHOP: an ancillary analysis of the REMARC study[END_REF][START_REF] Vercellino | High total metabolic tumor volume at baseline allows discrimination of survival even in patients aged 60 to 80 years responding to R-CHOP[END_REF] of the REMARC trial (NCT01122472) were retrospectively analyzed. This trial is a phase III study that was designed to assess the efficacy of lenalidomide versus placebo in responding elderly DLBCL patients (60-80 years old) treated with the standard first-line rituximab, cyclophosphamide, doxorubicin hydrochloride (hydroxydaunorubicin), vincristine sulfate, and prednisone (R-CHOP) therapy approach [START_REF] Thieblemont | Lenalidomide maintenance compared with placebo in responding elderly patients with diffuse large B-cell lymphoma treated with first-line rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone[END_REF].

The institutional review board approval and the informed consent of the REMARC trial included all the ancillary studies. The ancillary study was conducted by involving 301 patients who underwent baseline PET/CT scans before R-CHOP and showed that TMTV was a strong prognosticator of outcome in patients responding to first-line chemotherapy combined with monoclonal antibody treatment.

Image Acquisition and Analysis

All baseline 18 F-FDG PET/CT images from the ancillary study were collected in an anonymized Digital Imaging and Communications in Medicine (DICOM) format. Patients with PET or CT DICOM series with incomplete axial slices or irregular slice intervals were excluded.

PET images were expressed in standardized uptake value (SUV) units, accounting for injected dose and patient body weight.

PET/CT images were analyzed using an investigational software prototype [PET Assisted

Reporting System (PARS), Siemens Medical Solutions USA, Inc., Knoxville, TN, USA]. The prototype first automatically located a cylindrical reference region at the center of the proximal descending aorta by applying a landmarking algorithm to the CT image [START_REF] Tao | Robust learning-based parsing and annotation of medical radiographs[END_REF]. This region was used to determine the mean blood pool uptake (SUVBP) and standard deviation (stdSUVBP), following PET Response Criteria in Solid Tumors (PERCIST) recommendations [START_REF] Wahl | From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors[END_REF]. The threedimensional regions of the PET image with increased tracer uptake were identified for each subject using an automated whole-body high-uptake segmentation algorithm (multi-foci segmentation, MFS) [START_REF] Brito | Comparison of manual versus semi-automatic quantification of skeletal tumor burden on 18F-Fluoride PET/CT [abstract[END_REF]. In line with the PERCIST recommendations, only the regions with SUVpeak > 2 SUVBP + 2 stdSUVBP were included. Those regions were then further segmented according to 42% of the SUVmax threshold, and the ones with volumes below 2 mL were discarded. The resulting regions, called regions of interest (ROI)PARS thereafter, were then automatically processed by a CNN. Details of the training and validation of this CNN were previously reported [START_REF] Sibille | F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks[END_REF]. The input of the CNN was the PET/CT data together with the set of ROIPARS. For each ROIPARS, the output of the CNN was the anatomical localization among a set of possible anatomical sites relevant for staging and whether the ROIPARS uptake was physiological (e.g. due to unspecific bowel uptake, muscle activation, inflammation/infection, bone degeneration) or suspicious (e.g. lymphoma) uptake. The volumes of all ROIPARS classified as suspicious uptake were then summed to obtain the TMTVPARS.

The CNN was also employed in combination with other settings of the initial high-uptake ROI segmentation: 1) using an initial threshold of 2.5 SUV instead of the blood-pool based threshold, followed by thresholding with 41% of SUVmax, 2) including also ROIs with a volume between 0.1mL and 2mL.

The TMTV obtained by two experienced nuclear medicine physicians in the context of a previous study [START_REF] Cottereau | High total metabolic tumor volume at baseline allows to discriminate for survival patients in response after R-CHOP: an ancillary analysis of the REMARC study[END_REF][START_REF] Vercellino | High total metabolic tumor volume at baseline allows discrimination of survival even in patients aged 60 to 80 years responding to R-CHOP[END_REF] was used as a reference (TMTVREF). The TMTVREF was obtained using the semi-automatic version of the Beth Israel FIJI (ImageJ) software plugin [START_REF] Kanoun | Influence of software tool and methodological aspects of total metabolic tumor volume calculation on baseline [18F] FDG PET to predict survival in Hodgkin lymphoma[END_REF], which was previously used to demonstrate the prognostic value of TMTV in various lymphoma subtypes [START_REF] Meignan | Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies[END_REF][START_REF] Cottereau | Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial[END_REF]. To calculate TMTVREF, the physician combined automated and manual steps as follows.

First, volumes of interest with high uptake in the PET images were segmented using an automated method, which applied in sequence an algorithm based on component trees and shape priors [START_REF] Grossiord | Hierarchies and shapespace for PET image segmentation[END_REF], a region growing, and a final region delineation using 41% of the region SUVmax threshold [START_REF] Meignan | Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients[END_REF]. Second, the resulting ROIs were manually reviewed by the reader, who selected only the regions corresponding to lymphoma (ROIREF), adding an ROIREF wherever a lymphoma lesion had been missed by the algorithm by drawing a prism around that lesion and applying a 41% SUVmax threshold. The volumes of all lymphoma ROIREF were summed to obtain the reference TMTVREF.

Statistical Analysis

To evaluate the performance of the CNN classification, for each patient, each ROIPARS, having been labeled as presenting suspicious or physiological uptake by the CNN, was compared to all ROIREF regions of that patient taken together. The ROIPARS was considered to "match" the ROIREF regions if at least 50% of its volume overlapped with one or several ROIREF. ROIPARS classified as suspicious and matching one or several ROIREF were considered as true positives, ROIPARS classified as physiological and matching one or several ROIREF were considered as false negatives, ROIPARS classified as physiological that did not match any ROIREF were considered as true negatives, and ROIPARS classified as suspicious that did not match any ROIREF were considered as false positives. The sensitivity, specificity, and accuracy of the uptake classification were calculated. The performance of the CNN classification was also assessed in case a minimum overlap of 25% and 75% was required to consider a ROIPARS as matching the ROIREF regions.

To evaluate differences between TMTVPARS and TMTVREF, Bland-Altman analysis was performed. Since the Shapiro-Wilk test revealed significant non-normal distribution of the differences between TMTVPARS and TMTVREF (p < 0.001), the median bias and limits of agreement at 2.5 and 97.5 percentiles were reported in the Bland-Altman plot. To assess the correlation between ranked TMTV values, Spearman's rank correlation coefficient was used. For each patient, the agreement between the patient set of ROIPARS classified as suspicious and the patient set of ROIREF was characterized using the Dice score, precision (the fraction of voxels in the set of ROIPARS classified as suspicious that were also present in the set of ROIREF), and recall (the fraction of voxels in the set of ROIREF that were also present in the set of ROIPARS classified as suspicious).

Survival analysis was performed for both TMTVPARS and TMTVREF with respect to PFS and OS. Receiver operating characteristic (ROC) curves were used to determine TMTV cutoff thresholds to predict the occurrence of events for both PFS and OS, by maximizing Youden's index (sensitivity + specificity -1). Survival functions were computed by Kaplan-Meier analyses and used to estimate survival time statistics (such as four-year PFS rate and four-year OS rate) for "low" and "high" TMTV groups. A log-rank test was employed to assess whether differences between Kaplan-Meier survival curves were significant. Univariate Cox regression was used to calculate hazard ratios between survival groups. Statistical significance was set at p < 0.05. Statistical analysis was performed using R version 3.6.1 with pROC version 1.15.3 [START_REF] Robin | pROC: an open-source package for R and S+ to analyze and compare ROC curves[END_REF].

RESULTS

In total, 280 patients from 124 centers were included in the analysis. Patient characteristics are reported in Table 1. All received first-line treatment with R-CHOP and were responders at the time of inclusion in the trial, 142 received lenalidomide regimen afterward as maintenance, and 138 received placebo. After a median follow-up of five years, 86 patients presented a PFS event and 51 patients had an OS event; the four-year survival rates were 69% for PFS and 83% for OS. The four-year survival rates were comparable to those of the entire trial.

PET/CT images of the 280 included patients were acquired using different scanner models from different vendors as summarized in Supplemental Table 1. The delay between injection and acquisition time was 71.7 ± 14.1 min (mean ± std). The mean SUV in the proximal descending aorta cylindrical region was 1.6 ± 0.5 (mean ± std across subjects), resulting in a SUVpeak threshold of 3.6 ± 1.2 for detecting ROIs with increased tracer uptake.

Results below are described for the PERCIST-based setting of the initial high-uptake ROI segmentation, while changes observed with other settings are reported in Supplemental Tables 234.

Uptake Classification

In total, 6,737 ROIPARS exhibiting increased uptake were obtained from the 280 subjects by the MFS algorithm using PARS. There were 7,996 ROIREF in the 280 subjects. Descriptive statistics for the number of ROIPARS and ROIREF per subject are summarized in Supplemental Table 5. Among the 6,737 ROIPARS with increased uptake, 2,831 ROIPARS (42%) were classified as having suspicious uptake by the CNN.

When compared with the ROIREF obtained by the experienced reader, the identification of the ROIPARS with suspicious uptake by the CNN yielded 3,317 true negatives, 2,399 true positives, 589 false negatives, and 432 false positives. Corresponding sensitivity was 80%, specificity was 88%, and accuracy was 85%.

Additionally, the mean per-subject ROIPARS classification accuracy was 87% [median: Two examples of uptake classification using PARS with corresponding ROIREF are shown in Fig. 1. Results with a minimum overlap of 25% and 75% required to consider a ROIPARS as matching the ROIREF regions are reported in Supplemental Table 6.

Total Metabolic Tumor Volume

After discarding the ROIPARS classified as physiological uptake by the CNN, a median TMTVPARS of 110 mL was obtained (IQR: 33-281 mL). The median TMTVREF was 240 mL (IQR: 80-529 mL) (Table 2).

There was a significant correlation between ranked TMTV estimates (ρ = 0.76; p < 0.001). The median Dice score across all patients between the patient set of ROIPARS labeled as suspicious and the patient set of ROIREF was 0.73 (IQR: 0.33-0.86), the median recall of the patient set of ROIPARS labeled as suspicious with respect to the patient set of ROIREF was 0.62 (IQR: 0.20-0.81), and the median precision was 0.96 (IQR: 0.86-0.99). The Bland-Altman plot comparing TMTVPARS and TMTVREF (Fig. 2) showed wide limits of agreement.

Survival Analysis

The area under the ROC curve for predicting PFS was 0.61 for TMTVPARS and 0.64 for TMTVREF (Fig. 3). The optimal cutoffs for predicting PFS were 110 mL for TMTVPARS and 242 mL for TMTVREF. Kaplan-Meier survival curves are shown in Fig. 4. The four-year PFS rates were 81% and 58% for the low-and high-TMTVPARS groups and 83% and 55% for the low-and high-TMTVREF groups, respectively. The log-rank test indicated a significantly longer PFS time in the low-TMTV patient group for both TMTV estimation methods (p < 0.001 for TMTVPARS and TMTVREF). Cox regression for PFS resulted in hazard ratios (high-TMTV group vs. low-TMTV group) of 2.4 [95% confidence interval (CI): 1.5-3.7; p < 0.001 for Wald test] for TMTVPARS and 2.6 (95% CI: 1.6-4.1; p < 0.001) for TMTVREF. The survival results are summarized in Table 3.

For OS, the area under the ROC curve was 0.64 for TMTVPARS and 0.66 for TMTVREF.

The optimal TMTV cutoffs for predicting OS were 148 mL for TMTVPARS and 223 mL for TMTVREF. The four-year OS rates were 90% and 74% for the low-and high-TMTVPARS groups and 93% and 74% for the low-and high-TMTVREF groups, respectively. The log-rank test revealed a significantly higher OS time in the low-TMTV patient group for both TMTV estimation methods (p < 0.001 for TMTVPARS and TMTVREF). Cox regression for OS resulted in hazard ratios (high-TMTV group vs. low-TMTV group) of 2.8 (95% CI: 1.6-5.1; p < 0.001) for TMTVPARS and 3.7 (95% CI: 1.9-7.2; p < 0.001) for TMTVREF.

The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy for predicting the occurrence of survival events, determined at the optimal TMTV cutoff point for each method, are reported in Supplemental Table 7, and were similar for both PFS and OS.

DISCUSSION

Our main result is that a fully automated method combining a region delineation method based on PERCIST recommendations and a CNN-based algorithm to distinguish between regions with elevated physiological uptake and non-physiological regions is able to generate, in a uniform population of DLBCL patients, TMTV values predictive of four-year PFS and OS with an accuracy comparable to that obtained when TMTV is calculated by manual selection of the tumor regions by medical experts. Although the CNN-based algorithm was trained using PET/CT images from only two scanner models from the same vendor, it showed high accuracy in classifying regions with increased uptake in a group of patients from an international multicenter trial involving 124 centers, with PET/CT images obtained from different scanner models from different vendors with variable reconstruction settings. This underlines the robustness of the CNN despite different image quality. Moreover, this algorithm was not originally trained for TMTV computation and outcome prediction and was developed with data from patients with different lymphoma subtypes and lung cancer who underwent PET at baseline and for response assessment. However, we showed that the algorithm was successful in a group of patients with a homogenous lymphoma subtype scanned at baseline, enabling the identification of a TMTV cutoff separating high-risk and low-risk patients and predicting prognosis with accuracy comparable to that of the reference method. No subject was excluded due to failures of the initial high uptake ROI segmentation, which identified at least one high uptake region for all subjects. Furthermore, when employing different settings of the initial high uptake ROI segmentation using a lower threshold of 2.5 SUV in comparison with PERCIST recommended blood-pool based threshold, comparable results were obtained (Supplemental Tables 2 and3), suggesting the robustness of the algorithm to the initial segmentation results.

Additionally, the high-uptake ROI classification accuracy was not substantially impacted when a different level of overlap was required to consider a ROI as matching the reference TMTV and when ROIs with volumes less than 2mL were included in the analysis (Supplemental Tables 4 and6).

The median TMTV and the resulting cutoff observed with PARS were lower than those observed with the reference method. This could be due to multiple factors, including 1) the higher initial SUV threshold used for PARS relative to the one used for the reference TMTV, 2) the manual addition of suspicious regions with low uptake in the reference TMTV, 3) regions being classified as physiological in PARS but considered suspicious for the reference TMTV, and 4) differences in the contouring of suspicious regions between PARS and the reference TMTV. However, the ability of the TMTV estimates to be predictive of PFS and OS despite involving a TMTV range different from that of the reference TMTV is consistent with what has already been reported [START_REF] Cottereau | Baseline total metabolic tumor volume measured with fixed or different adaptive thresholding methods equally predicts outcome in peripheral T cell lymphoma[END_REF][START_REF] Ilyas | Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma[END_REF] when comparing different TMTV estimation methods. This confirms both the validity of the CNN method and the value of TMTV as a prognostic indicator.

Our study has limitations. Since there is currently no gold-standard method for TMTV calculation from 18 F-FDG PET/CT images [START_REF] Cottereau | Is there an optimal method for measuring baseline metabolic tumor volume in diffuse large B cell lymphoma?[END_REF], the reported figures of merit supporting the uptake classification performance and accuracy of our TMTV segmentation are limited to the comparison with the reference method considered in the study. Moreover, a uniform cohort of lymphoma patients was evaluated in the current study and results may differ for different lymphoma subtypes or different cancer types.

In the present work, we evaluated a fully automated application of PARS. However, PARS was initially intended to be used in a supervised manner, giving the ability to the reader to correct for potentially misclassified regions where appropriate. In particular, PET/CT image quality pitfalls such as misalignment due to motion or image artifacts may influence the classification output of the CNN algorithm, and the results should be validated by an expert. This is especially true when the labeling results are used to derive a prognostic index such as TMTV that can be used to stratify the risk and to guide personalized therapy. Nevertheless, this approach could be employed by expert readers to efficiently estimate TMTV, as the deeplearning based method is able to automatically identify several relevant suspicious uptake sites and automatically discard physiological uptake sites, with the expert only having to correct the potential improper classification of a limited number of regions per subject, requiring limited user interaction and potentially improving inter-reader variability. This approach may introduce bias in the TMTV estimation process by relying on pre-generated results. However, this risk should be marginal especially when a careful revision of the results is performed by an experienced reader.

To our knowledge, this is the first study showing that an AI method can generate a TMTV value prognostic of outcome in a large series of patients with DLBCL, with results comparable to other currently employed methodologies. Other machine learning-based approaches for TMTV estimates in lymphoma patients, including some involving CNN, are being developed and evaluated [START_REF] Jemaa | A fully automated measurement of total metabolic tumor burden in diffuse large B-cell lymphoma and follicular lymphoma[END_REF]. The automated method for TMTV segmentation assessed in the present study combined a region-delineation method based on PERCIST recommendations and a deep learning-based classification scheme for rapidly discarding physiological uptake.

Further efforts toward developing a stricter definition of TMTV, standardizing volumesegmentation methods, and establishing guidelines for the inclusion of tumor-bearing anatomical regions are ongoing, and these will constitute a prerequisite for the optimization of a complete automated method [START_REF] Barrington | Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumour burden[END_REF].

CONCLUSION

We showed that Total Metabolic Tumor Volume can be estimated fully automatically using a deep learning approach. The resulting TMTV was consistent with that obtained by independent experts and showed significant prognostic value for PFS and OS in a large cohort of DLBCL subjects. 

  89%, Inter Quartile Range (IQR): 81%-96%]. There were an average of 20 correctly classified ROIPARS per subject (median: 17 ROIPARS, IQR: 11-27 ROIPARS) and an average of four incorrectly classified ROIPARS per subject (median: 2 ROIPARS, IQR: 1-5 ROIPARS), which were regions classified as suspicious by the CNN that did not overlap with the set of ROIREF or regions classified as physiological by the CNN but which overlapped with the set of ROIREF.
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 1 Figure 1. Detection and classification of high 18 F-FDG uptake regions as physiological or suspicious. (A, D) Maximum-intensity projection (MIP) PET images of two subjects with low TMTV (A) and high TMTV (D). (B, E) ROIPARS obtained automatically using the PARS software prototype. ROIPARS detected by the MFS algorithm are overlaid on to the PET MIP. ROIPARS classified by the deep learning algorithm as physiological are shown in green, and ROIPARS classified as suspicious are shown in yellow. (C, F) ROIREF regions obtained by an experienced nuclear medicine physician using a semiautomatic software.
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 2 Figure 2. Bland-Altman plot comparing fully automated and reference TMTV estimations.Bland-Altman plot comparing the TMTV obtained using the software prototype PARS (TMTVPARS) and the reference TMTV (TMTVREF) obtained by a nuclear medicine physician using a semiautomatic software.
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 3 Figure 3. ROC curves for determining the occurrence of PFS or OS events using a TMTV threshold. ROC curves for TMTVPARS and TMTVREF for (A) PFS and (B) OS. Areas under the ROC curves (AUC) and optimal TMTV cutoff thresholds are reported.
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 4 Figure 4. Survival curves for the low-and high-TMTV groups for fully automated and reference TMTV estimations. Kaplan-Meier survival curves for PFS (A: TMTVPARS, B: TMTVREF) and OS (C: TMTVPARS, D: TMTVREF).
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 1 TABLES Patient characteristics

	Patient characteristics	Total number = 280 (%)
	Sex	
	Female	119 (42.5)
	Male	161 (57.5)
	Age (median, ranges) years	68 (58-80)
	Ann Arbor Stage	
	I	1 (0.4)
	II	25 (8.9)
	III	57 (20.4)
	IV	197 (70.4)
	Performance status (ECOG)	
	0	113 (40.4)
	1	119 (42.5)
	2	39 (13.9)
	3	2 (0.7)
	4	2 (0.7)
	Missing	5 (1.8)
	IPI	
	1	6 (2.1)
	2	73 (26.1)
	3	97 (34.6)
	4	81 (28.9)
	5	19 (6.8)
	Missing	4 (1.4)
	Elevated LDH (>Upper limit of normal * )	
	No	111 (39.6)
	Yes	165 (58.9)
	Missing	4 (1.4)
	* LDH upper limit set specifically for each laboratory

Table 2 :

 2 Descriptive statistics of TMTV obtained using the software prototype PARS (TMTVPARS) and the reference method for the 280 subjects included in the study

	TMTV Estimation	Mean STD	Min	Q1 (25%) Median	Q3 (75%) Max
	TMTVPARS (mL)	235.2 347.6 0.0	32.9	110.2	280.8	2471.9
	TMTVREF (mL)	433.7 571.3 2.27	80.0	240.0	529.3	3832.7

Table 3 :

 3 Results associated with ROC analysis of TMTV, Kaplan-Meier estimation of four-year survival rates, Cox regression hazard ratio, and Wald test p-values for PFS and OS for the 280 subjects included in the study.

	TMTV estimation	AUC * Cutoff	Hazard ratio	High	Low TMTV	P
			(mL)	(95% CI)	TMTV	4-y Survival	
					4-y		
					Survival		
	Progression-free						
	Survival						
	TMTVPARS	0.61	110	2.4 (1.5-3.7)	58%	81%	0.00016
	TMTVREF	0.64	242	2.6 (1.6-4.1)	55%	83%	0.00004
	Overall survival						
	TMTVPARS	0.64	148	2.8 (1.6-5.1)	74%	90%	0.00044
	TMTVREF	0.66	223	3.7 (1.9-7.2)	74%	93%	0.00012

* Area under the ROC curve

Table 1 :

 1 PET/CT scan characteristics.

	PET/CT study characteristics	Total number = 280
	Injected dose (MBq)	309 ± 87 (mean ± std)
	Post injection scan delay (min)	71.7 ± 14.1 (mean ± std)
	PET slice thickness (mm)	Median: 3.7; min-max: 2.0-5.0
	PET pixel spacing (mm)	Median: 4.0; min-max: 2.3-5.5
	CT slice thickness (mm)	Median: 3.00; min-max: 1.25-8.00
	CT pixel spacing (mm)	Median: 1.17; min-max: 0.86-1.52
	PET/CT scanner model	
	General Electric (all)	72
	Discovery 690	40
	Discovery STE	14
	Discovery ST	8
	Discovery RX	4
	Discovery 600	3
	Discovery 710	2
	Discovery LS	1
	Siemens (all)	105
	Biograph HiRez (1080)	40
	Biograph Truepoint (1093,1094)	27
	Biograph mCT	25
	Biograph LSO (1023,1024)	8
	Biograph BGO (1062)	5
	Philips (all)	103
	Gemini TF	38
	Gemini GXL	36
	Allegro Body	19
	Unspecified (Philips)	

2 Supplemental

Table 2 :

 2 Results associated with the classification of high-uptake ROIs for two different groups of ROIs obtained with two different settings of the multi-foci segmentation

	algorithm.		
		SUVmax > 2.5	SUVpeak > Blood
		(vol>2mL)	Pool (vol>2mL)
	Total number of MFS * findings (ROIPARS)	18674	6737
	Average number of ROIPARS per subject (min-max)	66.7 (6-242)	24.1 (2-91)
	Median number of ROIPARS findings per subject (IQR)	59.0 (39.0-86.0) 19.0 (13.0-31.2)
	Average misclassified number of ROIPARS per subject	6.9 (0-73)	3.6 (0-60)
	(min-max)		
	Median misclassified number of ROIPARS per subject	4.0 (2.0-9.0)	2.0 (1.0-5.0)
	(IQR)		
	Overall accuracy	0.90	0.85
	Overall sensitivity	0.79	0.80
	Overall specificity	0.92	0.88
	Average classification accuracy per subject (min-max)	0.90 (0.40-1.00) 0.87 (0.34-1.00)
	Median classification accuracy per subject (IQR)	0.93 (0.86-0.97) 0.89 (0.81-0.96)

*

Multi-foci segmentation 3 Supplemental

Table 3 :

 3 Results associated with total metabolic tumor volume obtained using two different settings of the high-uptake region detection algorithm (multi-foci segmentation).

	SUVmax > 2.5	SUVpeak > Blood
	(vol>2mL)	Pool (vol>2mL)

Table 4 :

 4 Results associated with the classification of high-uptake ROIs for four groups of ROIs obtained with two different settings of the multi-foci segmentation algorithm both with and without the neglection of ROIs with a volume between 0.1mL and 2mL.

		SUVmax>2.5	SUVmax>2.5	SUVpeak>Blood	SUVpeak>Blood
		(vol>2mL)	(vol>0.1mL)	Pool (vol>2mL)	Pool (vol>0.1mL)
	Total number of MFS *	18674	82114	6737	16717
	findings (ROIPARS)				
	Number of ROIPARS	66.7 (6-242)	293.3 (11-1952) †	24.1 (2-91)	59.7 (2-689) †
	per subject, average				
	(min-max)				
	Number of ROIPARS	59.0 (39.0-86.0)	191.0 (91.8-428.5) † 19.0 (13.0-31.2)	39.5 (23.0-72.5) †
	per subject, median				
	(IQR)				
	Classification	0.90 (0.40-1.00)	0.89 (0.46-1.00) ‡	0.87 (0.34-1.00)	0.85 (0.38-1.00) †
	accuracy per subject,				
	average (min-max)				
	Classification	0.93 (0.86-0.97)	0.93 (0.83-0.97) ‡	0.89 (0.81-0.96)	0.87 (0.78-0.94) †
	accuracy per subject,				
	median (IQR)				
	TMTV, average (min-	258.2 (0.0-2544.1) 275.9 (0.0-2571.9) † 235.2 (0.0-2471.9 244.8 (0.0-2488.3) †
	max)				
	TMTV, median (IQR) 126.8 (37.8-295.0) 142.2 (42.9-340.1) † 110.2 (32.9-280.8) 123.3 (35.9-295.6) †
	Dice with respect to	0.59 (0.00-0.99)	0.60 (0.00-0.99) †	0.60 (0.00-0.99)	0.62 (0.00-0.99) †
	the patient set of				
	ROIREF, average (min-				
	max)				
	Dice with respect to	0.71 (0.31-0.86)	0.71 (0.35-0.85) †	0.73 (0.33-0.86)	0.74 (0.39-0.88) †
	the patient set of				
	ROIREF, median (IQR)				
	* Multi-foci segmentation			
					

† p < 0.05, ‡ p > 0.05, Wilcoxon signed-rank test compared to the same variable obtained by neglecting ROIs with a volume below 2mL 5 Supplemental

Table 5 :

 5 Descriptive statistics related to the number of ROIPARS and ROIREF in the 280 subjects included in the study.

	ROIPARS	ROIREF

6 Supplemental

Table 6 :

 6 Results associated with the classification of ROIs with uptake significantly above the blood pool and volume above 2mL, when different levels of overlap are required to consider a ROI as matching the reference TMTV region.

	Overlap≥25% Overlap≥50% Overlap≥75%
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KEY POINTS

Question: Can deep learning be used to obtain an automated estimation of Total Metabolic Tumor Volume in baseline 18 F-FDG PET/CT for risk stratification in DLBCL patients?

Pertinent findings: In a cohort of 280 DLBCL patients from the REMARC trial, a deep learning algorithm could classify volumes of interest with elevated uptake in 18 F-FDG PET/CT as physiological or suspicious in good agreement with expert human reader assessment. By aggregating the volumes of interest classified as suspicious uptake by the deep learning algorithm, the automated Total Metabolic Tumor Volume estimates were significant for PFS and OS prediction.

Implications for patient care: Total Metabolic Tumor Volume estimated with an automated method using deep learning may contribute to reproducible and accurate identification of high risk patients with DLBCL. Supplemental Table 7. Performance of the prediction of the occurrence of an event for both PFS and OS based on the TMTV cutoff thresholds selected by maximizing Youden's J index. 

Accuracy